SOLVING LINEAR CONGRUENCES

I have isolated proofs at the end. Fancy not, even for a moment, that this means the proofs are unimportant! They are essential to understanding the algorithm. Rather, I thought it easier to use this as a reference if you could see the algorithms with the examples first, and the proofs later.

LINEAR CONGRUENCES

Suppose $b, c, m \in \mathbb{Z}$, and $m \neq 0$. We often encounter problems of the form

$$
\begin{equation*}
c x \equiv b \quad(\bmod m) . \tag{1}
\end{equation*}
$$

We would like to answer the following questions:

- When does a solution exist?
- How many solutions exist, modulo m ?
- What are the solutions?

We will solve them by rewriting as a different problem. By definition, (1) is true if and only if we can find $y \in \mathbb{Z}$ such that

$$
c x=b+m y
$$

or, in other words,

$$
\begin{equation*}
c x+m(-y)=b . \tag{2}
\end{equation*}
$$

When we want integer solutions to such an equation, we call it a Diophantine equation.
Existence of solutions to a linear congruence. A solution to (1) exists if and only if $\operatorname{gcd}(c, m)$ divides b.

Number of solutions to a linear congruence. If a solution to (2) exists, then:

- there are infinitely many solutions,
- the number of unique solutions, modulo m, is $d=\operatorname{gcd}(b, m)$, and
- if $\left(x_{0}, y_{0}\right)$ is a solution, then so are $\left(x_{0}+m / d, y_{0}-c / d\right),\left(x_{0}+2 \cdot m / d, y_{0}-2 \cdot c / d\right), \ldots$, and $\left(x_{0}+(d-1) \cdot m / d, y_{0}-(d-1) \cdot c / d\right)$.
Particular solutions to a linear congruence, or, Particular solutions to Diophantine equations, or, The Extended Euclidean Algorithm, or, Bezout's Identity. For any integers c, m we can find integers χ, \cup such that

$$
\operatorname{gcd}(c, m)=c \chi+m u
$$

In addition, we can find χ, \cup by reversing the equations generated during the Euclidean Algorithm. Thus, $\chi \cdot b / \operatorname{gcd}(c, m)$ is a particular solution to (1).

Example. Suppose we want to solve $3 x \equiv 6(\bmod 2)$. Since $\operatorname{gcd}(2,3)=1$, and 1 divides 3 , there is one solution. We can find it using Bezout's Identity, since

$$
3 \chi+2 v=1
$$

when $\chi=1$ and $v=-1$. Multiply the equation on both sides by 6 to obtain

$$
3(6)+2(-6)=6
$$

Given the relationship between (1) and (2), our solution will be $x=6$.

Example. Suppose we want to solve $4 x \equiv 1(\bmod 6)$. This time, $\operatorname{gcd}(4,6)=2$, which does not divide 1 , so there is no solution. We can verify this by checking that the multiples of 4 , modulo 6 are $4,2,0,4,2,0, \ldots$.

Example. Suppose we want to solve $4 x \equiv 8(\bmod 12)$. Observe that $\operatorname{gcd}(4,12)=4$, which divides 8 , so there should be 4 solutions. The first one comes from scaling Bezout's identity,

$$
4 \cdot 4+12 \cdot(-1)=4
$$

by $2=b / \operatorname{gcd}(c, m)$ to match $b=8$,

$$
4 \cdot 8+12 \cdot(-2)=8
$$

so $x=8$ is one solution to the congruence. The other ones that are unique modulo 12 are

$$
8+12 / 4 \equiv 11 \quad, \quad 8+2 \cdot 12 / 4 \equiv 2 \quad, \quad \text { and } \quad 8+3 \cdot 12 / 4 \equiv 5 .
$$

You can verify easily that $4 \cdot 11 \equiv 8(\bmod 12), 4 \cdot 2 \equiv 8(\bmod 12)$, and $4 \cdot 5 \equiv 8(\bmod 12)$.

SYSTEMS OF LINEAR CONGRUENCES

The Chinese Remainder Theorem. Let $a, b, m, n \in \mathbb{Z}$. If $\operatorname{gcd}(m, n)=1$, then there exist infinitely many solutions to

$$
\begin{aligned}
& x \equiv a \quad(\bmod m) \\
& x \equiv b \quad(\bmod n) .
\end{aligned}
$$

In addition, there is only one solution between 0 and $m n-1$ (inclusive), and all other solutions can be obtained by adding an integer multiple of $m n$.

Remark. While the theorem does not prescribe a particular way to find x, you can find it using the same ideas as in the previous section.

Remark. If either congruence has the form $c x \equiv a(\bmod m)$, and $\operatorname{gcd}(c, m)$ divides a, then you can solve by rewriting, just as above.

Example. Suppose we need to solve

$$
\begin{aligned}
& x \equiv 2 \quad(\bmod 8) \\
& x \equiv 12 \quad(\bmod 15) .
\end{aligned}
$$

The condition $x \equiv 2(\bmod 8)$ is equivalent to the equation $x=2+8 q$, for some $q \in \mathbb{Z}$. Substitute this into the second congruence, obtaining

$$
2+8 q \equiv 12(\bmod 15)
$$

which we rewrite as

$$
8 q \equiv 10(\bmod 15)
$$

Now, $\operatorname{gcd}(8,15)=1$, which divides 10 , so there exists a unique solution, modulo 15. We can find it using the same technique as above, or by multiplying both sides by the multiplicative inverse of 8 , modulo 15 . That would be 2 , since $8 \cdot 2=16 \equiv 1$. Hence

$$
q \equiv 20 \equiv 5(\bmod 15) .
$$

The solution to the system is thus $x=2+8 q=42$, which is unique modulo $8 \cdot 15=120$.
We can verify easily that, in fact,

$$
42 \equiv 2(\bmod 8) \quad \text { and } \quad 42 \equiv 12(\bmod 15) .
$$

The discussion in the first section shows that we can determine a criterion for existence to solutions of a linear congruence (1) by looking at solutions of Diophantine equation (2). So, we restrict ourselves to the context of Diophantine equations.
Existence of solutions to a linear congruence. Suppose a solution exists. Let $d=\operatorname{gcd}(c, m)$, and choose $q, r \in \mathbb{Z}$ such that $c=d q$ and $m=d r$. If b is a solution to (1), then it is also a solution to (2). Thus,

$$
\begin{aligned}
b & =c x+m(-y) \\
& =(d q) x+(d r)(-y) \\
& =d(q x-r y) .
\end{aligned}
$$

By definition, d divides b.
On the other hand, if d divides b, then choose $q \in \mathbb{Z}$ such that $b=d q$. Bezout's Identity tells us that we can find t, u such that

$$
d=c t+m u .
$$

Multiply both sides by q transforms the equation to

$$
b=d q=(c t+m u) q=c(t q)+m(u q) .
$$

Its extreme ends show that b is a solution to the Diophantine equation (2).
Number of solutions to a linear congruence. If $\left(x_{0}, y_{0}\right)$ is a solution to (2), then by definition $c x_{0}+m y_{0}=b$. Let $d=\operatorname{gcd}(c, m)$. Observe that

$$
\begin{aligned}
b & =c x_{0}+m y_{0} \\
& =c x_{0}+m y_{0}+(c m / d-c m / d) \\
& =\left(c x_{0}+c m / d\right)+\left(m y_{0}-c m / d\right) \\
& =c\left(x_{0}+m / d\right)+m\left(y_{0}-c / d\right) .
\end{aligned}
$$

Since $\left(x_{0}, y_{0}\right)$ was any solution, we can repeat this indefinitely. Hence, if a solution exists, infinitely many solutions must exist! However,

$$
c\left(x_{0}+d \cdot m / d\right)=c x_{0}+c m \equiv c x_{0} \quad(\bmod m)
$$

so there are no more than d distinct solutions, modulo m. On the other hand, if $0 \leq t \leq u<d$,

$$
c\left(x_{0}+t \cdot m / d\right) \equiv c\left(x_{0}+u \cdot m / d\right),
$$

is true if and only if

$$
c x_{0}+t \cdot c m / d \equiv c x_{0}+u \cdot c m / d
$$

which is true if and only if

$$
t \equiv u .
$$

So there are in fact d distinct solutions, modulo m.
Particular solutions to a linear congruence. This is already explained in the explanation for Existence of solutions to a linear congruence.

