
MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

MAT 685: C++ for Mathematicians
Prime pairs arrayed

John Perry

University of Southern Mississippi

Spring 2017

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Classic problem

• Choose n

• Choose a, b ∈ {1, . . . , n}
• Let pn be probability that gcd (a, b) = 1

• Does lim
n→∞

pn exist?

• If so, what is its value?

Example

Let n = 8.

• Possible outcomes:

(
8
2

)
= 8!

2!6! = 28

• Relatively prime pairs: (1, 2), (1, 3), …, (1, 8), (2, 3), (2, 5),
(2, 7), (3, 4), (3, 5), (3, 7), (3, 8), (4, 5), (4, 7), (6, 7), (7, 8)

• So p8 = 18/28 = 9/14 ≈ 64.3%

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Classic problem

• Choose n

• Choose a, b ∈ {1, . . . , n}
• Let pn be probability that gcd (a, b) = 1

• Does lim
n→∞

pn exist?

• If so, what is its value?

Example

Let n = 8.

• Possible outcomes:

(
8
2

)
= 8!

2!6! = 28

• Relatively prime pairs: (1, 2), (1, 3), …, (1, 8), (2, 3), (2, 5),
(2, 7), (3, 4), (3, 5), (3, 7), (3, 8), (4, 5), (4, 7), (6, 7), (7, 8)

• So p8 = 18/28 = 9/14 ≈ 64.3%

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

A problem

Still too many numbers! Even the Monte Carlo algorithm takes
too long at some point.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Get Euler’s help!

Euler’s “totient” function

ϕ (n) = |{m ∈ N} : 1 ≤ m ≤ n and gcd (m, n) = 1| .

Example

n 2 3 4 5 6 7 8 9 10

ϕ (n) 1 2 2 4 2 6 4 6 4

n 11 12 13 14 15 16 17

ϕ (n) 10 4 12 6 8 8 16

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Get Euler’s help!

Euler’s “totient” function

ϕ (n) = |{m ∈ N} : 1 ≤ m ≤ n and gcd (m, n) = 1| .

Example

n 2 3 4 5 6 7 8 9 10

ϕ (n) 1 2 2 4 2 6 4 6 4

n 11 12 13 14 15 16 17

ϕ (n) 10 4 12 6 8 8 16

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Notice anything?

n 2 3 4 5 6 7 8 9 10

ϕ (n) 1 2 2 4 2 6 4 6 4

n 11 12 13 14 15 16 17

ϕ (n) 10 4 12 6 8 8 16

• if n = p is prime…

ϕ (p) = p− 1

• if n = pk is a prime power…

ϕ
(
pk
)
= pk − pk−1

• if n = ab is a relatively prime product…

ϕ (ab) = ϕ (a)ϕ (b)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Notice anything?

n 2 3 4 5 6 7 8 9 10

ϕ (n) 1 2 2 4 2 6 4 6 4

n 11 12 13 14 15 16 17

ϕ (n) 10 4 12 6 8 8 16

• if n = p is prime… ϕ (p) = p− 1

• if n = pk is a prime power…

ϕ
(
pk
)
= pk − pk−1

• if n = ab is a relatively prime product…

ϕ (ab) = ϕ (a)ϕ (b)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Notice anything?

n 2 3 4 5 6 7 8 9 10

ϕ (n) 1 2 2 4 2 6 4 6 4

n 11 12 13 14 15 16 17

ϕ (n) 10 4 12 6 8 8 16

• if n = p is prime… ϕ (p) = p− 1

• if n = pk is a prime power… ϕ
(
pk
)
= pk − pk−1

• if n = ab is a relatively prime product…

ϕ (ab) = ϕ (a)ϕ (b)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Notice anything?

n 2 3 4 5 6 7 8 9 10

ϕ (n) 1 2 2 4 2 6 4 6 4

n 11 12 13 14 15 16 17

ϕ (n) 10 4 12 6 8 8 16

• if n = p is prime… ϕ (p) = p− 1

• if n = pk is a prime power… ϕ
(
pk
)
= pk − pk−1

• if n = ab is a relatively prime product… ϕ (ab) = ϕ (a)ϕ (b)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

These properties make sense!

Theorem
If n is prime, then ϕ (n) = n− 1.

Proof.
Think about it a moment.

Theorem

If n = pk is a prime power, then ϕ (n) = pk − pk−1.

Proof.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

These properties make sense!

Theorem
If n is prime, then ϕ (n) = n− 1.

Proof.
1, 2, …, n− 1 are all rel. prime to n.

Theorem

If n = pk is a prime power, then ϕ (n) = pk − pk−1.

Proof.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

These properties make sense!

Theorem
If n is prime, then ϕ (n) = n− 1.

Proof.
1, 2, …, n− 1 are all rel. prime to n.

Theorem
If n = pk is a prime power, then ϕ (n) = pk − pk−1.

Proof.
Think about it a moment.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

These properties make sense!

Theorem
If n is prime, then ϕ (n) = n− 1.

Proof.
1, 2, …, n− 1 are all rel. prime to n.

Theorem
If n = pk is a prime power, then ϕ (n) = pk − pk−1.

Proof.
Only p, 2p, 3p, …,

(
pk−1

)
p are not rel. prime to p.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

This one we can only sketch

Theorem
If n = ab is a relatively prime product, then ϕ (n) = ϕ (a)ϕ (b).

Proof.
Think about it a moment.Numbers not rel. prime to pmust have
a common factor with a or b. Products of numbers not rel. prime
to a or b are also not rel. prime to p.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

This one we can only sketch

Theorem
If n = ab is a relatively prime product, then ϕ (n) = ϕ (a)ϕ (b).

Proof.
Products of numbers not rel. prime to a or b are also not
rel. prime to p. Numbers not rel. prime to pmust also have a
common factor with a or b (requires Chinese Remainder
Theorem).

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Non-trivial example

Compute ϕ (100)

• ϕ (100) = ϕ
(
22 × 52

)
• ϕ (100) = ϕ

(
22
)
× ϕ

(
52
)

ϕ (ab) = ϕ (a)ϕ (b)

• ϕ (100) =
(
22 − 21

)
×
(
52 − 51

)
ϕ
(
pk
)
= pk − pk−1

• ϕ (100) = 40

Bingo!

The 40 numbers are

01, 03, 07, 09, 11, 13, 17, 19, . . . , 91, 93, 97, 99.

(Ten groups of 4.)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Non-trivial example

Compute ϕ (100)

• ϕ (100) = ϕ
(
22 × 52

)

• ϕ (100) = ϕ
(
22
)
× ϕ

(
52
)

ϕ (ab) = ϕ (a)ϕ (b)

• ϕ (100) =
(
22 − 21

)
×
(
52 − 51

)
ϕ
(
pk
)
= pk − pk−1

• ϕ (100) = 40

Bingo!

The 40 numbers are

01, 03, 07, 09, 11, 13, 17, 19, . . . , 91, 93, 97, 99.

(Ten groups of 4.)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Non-trivial example

Compute ϕ (100)

• ϕ (100) = ϕ
(
22 × 52

)
• ϕ (100) = ϕ

(
22
)
× ϕ

(
52
)

ϕ (ab) = ϕ (a)ϕ (b)

• ϕ (100) =
(
22 − 21

)
×
(
52 − 51

)
ϕ
(
pk
)
= pk − pk−1

• ϕ (100) = 40

Bingo!

The 40 numbers are

01, 03, 07, 09, 11, 13, 17, 19, . . . , 91, 93, 97, 99.

(Ten groups of 4.)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Non-trivial example

Compute ϕ (100)

• ϕ (100) = ϕ
(
22 × 52

)
• ϕ (100) = ϕ

(
22
)
× ϕ

(
52
)

ϕ (ab) = ϕ (a)ϕ (b)

• ϕ (100) =
(
22 − 21

)
×
(
52 − 51

)
ϕ
(
pk
)
= pk − pk−1

• ϕ (100) = 40

Bingo!

The 40 numbers are

01, 03, 07, 09, 11, 13, 17, 19, . . . , 91, 93, 97, 99.

(Ten groups of 4.)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Non-trivial example

Compute ϕ (100)

• ϕ (100) = ϕ
(
22 × 52

)
• ϕ (100) = ϕ

(
22
)
× ϕ

(
52
)

ϕ (ab) = ϕ (a)ϕ (b)

• ϕ (100) =
(
22 − 21

)
×
(
52 − 51

)
ϕ
(
pk
)
= pk − pk−1

• ϕ (100) = 40

Bingo!

The 40 numbers are

01, 03, 07, 09, 11, 13, 17, 19, . . . , 91, 93, 97, 99.

(Ten groups of 4.)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Non-trivial example

Compute ϕ (100)

• ϕ (100) = ϕ
(
22 × 52

)
• ϕ (100) = ϕ

(
22
)
× ϕ

(
52
)

ϕ (ab) = ϕ (a)ϕ (b)

• ϕ (100) =
(
22 − 21

)
×
(
52 − 51

)
ϕ
(
pk
)
= pk − pk−1

• ϕ (100) = 40

Bingo!

The 40 numbers are

01, 03, 07, 09, 11, 13, 17, 19, . . . , 91, 93, 97, 99.

(Ten groups of 4.)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

How does all this help?

n = 10: (1 extra for (1, 1))

pn =
1 + 2× |{rel. prime pairs (i, j) , i < j}|

|(a, b) : 1 ≤ a, b ≤ 10|

=
1 + 2× |{(1, 2)} ∪ {(1, 3) , (2, 3)} ∪ · · · ∪ {(1, 10) , (3, 10) , . . . , (9, 10)}|

100

=
1 + 2× (|{(1, 2)}|++ · · ·+ |{(1, 10) , (3, 10) , . . . , (9, 10)}|)

100

=
1 + 2× (ϕ (2) + ϕ (3) + · · ·+ ϕ (10))

100

In general,

pn =
1 + 2

∑n
k=2 ϕ (k)

n2

(book gives different, but equivalent, formula)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

How does all this help?

n = 10: (1 extra for (1, 1))

pn =
1 + 2× |{rel. prime pairs (i, j) , i < j}|

|(a, b) : 1 ≤ a, b ≤ 10|

=
1 + 2× |{(1, 2)} ∪ {(1, 3) , (2, 3)} ∪ · · · ∪ {(1, 10) , (3, 10) , . . . , (9, 10)}|

100

=
1 + 2× (|{(1, 2)}|++ · · ·+ |{(1, 10) , (3, 10) , . . . , (9, 10)}|)

100

=
1 + 2× (ϕ (2) + ϕ (3) + · · ·+ ϕ (10))

100

In general,

pn =
1 + 2

∑n
k=2 ϕ (k)

n2

(book gives different, but equivalent, formula)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

So what?

pn =
1 + 2

∑n
k=2 ϕ (k)

n2

given n

let s = 0
for each k ∈ {2, . . . , n}

add ϕ (k) to s

multiply 2 to s

add 1 to s

divide s by n2

return s

Example (n = 10)

start w/s = 0
k = 2, 3, . . . , 10

s = 1, 3, 5, 9, 11, 17, 21, 27, 31
multiply: s = 62
add: s = 63
divide: s = 0.63
return 0.63

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

So what?

pn =
1 + 2

∑n
k=2 ϕ (k)

n2

given n

let s = 0
for each k ∈ {2, . . . , n}

add ϕ (k) to s

multiply 2 to s

add 1 to s

divide s by n2

return s

Example (n = 10)

start w/s = 0
k = 2, 3, . . . , 10

s = 1, 3, 5, 9, 11, 17, 21, 27, 31
multiply: s = 62
add: s = 63
divide: s = 0.63
return 0.63

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Homework

p. 88 #5.1

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Factoring n

To find ϕ (n), we need n’s factors

Question

How do we find them?

given n

let L be a list of
√

n zeroes
for each i ∈ {2, . . . ,

√
n}

while i | n
increment Li
replace n by n/i

return L

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Factoring n

To find ϕ (n), we need n’s factors

Question

How do we find them?

given n

let L be a list of
√

n zeroes
for each i ∈ {2, . . . ,

√
n}

while i | n
increment Li
replace n by n/i

return L

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
loop i = 2

2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50

2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25

2 - 25: while loop ends
loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5

5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 2, 0, 0, 1, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5

5 | 5: increment L5 and replace n by 1
…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Example

n = 100
L = (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)
loop i = 2
2 | 100, so increment L2 and replace n by 50
2 | 50, so increment L2 and replace n by 25
2 - 25: while loop ends

loop i = 3
3 - 25: while loop ends

loop i = 4
4 - 25: while loop ends

loop i = 5
5 | 25: increment L5 and replace n by 5
5 | 5: increment L5 and replace n by 1

…
return (0, 2, 0, 0, 2, 0, 0, 0, 0, 0)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

What did we get?

(0, 2, 0, 0, 2, 0, 0, 0, 0, 0) tells us

100 = 22 × 52

From there, we can determine ϕ (100) by passing through the
loop.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

OK, but… lists?

How do we track a list of numbers?
Use an array, a block of memory.

• need list of 25 int’s? int A[25];

• need n int’s, but don’t know n? int A[n];

• compile w/ -std=c++11

• To initialize array to 0, declare instead
int A[n] { 0 };

Now ready to implement!

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

OK, but… lists?

How do we track a list of numbers?
Use an array, a block of memory.

• need list of 25 int’s? int A[25];

• need n int’s, but don’t know n? int A[n];

• compile w/ -std=c++11

• To initialize array to 0, declare instead
int A[n] { 0 };

Now ready to implement!

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Interface

Place in a new directory, factoring

Listing 1: factoring.hpp

#ifndef __FACTORING_HPP_

#define __FACTORING_HPP_

/**

A basic factoring algorithm:

iterate from 2 to sqrt(n).

@param n the number to factor

@param primes an array to contain the primes

@warning initialize the elements of @c primes

to zero!

*/

void factors(long n, long * primes);

#endif

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Implementation

Place in same directory

Listing 2: factoring.cpp

#include "factoring.hpp"

void factors(long m, long * primes) {

long n = m;

for (long i = 2; n != 1 and i <= m/2; ++i)

{

while (n % i == 0) {

primes[i] += 1;

n /= i;

}

}

}

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Test program

Place in same directory

Listing 3: test_factoring.cpp (p. 1)

#include <iostream>

using std::cin; using std::cout;

using std::endl;

#include "factoring.hpp"

int main() {

long n;

cout << "Enter a number to factor --> ";

cin >> n;

long m = n/2 + 1;

long primes[m];

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Test program

Place in same directory

Listing 4: test_factoring.cpp (p. 2)

for (long i = 0; i < m; ++i)

primes[i] = 0;

factors(n, primes);

for (long i = 0; i < m; ++i) {

if (primes[i] != 0)

cout << i << '^' << primes[i] << ' ';

}

cout << endl;

}

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Compile, execute test

$ g++ -c factoring.cpp

$ g++ -o test_factoring -std=c++11 -lm \

factoring.o test_factoring.cpp

$./test_factoring

Enter a number to factor --> 100

2^2 5^2

$./test_factoring

Enter a number to factor --> 10

2^1 5^1

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Things to watch out for

Big-time no-no

Don’t forget -std=c++11

$ g++ -o test_factoring -lm factoring.o \

test_factoring.cpp

test_factoring.cpp: In function 'int main()':

test_factoring.cpp:14:18: warning: extended initializer

lists only available with -std=c++11 or -std=gnu++11

long primes[m] { 0 };

Big-time no-no

Don’t forget -lm

(You may get away with that last one.)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Things to watch out for

Big-time no-no

Don’t forget -std=c++11

$ g++ -o test_factoring -lm factoring.o \

test_factoring.cpp

test_factoring.cpp: In function 'int main()':

test_factoring.cpp:14:18: warning: extended initializer

lists only available with -std=c++11 or -std=gnu++11

long primes[m] { 0 };

Big-time no-no

Don’t forget -lm

(You may get away with that last one.)

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Homework

p. 89 #5.6, 5.7, 5.10

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

This algorithm is not especially
efficient

Why not?

• finds n’s prime factorization

• tests divisibility by non-primes

• we could do better if we start with primes

But…
How do we find primes?

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Sieve of Eratosthenes

given n

let L be a list of n booleans
(initialize all L to True)

set L1 to False

for each i ∈ {2, . . . ,
√

n}
if Li is True

let a = i

while a < n

add i to a

set La to False

return L

Example

n = 20

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Sieve of Eratosthenes

given n

let L be a list of n booleans
(initialize all L to True)

set L1 to False

for each i ∈ {2, . . . ,
√

n}
if Li is True

let a = i

while a < n

add i to a

set La to False

return L

Example

n = 20

beginning of loop

F

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Sieve of Eratosthenes

given n

let L be a list of n booleans
(initialize all L to True)

set L1 to False

for each i ∈ {2, . . . ,
√

n}
if Li is True

let a = i

while a < n

add i to a

set La to False

return L

Example

n = 20

i = 2—mark out multiples of 2

F 2 F

F F

F F

F F

F F

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Sieve of Eratosthenes

given n

let L be a list of n booleans
(initialize all L to True)

set L1 to False

for each i ∈ {2, . . . ,
√

n}
if Li is True

let a = i

while a < n

add i to a

set La to False

return L

Example

n = 20

i = 3—mark out multiples of 3

F 2 3 F

F F

F F F

F F F

F F

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Sieve of Eratosthenes

given n

let L be a list of n booleans
(initialize all L to True)

set L1 to False

for each i ∈ {2, . . . ,
√

n}
if Li is True

let a = i

while a < n

add i to a

set La to False

return L

Example

n = 20

i = 4— L4 = F: not prime; skip!

F 2 3 F

F F

F F F

F F F

F F

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Sieve of Eratosthenes

given n

let L be a list of n booleans
(initialize all L to True)

set L1 to False

for each i ∈ {2, . . . ,
√

n}
if Li is True

let a = i

while a < n

add i to a

set La to False

return L

Example

n = 20

i = 5 >
√
20— end loop, true

entries prime!

F 2 3 F

5 F 7 F

F F 11 F

13 F F F

17 F 19 F

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Observation

Theorem
Factoring n requires us to test at most 4

√
n numbers for primality.

Proof.

• Prime factor of nmust be smaller than
√

n.

• Sieve of Eratosthenes needs
√

m tests to find all primes less
than m.

∴ Need
√√

n = 4
√

n tests.

Time to implement the sieve!

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Observation

Theorem
Factoring n requires us to test at most 4

√
n numbers for primality.

Proof.

• Prime factor of nmust be smaller than
√

n.

• Sieve of Eratosthenes needs
√

m tests to find all primes less
than m.

∴ Need
√√

n = 4
√

n tests.

Time to implement the sieve!

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Creating lists on-the-fly
Two kinds of array allocation

static create array using Type var[num];

dynamic create array using
Type * var = new Type[num];

Why two?

• static allocation…

• more efficient if num is known constant (e.g., “25”)
• unsafe if data needed outside function

• memory will be trashed!

• dynamic allocation

• when finished w/array, requires delete [] var;

• safe to pass outside function

sieve’s list of primes: dynamic

• don’t know how many

• need to return to caller

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Creating lists on-the-fly
Two kinds of array allocation

static create array using Type var[num];

dynamic create array using
Type * var = new Type[num];

Why two?

• static allocation…

• more efficient if num is known constant (e.g., “25”)
• unsafe if data needed outside function

• memory will be trashed!

• dynamic allocation

• when finished w/array, requires delete [] var;

• safe to pass outside function

sieve’s list of primes: dynamic

• don’t know how many

• need to return to caller

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Creating lists on-the-fly
Two kinds of array allocation

static create array using Type var[num];

dynamic create array using
Type * var = new Type[num];

Why two?

• static allocation…

• more efficient if num is known constant (e.g., “25”)
• unsafe if data needed outside function

• memory will be trashed!

• dynamic allocation

• when finished w/array, requires delete [] var;

• safe to pass outside function

sieve’s list of primes: dynamic

• don’t know how many

• need to return to caller

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Interface

Place in factoring directory

Listing 5: sieve.hpp

#ifndef __SIEVE_H_

#define __SIEVE_H_

/**

Sieve of Eratosthenes:

generate table of primes.

@param n find primes <= n

@param primes array of primes

@return number of primes found */

long sieve(long n, long * & primes);

#endif

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Implementation
In same directory

Listing 6: sieve.cpp (p. 1)

#include <cmath>

using std::sqrt;

#include "sieve.hpp"

long sieve(long n, long * & primes) {

long m = long(sqrt(n));

primes = new long[n];

long num_primes = 0;

bool * theSieve = new bool[n];

for (long i = 2; i < n; ++i)

theSieve[i] = true;

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Implementation

In same directory

Listing 7: sieve.cpp (p. 2)

long i;

for (i = 2; i < m + 1; ++i) {

if (theSieve[i] == true) {

primes[num_primes] = i;

++num_primes;

long a = i;

while (a < n) {

theSieve[a] = false;

a += i;

}

}

}

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Implementation

In same directory

Listing 8: sieve.cpp (p. 3)

for (/* */ ; i < n ; ++i) {

if (theSieve[i] == true) {

primes[num_primes] = i;

++num_primes;

}

}

delete [] theSieve;

return num_primes;

}

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Test program

Place in same directory

Listing 9: test_sieve.cpp (p. 1)

#include <iostream>

using std::cin; using std::cout;

using std::endl;

#include "sieve.hpp"

int main() {

long * primes;

long n;

cout << "This program finds all primes ";

cout << "less than your choice of number.\n";

cout << "Please choose a number --> ";

cin >> n;

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Test program

Place in same directory

Listing 10: test_sieve.cpp (p. 2)

long np = sieve(n, primes);

cout << "There are " << np << " primes:\n";

for (long i = 0; i < np; ++i)

cout << primes[i] << ", ";

cout << endl;

delete [] primes;

}

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Homework

p. 90 #5.11

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Recall our algorithm for pn

given n

let s = 0
for each k ∈ {2, . . . , n}

add ϕ (k) to s

multiply 2 to s

add 1 to s

divide s by n2

return s

…we still need to compute the totient

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Interface

Place in factoring folder

Listing 11: totient.hpp

#ifndef __TOTIENT_HPP_

#define __TOTIENT_HPP_

long totient(long n, long * primes);

#endif

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

One more property

Theorem

ϕ (n) = n×
(

p1 − 1

p1

)
×
(

p2 − 1

p2

)
× · · · ×

(
p` − 1

p`

)
where p1, p2, …, p` are the prime factors of n.

Proof.
Think about it a moment…Recall that

ϕ (n) =
(
pk1
1 − pk1−1

1

)
· · ·

(
pk1
1 − p

k`−1
`

)
.

Factor each factor’s common factor:

ϕ (n) =
(
pk1−1
1 · · · pk`−1

`

)
× [(p1 − 1) · · · (pk − 1)] .

The leftmost product can be rewritten as

ϕ (n) =
n

p1 · · · pk

× [(p1 − 1) · · · (pk − 1)] ,

and we are done.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

One more property

Theorem

ϕ (n) = n×
(

p1 − 1

p1

)
×
(

p2 − 1

p2

)
× · · · ×

(
p` − 1

p`

)
where p1, p2, …, p` are the prime factors of n.

Proof.
Recall that

ϕ (n) =
(
pk1
1 − pk1−1

1

)
· · ·

(
pk1
1 − p

k`−1
`

)
.

Factor each factor’s common factor:

ϕ (n) =
(
pk1−1
1 · · · pk`−1

`

)
× [(p1 − 1) · · · (pk − 1)] .

The leftmost product can be rewritten as

ϕ (n) =
n

p1 · · · pk

× [(p1 − 1) · · · (pk − 1)] ,

and we are done.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Implementation
Place in factoring folder

Listing 12: totient.cpp

#include <cmath>

using std::sqrt;

#include "totient.hpp"

long totient(long n, long * primes) {

if (n < 0) return 0;

long result = n;

for (long i = 0; n != 1 and primes[i] <= n; ++i) {

if (n % primes[i] == 0) {

result /= primes[i];

result *= primes[i] - 1;

}

}

return result;

}

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Test program
Place in factoring folder

Listing 13: test_totient.cpp

#include <iostream>

using std::cin; using std::cout;

using std::endl;

#include "sieve.hpp"

#include "totient.hpp"

int main() {

long n;

cout << "This programing computes ";

cout << "the totient of an integer.\n";

cout << "Please input a number --> ";

cin >> n;

long *primes;

long np = sieve(n, primes);

cout << totient(n, primes) << endl;

delete [] primes;

}

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Compile, execute

$ g++ -c sieve.cpp totient.cpp

$ g++ -o test_totient sieve.o totient.o \

test_totient.cpp

$./test_totient

Please input a number --> 100

40

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Recall our algorithm for pn

given n

let s = 0
for each k ∈ {2, . . . , n}

add ϕ (k) to s

multiply 2 to s

add 1 to s

divide s by n2

return s

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Implementation
Place in relprime_pairs folder

Listing 14: totient_pairs.cpp (p. 1)

#include <iostream>

using std::cin; using std::cout;

using std::endl;

#include <iomanip>

using std::setprecision;

#include "../factoring/sieve.hpp"

#include "../factoring/totient.hpp"

/**

Calculates probability that two int's

chosen in {1,2,...,n} are rel prime,

up to n=10^6.

*/

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Implementation

Place in relprime_pairs folder

Listing 15: totient_pairs.cpp (p. 2)

int main() {

const long N = 10000000;

const long UPDATE = 100000;

long * primes;

long np = sieve(N, primes);

long count = 0;

cout << setprecision(20);

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Implementation

Place in relprime_pairs folder

Listing 16: totient_pairs.cpp (p. 3)

cout << setprecision(20);

for (long k = 1; k <= N; ++k) {

count += totient(k, primes);

if (k % UPDATE == 0) {

cout << k/1000 << " thousand \t";

cout << double(2*count - 1)

/ double(k*k) << endl;

}

}

delete [] primes;

return 0;

}

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Compiling, executing

$ g++ -Ofast -o totient_pairs \

totient_pairs.cpp \

../factoring/sieve.o \

../factoring/totient.o

$./totient_pairs

100 thousand 0.60793015070000000488

200 thousand 0.607929945875000044

300 thousand 0.60792774407777783185

...

800 thousand 0.60792796007343752329

900 thousand 0.60792736490740739708

1000 thousand 0.60792710478300004961

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

The “point”

Question

So what is lim
n→∞

pn?

We found
lim
n→∞

pn ≈ 0.607927.

Online Encyclopedia of Integer Sequences: 6/π2!

???

http://oeis.org/

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

The “point”

Question

So what is lim
n→∞

pn?

We found
lim
n→∞

pn ≈ 0.607927.

Online Encyclopedia of Integer Sequences: 6/π2!

???

http://oeis.org/

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

How does π figure into this?

Basel problem (famous)

Find
∞∑
n=1

1

n2
.

Solution: (Euler, 1734)

∞∑
n=1

1

n2
=

π2

6
.

Proof.
Hard. Go bother Dr. Hornor or Dr. Ding or Dr. Kohl.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

How does π figure into this?

Basel problem (famous)

Find
∞∑
n=1

1

n2
.

Solution: (Euler, 1734)

∞∑
n=1

1

n2
=

π2

6
.

Proof.
Hard. Go bother Dr. Hornor or Dr. Ding or Dr. Kohl.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

That doesn’t explain jack squat.

Look at

∞∑
n=1

1

n2
=

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ · · ·

=
1

12
+

1

22
+

1

32
+

1

24
+

1

52
+

1

22 × 32
+ · · ·

=
∏
p

(
1 +

1

p2
+

1

p4
+

1

p6
+ · · ·

)

=
∏
p

(
1

1− 1
p2

)
.

So

∴
∏
p

(
1− 1

p2

)
=

1∑
1/n2

=
6

π2
.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

…and?

Probability two integers:

• divisible by 2: 1
22
, so not: 1− 1

22

• divisible by 3: 1
32
, so not: 1− 1

32

• divisible by 5: 1
52
, so not: 1− 1

52

…
so…

Probability two large integers relatively prime:∏
p<larger

(
1− 1

p2

)

Thus

lim
n→∞

pn =
∏
p

(
1− 1

p2

)
=

6

π2
.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

…and?

Probability two integers:

• divisible by 2: 1
22
, so not: 1− 1

22

• divisible by 3: 1
32
, so not: 1− 1

32

• divisible by 5: 1
52
, so not: 1− 1

52

…
so…
Probability two large integers relatively prime:∏

p<larger

(
1− 1

p2

)

Thus

lim
n→∞

pn =
∏
p

(
1− 1

p2

)
=

6

π2
.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

…and?

Probability two integers:

• divisible by 2: 1
22
, so not: 1− 1

22

• divisible by 3: 1
32
, so not: 1− 1

32

• divisible by 5: 1
52
, so not: 1− 1

52

…
so…
Probability two large integers relatively prime:∏

p<larger

(
1− 1

p2

)

Thus

lim
n→∞

pn =
∏
p

(
1− 1

p2

)
=

6

π2
.

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Homework

p. 90 #5.12

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Outline

1 Prime pairs, yet again

2 Euler’s totient function
A first factoring algorithm
A better factoring algorithm
Back to the totient

3 Counting pairs

4 Answering the question

5 Summary

MAT 685: C++
for Mathemati-

cians

John Perry

Prime pairs, yet
again

Euler’s totient
function

A first factoring
algorithm

A better factoring
algorithm

Back to the totient

Counting pairs

Answering the
question

Summary

Summary

• Math stuff

• Euler totient function, properties
• Sieve of Eratosthenes
• Online Encyclopedia of Integer Sequences
• π turns up in the strangest places!

• Programming stuff

• arrays
• static array creation
• dynamic array creation
• new and delete []

	Prime pairs, yet again
	Euler's totient function
	A first factoring algorithm
	A better factoring algorithm
	Back to the totient

	Counting pairs
	Answering the question
	Summary

