MORE ALGEBRAIC STRUCTURES

Definition. An equivalence relation on a set S is a subset of $S \times S$, where (a, b) is abbreviated as $a \sim b$, satisfying the following properties. Suppose $a, b, c \in S$.
reflexive: $a \sim a$
symmetric: $a \sim b$ implies $b \sim a$
transitive: $a \sim b$ and $b \sim c$ implies $a \sim c$
The set of all elements equivalent to a is its equivalence class, and we often write it as [a] or \bar{a}.
Example (of equivalence relations). "Equality" is an equivalence relation on any set. In the integers, having the same remainder after division by n is also an equivalence relation; it gives rise to \mathbb{Z}_{n}.

Remark. If two equivalence classes are even slightly different, then they have nothing in common. Put another way, distinct equivalence classes are disjoint. In addition, every element lies in some equivalence class (its own!), so the equivalence classes cover the set. These two criteria combine to show that the equivalence classes partition the set.

Definition. A subgroup S of a group G is a subset of G that remains a group under the same operation. For fixed $a \in G$, the $\operatorname{coset} a+S$ is the set of all sums $a+s$, where $s \in S$ varies.

Remark. Keep in mind that we consider only abelian groups in this course. In a general group, we would define the coset $a S$ as the set of all $a \circ s$, where $s \in S$ and " \circ " is the operation of G.

Fact (the Subgroup Theorem). A subset S of a group G is a subgroup if and only if $s-t \in S$ for all $s, t \in S$. (In the noncommutative context, if $s t^{-1} \in S$.)
Example (of subgroups). The set $7 \mathbb{Z}=\{\ldots,-7,0,7,14, \ldots\}$ is a subgroup of the integers. We can see this because any two integer multiples of 7 have the form $7 m$ and $7 n$, and $7 m-7 n=$ $7(m-n)$; integer subtraction is closed, so $m-n$ is an integer, so $7(m-n) \in 7 \mathbb{Z}$.

More generally, let d be an integer. The set of integer multiples of d is a subgroup of \mathbb{Z}; we used no special property about 7 in the reasoning above, so we can see this by replacing 7 with d. We often write this subgroup as

$$
d \mathbb{Z}=\{\ldots,-d, 0, d, 2 d, \ldots\}
$$

Another example of a subgroup is a vector subspace S of a vector space V. Recall that V is a group under addition; any two vector $\mathbf{s}, \mathbf{t} \in S$ satisfy $\mathbf{s}-\mathbf{t} \in S$ by the properties of a vector subspace

Fact (Coset Equality). Two cosets $a+S$ and $b+S$ are equal if and only if $a-b \in S$.
Example (of cosets). The coset $\overline{3}=3+7 \mathbb{Z}$ consists of

$$
\overline{3}=\{\ldots,-4,3,10,17, \ldots\}
$$

We see that $\overline{3}=\overline{17}$ because $17-3=14 \in 7 \mathbb{Z}$.

However, if the subgroup were $8 \mathbb{Z}$, these cosets would not be equal; in fact, they'd contain completely different elements:

$$
\begin{aligned}
3+8 \mathbb{Z} & =\{\ldots,-5,3,11,19, \ldots\} \\
17+8 \mathbb{Z} & =\{\ldots, 9,17,25,33, \ldots\}
\end{aligned}
$$

Remark. As you might have noticed from the example above, cosets always partition a group. This means membership in a coset is an equivalence relation!
Definition. We write G / s for the set of all cosets of S.
Fact (Lagrange's Theorem). Any two cosets of S have the same size. Thus, if G is a finite group and S is a subgroup of G, the partition implies that $|G|=|S||G / s|$. In other words, the size of the group is the product of the size of the subgroup and the number of cosets. We can rewrite this relationship as $|G / s|=|G| /|S|$, which gives us a convenient formula for counting the distinct cosets S has in G.
Remark. These facts gives us all the algebra we need to decode a message in an (n, k)-linear code with parity check matrix H :

- a linear code C is a subspace of \mathbb{F}_{q}^{n}, which makes it a subgroup of \mathbb{F}_{q}^{n};
- by properties of a partition, every possible word received lies in some coset of C (cover);
- by Lagrange's Theorem, there are $q^{n} / q^{k}=q^{n-k}$ cosets of C;
- every erroneous message has the form $\mathbf{e}+\mathbf{x}$, where \mathbf{x} is the intended message and \mathbf{e} is some error;
- this erroneous message lies in the coset $\mathbf{e}+C$;
- we can identify all the coset leaders of minimal weight by
- listing all errors of minimal weight, and
- discarding those errors \mathbf{e}_{j} that lie in the coset $\mathbf{e}_{i}+C$ of an already-computed error \mathbf{e}_{i}, and
- properties of coset equality mean that we can determine this simply by checking whether
* $\mathbf{e}_{i}-\mathbf{e}_{j} \in C$, which we can decide by checking whether * $H\left(\mathbf{e}_{i}-\mathbf{e}_{j}\right)=0$.

In other words, decoding a message requires us neither to sort \mathbb{F}_{q}^{n} into cosets, nor even to determine all the vectors in C ! We need merely identify errors that produce distinct cosets, until we have found q^{n-k} such errors.

