for Mathemati-
cians
John Perry
Prime pairs, yet
again
Euler's totient
function
A first factoring
algoritim
A better factoring
algorithm

MAT 685: C++ for Mathematicians

Prime pairs arrayed

John Perry
University of Southern Mississippi

Spring 2017 for Mathematicians

John Perry

Prime pairs, yet

 againEuler's totient function
(1) Prime pairs, yet again
(2) Euler's totient function

A first factoring algorithm A better factoring algorithm Back to the totient
(3) Counting pairs
(4) Answering the question
(5) Summary

MAT 685: C++ for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

Summary

(1) Prime pairs, yet again

(2) Euler's totient function
A first factoring algorithm A better factoring algorithm Back to the totient
(3) Counting pairs
(4) Answering the question
(5) Summary

Outline

MAT 685: C++ for Mathematicians

Classic problem

John Perry

Prime pairs, yet again

Euler's totient

function

A first factoring algorithm
A better factoring algorithm
Back to the totient

- Choose n
- Choose $a, b \in\{1, \ldots, n\}$
- Let p_{n} be probability that $\operatorname{gcd}(a, b)=1$
- Does $\lim _{n \rightarrow \infty} p_{n}$ exist?
- If so, what is its value?

Prime pairs, yet again

Classic problem

- Choose n
- Choose $a, b \in\{1, \ldots, n\}$
- Let p_{n} be probability that $\operatorname{gcd}(a, b)=1$
- Does $\lim _{n \rightarrow \infty} p_{n}$ exist?
- If so, what is its value?

Example

Let $n=8$.

- Possible outcomes: $\binom{8}{2}=\frac{8!}{2!6!}=28$
- Relatively prime pairs: $(1,2),(1,3), \ldots,(1,8),(2,3),(2,5)$, $(2,7),(3,4),(3,5),(3,7),(3,8),(4,5),(4,7),(6,7),(7,8)$
- So $p_{8}=18 / 28=9 / 14 \approx 64.3 \%$

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
John Perry
Prime pairs, yet again
Euler's totient function

\section*{A problem}

Still too many numbers! Even the Monte Carlo algorithm takes too long at some point.

MAT 685: C++ for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question
Summary
(1) Prime pairs, yet again
2) Euler's totient function
A first factoring algorithm A better factoring algorithm Back to the totient
(3) Counting pairs
4) Answering the question
(5) Summary

\title{
Outline
} for Mathematicians

John Perry

Prime pairs, yet

\section*{again}

Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question

\section*{Get Euler's help!}

\section*{Euler's "totient" function}
\[
\varphi(n)=\mid\{m \in \mathbb{N}\}: 1 \leq m \leq n \text { and } \operatorname{gcd}(m, n)=1 \mid
\] for Mathematicians

John Perry

\section*{again}

Euler's totient function

A first factoring algorithm
A better factoring algorithm

\section*{Get Euler's help!}

Euler's "totient" function
\[
\varphi(n)=\mid\{m \in \mathbb{N}\}: 1 \leq m \leq n \text { and } \operatorname{gcd}(m, n)=1 \mid
\]

Example
\begin{tabular}{c||c|c|c|c|c|c|c|c|c}
\(n\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(\varphi(n)\) & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6 & 4
\end{tabular}
\begin{tabular}{c||c|c|c|c|c|c|c}
\(n\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline\(\varphi(n)\) & 10 & 4 & 12 & 6 & 8 & 8 & 16
\end{tabular}
\begin{tabular}{c||c|c|c|c|c|c|c|c|c}
\(n\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(\varphi(n)\) & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6 & 4
\end{tabular}
\begin{tabular}{c||c|c|c|c|c|c|c}
\(n\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline\(\varphi(n)\) & 10 & 4 & 12 & 6 & 8 & 8 & 16
\end{tabular}
- if \(n=p\) is prime...
- if \(n=p^{k}\) is a prime power...
- if \(n=a b\) is a relatively prime product...
\begin{tabular}{c||c|c|c|c|c|c|c|c|c}
\(n\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(\varphi(n)\) & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6 & 4
\end{tabular}
\begin{tabular}{c||c|c|c|c|c|c|c}
\(n\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline\(\varphi(n)\) & 10 & 4 & 12 & 6 & 8 & 8 & 16
\end{tabular}
- if \(n=p\) is prime... \(\varphi(p)=p-1\)
- if \(n=p^{k}\) is a prime power...
- if \(n=a b\) is a relatively prime product...
\begin{tabular}{c||c|c|c|c|c|c|c|c|c}
\(n\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(\varphi(n)\) & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6 & 4
\end{tabular}
\begin{tabular}{c||c|c|c|c|c|c|c}
\(n\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline\(\varphi(n)\) & 10 & 4 & 12 & 6 & 8 & 8 & 16
\end{tabular}
- if \(n=p\) is prime... \(\varphi(p)=p-1\)
- if \(n=p^{k}\) is a prime power... \(\varphi\left(p^{k}\right)=p^{k}-p^{k-1}\)
- if \(n=a b\) is a relatively prime product...
\begin{tabular}{c||c|c|c|c|c|c|c|c|c}
\(n\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline\(\varphi(n)\) & 1 & 2 & 2 & 4 & 2 & 6 & 4 & 6 & 4
\end{tabular}
\begin{tabular}{c||c|c|c|c|c|c|c}
\(n\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
\hline\(\varphi(n)\) & 10 & 4 & 12 & 6 & 8 & 8 & 16
\end{tabular}
- if \(n=p\) is prime... \(\varphi(p)=p-1\)
- if \(n=p^{k}\) is a prime power... \(\varphi\left(p^{k}\right)=p^{k}-p^{k-1}\)
- if \(n=a b\) is a relatively prime product... \(\varphi(a b)=\varphi(a) \varphi(b)\)
```

MAT 685: C++
for Mathemati-
cians
John Perry
John Perry

```
```

Prime pairs, yet
again
Euler's totient
function
A first factoring
A first facto
A better factoring
algorithm
Back to the totient
Counting pairs
Answering the
question
Summary

```

\author{

}
```

Theorem
If n is prime, then $\varphi(n)=n-1$.
Proof.
Think about it a moment.
Theorem
Proof.

```

\section*{These properties make sense!}
```

MAT 685: C++
for Mathemati-
cians
John Perry

```

\section*{Prime pairs, yet}

\section*{again}

Euler's totient function
A first factoring algorithm
A better factoring algorithm Back to the totient
```

Theorem
If n is prime, then $\varphi(n)=n-1$.
Proof.
$1,2, \ldots, n-1$ are all rel. prime to n.
Theorem
Proof.

```

\section*{These properties make sense!}

\section*{These properties make sense!}

Theorem
If \(n\) is prime, then \(\varphi(n)=n-1\).
Proof.
\(1,2, \ldots, n-1\) are all rel. prime to \(n\).
Theorem
If \(n=p^{k}\) is a prime power, then \(\varphi(n)=p^{k}-p^{k-1}\).
Proof.
Think about it a moment.

\section*{These properties make sense!}

Theorem
If \(n\) is prime, then \(\varphi(n)=n-1\).
Proof.
\(1,2, \ldots, n-1\) are all rel. prime to \(n\).
Theorem
If \(n=p^{k}\) is a prime power, then \(\varphi(n)=p^{k}-p^{k-1}\).
Proof.
Only \(p, 2 p, 3 p, \ldots,\left(p^{k-1}\right) p\) are not rel. prime to \(p\).
```

MAT 685: C++
for Mathemati-
cians
John Perry

```

\section*{This one we can only sketch}
function
```

Prime pairs, yet

again

```
Euler's totient
```

```
Euler's totient
```

A first factoring algorithm

```
Theorem
If \(n=a b\) is a relatively prime product, then \(\varphi(n)=\varphi(a) \varphi(b)\).
Proof.
Think about it a moment.

\section*{This one we can only sketch}

Theorem If \(n=a b\) is a relatively prime product, then \(\varphi(n)=\varphi(a) \varphi(b)\).

Proof.
Products of numbers not rel. prime to \(a\) or \(b\) are also not rel. prime to \(p\). Numbers not rel. prime to \(p\) must also have a common factor with \(a\) or \(b\) (requires Chinese Remainder Theorem).

John Perry

Prime pairs, yet again

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question

\section*{Non-trivial example}
```

MAT 685: C++
for Mathemati-
cians
John Perry
John Perry

```

Prime pairs, yet again

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question

\section*{Non-trivial example}

Compute \(\varphi\) (100)
- \(\varphi(100)=\varphi\left(2^{2} \times 5^{2}\right)\) for Mathematicians

John Perry

Prime pairs, yet

\section*{again}

Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

\section*{Non-trivial example}

Compute \(\varphi\) (100)
- \(\varphi(100)=\varphi\left(2^{2} \times 5^{2}\right)\)
- \(\varphi(100)=\varphi\left(2^{2}\right) \times \varphi\left(5^{2}\right)\)
\[
\varphi(a b)=\varphi(a) \varphi(b)
\]

John Perry

\section*{again}

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

\section*{Non-trivial example}

Compute \(\varphi\) (100)
- \(\varphi(100)=\varphi\left(2^{2} \times 5^{2}\right)\)
- \(\varphi(100)=\varphi\left(2^{2}\right) \times \varphi\left(5^{2}\right)\)
\[
\cdot \varphi(100)=\left(2^{2}-2^{1}\right) \times\left(5^{2}-5^{1}\right)
\]
\[
\begin{array}{r}
\varphi(a b)=\varphi(a) \varphi(b) \\
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}
\end{array}
\]

John Perry

\section*{again}

Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

\section*{Non-trivial example}

Compute \(\varphi\) (100)
- \(\varphi(100)=\varphi\left(2^{2} \times 5^{2}\right)\)
- \(\varphi(100)=\varphi\left(2^{2}\right) \times \varphi\left(5^{2}\right)\)
\[
\begin{array}{r}
\varphi(a b)=\varphi(a) \varphi(b) \\
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}
\end{array}
\]
- \(\varphi(100)=\left(2^{2}-2^{1}\right) \times\left(5^{2}-5^{1}\right)\)
- \(\varphi(100)=40\) for Mathematicians

John Perry

\section*{Non-trivial example}

Compute \(\varphi\) (100)
- \(\varphi(100)=\varphi\left(2^{2} \times 5^{2}\right)\)
- \(\varphi(100)=\varphi\left(2^{2}\right) \times \varphi\left(5^{2}\right)\)
\[
\varphi(a b)=\varphi(a) \varphi(b)
\]
- \(\varphi(100)=\left(2^{2}-2^{1}\right) \times\left(5^{2}-5^{1}\right)\)
\(\varphi\left(p^{k}\right)=p^{k}-p^{k-1}\)
- \(\varphi(100)=40\)

Bingo!
The 40 numbers are
\[
01,03,07,09, \quad 11,13,17,19, \quad \ldots, \quad 91,93,97,99 .
\]
(Ten groups of 4.) for Mathematicians

John Perry

\section*{How does all this help?}
\[
\begin{aligned}
n & =10:(1 \text { extra for }(1,1)) \\
p_{n} & =\frac{1+2 \times \mid\{\text { rel. prime pairs }(i, j), i<j\} \mid}{|(a, b): 1 \leq a, b \leq 10|} \\
& =\frac{1+2 \times|\{(1,2)\} \cup\{(1,3),(2,3)\} \cup \cdots \cup\{(1,10),(3,10), \ldots,(9,10)\}|}{100} \\
& =\frac{1+2 \times(|\{(1,2)\}|++\cdots+|\{(1,10),(3,10), \ldots,(9,10)\}|)}{100} \\
& =\frac{1+2 \times(\varphi(2)+\varphi(3)+\cdots+\varphi(10))}{100}
\end{aligned}
\]

\section*{How does all this help?}
\[
\begin{aligned}
n & =10:(1 \text { extra for }(1,1)) \\
p_{n} & =\frac{1+2 \times \mid\{\text { rel. prime pairs }(i, j), i<j\} \mid}{|(a, b): 1 \leq a, b \leq 10|} \\
& =\frac{1+2 \times|\{(1,2)\} \cup\{(1,3),(2,3)\} \cup \cdots \cup\{(1,10),(3,10), \ldots,(9,10)\}|}{100} \\
& =\frac{1+2 \times(|\{(1,2)\}|++\cdots+|\{(1,10),(3,10), \ldots,(9,10)\}|)}{100} \\
& =\frac{1+2 \times(\varphi(2)+\varphi(3)+\cdots+\varphi(10))}{100}
\end{aligned}
\]

In general,
\[
p_{n}=\frac{1+2 \sum_{k=2}^{n} \varphi(k)}{n^{2}}
\]
(book gives different, but equivalent, formula)
```

MAT 685: C++
for Mathemati-
cians
John Perry

```

\section*{Prime pairs, yet}

\section*{again}

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question
Summary
```

$$
p_{n}=\frac{1+2 \sum_{k=2}^{n} \varphi(k)}{n^{2}}
$$

```
given \(n\)
let \(s=0\)
for each \(k \in\{2, \ldots, n\}\)
add \(\varphi(k)\) to \(s\)
multiply 2 to \(s\)
add 1 to \(s\)
divide \(s\) by \(n^{2}\)
return \(s\)

\section*{So what?}

\section*{So what?}

John Perry
\[
p_{n}=\frac{1+2 \sum_{k=2}^{n} \varphi(k)}{n^{2}}
\]

\section*{given \(n\)}
let \(s=0\)
for each \(k \in\{2, \ldots, n\}\)
add \(\varphi(k)\) to \(s\)
multiply 2 to \(s\)
add 1 to \(s\)
divide \(s\) by \(n^{2}\)
return \(s\)

Example ( \(n=10\) )
start \(\mathrm{w} / \mathrm{s}=0\)
\(k=2,3, \ldots, 10\)
\(s=1,3,5,9,11,17,21,27,31\)
multiply: \(s=62\)
add: \(s=63\)
divide: \(s=0.63\)
return 0.63

MAT 685: C++ for Mathematicians
p. 88 \#5.1

John Perry

\section*{Prime pairs, yet} again

Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question
Summary

\section*{Homework}
```

MAT 685: C++
for Mathemati-
cians
John Perry

```
Prime pairs, yet
again
Euler's totient
function
(1) Prime pairs, yet again
(2) Euler's totient function

A first factoring algorithm
A better factoring algorithm Back to the totient
(3) Counting pairs
(4) Answering the question
(5) Summary

Prime pairs, yet again

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question

\section*{Factoring \(n\)}

To find \(\varphi(n)\), we need \(n\) 's factors
Question
How do we find them?
```

MAT 685: C++
for Mathemati-
cians
John Perry
To find $\varphi(n)$, we need n 's factors
Question
How do we find them?
given n
let L be a list of \sqrt{n} zeroes
for each $i \in\{2, \ldots, \sqrt{n}\}$
while $i \mid n$
increment L_{i}
replace n by n / i
return L

```

\section*{Factoring n}

\section*{MAT 685: C++} for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

\section*{Example}
\[
\begin{aligned}
& n=100 \\
& L=(0,0,0,0,0,0,0,0,0,0)
\end{aligned}
\]

\section*{MAT 685: C++} for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question

\section*{Example}
\[
\begin{aligned}
& n=100 \\
& L=(0,0,0,0,0,0,0,0,0,0) \\
& \text { loop } i=2
\end{aligned}
\]

MAT 685: C++ for Mathematicians

John Perry
\[
\begin{aligned}
& n=100 \\
& L=(0,1,0,0,0,0,0,0,0,0) \\
& \text { loop } i=2 \\
& \quad 2 \mid 100, \text { so increment } L_{2} \text { and replace } n \text { by } 50
\end{aligned}
\]

Prime pairs, yet again

Euler's totient function

\section*{Example}

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the
question

Summary

MAT 685: C++ for Mathematicians

John Perry
\(n=100\)
\(L=(0,2,0,0,0,0,0,0,0,0)\)
loop \(i=2\)
\(2 \mid 100\), so increment \(L_{2}\) and replace \(n\) by 50
\(2 \mid 50\), so increment \(L_{2}\) and replace \(n\) by 25
Prime pairs, yet

\section*{again}

Euler's totient function
A first factoring algorithm

\section*{Example}
\(n=100\)
\(L=(0,2,0,0,0,0,0,0,0,0)\)
loop \(i=2\)
\(2 \mid 100\), so increment \(L_{2}\) and replace \(n\) by 50
\(2 \mid 50\), so increment \(L_{2}\) and replace \(n\) by 25
\(2 \nmid 25\) : while loop ends
```

MAT 685: C++
for Mathemati-
cians
John Perry

$$
\begin{aligned}
& n=100 \\
& L=(0,2,0,0,0,0,0,0,0,0) \\
& \text { loop } i=2 \\
& 2 \mid 100 \text {, so increment } L_{2} \text { and replace } n \text { by } 50 \\
& 2 \mid 50 \text {, so increment } L_{2} \text { and replace } n \text { by } 25 \\
& 2 \nmid 25 \text { : while loop ends } \\
& \text { loop } i=3 \\
& 3 \nmid 25 \text { : while loop ends }
\end{aligned}
$$

```
```

MAT 685: C++
for Mathemati-

Example

```
\(n=100\)
\(L=(0,2,0,0,0,0,0,0,0,0)\)
loop \(i=2\)
\(2 \mid 100\), so increment \(L_{2}\) and replace \(n\) by 50
\(2 \mid 50\), so increment \(L_{2}\) and replace \(n\) by 25
\(2 \nmid 25\) : while loop ends
loop \(i=3\)
\(3 \nmid 25\) : while loop ends
loop \(i=4\)
\(4 \nmid 25\) : while loop ends
```


Example

John Perry
$n=100$
$L=(0,2,0,0,0,0,0,0,0,0)$
loop $i=2$
$2 \mid 100$, so increment L_{2} and replace n by 50
$2 \mid 50$, so increment L_{2} and replace n by 25
$2 \nmid 25$: while loop ends
loop $i=3$
$3 \nmid 25$: while loop ends
loop $i=4$
$4 \nmid 25$: while loop ends
loop $i=5$

Example

John Perry
$n=100$
$L=(0,2,0,0,1,0,0,0,0,0)$
loop $i=2$
$2 \mid 100$, so increment L_{2} and replace n by 50
$2 \mid 50$, so increment L_{2} and replace n by 25
$2 \nmid 25$: while loop ends
loop $i=3$
$3 \nmid 25$: while loop ends
loop $i=4$
$4 \nmid 25$: while loop ends
loop $i=5$
$5 \mid 25$: increment L_{5} and replace n by 5

Example

John Perry
$n=100$
$L=(0,2,0,0,2,0,0,0,0,0)$
loop $i=2$
$2 \mid 100$, so increment L_{2} and replace n by 50
$2 \mid 50$, so increment L_{2} and replace n by 25
$2 \nmid 25$: while loop ends
loop $i=3$
$3 \nmid 25$: while loop ends
loop $i=4$
$4 \nmid 25$: while loop ends
loop $i=5$
$5 \mid 25$: increment L_{5} and replace n by 5
$5 \mid 5$: increment L_{5} and replace n by 1

Example

$$
\begin{aligned}
& n=100 \\
& L=(0,2,0,0,2,0,0,0,0,0) \\
& \text { loop } i=2 \\
& 2 \mid 100 \text {, so increment } L_{2} \text { and replace } n \text { by } 50 \\
& 2 \mid 50 \text {, so increment } L_{2} \text { and replace } n \text { by } 25 \\
& 2 \nmid 25 \text { : while loop ends } \\
& \text { loop } i=3 \\
& 3 \nmid 25 \text { : while loop ends } \\
& \text { loop } i=4 \\
& 4 \nmid 25 \text { : while loop ends } \\
& \text { loop } i=5 \\
& 5 \mid 25: \text { increment } L_{5} \text { and replace } n \text { by } 5 \\
& 5 \mid 5: \text { increment } L_{5} \text { and replace } n \text { by } 1 \\
& \ldots \\
& \text { return }(0,2,0,0,2,0,0,0,0,0)
\end{aligned}
$$ for Mathematicians

John Perry
again
Euler's totient

function

A first factoring algorithm

What did we get?

$(0,2,0,0,2,0,0,0,0,0)$ tells us

$$
100=2^{2} \times 5^{2}
$$

From there, we can determine φ (100) by passing through the loop.

How do we track a list of numbers?
Use an array, a block of memory.

- need list of 25 int's? int $A[25]$;
- need n int's, but don't know n ? int $A[n]$;
- compile w/ -std=c++11
- To initialize array to 0 , declare instead int $A[n]\{0$ \};

OK, but... lists?

 for MathematiciansJohn Perry

How do we track a list of numbers?
Use an array, a block of memory.

- need list of 25 int's? int $A[25]$;
- need n int's, but don't know n ? int $A[n]$;
- compile w/ -std=c++11
- To initialize array to 0 , declare instead int $A[n]\{0$ \};

Now ready to implement!

MAT 685: C++ for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs

Interface

Place in a new directory, factoring
Listing 1: factoring. hpp

```
#ifndef __FACTORING_HPP_
```

\#ifndef __FACTORING_HPP_
\#define __FACTORING_HPP_
\#define __FACTORING_HPP_
/**
/**
A basic factoring algorithm:
A basic factoring algorithm:
iterate from 2 to sqrt(n).
iterate from 2 to sqrt(n).
@param n the number to factor
@param n the number to factor
@param primes an array to contain the primes
@param primes an array to contain the primes
@warning initialize the elements of @c primes
@warning initialize the elements of @c primes
to zero!
to zero!
*/
*/
void factors(long n, long * primes);
void factors(long n, long * primes);
\#endif

```
#endif
```

MAT 685: C++ for Mathematicians

John Perry

Implementation

Place in same directory

Listing 2: factoring.cpp

```
```

\#include "factoring.hpp"

```
```

\#include "factoring.hpp"
void factors(long m, long * primes) {
void factors(long m, long * primes) {
long n = m;
long n = m;
for (long i = 2; n != 1 and i <= m/2; ++i)
for (long i = 2; n != 1 and i <= m/2; ++i)
{
{
while (n % i == 0) {
while (n % i == 0) {
primes[i] += 1;
primes[i] += 1;
n /= i;
n /= i;
}
}
}
}
}

```
```

}

```
```

MAT 685: C++ for Mathematicians

John Perry

Test program

Place in same directory

Listing 3: test_factoring.cpp (p.1)

```
#include <iostream>
using std::cin; using std::cout;
using std::endl;
#include "factoring.hpp"
int main() {
    long n;
    cout << "Enter a number to factor --> ";
    cin >> n;
    long m = n/2 + 1;
    long primes[m];
```

MAT 685: C++ for Mathematicians

John Perry

Test program

Place in same directory

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

Summary

Listing 4: test_factoring.cpp (p. 2)

```
for (long i = 0; i < m; ++i)
```

 primes[i] \(=0\);
 factors(n, primes);
 for (long $i=0 ; i<m ;++i)$ \{
if (primes[i] != 0)
cout << i << '^' << primes[i] << ' ';
\}
cout << endl;
\}

MAT 685: C++ for Mathematicians

John Perry

Compile, execute test

Prime pairs, yet

 again
Euler's totient

 functionA first factoring algorithm A better factoring algorithm
Back to the totient
Counting pairs

```
$ g++ -c factoring.cpp
$ g++ -o test_factoring -std=c++11 -lm \
    factoring.o test_factoring.cpp
$ ./test_factoring
Enter a number to factor --> 100
2^2 5^2
$ ./test_factoring
Enter a number to factor --> 10
2^1 5^1
```

MAT 685: C++ for Mathematicians

John Perry

Things to watch out for

Big-time no-no
 Don't forget -std=c++11

```
$ g++ -o test_factoring -lm factoring.o \
    test_factoring.cpp
test_factoring.cpp: In function 'int main()':
test_factoring.cpp:14:18: warning: extended initializer
lists only available with -std=c++11 or -std=gnu++11
    long primes[m] { 0 };
```

MAT 685: C++ for Mathematicians

John Perry

again

Eu'er's totient function

A first factoring algorithm A better factoring algorithm
Back to the totient Counting pairs

Things to watch out for

Big-time no-no
Don't forget $-s t d=c++11$

```
$ g++ -o test_factoring -lm factoring.o \
    test_factoring.cpp
test_factoring.cpp: In function 'int main()':
test_factoring.cpp:14:18: warning: extended initializer
lists only available with -std=c++11 or -std=gnu++11
    long primes[m] { 0 };
```

Big-time no-no
Don't forget -lm
(You may get away with that last one.)

MAT 685: C++ for Mathematicians

John Perry

Prime pairs, yet

 againEuler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs

Homework

p. 89 \#5.6, 5.7, 5.10

Answering the question

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
```

Prime pairs, yet
again
Euler's totient
function
(1) Prime pairs, yet again
(2) Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
(3) Counting pairs
(4) Answering the question
(5) Summary

This algorithm is not especially efficient

Why not?

- finds n's prime factorization
- tests divisibility by non-primes
- we could do better if we start with primes

But...
How do we find primes?

```
MAT 685: C++
for Mathemati-
cians
    John Perry
given \(n\)
let \(L\) be a list of \(n\) booleans
(initialize all \(L\) to True)
set \(L_{1}\) to False
for each \(i \in\{2, \ldots, \sqrt{n}\}\)
if \(L_{i}\) is True
let \(a=i\)
while \(a<n\)
add \(i\) to \(a\)
set \(L_{a}\) to False
return \(L\)
```


Sieve of Eratosthenes

 for MathematiciansJohn Perry

Prime pairs, yet

Sieve of Eratosthenes

given n
let L be a list of n booleans (initialize all L to True)
set L_{1} to False
for each $i \in\{2, \ldots, \sqrt{n}\}$
if L_{i} is True
let $a=i$
while $a<n$
add i to a
set L_{a} to False
return L

Example
$n=20$
beginning of loop
 for Mathematicians

John Perry

Prime pairs, yet

Sieve of Eratosthenes

given n
let L be a list of n booleans (initialize all L to True)
set L_{1} to False for each $i \in\{2, \ldots, \sqrt{n}\}$ if L_{i} is True let $a=i$ while $a<n$ add i to a set L_{a} to False
return L

Example
$n=20$
$i=2-$ mark out multiples of 2

F	2		F
	F		F
	F	F	
	F		F
	F		F

John Perry

Prime pairs, yet

Sieve of Eratosthenes

given n
let L be a list of n booleans (initialize all L to True)
set L_{1} to False for each $i \in\{2, \ldots, \sqrt{n}\}$ if L_{i} is True let $a=i$ while $a<n$ add i to a set L_{a} to False
return L

Example
$n=20$
$i=3-$ mark out multiples of 3

F	2	3	F
	F		F
F	F		F
	F	F	F
	F		F

Sieve of Eratosthenes

given n
let L be a list of n booleans (initialize all L to True)
set L_{1} to False for each $i \in\{2, \ldots, \sqrt{n}\}$ if L_{i} is True let $a=i$ while $a<n$ add i to a set L_{a} to False
return L

> Example
> $n=20$
> $i=4-L_{4}=F$: not prime; $\boldsymbol{s k i p}!$

F	2	3	F
	F		F
F	F		F
	F	F	F
	F		F

given n
let L be a list of n booleans (initialize all L to True)
set L_{1} to False
for each $i \in\{2, \ldots, \sqrt{n}\}$ if L_{i} is True let $a=i$ while $a<n$ add i to a set L_{a} to False
return L

Sieve of Eratosthenes

Example
$n=20$
$i=5>\sqrt{20}-$ end loop, true entries prime!

F	2	3	F
5	F	7	F
F	F	11	F
13	F	F	F
17	F	19	F

Theorem
Factoring n requires us to test at most $\sqrt[4]{n}$ numbers for primality.
Proof.

- Prime factor of n must be smaller than \sqrt{n}.
- Sieve of Eratosthenes needs \sqrt{m} tests to find all primes less than m.
\therefore Need $\sqrt{\sqrt{n}}=\sqrt[4]{n}$ tests.

Observation

Theorem
Factoring n requires us to test at most $\sqrt[4]{n}$ numbers for primality.
Proof.

- Prime factor of n must be smaller than \sqrt{n}.
- Sieve of Eratosthenes needs \sqrt{m} tests to find all primes less than m.
\therefore Need $\sqrt{\sqrt{n}}=\sqrt[4]{n}$ tests.

Time to implement the sieve!

Observation

Creating lists on-the-fly

Two kinds of array allocation
static create array using Type var [num]; dynamic create array using
Type * var = new Type [num];

Creating lists on-the-fly

Two kinds of array allocation
static create array using Type var [num];
dynamic create array using
Type * var = new Type[num];

Why two?

- static allocation...
- more efficient if num is known constant (e.g., " 25 ")
- unsafe if data needed outside function
- memory will be trashed!
- dynamic allocation
- when finished w/array, requires delete [] var;
- safe to pass outside function

Creating lists on-the-fly

Two kinds of array allocation
static create array using Type var [num];
dynamic create array using
Type * var = new Type[num];

Why two?

- static allocation...
- more efficient if num is known constant (e.g., " 25 ")
- unsafe if data needed outside function
- memory will be trashed!
- dynamic allocation
- when finished w/array, requires delete [] var;
- safe to pass outside function
sieve's list of primes: dynamic
- don't know how many
- need to return to caller for Mathematicians

John Perry

Interface

Place in factoring directory
Listing 5: sieve.hpp

```
#ifndef __SIEVE_H_
#define __SIEVE_H_
/**
    Sieve of Eratosthenes:
    generate table of primes.
    @param n find primes <= n
    @param primes array of primes
    @return number of primes found */
long sieve(long n, long * & primes);
#endif
``` for Mathematicians

John Perry

\section*{Implementation}

In same directory
Listing 6: sieve. cpp (p.1)
```

\#include <cmath>
using std::sqrt;
\#include "sieve.hpp"
long sieve(long n, long * \& primes) {
long m = long(sqrt(n));
primes = new long[n];
long num_primes = 0;
bool * theSieve = new bool[n];
for (long i = 2; i < n; ++i)
theSieve[i] = true;

```

MAT 685: C++ for Mathematicians

John Perry

\section*{Implementation}

In same directory
Listing 7: sieve. cpp (p. 2)
```

long i;
for (i = 2; i < m + 1; ++i) {
if (theSieve[i] == true) {
primes[num_primes] = i;
++num_primes;
long a = i;
while (a < n) {
theSieve[a] = false;
a += i;
}
}
}

```

John Perry

\section*{Implementation}

In same directory
Listing 8: sieve.cpp (p. 3)
```

for (/* */ ; i < n ; ++i) {
if (theSieve[i] == true) {
primes[num_primes] = i;
++num_primes;
}
}
delete [] theSieve;
return num_primes;

```
\}

MAT 685: C++ for Mathematicians

John Perry

\section*{Test program}

\section*{Place in same directory}
```

Listing 9: test_sieve.cpp (p.1)
\#include <iostream>
using std::cin; using std::cout;
using std::endl;
\#include "sieve.hpp"
int main() {
long * primes;
long n;
cout << "This program finds all primes ";
cout << "less than your choice of number.\n";
cout << "Please choose a number --> ";
cin >> n;

```

MAT 685: C++ for Mathematicians

John Perry
again

\section*{Euler's totient}

\section*{function}

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question
Summary

\section*{Test program}

\section*{Place in same directory}

Listing 10: test_sieve.cpp (p. 2)
```

long np = sieve(n, primes);
cout << "There are " << np << " primes:\n";
for (long i = 0; i < np; ++i)
cout << primes[i] << ", ";
cout << endl;
delete [] primes;

```
\}

MAT 685: C++ for Mathematicians

John Perry

\section*{Prime pairs, yet} again

Euler's totient function

A first factoring
algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

Summary

\section*{Homework}
p. 90 \#5.11
```

MAT 685: C++
for Mathemati-
cians
John Perry

```
Prime pairs, yet
again
Euler's totient
function
(1) Prime pairs, yet again
(2) Euler's totient function

\section*{A first factoring algorithm A better factoring algorithm}

Back to the totient
(3) Counting pairs
(4) Answering the question
(5) Summary
```

MAT 685: C++
for Mathemati-
cians
John Perry

```

\section*{Recall our algorithm for \(p_{n}\)}
```

given n

```
given n
let s=0
let s=0
for each }k\in{2,\ldots,n
for each }k\in{2,\ldots,n
 add \varphi(k) to s
 add \varphi(k) to s
multiply 2 to s
multiply 2 to s
add 1 to s
add 1 to s
divide }s\mathrm{ by n }\mp@subsup{n}{}{2
divide }s\mathrm{ by n }\mp@subsup{n}{}{2
return s
```

return s

```
...we still need to compute the totient for Mathematicians

John Perry

Place in factoring folder
Listing 11: totient. hpp
```

\#ifndef __TOTIENT_HPP_
\#define __TOTIENT_HPP_
long totient(long n, long * primes);
\#endif

```
Interface
Summary for Mathematicians

John Perry

\section*{One more property}

Theorem
\[
\varphi(n)=n \times\left(\frac{p_{1}-1}{p_{1}}\right) \times\left(\frac{p_{2}-1}{p_{2}}\right) \times \cdots \times\left(\frac{p_{\ell}-1}{p_{\ell}}\right)
\]
where \(p_{1}, p_{2}, \ldots, p_{\ell}\) are the prime factors of \(n\).
Proof.
Think about it a moment...
\[
\varphi(n)=\left(p_{1}^{k_{1}}-p_{1}^{k_{1}-1}\right) \cdots\left(p_{1}^{k_{1}}-p_{\ell}^{k_{\ell}-1}\right)
\]

Factor each factor's common factor:
\[
\varphi(n)=\left(p_{1}^{k_{1}-1} \cdots p_{\ell}^{k_{\ell}-1}\right) \times\left[\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)\right]
\]

The leftmost product can be rewritten as
\[
\varphi(n)=\frac{n}{p_{1} \cdots p_{k}} \times\left[\left(p_{1}-1\right) \cdots\left(p_{k}-1\right)\right]
\]
and we are done.

MAT 685: C++ for Mathematicians

John Perry

\section*{Implementation}

Place in factoring folder
Listing 12: totient. cpp
```

\#include <cmath>
using std::sqrt;
\#include "totient.hpp"
long totient(long n, long * primes) {
if ( }\textrm{n}<0\mathrm{ ) return 0;
long result = n;
for (long i = 0; n != 1 and primes[i] <= n; ++i) {
if (n % primes[i] == 0) {
result /= primes[i];
result *= primes[i] - 1;
}
}
return result;
}

```

MAT 685: C++ for Mathematicians

John Perry

\section*{Test program}

Place in factoring folder
Listing 13: test_totient.cpp
```

\#include <iostream>
using std::cin; using std::cout;
using std::endl;
\#include "sieve.hpp"
\#include "totient.hpp"
int main() {
long n;
cout << "This programing computes ";
cout << "the totient of an integer.\n";
cout << "Please input a number --> ";
cin >> n;
long *primes;
long np = sieve(n, primes);
cout << totient(n, primes) << endl;
delete [] primes;
}

```

\section*{MAT 685: C++} for Mathematicians

John Perry

\section*{Compile, execute}

\section*{Prime pairs, yet} again Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
```

\$ g++ -c sieve.cpp totient.cpp
\$ g++ -o test_totient sieve.o totient.o \
test_totient.cpp
\$ ./test totient
Please input a number --> 100
40

```

MAT 685：C＋＋ for Mathemati－ cians

John Perry

Prime pairs，yet again

Euler＇s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

Summary
（1）Prime pairs，yet again
（2）Euler＇s totient function
A first factoring algorithm A better factoring algorithm Back to the totient
（3）Counting pairs
（4）Answering the question
（5）Summary

\section*{Outline}
```

MAT 685: C++
for Mathemati-
cians
John Perry
John Perry

```

\section*{Recall our algorithm for \(p_{n}\)} for Mathematicians

John Perry

\section*{Implementation}

Place in relprime_pairs folder
Listing 14: totient_pairs.cpp (p.1)
```

\#include <iostream>
using std::cin; using std::cout;
using std::endl;
\#include <iomanip>
using std::setprecision;
\#include "../factoring/sieve.hpp"
\#include "../factoring/totient.hpp"
/**
Calculates probability that two int's
chosen in {1,2,...,n} are rel prime,
up to n=10^6.
*/

``` for Mathematicians

John Perry

\section*{Implementation}

Place in relprime_pairs folder
Listing 15: totient_pairs.cpp (p. 2)
```

int main() {
const long N = 10000000;
const long UPDATE = 100000;

```
long * primes;
long np = sieve(N, primes);
long count \(=0\);
cout << setprecision(20); for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function
A first factoring algorithm A better factoring algorithm Back to the totient Counting pairs

\section*{Implementation}

Place in relprime_pairs folder
Listing 16: totient_pairs.cpp (p.3)
```

cout << setprecision(20);
for (long k = 1; k <= N; ++k) {
count += totient(k, primes);
if (k % UPDATE == 0) {
cout << k/1000 << " thousand \t";
cout << double(2*count - 1)
/ double(k*k) << endl;

```
 \}
\}
delete [] primes;
return 0;
\} for Mathematicians

John Perry
me pairs, yet again

Euler's totient function

\section*{A first factoring} algorithm
A better factoring algorithm
Back to the totient
Counting pairs

\section*{Compiling, executing}
```

\$ g++ -Ofast -o totient_pairs \
totient_pairs.cpp \
../factoring/sieve.o \
../factoring/totient.o
\$ ./totient_pairs
100 thousand 0.60793015070000000488
2 0 0 ~ t h o u s a n d ~ 0 . 6 0 7 9 2 9 9 4 5 8 7 5 0 0 0 0 4 4
3 0 0 thousand 0.60792774407777783185

```
```

800 thousand 0.60792796007343752329
900 thousand 0.60792736490740739708
1000 thousand 0.60792710478300004961

```

MAT 685: C++ for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question
(1) Prime pairs, yet again
(2) Euler's totient function A first factoring algorithm A better factoring algorithm Back to the totient
(3) Counting pairs
(4) Answering the question
(5) Summary

\section*{Outline}
```

MAT 685: C++
for Mathemati-
cians
John Perry
John Perry

```

\section*{Prime pairs, yet}
```

again
Euler's totient

```

\section*{The "point"}

\section*{function}

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

\section*{Question}

So what is \(\lim _{n \rightarrow \infty} p_{n}\) ?
We found
\[
\lim _{n \rightarrow \infty} p_{n} \approx 0.607927
\]

Online Encyclopedia of Integer Sequences: \(6 / \pi^{2}\) !
MAT 685: C++
for Mathemati-
 cians
 John Perry

\section*{The "point"}
John Perry

\section*{Prime pairs, yet}
again
Euler's totient

\section*{function}
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

\section*{Question}
So what is \(\lim _{n \rightarrow \infty} p_{n}\) ?
We found
\[
\lim _{n \rightarrow \infty} p_{n} \approx 0.607927 .
\]
Online Encyclopedia of Integer Sequences: \(6 / \pi^{2}\) !
```

MAT 685: C++
for Mathemati-
cians
John Perry
Prime pairs, yet
again
Euler's totient
function
A first factoring
algorithm
A better factoring
algorithm
Back to the totient

```

\section*{How does \(\pi\) figure into this?}

\section*{Basel problem (famous)}

Find
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
\] for Mathematicians

John Perry

\section*{Prime pairs, yet}
again
Euler's totient
function
A first factoring algorithm
A better factoring algorithm Back to the totient

Counting pairs

\section*{How does \(\pi\) figure into this?}

\section*{Basel problem (famous)}

Find
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
\]

Solution: (Euler, 1734)
\[
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
\]

Proof.
Hard. Go bother Dr. Hornor or Dr. Ding or Dr. Kohl. for Mathematicians

John Perry
again
Euler's totient
function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

Summary

\section*{That doesn't explain jack squat.}

Look at
\[
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{2}} & =\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\cdots \\
& =\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{2^{4}}+\frac{1}{5^{2}}+\frac{1}{2^{2} \times 3^{2}}+\cdots \\
& =\prod_{p}\left(1+\frac{1}{p^{2}}+\frac{1}{p^{4}}+\frac{1}{p^{6}}+\cdots\right) \\
& =\prod_{p}\left(\frac{1}{1-\frac{1}{p^{2}}}\right)
\end{aligned}
\]

So
\[
\therefore \prod_{p}\left(1-\frac{1}{p^{2}}\right)=\frac{1}{\sum^{1 / n n^{2}}}=\frac{6}{\pi^{2}} .
\]

MAT 685: C++ for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

Probability two integers:
- divisible by 2 : \(\frac{1}{2^{2}}\), so not: \(1-\frac{1}{2^{2}}\)
- divisible by 3 : \(\frac{1}{3^{2}}\), so not: \(1-\frac{1}{3^{2}}\)
- divisible by 5: \(\frac{1}{5^{2}}\), so not: \(1-\frac{1}{5^{2}}\)

SO...
\[
\prod_{p<\text { larger }}\left(1-\frac{1}{p^{2}}\right)
\]

Probability two integers:
- divisible by 2: \(\frac{1}{2^{2}}\), so not: \(1-\frac{1}{2^{2}}\)
- divisible by 3 : \(\frac{1}{3^{2}}\), so not: \(1-\frac{1}{3^{2}}\)
- divisible by \(5: \frac{1}{5^{2}}\), so not: \(1-\frac{1}{5^{2}}\)
so...
Probability two large integers relatively prime:
\[
\prod_{p<\text { larger }}\left(1-\frac{1}{p^{2}}\right)
\]

Thus
\[
\lim _{n \rightarrow \infty} p_{n}=\prod_{p}\left(1-\frac{1}{p^{2}}\right)=\frac{6}{\pi^{2}}
\]
MAT 685: C++ for Mathematicians
John Perry

\section*{Prime pairs, yet}
again
Euler's totient
function
A first factoring
algorithm
A better factoring
algorithm
Back to the totient
Counting pairs
p. 90 \#5.12
Answering the
question
Summary

MAT 685: C++ for Mathematicians

John Perry

Prime pairs, yet again

Euler's totient function

A first factoring algorithm
A better factoring algorithm
Back to the totient
Counting pairs
Answering the question

Summary
(1) Prime pairs, yet again
(2) Euler's totient function
A first factoring algorithm A better factoring algorithm Back to the totient
(3) Counting pairs
(4) Answering the question
(5) Summary

\section*{Outline}
```

MAT 685: C++
for Mathemati-
cians
John Perry

```

\section*{Summary}
```

John Perry

- Math stuff
- Euler totient function, properties
- Sieve of Eratosthenes
- Online Encyclopedia of Integer Sequences
- $\pi$ turns up in the strangest places!
- Programming stuff
- arrays
- static array creation
- dynamic array creation
- new and delete []

```
```

