RECAPITULATION OF LINEAR CODES

A code of length n with k symbols of information is linear when we can verify a codeword \mathbf{x} using a system of homogeneous ${ }^{1}$ linear equations, called check equations,

$$
\begin{aligned}
a_{11} x_{1}+\cdots+a_{1 k} x_{k}+x_{k+1} & =0 \\
& \vdots \\
a_{n-k, 1} x_{1}+\cdots+a_{n-k, k} x_{k}+x_{n} & =0
\end{aligned}
$$

Without loss of generality, these equations are linearly independent. (If not, we can discard equations that give no useful information.)

As usual, we can rewrite this linear system as a matrix equation,

$$
H \mathbf{x}^{T}=0 .
$$

We call H the parity check matrix. Since the equations are linearly independent, the rows of H are likewise linearly independent. Another way of saying this is that H is full rank. Notice that H has a block structure, $\left(A \mid I_{n-k}\right)$.

We can rewrite the check equations by solving for the check digit variables,

$$
\begin{aligned}
& x_{k+1}=-a_{11} x_{1}-\cdots-a_{1 k} x_{k} \\
& \vdots \\
& x_{n}=-a_{n-k, 1} x_{1}-\cdots-a_{n-k, k} x_{k} .
\end{aligned}
$$

To this system we prepend some "obvious" equations,

$$
\begin{array}{rlr}
x_{1} & = & x_{1} \\
\vdots & \\
x_{k} & = & \\
x_{k+1} & = & -a_{11} x_{1}-\cdots-a_{1 k} x_{k} \\
\vdots & \\
x_{n} & =-a_{n-k, 1} x_{1}-\cdots-a_{n-k, k} x_{k}
\end{array}
$$

This matrix has a block structure $\left(\frac{I_{k}}{-A}\right)$ that is similar to the one above. We'll call G the transpose of this matrix, $G=\left(I_{k} \mid-A^{T}\right)$.

A useful relationship between these two matrices is that $G H^{T}=0$. Inasmuch as the block dimensions match, block multiplication makes this plain,

$$
G H^{T}=\left(I_{k} \mid-A^{T}\right)\left(\frac{A^{T}}{I_{n-k}}\right)=\left(A^{T}-A^{T}\right)=0 .
$$

[^0]This shows that any row \mathbf{r} of G is a codeword, since $G H^{T}=0$ implies $\mathbf{r} H^{T}=0$, and

$$
\mathbf{r} H^{T}=0 \quad \Longrightarrow \quad\left(\mathbf{r} H^{T}\right)^{T}=0^{T} \quad \Longrightarrow \quad\left(H^{T}\right)^{T} \mathbf{r}^{T}=0 \quad \Longrightarrow \quad H \mathbf{r}^{T}=0
$$

Recall now the definition of the code: $\mathbf{x} \in C$ iff $H \mathbf{x}^{T}=0$.
In addition, the left block of G is the identity matrix, which is linearly independent, so the rows of G itself must be linearly independent.

The rank of G is k, which is also the dimension of C (the first k symbols of a codeword are free; the rest are determined by the check equations).

This tells us that the rows of G form a basis of C, and we are justified in calling G a generator matrix.

[^0]: ${ }^{1} \mathrm{~A}$ linear system is homogeneous when the constants are all zero.

