NORM TO/FROM METRIC

Definition 1 (Metric). Let S be a set. A function $d: S \times S \rightarrow \mathbb{R}$ is a metric if it satisfies the following four criteria.

- $d(x, y) \geq 0$ for all $x, y \in V$
- $d(x, y)=0$ iff $x=y$
- $d(x, y)=d(y, x)$
- $d(x, z) \leq d(x, y)+d(y, z)$

Definition 2 (Norm). Let V be a vector space over a field \mathbb{R}. A function $w: V \rightarrow \mathbb{R}$ is a norm if it satisfies the following four criteria.

- $w(v) \geq 0$ for all $v \in V$
- $w(v)=0$ iff v is the zero vector
- $w(\alpha v)=|\alpha| w(v)$ for any $v \in V$ and any $\alpha \in \mathbb{F}$
- $w(u+v) \leq w(u)+w(v)$ for all $u, v \in V$

Fact 3. A norm can be turned into a metric, via $d(x, y)=w(x-y)$. This is called the induced metric.

Proof. Suppose w is a norm; we show the "induced metric" is indeed a metric. We concentrate on the triangle inequality, as the other properties should be easy. Let $x, y, z \in V$; then

$$
\begin{aligned}
d(x, z)=w(x-z) & =w(x+(-z)) \\
& =w((x-y)+(y-z)) \\
& \leq w(x-y)+w(y-z) \\
& =w(x-y)+|-1| w(y-z) \\
& =d(x, y)+d(y, z) .
\end{aligned}
$$

Fact 4. If a metric over a vector space satisfies the properties

- $d(w, v)=d(w+u, u+v)$ and
- $d(\alpha u, \alpha v)=|\alpha| d(u, v)$
then it can be turned into a norm, via $w(x)=d(x, 0)$. This is called the induced norm.
Proof. Suppose d is a metric that satisfies the additional properties; we show the "induced norm" is indeed a norm. We concentrate on the triangle inequality, as the other properties should be easy. Let $x, y, z \in V$; then

$$
\begin{aligned}
w(u+v)=d(u+v, 0) & \leq d(u+v,(u+v)-v)+d((u+v)-v, 0) \\
& =d(u+v, u)+d(u, 0) \\
& =d(v+u, 0+u)+d(u, 0) \\
& =d(v, 0)+d(u, 0) \\
& =w(v)+w(u) .
\end{aligned}
$$

Definition 5 (Hamming distance). The Hamming distance between two vectors $u, v \in \mathbb{F}_{q}^{n}$ is the number of entries in which they differ.
Remark. If $q=2$, and we treat the absolute value in \mathbb{F}_{2} in the normal way, then the Hamming distance (our metric) satisfies the additional properties of Fact 4, since

- w and v differ in position i iff $w_{i} \neq v_{i}$ iff $w_{i}+u_{i} \neq u_{i}+v_{i}$ iff $w+u$ and $u+v$ differ in position i, and
- the only possible α in \mathbb{F}_{2} are 0 or 1 , so $d(\alpha u, \alpha v)=|\alpha| d(u, v)$ rather easily:
- for $\alpha=0$, we have $d(0 \cdot u, 0 \cdot v)=d(0,0)=0=|0| d(u, v)$, while
- for $\alpha=1$, we have $d(1 \cdot u, 1 \cdot v)=d(u, v)=|1| d(u, v)$.

The Hamming metric cannot induce a norm in \mathbb{F}_{q} where $q \neq 2$, since we'd violate the second criterion. For instance, in \mathbb{F}_{3} we have

$$
d(2 \cdot 10,2 \cdot 00)=d(20,00)=1 \neq 2=2 \cdot 1=2 \cdot d(10,00) .
$$

That said, defining a norm in a finite field is always... interesting. We leave it at that.

