MORE ALGEBRAIC STRUCTURES

Definition. An equivalence relation on a set *S* is a subset of $S \times S$, where (a, b) is abbreviated as $a \sim b$, satisfying the following properties. Suppose $a, b, c \in S$.

```
reflexive: a \sim a
symmetric: a \sim b implies b \sim a
transitive: a \sim b and b \sim c implies a \sim c
```

The set of all elements equivalent to *a* is its equivalence class, and we often write it as [a] or \overline{a} .

Example (of equivalence relations). "Equality" is an equivalence relation on any set. In the integers, having the same remainder after division by n is also an equivalence relation; it gives rise to \mathbb{Z}_n .

Remark. If two equivalence classes are even slightly different, then they have nothing in common. Put another way, **distinct equivalence classes are disjoint**. In addition, every element lies in some equivalence class (its own!), so the equivalence classes **cover** the set. These two criteria combine to show that the equivalence classes **partition** the set.

Definition. A subgroup S of a group G is a subset of G that remains a group *under the same operation.* For fixed $a \in G$, the coset a + S is the set of all sums a + s, where $s \in S$ varies.

Remark. Keep in mind that we consider only abelian groups in this course. In a general group, we would define the coset aS as the set of all $a \circ s$, where $s \in S$ and " \circ " is the operation of G.

Fact (the Subgroup Theorem). A subset S of a group G is a subgroup if and only if $s - t \in S$ for all $s, t \in S$. (In the noncommutative context, if $st^{-1} \in S$.)

Example (of subgroups). The set $7\mathbb{Z} = \{\dots, -7, 0, 7, 14, \dots\}$ is a subgroup of the integers. We can see this because any two integer multiples of 7 have the form 7m and 7n, and 7m - 7n = 7(m-n); integer subtraction is closed, so m-n is an integer, so $7(m-n) \in 7\mathbb{Z}$.

More generally, let d be an integer. The set of integer multiples of d is a subgroup of \mathbb{Z} ; we used no special property about 7 in the reasoning above, so we can see this by replacing 7 with d. We often write this subgroup as

$$d\mathbb{Z} = \{\ldots, -d, 0, d, 2d, \ldots\}.$$

Another example of a subgroup is a vector subspace S of a vector space V. Recall that V is a group under addition; any two vector $\mathbf{s}, \mathbf{t} \in S$ satisfy $\mathbf{s} - \mathbf{t} \in S$ by the properties of a vector subspace

Fact (Coset Equality). *Two cosets a* + *S* and *b* + *S* are equal if and only if $a - b \in S$.

Example (of cosets). The coset $\overline{3} = 3 + 7\mathbb{Z}$ consists of

$$\overline{3} = \{\ldots, -4, 3, 10, 17, \ldots\}$$

We see that $\overline{3} = \overline{17}$ because $17 - 3 = 14 \in 7\mathbb{Z}$.

However, if the subgroup were $8\mathbb{Z}$, these cosets would *not* be equal; in fact, they'd contain completely different elements:

$$3 + 8\mathbb{Z} = \{\dots, -5, 3, 11, 19, \dots\}$$

$$17 + 8\mathbb{Z} = \{\dots, 9, 17, 25, 33, \dots\}.$$

Remark. As you might have noticed from the example above, cosets always **partition** a group. This means membership in a coset is an equivalence relation!

Definition. We write G/S for the set of all cosets of *S*.

Fact (Lagrange's Theorem). Any two cosets of *S* have the same size. Thus, if *G* is a finite group and *S* is a subgroup of *G*, the partition implies that $|G| = |S||^G/s|$. In other words, the size of the group is the product of the size of the subgroup and the number of cosets. We can rewrite this relationship as |G/s| = |G|/|S|, which gives us a convenient formula for counting the distinct cosets *S* has in *G*.

Remark. These facts gives us all the algebra we need to decode a message in an (n, k)-linear code with parity check matrix H:

- a linear code *C* is a subspace of \mathbb{F}_q^n , which makes it a subgroup of \mathbb{F}_q^n ;
- by properties of a *partition*, every possible word received lies in some coset of C (cover);
- by Lagrange's Theorem, there are $q^n/q^k = q^{n-k}$ cosets of *C*;
- every erroneous message has the form e + x, where x is the intended message and e is some error;
- this erroneous message lies in the coset $\mathbf{e} + C$;
- we can identify all the coset leaders of minimal weight by
 - listing all errors of minimal weight, and
 - discarding those errors \mathbf{e}_i that lie in the coset $\mathbf{e}_i + C$ of an already-computed error \mathbf{e}_i , and
 - properties of coset equality mean that we can determine this simply by checking whether

* $\mathbf{e}_i - \mathbf{e}_i \in C$, which we can decide by checking whether

$$* H\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=0$$

In other words, decoding a message requires us neither to sort \mathbb{F}_q^n into cosets, nor even to determine all the vectors in C! We need merely identify errors that produce distinct cosets, until we have found q^{n-k} such errors.