MAT 685: C++for Mathemati-
cians
John Perry
Variables and
Types
Basic types
Integer types
Real and complex
types

MAT 685: C++ for Mathematicians

Numbers

John Perry

University of Southern Msississippi
Spring 2017

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
```

Variables and
Types
(1) Variables and Types
(2) Basic types

Integer types
Real and complex types
Truth and text
(3) Standard operations

Numerical operations
Boolean operations
(4) Summary

MAT 685: C++ for Mathematicians

John Perry

Variables and Types

Basic types
Integer types
Real and complex types
Truth and text
Standard operations
Numerical operations Boolean operations

Summary

Outline

(1) Variables and Types

(2) Basic types
Integer types
Real and complex types Truth and text
(3) Standard operations
Numerical operations
Boolean operations
(4) Summary

Name representing data in computer's memory

- first character?
- upper-/lower- case letter
- underscore
- avoid upper-case, underscore
- next characters?
- upper-/lower-case letter
- underscore
- digit
- cannot be a keyword (word w/special meaning to C++)

Examples
center_x, center_y,_my_data

Variable?

- next characters?

Variables and Types

Basic types
Integer types
Real and complex
types
Truth and text
Standard operations
Numerical operations
Boolean operations
Summary

Type?

- Specifies data's characteristics: what kind
MAT 685: C++
for Mathemati-
cians
John Perry

Variables and Types

Basic types
Integer types
Real and complex types
Truth and text
Standard
operations

Type?

- Specifies data's characteristics: what kind
- Machine types
- boolean
- numerical
- character
- pointer for Mathematicians
John Perry

Variables and Types

Basic types
Integer types

- Specifies data's characteristics: what kind
- Machine types
- boolean
- numerical
- character
- pointer
- Structured types
- array
- enumeration
- structured
- record
- union
- class

Type?

Type systems

weak type system variable's type ill-defined, changeable

- introduce variables without specifying type
- type can change
- flexible, interactive
- BASIC, Python, Sage

Type systems

weak type system variable's type ill-defined, changeable

- introduce variables without specifying type
- type can change
- flexible, interactive
- BASIC, Python, Sage
strong type system variable's type carefully checked
- well-defined before use
- type cannot change
- typically fast
- C++, Eiffel, Fortran
- can abuse via "cast" or conversion

MAT 685: C++ for Mathematicians

John Perry

Variables and Types

Basic types
Integer types
Real and complex types
Truth and text
Standard operations

Outline

(1) Variables and Types

(2) Basic types

Integer types
Real and complex types
Truth and text
(3) Standard operations

Numerical operations
Boolean operations
(4) Summary

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
```

Variables and
Types
Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations
Numerical operations
Boolean operations
(1) Variables and Types
(2) Basic types

Integer types
Real and complex types Truth and text
(3) Standard operations

Numerical operations Boolean operations
(4) Summary

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
```


Variables and

```
Types
```


Basic types

```
Integer types Real and complex types
Truth and text
Standard
operations
Numerical operations
Boolean operations
Summary
```


Depends on "bit length"

```
\(\ell\) : "bit length"
\[
\begin{aligned}
\text { short } \ell & \geq 16 \\
\text { int } \ell & \geq \text { short } \geq 16 \\
\text { long } \ell & \geq \text { int } \geq 32 \\
\text { long long } \ell & \geq \text { long } \geq 64
\end{aligned}
\]
```

```
MAT 685: C++
for Mathemati-
cians
John Perry
```


Depends on "bit length"

Variables and

ℓ : "bit length"

$$
\begin{aligned}
\text { short } \ell & \geq 16 \\
\text { int } \ell & \geq \text { short } \geq 16 \\
\text { long } \ell & \geq \text { int } \geq 32
\end{aligned} \text { long long } \ell \geq \text { long } \geq 64 .
$$

``` for Mathematicians

John Perry

Variables and
Types
Basic types
Integer types
Real and complex types
Truth and text
Standard operations

\section*{Example 1}
```

int a;
unsigned long b;

```

\section*{Questions}
-What values can a contain?
-What values can b contain? for Mathematicians

John Perry

Variables and
Types
Basic types
Integer types
Real and complex types
Truth and text
Standard operations

\section*{Example 1}
```

int a;
unsigned long b;

```

\section*{Questions}
- What values can a contain? \(-2^{16} \leq \mathrm{a} \leq 2^{16}\)
-What values can b contain? for Mathematicians

John Perry

Variables and
Types

\section*{Basic types}

Integer types
Real and complex types
Truth and text
Standard operations

\section*{Example 1}
```

int a;
unsigned long b;

```

\section*{Questions}
- What values can a contain? \(-2^{16} \leq a \leq 2^{16}\)
- What values can b contain? \(0 \leq \mathrm{a} \leq 2^{33}-1\)

\section*{Example 2}

Variables and Types
```

\#include <iostream>
using std::cout; using std::endl;
int main() {
long x, y;
x = 3;
y = 4;
cout << x << " + " << y << " = ";
cout << x + y << endl;
return 0;
}

```

\section*{Type matters!}
\[
2^{16}=65536>1000=10^{3}
\]
- if you multiply two "small" integers, you can get a "larger" one
- product must fit in type of destination!

\section*{Overflow}

Mathematical operation w/larger result than allowed by type for Mathematicians

John Perry

\section*{Example of overflow}
\#include <iostream>
using std::cout; using std::endl;
int main() \{
short thousand \(=1000\);
short million \(=\) thousand \(*\) thousand;
cout << "According to this computer, "; cout \(\ll\) thousand \(\ll\) " squared is \(\backslash n " ;\) cout << "\t" << million << endl; \}

```

MAT 685: C++
for Mathemati-
cians
John Perry

```

\section*{Outline}
```

John Perry

```
Variables and
Types
Basic types
Integer types
Real and complex
(1) Variables and Types
(2) Basic types

Integer types
Real and complex types
Truth and text
(3) Standard operations

Numerical operations Boolean operations
(4) Summary

Truth and text
Standard
operations

\section*{Floating-point numbers}
- no exact represention of real
- approximation by floating point
- \(a \times 10^{b}\)
- slower, inexact, but well-specified operations
- no overflow, but division by small numbers problematic

Example
\(1 \mathrm{e}+06=1 \times 10^{6}\)
MAT 685: C++
for Mathemati-
    cians
    John Perry

\section*{"Real" type names}
John Perry

\section*{Variables and}
Types
Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations
float machine-dependent double no less precise than float long double no less precise than double for Mathematicians

John Perry

\section*{Example of non-overflow}
\#include <iostream>
using std::cout; using std::endl;
int main() \{
float thousand \(=1000\);
float million \(=\) thousand \(*\) thousand;
cout << "According to this computer, "; cout \(\ll\) thousand \(\ll\) " squared is \(\backslash n " ;\) cout << "\t" << million << endl; \}


MAT 685: C++ for Mathematicians

John Perry

Variables and Types

Basic types
Integer types

\section*{"Complex" type names}
```

\#include <complex>
using std::complex;
complex <T> varname;

```
...where \(T\) is another numerical type

MAT 685: C++ for Mathematicians

John Perry

\section*{"Complex" type names}
```

\#include <complex>

```
#include <complex>
using std::complex;
using std::complex;
complex <T> varname;
complex <T> varname;
...where \(T\) is another numerical type
complex<double> yer usual complex type complex<long>"Gaussian" integers
```

MAT 685: C++ for Mathematicians

John Perry

"Complex" type names

```
#include <complex>
using std::complex;
complex <T> varname;
```

...where T is another numerical type
complex<double> yer usual complex type complex<long>"Gaussian" integers
(templated type, discussed later)

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
Variables and
Types
Basic types
Integer types
Real and complex
l
Truth and text
Standard
operations
Typing complex \(<T>\) repeatedly is tiresome!
typedef \(T \mathrm{~N}\);
Defines \(N\) as a shortcut for \(T\)
```


Too long? typedef it

Typing complex<T> repeatedly is tiresome!
typedef $T \mathrm{~N}$;
Defines N as a shortcut for T
Place outside program block, preferably immediately after \#include's. for Mathematicians

John Perry

Example (p. 1/2)

Program 2.7 (pp. 23-24, slightly modified)

Listing 1: complex_demo.cpp

```
#include <complex>
using std::complex;
#include <iostream>
using std::cout; using std::endl;
```

typedef complex<double> CC;
int main() \{
CC x(3,4); // define $x=3+4 i$
CC z; // define z to be complex
z $=C C(2,7) ; \quad / /$ assign $z=2+7 i$
CC i $(0,1) ; \quad / / \operatorname{define} i=\operatorname{sqrt}(-1)$

MAT 685: C++ for Mathematicians

John Perry

Variables and Types

Basic types

Integer types

Example (p. 2/2)

Program 2.7 (pp. 23-24, slightly modified)

```
cout << "z = " << z << endl;
cout << "x = " << x << endl;
cout << "z + x = " << z + x << endl;
cout << "z*x = " << z*x << endl;
cout << "z/x = " << z/x << endl;
z = 5. - 4.*i;
cout << "Now z = " << z << endl;
cout << "The real part of z is " << z.real()
        << "\nand the imaginary part is "
        << z.imag() << endl;
return 0;
```

\}

MAT 685: C++ for Mathematicians

John Perry

Example, run on my computer

Variables and

Types

Basic types

Integer types
Real and complex types
Truth and text
Standard operations

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
```

Variables and
Types
Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations

(1) Variables and Types

(2) Basic types

Integer types
Real and complex types
Truth and text
(3) Standard operations

Numerical operations Boolean operations
(4) Summary
MAT 685: C++
for Mathemati-
cians

bool and char

John Perry

Variables and

Types
Basic types
Integer types
Real and complex types
Truth and text
bool value can be true or false

- old style: 1 (true) or 0 (false)
- output displayed in old style

bool and char

John Perry
bool value can be true or false

- old style: 1 (true) or 0 (false)
- output displayed in old style
char character
- enclosed in single quotes
- 256 possibilities, defined by ASCII standard
- many the usual ones: a, Y, 1, _
- includes "escape" codes: '\n', '\t', others
bool value can be true or false
- old style: 1 (true) or 0 (false)
- output displayed in old style
char character
- enclosed in single quotes
- 256 possibilities, defined by ASCII standard
- many the usual ones: a, Y, 1,
- includes "escape" codes: ' \n', '\t', others
string sequence of char
- enclosed in double quotes

John Perry

Variables and

Types
Basic types
Integer types
Real and complex types
Truth and text
Standard operations

Example

```
#include <iostream>
using std::cout; using std::endl;
#include <string>
using std::string;
int main() {
    bool truth = 1;
    bool same_truth = true;
    const string message = "Is the truth the same truth? ";
    cout << message << (truth == same_truth) << endl;
}
```

```
MAT 685: C++
for Mathemati-
cians
    John Perry
Variables and
Types
Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations
Numerical operations
Boolean operations
```

```
$ . /a.out
```

\$. /a.out
Is the truth the same truth? 1

```
Is the truth the same truth? 1
```


Points to ponder

for Mathemati-
cians
John Perry
Variables and
Types
Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations
Numerical operations
Boolean operations
(1) Variables and Types
(2) Basic types
Integer types
Real and complex types Truth and text
(3) Standard operations Numerical operations
Boolean operations
(4) Summary

```

\section*{Outline}
```

Summary

```

John Perry

Variables and Types

Basic types
Integer types
Real and complex types
Truth and text
Standard operations
```

```
MAT 685: C++
```

```
```

MAT 685: C++

```
(1) Variables and Types
(2) Basic types

Integer types
Real and complex types Truth and text
(3) Standard operations Numerical operations
Boolean operations
(4) Summary
```

MAT 685: C++
for Mathemati-
cians
John Perry

```

\section*{Outline}
```

John Perry

```
Variables and
Types
Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations

Summary

\section*{Numerical operations}
\begin{tabular}{|c|c|l|}
\hline operation & usage & notes \\
\hline addition & \(\mathrm{a}+\mathrm{b}\) & watch for overflow \\
\hline subtraction & \(\mathrm{a}-\mathrm{b}\) & watch for overflow \\
\hline multiplication & \(\mathrm{a} \star \mathrm{b}\) & watch for overflow \\
\hline division & \(\mathrm{a} / \mathrm{b}\) & integers? quotient only \\
\hline modular division & \(\mathrm{a} \% \mathrm{~b}\) & remainder can be negative \\
\hline
\end{tabular} for Mathemati－ cians

John Perry

Variables and Types

Basic types
Integer types
Real and complex types
Truth and text
Standard operations

\section*{Example}
```

\#include <iostream>
using std::cin; using std::cout;
using std::endl;
int main() {
int a, b;
cout << "Enter the first number --> ";
cin >> a;
cout << "Enter the second number --> ";
cin >> b;
cout << a << " % " << b << " = ";
cout << a % b << endl;
return 0;
}

``` for Mathematicians

John Perry

Variables and
Types
Basic types
Integer types
Real and complex types
Truth and text
Standard operations

\section*{Result on my home computer}
\[
\begin{aligned}
& \$ . / a . \text { out } \\
& \text { Enter the first number }-->5 \\
& \text { Enter the second number }--> \\
& 5 \%-3=2 \\
& \$ . / a . \text { out } \\
& \text { Enter the first number }--> \\
& \text { Enter the second number }--> \\
& \hline-5 \% 3 \\
& \$=-2 \\
& \$ . / a . \text { out } \\
& \text { Enter the first number }--> \\
& \text { Enter the second number }--> \\
& -5 \%-3 \\
& -5 \%-3=
\end{aligned}
\]

\section*{Operate and assign}
\begin{tabular}{|c|c|l|}
\hline operation & usage & notes \\
\hline increment by 1 & ++a or \(\mathrm{a}++\) & pre- or postincrement \\
\hline decrement by 1 & -a or \(\mathrm{a}--\) & pre- or postdecrement \\
\hline increment by b & \(\mathrm{a}+=\mathrm{b}\) & \begin{tabular}{l} 
result in \(\mathrm{a} ;\) \\
watch for overflow
\end{tabular} \\
\hline decrement by b & \(\mathrm{a}-=\mathrm{b}\) & \begin{tabular}{l} 
result in a ; \\
watch for overflow
\end{tabular} \\
\hline dilate by b & \(\mathrm{a} \quad\) *= b & \begin{tabular}{l} 
result in a ; \\
watch for overflow
\end{tabular} \\
\hline contract by b & \(\mathrm{a} \quad /=\mathrm{b}\) & \begin{tabular}{l} 
result in \(\mathrm{a} ;\) \\
integers? quotient only
\end{tabular} \\
\hline modular division & \(\mathrm{a} \%=\mathrm{b}\) & \begin{tabular}{l} 
result in \(\mathrm{a} ;\) \\
remainder can be negative
\end{tabular} \\
\hline
\end{tabular}

\section*{Pre- vs. Post- in/decrement?}
- ++ a increments a before using it
- a++ increments a after using it for Mathematicians

John Perry

Variables and Types

\section*{Pre- vs. Post- in/decrement?}
- ++a increments a before using it
- a++ increments a after using it
```

\#include <iostream>
using std::cout; using std::endl;
int main() {
int a;
a = 10; cout << ++a << endl;
a = 10; cout << a++ << endl;
return 0;
}

``` for Mathematicians

John Perry

Variables and Types

\section*{Pre- vs. Post- in/decrement?}
- ++ a increments a before using it
- a++ increments a after using it
```

\#include <iostream>
using std::cout; using std::endl;
int main() {
int a;
a = 10; cout << ++a << endl;
a = 10; cout << a++ << endl;
return 0;
}

```
\$ ./a.out
11
10
```

MAT 685: C++
for Mathemati-
cians
John Perry
Variables and
Types

Not a basic operator. Use library functions:

function	usage	notes
e^{b}	$\exp (b)$	best to use double for result
a^{b}	pow (a, b)	best to use double for result

Exponentiation?

Exponentiation?

Not a basic operator. Use library functions:

function	usage	notes
e^{b}	$\exp (\mathrm{b})$	best to use double for result
a^{b}	$\operatorname{pow}(\mathrm{a}, \mathrm{b})$	best to use double for result
```#include <iostream> using std::cout; using std::endl; #include <cmath> using std::pow;```		
```int main() { double e = exp(1.); double pi = M_PI; cout << "e to the pi is " << exp(pi) << endl; cout << "pi to the e is " << pow(pi, e) << endl; }```		

MAT 685: C++ for Mathematiclans

John Perry

Variables and Types

Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations

Exponentiation?

Not a basic operator. Use library functions:

\$./ about
e to the pi is 23.1407
pi to the e is 22.4592 for Mathematicians

John Perry

Numerical comparisons

Return true or false depending on values of a and b

comparison	usage	notes
equal?	$\mathrm{a}==\mathrm{b}$	two equals signs; forgetting can be catastrophic!
different?	$\mathrm{a} \quad!=\mathrm{b}$	what we call $a \neq \mathrm{b}$
smaller?	$\mathrm{a}<=\mathrm{b}$	what we call $a \leq \mathrm{b}$
strictly smaller?	$\mathrm{a}<\mathrm{b}$	
strictly larger?	$\mathrm{a}>\mathrm{b}$	
larger?	$\mathrm{a}>=\mathrm{b}$	what we call $a \geq \mathrm{b}$

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
```

Variables and
Types
Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations
(1) Variables and Types
(2) Basic types

Integer types
Real and complex types Truth and text
(3) Standard operations

Numerical operations

Boolean operations

4) Summary for Mathematicians

John Perry

Old style (book)

Return true or false depending on values of a and b

comparison	usage	notes
equal?	$\mathrm{a}==\mathrm{b}$	two equals signs
different?	$\mathrm{a} \quad \mathrm{l}=\mathrm{b}$	
logical negation?	! a	what we call $\neg \mathrm{a}$ or $\sim a$
logical and?	$\mathrm{a} \& \& \mathrm{~b}$	true iff both true
logical or?	a । b	b
true iff at least one true		
logical xor?	$\mathrm{a}{ }^{\wedge} \mathrm{b}$	true iff exactly one true

John Perry

New style (clearer)

Return true or false depending on values of a and b

comparison	usage	notes
equal?	$\mathrm{a}==\mathrm{b}$	two equals signs
different?	$\mathrm{a} \quad \mathrm{b}=\mathrm{b}$	
logical negation?	not a	what we call $\neg a$ or $\sim a$
logical and?	a and b	true iff both true
logical or?	a or b	true iff at least one true
logical xor?	a xor b	true iff exactly one true

MAT 685: C++ for Mathematicians

John Perry

Variables and Types

Basic types
Integer types
Real and complex types
Truth and text
Standard operations

Example

```
#include <iostream>
using std::cout; using std::endl;
int main() {
    bool yes = true;
    bool no = false;
    cout << "yes = " << yes
        <<"; no = " << no << endl;
    cout << "not yes? " << not yes << endl;
    cout << "not no? " << not no << endl;
    cout << "yes and no?" << (yes and no)
        << endl;
    cout << "yes or no?" << (yes or no)
        << endl;
    cout << "yes xor no?" << (yes xor no)
        << endl;
    return 0;
}
```


MAT 685: C++

 for MathematiciansJohn Perry

Variables and

Types
Basic types
Integer types
Real and complex types
Truth and text
Standard operations

Result on my home computer

```
$ ./a.out
yes = 1; no = 0
not yes? 0
not no? 1
yes and no? 0
yes or no? 1
yes xor no? 1
```

```
MAT 685: C++
for Mathemati-
    cians
    John Perry
Variables and
Types
Basic types
Integer types
Real and complex
types
Truth and text
Standard
operations
Numerical operations
Boolean operations
Summary
(1) Variables and Types
(2) Basic types Integer types Real and complex types Truth and text
(3) Standard operations Numerical operations Boolean operations
```

(4) Summary

Summary

John Perry

- C++ strongly typed
- basic types: numerical, boolean, character, pointer
- numerical types allow for exact or approximate arithmetic
- many basic operations available
- some common operations require math library

MAT 685: C++ for Mathematicians

John Perry

Variables and Types

Basic types

Integer types
Real and complex
types
Truth and text
Standard
operations
Numerical operations
Boolean operations

Homework

