
SOLVING LINEAR CONGRUENCES

I have isolated proofs at the end. Fancy not, even for a moment, that this means the proofs are
unimportant! They are essential to understanding the algorithm. Rather, I thought it easier to
use this as a reference if you could see the algorithms with the examples first, and the proofs later.

LINEAR CONGRUENCES

Suppose b , c , m ∈Z, and m 6= 0. We often encounter problems of the form

(1) c x ≡ b (mod m).

We would like to answer the following questions:
• When does a solution exist?
• How many solutions exist, modulo m?
• What are the solutions?

We will solve them by rewriting as a different problem. By definition, (1) is true if and only if we
can find y ∈Z such that

c x = b +my,
or, in other words,

(2) c x +m (−y) = b .

When we want integer solutions to such an equation, we call it a Diophantine equation.

Existence of solutions to a linear congruence. A solution to (1) exists if and only if gcd (c , m)
divides b .

Number of solutions to a linear congruence. If a solution to (2) exists, then:
• there are infinitely many solutions,
• the number of unique solutions, modulo m, is d = gcd (b , m), and
• if (x0, y0) is a solution, then so are (x0+ m/d, y0− c/d), (x0+ 2 · m/d, y0− 2 · c/d), . . . , and
(x0+(d − 1) · m/d, y0− (d − 1) · c/d).

Particular solutions to a linear congruence, or, Particular solutions to Diophantine equa-
tions, or, The Extended Euclidean Algorithm, or, Bezout’s Identity. For any integers c , m we
can find integers χ ,υ such that

gcd (c , m) = cχ +mυ.
In addition, we can find χ ,υ by reversing the equations generated during the Euclidean Algorithm.
Thus, χ · b/gcd(c ,m) is a particular solution to (1).

Example. Suppose we want to solve 3x ≡ 6 (mod 2). Since gcd (2,3) = 1, and 1 divides 3, there
is one solution. We can find it using Bezout’s Identity, since

3χ + 2υ= 1

when χ = 1 and υ=−1. Multiply the equation on both sides by 6 to obtain

3 (6)+ 2 (−6) = 6.

Given the relationship between (1) and (2), our solution will be x = 6.



Example. Suppose we want to solve 4x ≡ 1 (mod 6). This time, gcd (4,6) = 2, which does not
divide 1, so there is no solution. We can verify this by checking that the multiples of 4, modulo
6 are 4,2,0,4,2,0, . . ..

Example. Suppose we want to solve 4x ≡ 8 (mod 12). Observe that gcd (4,12) = 4, which divides
8, so there should be 4 solutions. The first one comes from scaling Bezout’s identity,

4 · 4+ 12 · (−1) = 4,

by 2= b/gcd(c ,m) to match b = 8,
4 · 8+ 12 · (−2) = 8,

so x = 8 is one solution to the congruence. The other ones that are unique modulo 12 are

8+ 12/4≡ 11 , 8+ 2 · 12/4≡ 2 , and 8+ 3 · 12/4≡ 5.

You can verify easily that 4 · 11≡ 8 (mod 12), 4 · 2≡ 8 (mod 12), and 4 · 5≡ 8 (mod 12).

SYSTEMS OF LINEAR CONGRUENCES

The Chinese Remainder Theorem. Let a, b , m, n ∈ Z. If gcd (m, n) = 1, then there exist infin-
itely many solutions to

x ≡ a (mod m)
x ≡ b (mod n).

In addition, there is only one solution between 0 and mn− 1 (inclusive), and all other solutions can
be obtained by adding an integer multiple of mn.

Remark. While the theorem does not prescribe a particular way to find x, you can find it using
the same ideas as in the previous section.

Remark. If either congruence has the form c x ≡ a (mod m), and gcd (c , m) divides a, then you
can solve by rewriting, just as above.

Example. Suppose we need to solve

x ≡ 2 (mod 8)

x ≡ 12 (mod 15).

The condition x ≡ 2 (mod 8) is equivalent to the equation x = 2+8q , for some q ∈Z. Substitute
this into the second congruence, obtaining

2+ 8q ≡ 12 (mod 15),

which we rewrite as
8q ≡ 10 (mod 15).

Now, gcd (8,15) = 1, which divides 10, so there exists a unique solution, modulo 15. We can find
it using the same technique as above, or by multiplying both sides by the multiplicative inverse
of 8, modulo 15. That would be 2, since 8 · 2= 16≡ 1. Hence

q ≡ 20≡ 5 (mod 15).

The solution to the system is thus x = 2+ 8q = 42, which is unique modulo 8 · 15= 120.
We can verify easily that, in fact,

42≡ 2 (mod 8) and 42≡ 12(mod 15).



SO WHY DOES THIS WORK?

The discussion in the first section shows that we can determine a criterion for existence to
solutions of a linear congruence (1) by looking at solutions of Diophantine equation (2). So, we
restrict ourselves to the context of Diophantine equations.

Existence of solutions to a linear congruence. Suppose a solution exists. Let d = gcd (c , m),
and choose q , r ∈ Z such that c = d q and m = d r . If b is a solution to (1), then it is also a
solution to (2). Thus,

b = c x +m (−y)
= (d q) x +(d r ) (−y)
= d (q x − r y) .

By definition, d divides b .
On the other hand, if d divides b , then choose q ∈Z such that b = d q . Bezout’s Identity tells

us that we can find t , u such that
d = c t +mu.

Multiply both sides by q transforms the equation to

b = d q = (c t +mu) q = c (t q)+m (uq) .
Its extreme ends show that b is a solution to the Diophantine equation (2).

Number of solutions to a linear congruence. If (x0, y0) is a solution to (2), then by definition
c x0+my0 = b . Let d = gcd (c , m). Observe that

b = c x0+my0

= c x0+my0+(c m/d − c m/d)
= (c x0+ c m/d)+ (my0− c m/d)
= c (x0+ m/d)+m (y0− c/d) .

Since (x0, y0) was any solution, we can repeat this indefinitely. Hence, if a solution exists, infin-
itely many solutions must exist! However,

c (x0+ d · m/d) = c x0+ c m ≡ c x0 (mod m),

so there are no more than d distinct solutions, modulo m. On the other hand, if 0≤ t ≤ u < d ,

c (x0+ t · m/d)≡ c (x0+ u · m/d) ,
is true if and only if

c x0+ t · c m/d ≡ c x0+ u · c m/d,
which is true if and only if

t ≡ u.
So there are in fact d distinct solutions, modulo m.

Particular solutions to a linear congruence. This is already explained in the explanation for
Existence of solutions to a linear congruence.


