Rings for MAT 685
Mathematical ring implementation to demonstrate templates and inheritance
- a -
adjust_value() :
Rings::Mod< T, m >
- c -
check_inverse() :
Rings::Mod< T, m >
,
Rings::Modp< T, p >
check_inverses() :
Rings::Modp< T, p >
check_modulus() :
Rings::Mod< T, m >
clear_coeffs() :
Rings::Polynomial< R >
coeff() :
Rings::Polynomial< R >
common_division() :
Rings::Polynomial< R >
- d -
degree() :
Rings::Polynomial< R >
- g -
get_denominator() :
Rings::Rational< T >
get_numerator() :
Rings::Rational< T >
get_value() :
Rings::Integer< T >
,
Rings::Mod< T, m >
- h -
has_inverse() :
Rings::Field_Element
,
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Modp< T, p >
,
Rings::Polynomial< R >
,
Rings::Ring_Element
- i -
Integer() :
Rings::Integer< T >
inverse() :
Rings::Field_Element
,
Rings::Modp< T, p >
,
Rings::Rational< T >
is_cancellable() :
Rings::Integral_Domain_Element
,
Rings::Polynomial< R >
,
Rings::Ring_Element
is_commutative() :
Rings::Commutative_Ring_Element
,
Rings::Ring_Element
is_one() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
,
Rings::Ring_Element
is_zero() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
,
Rings::Ring_Element
- m -
Mod() :
Rings::Mod< T, m >
Modp() :
Rings::Modp< T, p >
- o -
operator!=() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
,
Rings::Ring_Element
operator%() :
Rings::Polynomial< R >
operator()() :
Rings::Polynomial< R >
operator*() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Modp< T, p >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
,
Rings::Ring_Element
operator+() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
,
Rings::Ring_Element
operator-() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
,
Rings::Ring_Element
operator/() :
Rings::Field_Element
,
Rings::Modp< T, p >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
operator<<() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
operator=() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
operator==() :
Rings::Integer< T >
,
Rings::Mod< T, m >
,
Rings::Polynomial< R >
,
Rings::Rational< T >
,
Rings::Ring_Element
- p -
Polynomial() :
Rings::Polynomial< R >
- r -
Rational() :
Rings::Rational< T >
- s -
set_coeff() :
Rings::Polynomial< R >
set_degree() :
Rings::Polynomial< R >
simplify() :
Rings::Rational< T >
- v -
verify_degree() :
Rings::Polynomial< R >
Generated by
1.8.13