
MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

MAT 685: C++ for Mathematicians
Points and classes

John Perry

University of Southern Mississippi

Spring 2017



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Outline

1 The Point of class

2 A class of Point

3 Summary



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Outline

1 The Point of class

2 A class of Point

3 Summary



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

A point in the plane

Two ways to represent a point:

• Cartesian coordinates (x, y)

• Polar coordinates (r, θ)

C++ does not offer a Point type.



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

A point in the plane

Two ways to represent a point:

• Cartesian coordinates (x, y)

• Polar coordinates (r, θ)

C++ does not offer a Point type.



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

How can we work with points?
(0/…)

One way:

• variable Px is P’s x value

• Py y value

• Pr r value

• Pt θ value

Then

• manually track which variables correspond to which
point(s)

• pass all four as arguments to functions

This can get confusing.



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

How can we work with points?
(0/…)

One way:

• variable Px is P’s x value

• Py y value

• Pr r value

• Pt θ value

Then

• manually track which variables correspond to which
point(s)

• pass all four as arguments to functions

This can get confusing.



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

How can we work with points?
(0/…)

One way:

• variable Px is P’s x value

• Py y value

• Pr r value

• Pt θ value

Then

• manually track which variables correspond to which
point(s)

• pass all four as arguments to functions

This can get confusing.



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

How can we work with points?
(1/…)

Structured programming introduced a way of organizing related
data into fields of a structure:

struct Point {

double x, y, r, theta;

};

This defines a new type: Point. We can define objects of this
type, and access fields using the dot operator:

Point a;

a.x = 3.0;

a.y = 2.0;

a.r = sqrt(13);

a.theta = 0.666636;



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

How can we work with points?
(1.5/…)

We can also write a function to automatically determine polar
from Cartesian:

void polar_from_cartesian(Point & P) {

P.r = sqrt(P.x*P.x + P.y*P.y);

P.theta = atan(P.x/P.y);

}



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Pros and cons of structured
approach

Pros

• related data stays together, easier to track

Cons

• all fields must be updated manually, or

• must manually pass to function to update other fields, and

• structure is modifiable by any fool with a keyboard

P.x = 3.0;

P.y = 2.0;

P.r = 1.0; // cuz I sed so

P.theta = 40; // degs rool rads drool!!!



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Pros and cons of structured
approach

Pros

• related data stays together, easier to track

Cons

• all fields must be updated manually, or

• must manually pass to function to update other fields, and

• structure is modifiable by any fool with a keyboard

P.x = 3.0;

P.y = 2.0;

P.r = 1.0; // cuz I sed so

P.theta = 40; // degs rool rads drool!!!



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

How can we work with points?
(2/…)

Object-oriented programming beefed up structures into classes.
New ideas:

• data hiding

• encapsulation

• inheritance

• overloading

• polymorphism

We briefly describe these ideas



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Data hiding

Programmer can restrict use of data points using access
specifiers
public data can be changed by any fool with a keyboard

class Point {

public:

double x, y, r, theta;

};

Point P;

P.x = 3.0;

P.y = 2.0;

P.r = 1.0; // cuz I sed so

We distinguish protected from private later — best to use
protected



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Data hiding

Programmer can restrict use of data points using access
specifiers
private or protected data cannot

class Point {

protected:

double x, y, r, theta;

};

Point P;

P.x = 3.0; // compiler error

P.y = 2.0; // compiler error

P.r = 1.0; // compiler error

We distinguish protected from private later — best to use
protected



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Encapsulation

Programmer can link data with algorithms related to that data

class Point {

protected:

double x, y, r, theta;

public:

void rotate(double angle);

};

void Point::rotate(double angle) {

// a miracle occurs here

}

Point P;

P.rotate(3.14159);



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Inheritance

New classes can inherit data and methods, facilitating code reuse

class Colored_Point : public Point {

protected:

unsigned red, green, blue;

}

Colored_Point CP;

CP.rotate(3.14159); // for free, from Point



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Overloading

Arithmetic operators can be extended to new types

class Abelian_Point : public Point {

Abelian_Point operator +(Abelian_Point &);

};

Abelian_Point P, Q, R;

R = P + Q;



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Polymorphism

“A word means just what I choose it to mean — neither more

nor less.”

— Humpty Dumpty, Alice Through the Looking Glass

Functions do different things, depending on their inputs

long gcd(long, long);

long gcd(long, long, long &, long &);

…so you’ve already seen this in action.



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Polymorphism

“A word means just what I choose it to mean — neither more

nor less.”

— Humpty Dumpty, Alice Through the Looking Glass

Functions do different things, depending on their inputs

long gcd(long, long);

long gcd(long, long, long &, long &);

…so you’ve already seen this in action.



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

How can we work with points?
(2/…)

Object-oriented programming beefed up structures into classes.
New ideas:

• data hiding

• encapsulation

• inheritance

• overloading

• polymorphism

This chapter focuses on encapsulation and overloading



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Outline

1 The Point of class

2 A class of Point

3 Summary



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Interface

What should a Point class do?

• initialize

• report values (they’re protected, after all)

• modify values

• set
• rotate

• compare values

• equality
• ordering?

• compute values

• distance
• midpoint



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Interface code

Listing 1: point.hpp (p. 1/2, sans comments)

#ifndef __POINT_HPP_

#define __POINT_HPP_

#include <iostream>

using std::ostream;

class Point {

protected:

double x, y;

public:

Point(double, double);

Point(const Point &);

double get_x() const;

double get_y() const;

void set_x(double);

void set_y(double);



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Interface code

Listing 2: point.hpp (p. 2/2, sans comments)

double get_radius() const;

double get_angle() const;

void set_radius(double);

void set_angle(double);

void rotate(double);

bool operator == (const Point &) const;

bool operator != (const Point &) const;

};

double distance(const Point &, const Point &);

Point midpoint(const Point &, const Point &);

ostream & operator << (ostream &, const Point &);

#endif



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Observations on data

• only saving rectangular coordinates

• polar coordinates computed on demand

• time/space tradeoff
• memory cheap (these days), computation expensive
• this implementation a bit unusual



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Observations on methods (1/3)

• Construction

• Used to initialize data
• Always named by class

• Second version is copy constructor

• Class(const & Class);

• often needed for return statements
• best to implement in general

• “default” constructor possible

• does nothing useful
• to get it, do not specify a constructor

• if you provide constructor(s)

• “default” constructor not created
• object initialization must follow constructor(s)
• can be a problem for arrays



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Observations on methods (1/3)

• Construction

• Used to initialize data
• Always named by class
• Second version is copy constructor

• Class(const & Class);

• often needed for return statements
• best to implement in general

• “default” constructor possible

• does nothing useful
• to get it, do not specify a constructor

• if you provide constructor(s)

• “default” constructor not created
• object initialization must follow constructor(s)
• can be a problem for arrays



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Observations on methods (1/3)

• Construction

• Used to initialize data
• Always named by class
• Second version is copy constructor

• Class(const & Class);

• often needed for return statements
• best to implement in general

• “default” constructor possible

• does nothing useful
• to get it, do not specify a constructor

• if you provide constructor(s)

• “default” constructor not created
• object initialization must follow constructor(s)
• can be a problem for arrays



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Observations on methods (2/3)

• “Getters”

• get_x(), get_y(), get_radius(),
get_angle()

• data protected; getters used to report values
• no need to implement for data you want to hide
• const: method does not change object

• “Setters”

• set_x(), set_y(), set_radius(),
set_angle()

• data protected; setters used to modify values
• no need to implement for any fool with a keyboard



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Observations on methods (2/3)

• “Getters”

• get_x(), get_y(), get_radius(),
get_angle()

• data protected; getters used to report values
• no need to implement for data you want to hide
• const: method does not change object

• “Setters”

• set_x(), set_y(), set_radius(),
set_angle()

• data protected; setters used to modify values
• no need to implement for any fool with a keyboard



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Observations on methods (3/3)

• Modification

• rotate()

• Comparison

• operator == (), operator != ()

• allows us to compare points in “natural” way
• const: method does not change objects
• not required for a class
• if left undefined, C++ will compare in a “default” way

• probably not what you want



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Observations on methods (3/3)

• Modification

• rotate()

• Comparison

• operator == (), operator != ()

• allows us to compare points in “natural” way
• const: method does not change objects
• not required for a class
• if left undefined, C++ will compare in a “default” way

• probably not what you want



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Other functions

C++ not a “pure” object-oriented language

• not all functions need to be methods

• some functions make more sense outside class

• distance() “belongs” to which Point?

• some functions best implemented outside class

• operator << () and operator >> ()

• can be implemented as methods, but often gets ugly



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Other functions

C++ not a “pure” object-oriented language

• not all functions need to be methods

• some functions make more sense outside class

• distance() “belongs” to which Point?

• some functions best implemented outside class

• operator << () and operator >> ()

• can be implemented as methods, but often gets ugly



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Other functions

C++ not a “pure” object-oriented language

• not all functions need to be methods

• some functions make more sense outside class

• distance() “belongs” to which Point?

• some functions best implemented outside class

• operator << () and operator >> ()

• can be implemented as methods, but often gets ugly



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Implementation

Listing 3: point.cpp (1/5)

#include "point.hpp"

#include <cmath>

using std::sqrt; using std::cos;

using std::acos; using std::atan2;

Point::Point(double new_x, double new_y) {

x = new_x; y = new_y;

}

Point::Point(const Point & other) {

x = other.x; y = other.y;

}

double Point::get_x() const { return x; }

double Point::get_y() const { return y; }



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Implementation

Listing 4: point.cpp (2/5)

void Point::set_x(double new_x) { x = new_x; }

void Point::set_y(double new_y) { y = new_y; }

double Point::get_radius() const {

return sqrt(x*x + y*y);

}

void Point::set_radius(double r) {

if (x == 0 and y == 0) { x = r; }

else {

double a = get_angle();

x = r * cos(a);

y = r * sin(a);

}

}



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Implementation

Listing 5: point.cpp (3/5)

double Point::get_angle() const {

double result;

if (x == 0 and y == 0) result = 0;

else {

const double pi = acos(-1);

result = atan2(y,x);

if (result < 0) result += 2*pi;

}

return result;

}

void Point::set_angle(double theta) {

double r = get_radius();

x = r * cos(theta);

y = r * cos(theta);

}



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Implementation

Listing 6: point.cpp (4/5)

void Point::rotate(double theta) {

set_angle(get_angle() + theta);

}

bool Point::operator == (const Point & Q) const {

return (x == Q.x and y == Q.y);

}

bool Point::operator != (const Point & Q) const {

return (x != Q.x or y != Q.y);

}

double distance(const Point & P, const Point & Q) {

double dx = P.get_x() - Q.get_x();

double dy = P.get_y() - Q.get_y();

return sqrt(dx*dx + dy*dy);

}



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Implementation

Listing 7: point.cpp (5/5)

Point midpoint(const Point & P, const Point & Q) {

double x = (P.get_x() + Q.get_x()) / 2;

double y = (P.get_y() + Q.get_y()) / 2;

return Point(x, y);

}

ostream & operator << (ostream & os, const Point & P)

{

os << '(' << P.get_x() << ',' << P.get_y() << ')';

return os;

}



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Test

Listing 8: test_point.cpp (1/2)

#include <iostream>

using std::cout; using std::endl;

#include <cmath>

using std::acos;

#include "point.hpp"

int main() {

Point X(0,0);

Point Y(3,4);

cout << "The point X is " << X

<< " and the point Y is " << Y << endl;

cout << "Point Y in polar coordinates is ("

<< Y.get_radius() << ','

<< Y.get_angle() << ")\n";

cout << "The distance between these points is "

<< distance(X, Y) << endl;



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Test

Listing 9: test_point.cpp (2/2)

cout << "The midpoint between these points is "

<< midpoint(X, Y) << endl;

const double pi = acos(-1);

Y.rotate(pi/2);

cout << "After a 90 degree rotation, Y is "

<< Y << endl;

Y.set_radius(100);

cout << "After rescaling, Y is " << Y << endl;

Point Z(Y);

cout << "After setting Z to Y, Z is " << Z << endl;

X = Point(5,3);

Y = Point(5,-3);

cout << "Now X is " << X << ", Y is " << Y << endl;

if (X == Y)

cout << "They are equal\n";

if (X != Y)

cout << "They are not equal\n";

}



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Compile, execute test

$ g++ -c point.cpp

$ g++ -o test_point point.o test_point.cpp

$ ./test_point

The point X is (0,0) and the point Y is (3,4)

Point Y in polar coordinates is (5,0.927295)

The distance between these points is 5

The midpoint between these points is (1.5,2)

After a 90 degree rotation, Y is (-4,-4)

After rescaling, Y is (-70.7107,-70.7107)

After setting Z to Y, Z is (-70.7107,-70.7107)

Now X is (5,3) and Y is (5,-3)

They are not equal



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Homework

pp. 112–114 #6.1, 6.2, 6.3, 6.6, 6.7



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Outline

1 The Point of class

2 A class of Point

3 Summary



MAT 685: C++
for Mathemati-

cians

John Perry

The Point of
class

A class of
Point

Summary

Summary

• Math stuff

• None, really

• Programming stuff

• object-oriented programming
• encapsulation
• classes


	The Point of class
	A class of Point
	Summary

