
Chapter 11:
Roots of multivariate polyomials

This chapter is about the roots of polynomial equations. However, rather than investigate
the computation of roots, it considers the analysis of roots, and the tools used to compute that
analysis. In particular, we want to know when the roots to a multivariate system of polynomial
equations exists.

A chemist once emailed me about a problem he was studying that involved microarrays.
Microarrays measure gene expression, and he was using some data to build a system of equations
of this form:

axy� b1x� cy + d1 = 0
axy� b2x� cy + d2 = 0 (34)

axy� b2x� b1y + d3 = 0

where a, b1, b2, c , d1, d2, d3 2N are known constants and x, y 2 R were unknown. A— wanted
to find values for x and y that made all the equations true.

This already is an interesting problem, and it is well-studied. In fact, A— had a fancy software
program that sometimes solved the system. However, it didn’t always solve the system, and he
didn’t understand whether it was because there was something wrong with his numbers, or with
the system itself. All he knew is that for some values of the coefficients, the system gave him a
solution, but for other values the system turned red, which meant that it found no solution.

The software the chemist was using relied on well-known numerical techniques to look for a
solution. There are many reasons that numerical techniques can fail; most importantly, they can
fail even when a solution exists.

Analyzing these systems with an algebraic technique, I was able to give him some glum news:
the reason the software failed to find a solution is that, in fact, no real solution existed. Instead,
the solutions were complex. So, the problem wasn’t with the software’s numerical techniques.

This chapter develops and describes the algebraic techniques that allowed me to reach this
conclusion. Most of the material in these notes are relatively “old”: at least a century old. Gröb-
ner bases, however, are relatively new: they were first described in 1965 [Buc65]. We will develop
Gröbner bases, and finally explain how they answer the following important questions for any
system of polynomial equations

f1 (x1, x2, . . . , xn) = 0, · · · fm (x1, x2, . . . , xn) = 0

whose coefficients are in R:
1. Does the system have any solutions in C?
2. If so,

(a) Are there infinitely many, or finitely many?
i. If finitely many, exactly how many?

ii. If infinitely many, what is the “dimension” of the solution set?
(b) Are any of the solutions in R?

We will refer to these as five natural questions about the roots of a polynomial system. To answer
them, we first review a little linear algebra, then study monomials a bit more, before concluding
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with a foray into Hilbert’s Nullstellensatz and Gröbner bases, fundamental results and tools of
commutative algebra and algebraic geometry.

Remark 11.1. From here on, all rings are polynomial rings over a field F, unless we say otherwise.

11.1: Gaussian elimination

Let’s look again at the system (34) described in the introduction:

axy� b1x� cy + d1 = 0
axy� b2x� cy + d2 = 0

axy� b2x� b1y + d3 = 0.

It is almost a linear system, and you’ve studied linear systems in the past. In fact, you’ve even
studied how to answer the five natural questions about the roots of a linear polynomial system.
Let’s review that.

A generic system of m linear equations in n variables looks like

a11x1 + a12x2 + · · ·+ a1n xn = b1

a21x1 + a22x2 + · · ·+ a2n xn = b2
...

...
am1x1 + am2x2 + · · ·+ amn xn = bm

where the ai j and bi are elements of a field F. Linear algebra can be done over any field F,
although it is typically taught with F = Q. Since that’s old hat to you, let’s try some linear
algebra over a finite field!

Example 11.2. A linear system with m = 3 and n = 5 and coefficients in Z13 is

5x1 + x2 + 7x5 = 7
x3 + 11x4 + 2x5 = 1
3x1 + 7x2 + 8x3 = 2.

An equivalent system, with the same solutions, is

5x1 + x2 + 7x5 + 6 = 0
x3 + 11x4 + 2x5 + 12 = 0
3x1 + 7x2 + 8x3 + 11 = 0.

In these notes, we favor the latter form.

A technique called Gaussian elimination obtains a “triangular system” equivalent to the orig-
inal. By “equivalent”, we mean that (a1, . . . ,an) 2 Fn is a solution to the triangular system if and
only if it is a solution to the original system as well.
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Definition 11.3. Let G = (g1, g2, . . . , gm) be a list of linear polynomials
in n variables. For each i = 1,2, . . . , m designate the leading variable of
gi , as the smallest-indexed variable of non-zero coefficient. Write lv (gi )
for this variable.

The leading variable of the zero polynomial is undefined.

Since this ordering guarantees x1 > x2 > . . . > xn , something like a dictionary, we refer to it as
the lexicographic term ordering.

Example 11.4. Using the example from 11.2,

lv (5x1 + x2 + 7x5 + 8) = x1,
lv (x3 + 11x4 + 2x5 + 12) = x3.

Definition 11.5. A list of linear polynomials F is in triangular form if
for each i < j ,
• fi = 0 implies f j = 0, while
• fi , f j 6= 0 implies lv ( fi )> lv

Ä

f j
ä

.

Example 11.6. Using the example from 11.2,the list

F = ( 5x1 + x2 + 7x5 + 8, x3 + 11x4 + 2x5 + 12, 3x1 + 7x2 + 8x3 + 11 )

is not in triangular form, since lv ( f1) = lv ( f3) = x1, whereas we want lv ( f1)> lv ( f3).
The list

G = ( x1 + 6, 0, x2 + 3x4 )

is also not in triangular form, because g2 is zero while g3 6= 0.
However, the list

H = ( x1 + 6, x2 + 3x4, 0 )

is in triangular form, because h3 = 0 and lv (h1)> lv (h2).

Algorithm 7 describes one way to apply the method.

Theorem 11.7. Algorithm 7 terminates correctly.

Proof. All the loops of the algorithm are explicitly finite, so the algorithm terminates. To show
that it terminates correctly, we must show both that G is triangular and that its roots are the roots
of F .

That G is triangular: We claim that each iteration of the outer loop terminates with G in
i -subtriangular form; by this we mean that

• the list (g1, . . . , gi ) is in triangular form; and
• for each j = 1, . . . , i if g j 6= 0 then the coefficient of lv

Ä

g j
ä

in gi+1, . . . , gm is 0.
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Algorithm 7. Gaussian elimination
1: inputs
2: F = ( f1, f2, . . . , fm), a list of linear polynomials in n variables, with coefficients from a field

F.
3: outputs
4: G = (g1, g2, . . . , gm), a list of linear polynomials in n variables, in triangular form, whose

roots are precisely the roots of F .
5: do
6: Let G := F
7: for i = 1,2, . . . , m�1
8: Rearrange gi , gi+1, . . . , gm so that for each k < `, g` = 0, or lv (gk)� lv (g`)
9: if gi 6= 0

10: Denote the coefficient of lv (gi ) by a
11: for j = i + 1, i + 2, . . . m
12: if lv

Ä

g j
ä

= lv (gi )

13: Denote the coefficient of lv
Ä

g j
ä

by b
14: Replace g j with a g j � b gi
15: return G

Note that G is in triangular form if and only if G is in i -subtriangular form for all i = 1,2, . . . , m.
This is fairly straightforward, since line 8 ensures that all the zero polynomials occur at the end
of the list, as well as lv (gi )> lv

Ä

gi+ j
ä

for any j � 1.
Showing that G is equivalent to F is only a little harder. The combinations of F that produce

G are all linear; that is, for each j = 1, . . . , m there exist ci , j 2 F such that

g j = c1, j f1 + c2, j f2 + · · ·+ am, j fm .

Hence if (↵1, . . . ,↵n) 2 Fn is a common root of F , it is also a common root of G. For the
converse, observe from the algorithm that there exists some i such that fi = g1; then there exists
some j 2 {1, . . . , m}\{i} and some a, b 2 F such that f j = a g1� b g2; and so forth. Hence the
elements of F are also a linear combination of the elements of G, and a similar argument shows
that the common roots of G are common roots of F .

Remark 11.8. There are other ways to define both triangular form and Gaussian elimination.
Our method is perhaps stricter than necessary, but we have chosen this definition first to keep
matters relatively simple, and second to assist us in the development of Gröbner bases.

Example 11.9. We use Algorithm 7 to illustrate Gaussian elimination for the system of equations
described in Example 11.2.

• We start with the input,

F = ( 5x1 + x2 + 7x5 + 8, x3 + 11x4 + 2x5 + 12, 3x1 + 7x2 + 8x3 + 11 ) .
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• Line 6 tells us to set G = F , so now

G = ( 5x1 + x2 + 7x5 + 8, x3 + 11x4 + 2x5 + 12, 3x1 + 7x2 + 8x3 + 11 ) .

• We now enter an outer loop:
� In the first iteration, i = 1.
� We rearrange G, obtaining

G = ( 5x1 + x2 + 7x5 + 8, 3x1 + 7x2 + 8x3 + 11, x3 + 11x4 + 2x5 + 12 ) .

� Since gi 6= 0, Line 10 tells us to denote a as the coefficient of lv (gi ), so a = 5.
� We now enter an inner loop:

? In the first iteration, j = 2.
? Since lv

Ä

g j
ä

= lv (gi ), denote b as the coefficient of lv
Ä

g j
ä

; since lv
Ä

g j
ä

=
x1, b = 3.

? Replace g j with

a g j � b gi = 5 (3x1 + 7x2 + 8x3 + 11)
�3 (5x1 + x2 + 7x5 + 8)

= 32x2 + 40x3�21x5 + 31.

Recall that the field is Z13, so we can rewrite this as

6x2 + x3 + 5x5 + 5.

We now have

G = ( 5x1 + x2 + 7x5 + 8, 6x2 + x3 + 5x5 + 5, x3 + 11x4 + 2x5 + 12 ) .

� We continue with the inner loop:
? In the second iteration, j = 3.
? Since lv

Ä

g j
ä

6= lv (gi ), we do not proceed further.
� Now j = 3 = m, and the inner loop is finished.

• We continue with the outer loop:
� In the second iteration, i = 2.
� We do not rearrange G, as it is already in the form indicated. (In fact, it is in triangular

form already, but the algorithm does not “know” this yet.)
� Since gi 6= 0, Line 10 tells us to denote a as the coefficient of lv (gi ); since lv (gi ) = x2,

a = 6.
� We now enter an inner loop:

? In the first iteration, j = 2.
? Since lv

Ä

g j
ä

6= lv (gi ), we do not proceed with this iteration.
� Now j = 3 = m, and the inner loop is finished.

• Now i = 2 = m�1, and the outer loop is finished.
• We return G, which is in triangular form!

Once we have the triangular form of a linear system, it is easy to answer the five natural questions.
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Theorem 11.10. Let G = (g1, g2, . . . , gm) is a list of nonzero linear poly-
nomials in n variables over a field F. If G is in triangular form, then each
of the following holds.
(A) G has common solutions if and only if none of the gi is a constant.
(B) G has finitely many common solutions if and only if G has a solu-

tion and m = n. In this case, there is exactly one solution.
(C) G has common solutions of dimension d if and only if G has a

solution and d = n�m.

A proof of Theorem 11.10 can be found in any textbook on linear algebra, although probably
not in one place.

Example 11.11. Continuing with the system that we have used in this section, we found that a
triangular form of

F = ( 5x1 + x2 + 7x5 + 8, x3 + 11x4 + 2x5 + 12, 3x1 + 7x2 + 8x3 + 11 )

is
G = ( 5x1 + x2 + 7x5 + 8, 6x2 + x3 + 5x5 + 5, x3 + 11x4 + 2x5 + 12 ) .

Theorem 11.10 implies that
(A) G has a solution, because none of the gi is a constant.
(B) G has infinitely many solutions, because the number of polynomials (m = 3) is not the

same as the number of variables (n = 5).
(C) G has solutions of dimension d = n�m = 2.
Lexicographic order allows us to parametrize the solution set easily. Let s , t 2 Z13 be arbitrary,
and let x4 = s and x5 = t . Back-substituting in S, we have:
• From g3 = 0, x3 = 2s + 11t + 1.
• From g2 = 0,

6x2 = 12x3 + 8t + 8. (35)

The Euclidean algorithm helps us derive the multiplicative inverse of 6 in Z2; we get 11.
Multiplying both sides of (35) by 11, we have

x2 = 2x3 + 10t + 10.

Recall that we found x3 = 2s + 11t + 1, so

x2 = 2 (2s + 11t + 1)+ 10t + 10 = 4s + 6t + 12.

• From g1 = 0,
5x1 = 12x2 + 6x5 + 5.

Repeating the process that we carried out in the previous step, we find that

x1 = 7s + 9.
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We can verify this solution by substituting it into the original system:

f1 : 5 (7s + 9)+ (4s + 6t + 12)+ 7t + 8
= (9s + 6)+ 4s + 20
= 0

f2 : (2s + 11t + 1)+ 11s + 2t + 12
= 0

f3 : 3 (7s + 9)+ 7 (4s + 6t + 12)+ 8 (2s + 11t + 1)+ 11
= (8s + 1)+ (2s + 3t + 6)+ (3s + 10t + 8)+ 11
= 0.

Before proceeding to the next section, study the proof of Theorem 11.7 carefully. Think
about how we might relate these ideas to non-linear polynomials.

Exercises.

Exercise 11.12. A homogeneous linear system is one where none of the polynomials has a constant
term: that is, bi = 0 for i = 1, . . . , m. Explain why homogeneous systems always have at least
one solution.

Exercise 11.13. Find the triangular form of the following linear systems, and use it to find the
common solutions of the corresponding system of equations (if any).
(a) f1 = 3x + 2y� z�1, f2 = 8x + 3y�2z, and f3 = 2x + z�3; over the field Z7.
(b) f1 = 5a + b � c + 1, f2 = 3a + 2b �1, f3 = 2a� b � c + 1; over the same field.
(c) The same system as (a), over the field Q.

Exercise 11.14. In linear algebra you also used matrices to solve linear systems, by rewriting them
in echelon (or triangular) form. Do the same with system (a) of the previous exercise.

Exercise 11.15. Does Algorithm 7 also terminate correctly if the coefficients of F are not from a
field, but from an integral domain? If so, and if m = n, can we then solve the resulting triangular
system G for the roots of F as easily as if the coefficients were from a field? Why or why not?

11.2: Monomial orderings

Before looking at how we might analyze systems of nonlinear polynomial equations, we con-
sider the question of identifying the “most important” monomial in this more general setting.
With linear polynomials, it was relatively easy; we picked the variable with the smallest index.

But which monomial should be the leading monomial of x + y3� 4y? It seems clear enough
that y should not be the leading term, since it divides y3, and as such does not “lead” even if there
were no x’s to reckon with. With x and y3, however, things are less clear.

Recall from Section 7.3 the definition of M, the set of monomials over x1, x2, . . . , xn .
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Definition 11.16. Let t , u 2 M. The lexicographic ordering orders
t > u if
• degx1

t > degx1
u, or

• degx1
t = degx1

u and degx2
t > degx2

u, or
• . . .
• degxi

t = degxi
u for i = 1,2, . . . , n�1 and degxn

t > degxn
u.

Another way of saying this is that t > u iff there exists i such that
• degx j

t = degx j
u for all j = 1,2, . . . , i �1, and

• degxi
t > degxi

u.
The leading monomial of a non-zero polynomial p is any monomial t
such that t > u for all other terms u of p. The leading monomial of 0 is
left undefined.

Notation 11.17. We denote the leading monomial of a polynomial p as lm (p).

Example 11.18. Using the lexicographic ordering over x, y,

lm
Ä

x2 + y2�4
ä

= x2

lm (xy�1) = xy

lm
Ä

x + y3�4y
ä

= x.

Before proceeding, we should prove a few simple, but important, properties of the lexicographic
ordering.

Proposition 11.19. The lexicographic ordering on M

(A) is a linear ordering;
(B) is compatible with divisibility: for any t , u 2M, if t | u, then

t  u;
(C) is compatible with multiplication: for any t , u, v 2M, if t < u,

then for any monomial v over x, t v < uv;
(D) orders 1 t for any t 2M; and
(E) is a well ordering.

(Recall that we defined a monoid way back in Section 1.1, and used M as an example.)

Proof. For (A), suppose that t 6= u. Then there exists i such that degxi
t 6= degxi

u. Pick the
smallest i for which this is true; then degx j

t = degx j
u for j = 1,2, . . . , i � 1. If degxi

t < degxi
u,

then t < u; otherwise, degxi
t > degxi

u, so t > u.
For (B), we know that t | u iff degxi

t  degxi
u for all i = 1,2, . . . , m. Hence t  u.

For (C), assume that t < u. Let i be such that degx j
t = degx j

u for all j = 1,2, . . . , i � 1 and
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degxi
t < degxi

u. For any 8 j = 1,2, . . . , i �1, we have

degx j
(t v) = degx j

t +degx j
v

= degx j
u +degx j

v

= degx j
uv

and

degxi
(t v) = degxi

t +degxi
v

< degxi
u +degxi

v = degxi
uv.

Hence t v < uv.
(D) is a special case of (B).
For (E), let M ⇢M. We proceed by induction on the number of variables n.
For the inductive base, if n = 1 then the monomials are ordered according to the exponent on

x1, which is a natural number. Let E be the set of all exponents of the monomials in M ; then
E ⇢N. Recall that N is well-ordered. Hence E has a least element; call it e . By definition of E ,
e is the exponent of some monomial m of M . Since e  ↵ for any other exponent x↵ 2M , m is a
least element of M .

For the inductive hypothesis, assume that for all i < n, the set of monomials in i variables is
well-ordered.

For the inductive step, let N be the set of all monomials in n� 1 variables such that for each
t 2 N , there exists m 2 M such that m = t · xe

n for some e 2N. By the inductive hypothesis, N
has a least element; call it t . Let

P =
¶

t · xe
n : t · xe

n 2M 9e 2N
©

.

All the elements of P are equal in the first n�1 variables: their exponents are the exponents of t .
Let E be the set of all exponents of xn for any monomial u 2 P . As before, E ⇢N. Hence E has
a least element; call it e . By definition of E , there exists u 2 P such that u = t · xe

n ; since e  ↵
for all ↵ 2 E , u is a least element of P .

Finally, let v 2M . Since t is minimal in N , either there exists i such that

degx j
u = degx j

t = degx j
v 8 j = 1, . . . , i �1

and
degxi

u = degxi
t < degxi

v,

or
degx j

u = degx j
t = degx j

v 8 j = 1,2, . . . , n�1

In the first case, u < v by definition. Otherwise, since e is minimal in E ,

degxn
u = e  degxn

v,

in which case u  v. Hence u is a least element of M .
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Since M is arbitrary in M, every subset of M has a least element. Hence M is well-ordered.

Before we start looking for a triangular form of non-linear systems, let’s observe one more
thing.

Proposition 11.20. Let p be a polynomial in the variables x =
(x1, x2, . . . , xn). If lm (p) = x↵i , then every other monomial u of p has
the form

u =
n

Y

j=i
x
� j
j

where �i < ↵.

Proof. Assume that lm (p) = x↵i . Let u be any monomial of p. Write

u =
n

Y

j=1
x
� j
j

for appropriate � j 2N. Since u < lm (p), the definition of the lexicographic ordering implies
that

degx j
u = degx j

lm (p) = degx j
x↵i 8 j = 1,2, . . . , i �1

and
degxi

u < degxi
t .

Hence u has the form claimed.

We now identify and generalize the properties of Proposition 11.19 to a generic ordering on
monomials.

Definition 11.21. An admissible ordering < on M is a linear ordering
which is compatible with divisibility and multiplication.

By definition, properties (A) and (B) of Proposition 11.19 hold for an admissible ordering. What
of the others?

Proposition 11.22. The following properties of an admissible ordering
all hold.
(A) 1 t for all t 2M.
(B) The set M of all monomials over x = (x1, x2, . . . , xn) is well-

ordered by any admissible ordering. That is, every subset M of
M has a least element.

Proof. Let < be any admissible ordering.
For (A), you do it! See Exercise 11.32.
For (B), let t , u 2 M. By (A), we know that 1  u. By the ordering’s compatibility with

multiplication, we know that t ·1 t · u, or t  t u, satisfying compatibility with divisibility.
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For (C), let M ✓M and let A be the smallest absorbing subset of M that contains M (you
might want to refamiliarize yourself with absorbing subsets, which we studied in Section 1.4).
Dickson’s Lemma (Theorem on page 60) tells us that A has a finite generating set; call it T . In
fact, T ✓ M , as the definition of absorption means that every element of A is divisible by an
element of M . There are only finitely many elements of T , so the linear ordering property of <
implies that that we can identify a smallest element, t . Let u 2M ; by definition, u 2A, so we can
find v 2 T such that v divides u. Since t  v, we use compatibility with divisibility to see that
t  v  u. We chose u as an arbitrary element of M , so t is minimal in M . We chose M as an
arbitrary subset of M, so M is well-ordered by <.

We can now introduce an ordering that you haven’t seen before.

Definition 11.23. For a monomial t , the total degree of t is the sum of
the exponents, denoted tdeg (t ). For two monomials t , u, a total-degree
ordering orders t < u whenever tdeg (t )< tdeg (u).

Example 11.24. The total degree of x3y2 is 5, and x3y2 < xy5.

A simple total degree ordering is not itself admissible, because not it is not linear.

Example 11.25. We cannot order x3y2 and x2y3 by total degree alone, because tdeg
�

x3y2� =
tdeg

�

x2y3� but x3y2 6= x2y3.

When there is a tie in the total degree, we need to fall back on another method. An interesting
way of doing this is the following.

Definition 11.26. For two monomials t , u the graded reverse lexico-
graphic ordering, or grevlex, orders t < u whenever
• tdeg (t )< tdeg (u), or
• tdeg (t ) = tdeg (u) and there exists i 2 {1, . . . , n} such that for all

j = i + 1, . . . , n
� degx j

t = degx j
u, and

� degxi
t > degxi

u.

Notice that to break a total-degree tie, grevlex reverses the lexicographic ordering in a double way:
it searches backwards for the smallest degree, and designates the winner as the larger monomial.

Example 11.27. Under grevlex, x3y2 > x2y3 because the total degrees are the same and y2 < y3.

Theorem 11.28. The graded reverse lexicographic ordering is an admis-
sible ordering.

Proof. Let t , u 2M.
Linear ordering? Assume t 6= u; by definition, there exists i 2N+ such that degxi

t 6= degxi
u.

Choose the largest such i , so that degx j
t = degx j

u for all j = i + 1, . . . , n. Then t < u if
degxi

t < degxi
u; otherwise u < t .

Compatible with divisibility? Assume t | u. By definition, degxi
t  degxi

u for all i = 1, . . . , n.
If t = u, then we’re done. Otherwise, t 6= u. If tdeg (t )> tdeg (u), then the fact that the degrees
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are all natural numbers implies (see Exercise ) that for some i = 1, . . . , n we have degxi
t > degxi

u,
contradicting the hypothesis that t | u! Hence tdeg (t ) = tdeg (u). Since t 6= u, there exists
i 2 {1, . . . , n} such that degxi

t 6= degxi
u. Choose the largest such i , so that degx j

t = degx j
u for

j = i + 1, . . . , n. Since t | u, degxi
t < degxi

u, and degx j
t  degx j

u. Hence

tdeg (t ) =
i�1
X

j=1
degx j

t +degxi
t +

n
X

j=i+1
degx j

t

=
i�1
X

j=1
degx j

t +degxi
t +

n
X

j=i+1
degx j

u


i�1
X

j=1
degx j

u +degxi
t +

n
X

j=i+1
degx j

u

<
i�1
X

j=1
degx j

u +degxi
u +

n
X

j=i+1
degx j

u

= tdeg (u) .

Hence t < u.
Compatible with multiplication? Assume t < u, and let v 2 M. By definition, tdeg (t ) <

tdeg (u) or there exists i 2 {1,2, . . . , n} such that degxi
t > degxi

u and degx j
t = degx j

u for all
j = i + 1, . . . , n. In the first case, you will show in the exercises that

tdeg (t v) = tdeg (t )+ tdeg (v)
< tdeg (u)+ tdeg (v) = tdeg (uv) .

In the second,

degxi
t v = degxi

t +degxi
v > degxi

u +degxi
v = degxi

uv

while
degx j

t v = degx j
t +degx j

v = degx j
u +degx j

v = degx j
uv.

In either case, t v < uv as needed.

A useful tool when dealing with monomial orderings is a monomial diagram. These are most
useful for monomials in a bivariate polynomial ring F [x, y ], but we can often imagine important
aspects of these diagrams in multivariate rings, as well. We discuss the bivariate case here.

Definition 11.29. Let t 2M. Define the exponent vector (↵1, . . . ,↵n) 2
Nn where ↵i = degxi

t .

Let t 2 F [x, y ] be a monomial, and (↵,�) its exponent vector. That is,

t = x↵y�.

We can consider (↵,�) as a point in the x-y plane. If we do this with all the monomials of
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M ⇢ F [x, y ], and we obtain the following diagram:

This diagram is not especially useful, aside from pointing out that the monomial x2 is the third
point on the left in the bottom row, and the monomial 1 is the point in the lower left corner.
What does make diagrams like this useful is the fact that if t | u, then the point corresponding to
u lies above and/or to the right of the point corresponding to t , but never below or to the left
of it. We often shade the points corresponding monomials divisible by a given monomial; for
example, the points corresponding to monomials divisible by xy2 lie within the shaded region of
the following diagram:

As we will see later, diagrams such as the one above can come in handy when visualizing certain
features of an ideal.

What interests us most for now is that we can sketch vectors on a monomial diagram that
show the ordering of the monomials.

Example 11.30. We sketch monomial diagrams that show how lex and grevlex order M. We
already know that the smallest monomial is 1. The next smallest will always be y.

For the lex order, ya < x for every choice of a 2 N, no matter how large. Hence the next
largest monomial is y2, followed by y3, etc. Once we have marked every power of y, the next
largest monomial is x, followed by xy, by xy2, etc., for xya < x2 for all a 2N. Continuing in
this fashion, we have the following diagram:
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With the grevlex order, by contrast, the next largest monomial after y is x, since tdeg (x) <
tdeg

�

y2�. After x come y2, xy, and x2, in that order, followed by the degree-three monomials
y2, xy2, x2y, and x3, again in that order. This leads to the following monomial diagram:

These diagrams illustrate an important and useful fact.

Theorem 11.31. Let t 2M.
(A) In the lexicographic order, there are infinitely many monomials

smaller than t if and only if t is not a power of xn alone.
(B) In the grevlex order, there are finitely many monomials smaller

than t .

Proof. You do it! See Exercise 11.36.

Exercises.

Exercise 11.32. Show that for any admissible ordering and any t 2M, 1 t .

Exercise 11.33. The graded lexicographic order, which we will denote by gralex, orders t < u
if
• tdeg (t )< tdeg (u), or
• tdeg (t ) = tdeg (u) and the lexicographic ordering would place t < u.

(a) Order x2y, xy2, and z5 by gralex.
(b) Show that gralex is an admissible order.
(d) Sketch a monomial diagram that shows how gralex orders M.
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Exercise 11.34. Define ⇡i as the map from M to itself that “projects” a monomial in n variables
to a monomial in i variables. For example,

⇡3

Ä

x5
1 x4

2 x4x2
5

ä

= x5
1 x4

2 .

We can think of⇡i as “chopping” variables xi+1, xi+2, . . . , xn off the monomial. More formally,
if 0< i  n, then

⇡i : Mm!Mi by ⇡i
Ä

xa1
1 · · · xan

n

ä

= xa1
1 · · · x

ai
i .

Show that the definition of the grevlex ordering is equivalent to the following:

Definition 11.35 (Alternate definition of grevlex). We say that t <
u if tdeg

Ä

⇡i (t )
ä

= tdeg
Ä

⇡i (u)
ä

for i = n, n � 1, . . . , k + 1 but
tdeg (⇡i (t ))< tdeg (⇡i (u)).

Exercise 11.36. Prove Theorem 11.31.

11.3: Matrix representations of monomial orderings

In fact, there are limitless ways to design an admissible ordering.

Example 11.37. Consider the matrix

M =

0

B

B

B

B

B

@

1 1 · · · 1 1
�1

�1
· · ·

�1

1

C

C

C

C

C

A

where the empty entries are zeroes. We claim that M represents the grevlex ordering, and
weighted vectors computed with M can be read from top to bottom, where the first entry that
does not tie determines the larger monomial.

Why? The top row of M adds all the elements of the exponent vector, so the top entry of the
weighted vector is the total degree of the monomial. If the two monomials have different total
degrees, the top entry of the weighted vector determines the larger monomial. In case they have
the same total degree, the second entry of M t contains �degxn

t , so if they have different degree
in the smallest variable, the second entry determines the larger monomial. And so forth.

The monomials t = x3y2, u = x2y3, and v = xy5 have exponent vectors t = (3,2), u =
(2,3), and v = (1,5), respectively. We have

M t =
✓

5
�2

◆

, Mu =

✓

5
�3

◆

, Mv =

✓

6
�5

◆

,

from which we conclude that v > t > u.
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Definition 11.38. Let M 2 Rn⇥n . If t 2Nn , the weight of t is w (t) =
M t. Similarly, if t 2Mn , the weight of t is the weight of its exponent
vector.

Not all matrices can represent admissible orderings.

Theorem 11.39. Let M 2 Rm⇥m . M represents a admissible ordering
if and only if its rows are linearly independent over Z and the topmost
nonzero entry in each column is positive.

To prove the theorem, we need the following lemma.

Lemma 11.40. If M satisfies the criteria of Theorem 11.39, then there
exists a matrix N that satisfies (B), whose entries are all nonnegative, and
for all t 2 Zn comparison from top to bottom implies that N t > Nu if
and only if M t>Mu.

Example 11.41. In Example 11.37, we saw that grevlex could be represented by

M =

0

B

B

B

B

B

@

1 1 · · · 1 1
�1

�1
· · ·

�1

1

C

C

C

C

C

A

.

However, it can also be represented by

N =

0

B

B

B

B

B

@

1 1 1 · · · 1
1 1 · · · 1
· · ·

1 1
1

1

C

C

C

C

C

A

where the empty entries are, again, zeroes. Notice that the first row operates exactly the same,
while the second row adds all the entries except the last. If tn < yn then from t1 + · · ·+ tn =
u1 + · · ·+ un we infer that t1 + · · ·+ tn�1 > u1 + · · ·+ un�1, so the second row of N t and Nu
would break the tie in exactly the same way as the second row of M t and Mu. And so forth.

Remark 11.42.
1. We can obtain N by adding row 1 of M to row 2 of M , then adding the modified row 2 of

M to the modified row 3, and so forth. This is the essence of the proof of Lemma 11.40.
2. While M corresponds to our original definition of grevlex ordering, N corresponds to the

definition given in Exercise 11.34

Proof of Lemma 11.40. Let M 2 Rn⇥n satisfy the criteria of Theorem 11.39. Construct N by
building matrices M0, M1, . . . in the following way.

Let M1 = M . Suppose that M1, M2, . . . , Mi�1 all have nonnegative entries in rows 1, 2, . . . ,
i�1 but M has a negative entry ↵ in row i , column j . By hypothesis, the topmost nonzero entry
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� of column j in Mi�1 is positive; say it is in row k. Use the Archimedean property of R to
find K 2N+ such that K� � |↵|, and add K times row k of Mi�1 to row j . The entry in row i
and column j of Mi is now nonnegative. If there were other negative values in row i of Mi , the
fact that row k of Mi�1 contained nonnegative entries implies that the absolute values of these
negative entries are no larger than before. There is a finite number of entries in each row, and a
finite number of rows in M , so this process terminates after finitely many additions with a matrix
N whose entries are all nonnegative.

In addition, we can write the i th row N(i) of N as

N(i) = K1M(1) +K2M(2) + · · ·+Ki M(i)

where M(k) indicates the kth row of M . For any t 2M, the i th entry of N t is therefore

N(i)t =
Ä

K1M(1) +K2M(2) + · · ·+Ki M(i)

ä

t

= K1

Ä

M(1)t
ä

+K2

Ä

M(2)t
ä

+ · · ·+Ki
Ä

M(i)t
ä

.

We see that if M(1)t = · · · = M(i�1)t = 0 and M(i)t = ↵ 6= 0, then N(1)t = · · · = N(i�1)t = 0 and
N(i)t = Ki↵ 6= 0. Hence N t>Nu if and only if N(i)t>N(i)u if and only if Ki↵> Ki

Ä

M(i)u
ä

if
and only if M t>Mu.

Now we can prove Theorem 11.39.

Proof of Theorem 11.39. That (A) implies (B): Assume that M represents an admissible ordering.
The monomial 1 has the exponent vector t = (0, . . . , 0), while the monomial xi has the expo-

nent vector u with zeroes everywhere except in the i th position. The product M t > Mu if the
i th element of the top row of M is negative, but this contradicts Proposition 11.22(A).

In addition, property of Definition 11.21 implies that no pair of distinct monomials can pro-
duce the same weighted vector. Hence the rows of M are linearly independent over Z.

That (B) implies (A): Assume that M satisfies the criteria of the theorem. We need to show that
the properties of an admissible order (Definition 11.21) are satisfied.

Linear ordering? Since the rows of M are linearly independent over Z, every pair of monomi-
als t and u produces a pair of distinct weighted vectors M t and Mu if and only if t 6= u. Reading
these vectors from top to bottom allows us to decide whether t > u, t < u, or t = u.

Compatible with divisibility? This follows from linear algebra. Let t , u 2M, and assume that
t | u. Then degxi

t  degxi
u for all i = 1,2, . . . , n. In the exponent vectors t and u, ti  ui for

each i . Let v 2Nn such that u = t+v; then

Mu = M (t+v) = M t+Mv.

From Lemma 11.40 we can assume that the entries of M are all nonnegative. Thus the entries of
Mu, M t, and Mv are also nonnegative. Thus the topmost nonzero entry of Mv is positive, and
Mu>M t.

Compatible with multiplication? This is similar to compatibility with divisibility, so we omit
it.

In the Exercises you will find other matrices that represent term orderings, some of them
somewhat exotic.
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Exercises

Exercise 11.43. Find a matrix that represents (a) the lexicographic term ordering, and (b) the
gralex ordering.

Exercise 11.44. Explain why the matrix

M =

0

B

B

B

B

B

B

B

B

B

B

B

@

1 1
1 1 1
1 1 1 1
�1

1 1 1 1
1 1 1

1 1
�1

1

C

C

C

C

C

C

C

C

C

C

C

A

represents an admissible ordering. Use M to order the monomials

x1x2
3 x4x6, x1x8

4 x7, x2x2
3 x4x6, x8, , x2

8 , x7x8.

Exercise 11.45. Suppose you know nothing about an admissible order < on F [x, y ] except that
x > y and x2 < y3. Find a matrix that represents this order.

11.4: The structure of a Gröbner basis

Throughout this section, assume an admissible ordering of monomials.
When we consider the non-linear case, things become a little more complicated. Consider the

following system of equations:

x2 + y2 = 4
xy = 1.

We can visualize the real solutions to this system; see Figure 11.1 on the following page. The com-
mon solutions occur wherever the circle and the hyperbola intersect. We see four intersections
in the real plane; one of them is highlighted with a dot.

However, we don’t know if complex solutions exist. In addition, plotting equations involving
more than two variables is difficult, and more than three is effectively impossible. Finally, while
it’s relatively easy to solve the system given above, it isn’t a “triangular” system in the sense that
the last equation is only in one variable. So we can’t solve for one variable immediately and then
go backwards. We can solve for y in terms of x, but not for an exact value of y.

It gets worse! Although the system is triangular in a “linear” sense, it is not triangular in a
non-linear sense: we can multiply the two polynomials above by monomials and obtain a new
polynomial that isn’t obviously spanned by either of these two:

y
Ä

x2 + y2�4
ä

� x (xy�1) = x + y3�4y. (36)
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Figure 11.1. Plots of x2 + y2 = 4 and xy = 1

None of the terms of this new polynomial appears in either of the original polynomials. This
sort of thing does not happen in the linear case, largely because
• cancellation of variables can be resolved using scalar multiplication, hence in a vector space;

but
• cancellation of terms cannot be resolved without monomial multiplication, hence it requires

an ideal.
So we need to find a “triangular form” for non-linear systems.

Let’s rephrase this problem in the language of rings and ideals. The primary issue we would
like to resolve is the one that we observed immediately after computing the subtraction polyno-
mial of equation (36): we built a polynomial p whose leading term x was not divisible by the
leading term of either the hyperbola (xy) or the circle (x2). When we built p, we used operations
of the polynomial ring that allowed us to remain within the ideal generated by the hyperbola and
the circle. That is,

p = x + y3�4y = y
Ä

x2 + y2�4
ä

� x (xy�1) ;

by Theorem 8.7 ideals absorb multiplication and are closed under subtraction, so

p 2
¨

x2 + y2�4, xy�1
∂

.

So one problem appears to be that p is in the ideal, but its leading monomial is not divisible by
the leading monomials of the ideal’s basis. Let’s define a special kind of ideal basis that will not
give us this problem.

Definition 11.46. Let G be a basis of an ideal I . We call it a Gröbner
basis of I if for every p 2 I , we can find g 2G such that lm (g ) | lm (p).

It isn’t obvious at the moment how we can decide that any given basis forms a Gröbner basis,
because there are infinitely many polynomials that we’d have to check. However, we can certainly
determine that the list

Ä

x2 + y2�4, xy�1
ä

is not a Gröbner basis, because we found a polynomial in its ideal that violated the definition of a
Gröbner basis: x + y3�4y.
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How did we find that polynomial? We built a subtraction polynomial that was calculated in
such a way as to “raise” the polynomials to the lowest level where their leading monomials would
cancel! Let t , u be monomials in the variables x = (x1, x2, . . . , xn). Write t = x↵1

1 x↵2
2 · · · x

↵n
n and

u = x�1
1 x�2

2 · · · x
�n
n . Any common multiple of t and u must have the form

v = x�11 x�22 · · · x�n
n

where �i � ↵i and �i ��i for each i = 1,2, . . . , n. We can thus identify a least common multiple

lcm (t , u) = x�11 x�22 · · · x�n
n

where �i = max (↵i ,�i ) for each i = 1,2, . . . , n. It really is the least because no common multiple
can have a smaller degree in any of the variables, and so it is smallest by the definition of the
lexicographic ordering.

Lemma 11.47. For any two polynomials p, q 2 F [x1, x2, . . . , xn ], with
lm (p) = t and lm (q) = u, we can build a polynomial in the ideal of p
and q that would raise the leading terms to the smallest level where they
would cancel by computing

S = lc (q) · lcm (t , u)
t
· p � lc (p) · lcm (t , u)

u
· q .

Moreover, for all other monomials ⌧,µ and a, b 2 F, if a⌧ p� bµq can-
cels the leading terms of ⌧ p and µq , then it is a multiple of S.

Proof. First we show that the leading monomials of the two polynomials in the subtraction
cancel. By Proposition 11.19,

lm
Ç

lcm (t , u)
t
· p

å

=
lcm (t , u)

t
· lm (p)

=
lcm (t , u)

t
· t = lcm (t , u) ;

likewise

lm
Ç

lcm (t , u)
u
· q
å

=
lcm (t , u)

u
· lm (q)

=
lcm (t , u)

u
· u = lcm (t , u) .

Thus

lc
Ç

lc (q) · lcm (t , u)
t
· p

å

= lc (q) · lc (p)

and

lc
Ç

lc (p) · lcm (t , u)
t
· q
å

= lc (p) · lc (q) .
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Hence the leading monomials of the two polynomials in S cancel.
Let ⌧,µ be monomials over x = (x1, x2, . . . , xn) and a, b 2 F such that the leading monomials

of the two polynomials in a⌧ p� bµq cancel. Let ⌧ = x↵1
1 · · · x

↵n
n and µ= x�1

1 · · · x
�n
n for appro-

priate ↵i and�i in N. Write lm (p) = x⇣11 · · · x
⇣n
n and lm (q) = x!1

1 · · · x
!n
n for appropriate ⇣i and

!i in N. The leading monomials of a⌧ p� bµq cancel, so for each i = 1,2, . . . , n

↵i + ⇣i =�i +!i .

We have
↵i =�i +(!i � ⇣i ) .

Rewrite this as

↵i � (max (⇣i ,!i )� ⇣i ) = [(�i +(!i � ⇣i ))� (max (⇣i ,!i )� ⇣i )]
=�i � (max (⇣i ,!i )�!i ) .

Let ⌘i = ↵i � (max (⇣i ,!i )� ⇣i ) and let

v =
n

Y

i=1
x⌘i

i .

Then

a⌧ p� bµq = v
Ç

a · lcm (t , u)
t
· p� b · lcm (t , u)

u
· q
å

,

as claimed.

The subtraction polynomial of Lemma 11.47 is important enough that we give it a special name.

Definition 11.48. Let p, q 2 F [x1, x2, . . . , xn ]. We define the S-poly-
nomial of p and q to be

Spol (p, q) = lc (q) · lcm (lm (p) , lm (q))
lm (p)

· p

� lc (p) · lcm (lm (p) , lm (q))
lm (q)

· q .

Hopefully, you see that S-poly-nomials generalize the cancellation of Gaussian elimination in a
natural way.

For some S-polynomials, only one of the leading terms needs to change. This merits its own
terminology.
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Definition 11.49. Let p, q 2 F [x1, x2, . . . , xn ]. If lm (p) divides lm (q),
then we say that p top-reduces q .

If p top-reduces q , let r = Spol (p, q). We say that p top-reduces q
to r .

Finally, let F = ( f1, f2, . . . , fm) be a list of polynomials in
F [x1, x2, . . . , xn ], and r1, r2, . . . , rk 2 F [x1, x2, . . . , xn ] such that
• some polynomial of F top-reduces p to r1,
• some polynomial of F top-reduces r1 to r2,
• . . .
• some polynomial of F top-reduces rk�1 to rk .

In this case, we say that p top-reduces to rk with respect to F .

Example 11.50. Let p = x + 1 and q = x2 + 1. We have lm (p) = x and lm (q) = x2. Since
lm (p) divides lm (q), p top-reduces q . Their S-polynomial is

r = q� x · p =�x + 1,

so q top-reduces to r with respect to {p}.
We need the following properties of polynomial operations.

Proposition 11.51. Let p, q , r 2 F [x1, x2, . . . , xn ]. Each of the following
holds:
(A) lm (pq) = lm (p) · lm (q)
(B) lm (p± q)max (lm (p) , lm (q))
(C) lm (Spol (p, q))< lcm (lm (p) , lm (q))
(D) If p top-reduces q to r , then lm (r )< lm (q).

Proof. For convenience, write t = lm (p) and u = lm (q).
(A) Any monomial of pq can be written as the product of two monomials vw, where v is

a monomial of p and w is a monomial of q . If v 6= lm (p), then the definition of a leading
monomial implies that v < t . Proposition 11.19 implies that

vw  t w,

with equality only if v = t . The same reasoning implies that

vw  t w  t u,

with equality only if w = u. Hence

lm (pq) = t u = lm (p) lm (q) .

(B) Any monomial of p± q is a monomial of p or of q . Hence lm (p± q) is a monomial of p
or of q . The maximum of these is max (lm (p) , lm (q)). Hence lm (p± q)max (lm (p) , lm (q)).

(C) Definition 11.48 and (B) imply lm (Spol (p, q))< lcm (lm (p) , lm (q)).
(D) By definition, top-reduction is a kind of S-polynomial, so this follows from (C).
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In a triangular linear system, we achieve a triangular form by rewriting all polynomials that
share a leading variable. In the linear case we can accomplish this using scalar multiplication,
requiring nothing else. In the non-linear case, we need to check for divisibility of monomials.
The following result should, therefore, not surprise you very much.

Theorem 11.52 (Buchberger’s characterization). Let G =
{g1, g2, . . . , gm} ( F [x1, x2, . . . , xn ]. It is a Gröbner basis of the
ideal I = hg1, g2, . . . , gmi if and only if Spol

Ä

gi , g j
ä

top-reduces to zero
with respect to G for each pair i , j with 1 i < j  m.

Example 11.53. Recall two systems considered at the beginning of this chapter,

F =
Ä

x2 + y2�4, xy�1
ä

and
G =

Ä

x2 + y2�4, xy�1, x + y3�4y,�y4 + 4y2�1
ä

.

Is either of these a Gröbner basis?
• We already showed that F is not, as its one S-polynomial is

S = Spol ( f1, f2)
= y

Ä

x2 + y2�4
ä

� x (xy�1)

= x + y3�4y,

and lm (S) = x, which neither leading term of F divides.
• On the other hand, G is a Gröbner basis. We will not show all six S-polynomials (you will

verify this in Exercise 11.56), but

Spol (g1, g2)� g3 = 0,

so the problem with F does not reappear. It is worth noting that

Spol (g1, g4)�
Ä

4y2�1
ä

g1 +
Ä

y2�4
ä

g4 = 0.

If we rewrite Spol (g1, g4) = y4 g1 + x2 g4 and substitute it into the above equation, some-
thing very interesting turns up:

Ä

y4 g1 + x2 g4

ä

�
Ä

4y2�1
ä

g1 +
Ä

y2�4
ä

g4 = 0

�
Ä

�y4 + 4y2�1
ä

g1 +
Ä

x2 + y2�4
ä

g4 = 0

�g4 g1 + g1 g4 = 0.

Remark 11.54. Buchberger’s characterization suggests a method to compute a Gröbner basis of
an ideal: given a basis, use S-polynomials to find elements of the ideal that do not satisfy Defini-
tion 11.46. Add these to the basis, repeating until all of them reduce to zero.

This approach has two wrinkles we have to iron out:
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• We don’t know that a Gröbner basis exists for every ideal. For all we know, there may be
ideals for which no Gröbner basis exists.
• We don’t know that the proposed method will even terminate! It could be that we can go

on forever, adding new polynomials to the ideal without ever stopping.
We resolve these questions in the following section.

It remains to prove Theorem 11.52, but before we can do that we will need the following useful
lemma. While small, it has important repercussions later.

Lemma 11.55. Let p, f1, f2, . . . , fm 2 F [x1, x2, . . . , xn ]. Let F =
( f1, f2, . . . , fm). If p top-reduces to zero with respect to F , then there exist
q1, q2, . . . , qm 2 F [x1, x2, . . . , xn ] such that each of the following holds:
(A) p = q1 f1 + q2 f2 + · · ·+ qm fm ; and
(B) for each k = 1,2, . . . , m, qk = 0 or lm (qk) lm (gk) lm (p).

Proof. You do it! See Exercise 11.62.

You will see in the following that Lemma 11.55 allows us to replace polynomials that are “too
large” with smaller polynomials. This allows us to obtain the desired form.

Proof of Theorem 11.52. Assume first that G is a Gröbner basis, and let i , j be such that 1 i <
j  m. Then

Spol
Ä

gi , g j
ä

2
¨

gi , g j
∂

⇢ hg1, g2, . . . , gmi ,
and the definition of a Gröbner basis implies that there exists k1 2 {1,2, . . . , m} such that gk1

top-
reduces Spol

Ä

gi , g j
ä

to a new polynomial, say r1. The definition further implies that if r1 is not
zero, then there exists k2 2 {1,2, . . . , m} such that gk2

top-reduces r1 to a new polynomial, say r2.
Repeating this iteratively, we obtain a chain of polynomials r1, r2, . . . such that r` top-reduces to
r`+1 for each ` 2N. From Proposition 11.51, we see that

lm (r1)> lm (r2)> · · · .

Recall that the monomials are well-ordered under an admissible ordering, so any set of monomials
has a least element, including the set R = {lm (r1) , lm (r2) , . . .}. Thus the chain of top-reductions
cannot continue indefinitely. It cannot conclude with a non-zero polynomial rlast, since:

• top-reduction keeps each r` in the ideal:

� subtraction by the subring property, and
� multiplication by the absorption property; hence

• by the definition of a Gröbner basis, a non-zero rlast would be top-reducible by some ele-
ment of G.

The chain of top-reductions must conclude with zero, so Spol
Ä

gi , g j
ä

top-reduces to zero.
Now assume every S-polynomial top-reduces to zero modulo G. We want to show any ele-

ment of I is top-reducible by an element of G. So let p 2 I ; by definition, there exist polynomials
h1, . . . , hm 2 F [x1, x2, . . . , xn ] such that

p = h1 g1 + · · ·+ hm gm .
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For each i , write ti = lm (gi ) and ui = lm (hi ). Let T = maxi=1,2,...,m (ui ti ). We call T the
maximal term of the representation h1, h2, . . . , hm . If lm (p) = T , then we are done, since

lm (p) = T = uk tk = lm (hk) lm (gk) 9k 2 {1,2, . . . , m} .

Otherwise, there must be some cancellation among the leading monomials of each polynomial
in the sum on the right hand side. That is,

T = lm
Ä

h`1
g`1

ä

= lm
Ä

h`2
g`2

ä

= · · ·= lm
Ä

h`s
g`s

ä

for some `1,`2, . . . ,`s 2 {1,2, . . . , m}. From Lemma 11.47, we know that we can write the sum of
these leading terms as a sum of multiples of a S-polynomials of G. That is,

lc
Ä

h`1

ä

lm
Ä

h`1

ä

g`1
+ · · ·+ lc

Ä

h`s

ä

lm
Ä

h`s

ä

g`s
=

=
X

1a<bs
ca,b ua,b Spol

Ä

g`a
, g`b

ä

where for each a, b we have ca,b 2 F and ua,b 2M. Let

S =
X

1a<bs
ca,b ua,b Spol

Ä

g`a
, g`b

ä

.

Observe that
î

lm
Ä

h`1

ä

g`1
+ lm

Ä

h`2

ä

g`2
+ · · ·+ lm

Ä

h`s

ä

g`s

ó

� S = 0. (37)

By hypothesis, each S-polynomial of S top-reduces to zero. This fact, Lemma 11.55 and Proposi-
tion 11.51, implies that for each a, b we can find q (a,b )

�
2 F [x1, x2, . . . , xn ] such that

Spol
Ä

g`a
, g`b

ä

= q (a,b )
1 g1 + · · ·+ g (a,b )

m gm

and for each �= 1,2, . . . , m we have q (a,b )
�

= 0 or

lm
⇣

q (a,b )
�

⌘

lm (g�) lm
Ä

Spol
Ä

g`a
, g`b

ää

< lcm
Ä

lm
Ä

g`a

ä

, lm
Ä

g`b

ää

. (38)

Let Q1,Q2, . . . ,Qm 2 F [x1, x2, . . . , xn ] such that

Qk =

(

P

1a<bs ca,b ua,b q (a,b )
k

, k 2 {`1, . . . ,`s} ;
0, otherwise.

Then
S = Q1 g1 +Q2 g2 + · · ·+Qm gm .

In other words,
S� (Q1 g1 +Q2 g2 + · · ·+Qm gm) = 0.
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By equation (38) and Proposition 11.51, for each k = 1,2, . . . , m we have Qk = 0 or

lm (Qk) lm (gk) max
1a<bs

nh

ua,b lm
⇣

q (a,b )
k

⌘i

lm (gk)
o

= max
1a<bs

n

ua,b

h

lm
⇣

q (a,b )
k

⌘

lm (gk)
io

 max
1a<bs

¶

ua,b lm
Ä

Spol
Ä

g`a
, g`b

ää©

< ua,b lcm
Ä

lm
Ä

g`a

ä

, lm
Ä

g`b

ää

= T . (39)

By substitution,

p = (h1 g1 + h2 g2 + · · ·+ hm gm)�
0

B

@

S�
X

k2{`1,...,`s }
Qk gk

1

C

A

=

2

6

4

X

k 62{`1,...,`s }
hk gk +

X

k2{`1,...,`s }
(hk � lc (hk) lm (hk)) gk

3

7

5

+

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
2

6

4

X

k2{`1,...,`s }
lc (hk) lm (hk) gk � S

3

7

5

+
X

k2{`1,...,`s }
Qk gk .

Let Q1, . . . ,Qm 2 F [x1, . . . , xn ] such that

Qk (x) =

(

hk , k 62 {`1, . . . ,`s} ;
hk � lc (hk) lm (hk)+Qk , otherwise.

By substitution,

p =Q1 g1 + · · ·+Qm gm .

If k 62 {`1, . . . ,`s}, then the choice of T as the maximal term of the representation implies that

lm (Qk) lm (gk) = lm (hk) lm (gk)< T .

Otherwise, Proposition 11.51 and equation (39) imply that

lm (Qk) lm (gk)  max ((lm (hk � lc (hk) lm (hk)) , lm (Qk)) lm (gk))

< lm (hk) lm (gk)

= T .

What have we done? We have rewritten the original representation of p over the ideal, which
had maximal term T , with another representation, which has maximal term smaller than T .
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This was possible because all the S-polynomials reduced to zero; S-polynomials appeared because
T > lm (p), implying cancellation in the representation of p over the ideal. We can repeat this as
long as T > lm (p), generating a list of monomials

T1 > T2 > · · · .

The well-ordering of M implies that this cannot continue indefinitely! Hence there must be a
representation

p = H1 g1 + · · ·+Hm gm

such that for each k = 1,2, . . . , m Hk = 0 or lm (Hk) lm (gk)  lm (p). Both sides of the equa-
tion must simplify to the same polynomial, with the same leading variable, so at least one k
has lm (Hk) lm (gk) = lm (p); that is, lm (gk) | lm (p). Since p was arbitrary, G satisfies the
definition of a Gröbner basis.

Exercises.

Exercise 11.56. Show that

G =
Ä

x2 + y2�4, xy�1, x + y3�4y, �y4 + 4y2�1
ä

is a Gröbner basis with respect to the lexicographic ordering.

Exercise 11.57. Show that G of Exercise 11.56 is not a Gröbner basis with respect to the grevlex
ordering. The Gröbner basis property depends on the choice of term ordering!

Exercise 11.58. Show that any Gröbner basis G of an ideal I is a basis of the same ideal; that is,
any p 2 I can be written as p =

Pm
i=1 hi gi for appropriate hi 2 F [x1, . . . , xn ].

Exercise 11.59. Show that for any non-constant polynomial f , F = ( f , f + 1) is not a Gröbner
basis.

Exercise 11.60. Show that every list of monomials is a Gröbner basis.

Exercise 11.61. We call a basis G of an ideal a minimal basis if no monomial of any g1 2 G is
divisible by the leading monomial of any g2 2G.
(a) Suppose that a Gröbner basis G is not minimal. Show that we obtain a minimal basis by

repeatedly replacing each g 2G by g � t g 0 where t lm
�

g 0
�

is a monomial of g .
(b) Explain why the minimal basis obtained in part (a) is also a Gröbner basis of the same ideal.

Exercise 11.62. Let

p = 4x4�3x3�3x2y4 + 4x2y2�16x2 + 3xy3�3xy2 + 12x

and F =
�

x2 + y2�4, xy�1
�

.
(a) Show that p reduces to zero with respect to F .
(b) Show that there exist q1, q2 2 F [x, y ] such that p = q1 f1 + q2 f2.
(c) Generalize the argument of (b) to prove Lemma 11.55.
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Exercise 11.63. For G to be a Gröbner basis, Definition 11.46 requires that every polynomial in
the ideal generated by G be top-reducible by some element of G. If polynomials in the basis are
top-reducible by other polynomials in the basis, we call them redundant elements of the basis.
(a) The Gröbner basis of Exercise 11.56 has redundant elements. Find a subset Gmin of G that

contains no redundant elements, but is still a Gröbner basis.
(b) Describe the method you used to find Gmin.
(c) Explain why redundant polynomials are not required to satisfy Definition 11.46. That is,

if we know that G is a Gröbner basis, then we could remove redundant elements to obtain
a smaller list, Gmin, which is also a Gröbner basis of the same ideal.

11.5: Buchberger’s algorithm

Algorithm 7 on page 337 shows how to triangularize a linear system. Essentially, it looks
for parts of the system that are not triangular (equations with the same leading variable) then
adds a new polynomial (an S-polynomial!) to move it closer to the triangular form. The new
polynomial replaces one of the older polynomials in the pair.

For non-linear systems, we will try an approach that is similar, not but identical. We will look
for polynomials in the ideal that do not satisfy the Gröbner basis property, we will add a new
polynomial to repair this defect. We will not, however, replace the older polynomials, because
we may still need their leading monomials, and the S-polynomial may have a very different one.
Worse, removing this polynomial could even change the ideal!

Example 11.64. Let F =
�

xy + x z + z2, y z + z2�, and use grevlex with x > y > z. The S-
polynomial of f1 and f2 is

S = z
Ä

xy + x z + z2
ä

� x
Ä

y z + z2
ä

= z3.

Let G =
�

xy + x z + z2, z3�; that is, G is F with f2 replaced by S. It turns out that y z + z2 62 hGi.
If it were, then

y z + z2 = h1

Ä

xy + x z + z2
ä

+ h2 · z3.

Every term of the right hand side will be divisible either by x or by z2, but y z is divisible by
neither. Hence y z + z2 2 hGi.

We will have to adapt Algorithm 7 without replacing or discarding any polynomials. With
non-linear polynomials, Buchberger’s characterization (Theorem 11.52) suggests that we com-
pute the S-polynomials, and top-reduce them. If they all top-reduce to zero, then Buchberger’s
characterization implies that we have a Gröbner basis already, so there is nothing to do. Other-
wise, at least one S-polynomial does not top-reduce to zero, so we add its reduced form to the
basis and test the new S-polynomials as well. This suggests Algorithm 8.

Theorem 11.65. For any list of polynomials F over a field, Buchberger’s
algorithm terminates with a Gröbner basis of hF i.

Correctness isn’t hard if Buchberger’s algorithm terminates, because it discards nothing, adds
only polynomials that are already in hF i, and terminates only if all the S-polynomials of G top-
reduce to zero. The problem is termination, which relies on the Ascending Chain Condition.
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Algorithm 8. Buchberger’s algorithm to compute a Gröbner basis
1: inputs
2: F = ( f1, f2, . . . , fm), where each fi 2 F [x1, . . . , xn ].
3: <, an admissible ordering.
4: outputs
5: G, a Gröbner basis of hF i with respect to <.
6: do
7: Let G := F
8: Let P =

�

( f , g ) : 8 f , g 2G such that f 6= g
 

9: repeat while P 6= ;
10: Choose ( f , g ) 2 P
11: Remove ( f , g ) from P
12: Let S be the S-polynomial of f , g
13: Let r be the top-reduction of S with respect to G
14: if r 6= 0
15: Replace P by P [ {(h, r ) : h 2G}
16: Append r to G
17: return G

Proof. For termination, let F be a field, and F a list of polynomials over F. Designate

I0 = hlm (g1) , lm (g2) , . . . , lm (gm)i
I1 =

⌦

lm (g1) , lm (g2) , . . . , lm (gm) , lm
�

gm+1
�↵

I2 =
⌦

lm (g1) , . . . , lm (gm) , lm
�

gm+1
�

, lm
�

gm+2
�↵

...
Ii =

⌦

lm (g1) , . . . , lm
�

gm+i
�↵

where gm+i is the i th polynomial added to G by line 16 of Algorithm 8.
We claim that I0 ✓ I1 ✓ I2 ✓ · · · is a strictly ascending chain of ideals. After all, a polynomial

r is added to the basis only when it is non-zero (line 14); since it has not top-reduced to zero,
lm (r ) is not top-reducible by

Gi�1 =
�

g1, g2, . . . , gm+i�1
�

.

Thus for any p 2 Gi�1, lm (p) does not divide lm (r ). We further claim that this implies that
lm (r ) 62 Ii�1. By way of contradiction, suppose that it is. By Exercise 11.60 on page 360, any list
of monomials is a Gröbner basis; hence

T =
�

lm (g1) , lm (g2) , . . . , lm
�

gm+i�1
��

is a Gröbner basis, and by Definition 11.46 every polynomial in Ii�1 is top-reducible by T . Since
r is not top-reducible by T , lm (r ) 62 Ii�1.

Thus Ii�1 ( Ii , and I0 ✓ I1 ✓ I2 ✓ · · · is a strictly ascending chain of ideals in F [x1x2, . . . , xn ].
By Proposition 8.33 and Definition 8.31, there exists M 2N such that IM = IM+1 = · · · . This
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implies that the algorithm can add at most M �m polynomials to G; after having done so, any
remaining elements of P generate S-polynomials that top-reduce to zero! Line 11 removes each
pair (i , j ) from P , so P decreases after we have added these M �m polynomials. Eventually P
decreases to ;, and the algorithm terminates.

For correctness, we have to show two things: first, that G is a basis of the same ideal as F , and
second, that G satisfies the Gröbner basis property. For the first, observe that every polynomial
added to G is by construction an element of hF i, and we removed no elements from the basis, so
the ideal does not change. For the second, observe that the very construction of G ensures that
Buchberger’s characterization of a Gröbner basis is satisfied.

Exercises

Exercise 11.66. Using G of Exercise 11.56, compute a Gröbner basis with respect to the grevlex
ordering.

Exercise 11.67. Following up on Exercises 11.57 and 11.66, a simple diagram will help show that
it is usually “faster” to compute a Gröbner basis in any total degree ordering than it is in the
lexicographic ordering. We can diagram the monomials in x and y on the x-y plane by plotting
x↵y� at the point (↵,�).
(a) Shade the region of monomials that are smaller than x2y3 with respect to the lexicographic

ordering.
(b) Shade the region of monomials that are smaller than x2y3 with respect to the graded reverse

lexicographic ordering.
(c) Explain why the diagram implies that top-reduction of a polynomial with leading mono-

mial x2y3 will probably take less effort in grevlex than in the lexicographic ordering.

Exercise 11.68. However, it is not always faster to use the grevlex ordering. To see this, consider
the system

C4 = ( x1 + x2 + x3 + x4,
x1x2 + x2x3 + x3x4 + x4x1,
x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2,
x1x2x3x4�1 ) .

Compute the size of the Gröbner basis of C4 over the field Z2 with respect to grevlex ordering,
then with respect to lex ordering.

Exercise 11.69. Let g1, g2, . . . , gm 2 F [x1, x2, . . . , xn ]. We say that a non-linear polynomial is
homogeneous if every term is of the same total degree. For example, xy� 1 is not homogeneous,
but xy � h2 is. As you may have guessed, we can homogenize any polynomial by multiplying
every term by an appropriate power of a homogenizing variable h. When h = 1, we have the
original polynomial.

(a) Homogenize the following polynomials.
(i) x2 + y2�4
(ii) x3� y5 + 1
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(iii) x z + z3�4x5y� xy z2 + 3x
(b) Explain the relationship between solutions to a system of nonlinear polynomials G and

solutions to the system of homogenized polynomials H .
(c) With homogenized polynomials, we usually use a variant of the lexicographic ordering.

Although h comes first in the dictionary, we pretend that it comes last. So x > y h2 and
y > h10. Use this modified lexicographic ordering to determine the leading monomials of
your solutions for part (a).

(d) Does homogenization preserve leading monomials?

Exercise 11.70. Assume that the g1, g2, . . . , gm are homogeneous; in this case, we can build the
ordered Macaulay matrix of G of degree D in the following way.
• Each row of the matrix represents a monomial multiple of some gi . If gi is of degree d  D ,

then we compute all the monomial multiples of gi that have degree D .
• Each column represents a monomial. Column 1 corresponds to the largest monomial with

respect to the lexicographic ordering; column 2 corresponds to the next-largest polynomial;
etc.
• Each entry of the matrix is the coefficient of a monomial for a monomial multiple of some

gi .

(a) The homogenization of the circle and the hyperbola gives us the system

F =
Ä

x2 + y2�4h2, xy� h2
ä

.

Verify that its ordered Macaulay matrix of degree 3 is
0

B

B

B

B

B

B

B

B

B

@

x3 x2y xy2 y3 x2h xy h y2h x h2 y h2 h3

1 1 �4 x f1
1 1 �4 y f1

1 1 �4 h f1
1 �1 x f2

1 �1 y f2
1 �1 h f2

1

C

C

C

C

C

C

C

C

C

A

.

Show that if you triangularize this matrix without swapping columns, the row correspond-
ing to x f2 now contains coefficients that correspond to the homogenization of x + y3�4y.

(b) Compute the ordered Macaulay matrix of F of degree 4, then triangularize it. Be sure not
to swap columns, nor to destroy rows that provide new information. Show that
• the entries of at least one row correspond to the coefficients of a multiple of the

homogenization of x + y3�4y, and
• the entries of at least one other row are the coefficients of the homogenization of
±�y4�4y2 + 1

�

.
(c) Explain the relationship between triangularizing the ordered Macaulay matrix and Buch-

berger’s algorithm.
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Sage programs

The following programs can be used in Sage to help make the amount of computation in-
volved in the exercises less burdensome. Use
• M, mons = sylvester_matrix(F,d) to make an ordered Macaulay matrix of degree d for

the list of polynomials F ,
• N = triangularize_matrix(M) to triangularize M in a way that respects the monomial

order, and
• extract_polys(N,mons) to obtain the polynomials of N .

def make_monomials(xvars,d,p=0,order="lex"):
result = set([1])
for each in range(d):

new_result = set()
for each in result:

for x in xvars:
new_result.add(each*x)

result = new_result
result = list(result)
result.sort(lambda t,u: monomial_cmp(t,u))
n = sage.rings.integer.Integer(len(xvars))
return result

def monomial_cmp(t,u):
xvars = t.parent().gens()
for x in xvars:

if t.degree(x) != u.degree(x):
return u.degree(x) - t.degree(x)

return 0

def homogenize_all(polys):
for i in range(len(polys)):

if not polys[i].is_homogeneous():
polys[i] = polys[i].homogenize()

def sylvester_matrix(polys,D,order="lex"):
L = [ ]
homogenize_all(polys)
xvars = polys[0].parent().gens()
for p in polys:

d = D - p.degree()
R = polys[0].parent()
mons = make_monomials(R.gens(),d,order=order)
for t in mons:

L.append(t*p)
mons = make_monomials(R.gens(),D,order=order)
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mons_dict = {}
for each in range(len(mons)):

mons_dict.update({mons[each]:each})
M = matrix(len(L),len(mons))
for i in range(len(L)):

p = L[i]
pmons = p.monomials()
pcoeffs = p.coefficients()
for j in range(len(pmons)):

M[i,mons_dict[pmons[j]]] = pcoeffs[j]
return M, mons

def triangularize_matrix(M):
N = M.copy()
m = N.nrows()
n = N.ncols()
for i in range(m):

pivot = 0
while pivot < n and N[i,pivot] == 0:

pivot = pivot + 1
if pivot < n:

a = N[i,pivot]
for j in range(i+1,m):

if N[j,pivot] != 0:
b = N[j,pivot]
for k in range(pivot,n):

N[j,k] = a * N[j,k] - b * N [i,k]
return N

def extract_polys(M, mons):
L = [ ]
for i in range(M.nrows()):

p = 0 for j in range(M.ncols()):
if M[i,j] != 0:

p = p + M[i,j]*mons[j]
L.append(p)

return L
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11.6: Nullstellensatz

The German word Nullstellensatz means “Theorem (satz) on the locations (stellen) of zero
(null).” There are two different theorems; a weak Nullstellensatz, and a “not-so-weak” Nullstel-
lensatz. In this section, we consider only the weak version. Throughout this section,
• F is an algebraically closed field—that is, all nonconstant polynomials over F have all their

roots in F;
• R= F [x1, x2, . . . , xn ] is a polynomial ring;
• F ✓R;
• VF ✓ Fn is the set of common roots of elements of F ;19 and
• I = hF i.

Note that C is algebraically closed, but R is not, since the roots of x2 + 1 2R [x ] are not in R.
An interesting and useful consequence of algebraic closure is the following.

Lemma 11.71. F is infinite.

Proof. Let n 2N+, and a1, . . . ,an 2 F. Obviously, f = (x� a1) · · · (x� an) satisfies f (x) = 0
for all x = a1, . . . ,an . Let g = f + 1; then g (x) 6= 0 for all x = a1, . . . ,an . Since F is closed, g has
a root b 2 F\{a1, . . . ,an}. Thus, no finite list of elements enumerates F, which means F must be
infinite.

Theorem 11.72 (Hilbert’s Weak Nullstellensatz). If VF = ;, then I =R.

Proof. We proceed by induction on n, the number of variables.
Inductive base: Let n = 1. Recall that in this case, R= F [x ] is a Euclidean domain, and hence

a principal ideal domain. Thus I = h f i for some f 2 R. If VF = ;, then f has no roots in F.
Theorem 10.18 tells us that every principal ideal domain is a unique factorization domain, so if f
is non-constant, it has a unique factorization into irreducible polynomials. Theorem 10.42 tells
us that any irreducible p extends R to a field E = R/ hpi containing both F and a root ↵ of p.
Since F is algebraically closed, ↵ 2 F itself; that is, E = F. But then x �↵ 2 R is a factor of
p, contradicting the assumption that p is irreducible. Since p was an arbitrary factor, f itself
has no irreducible factors, which (since we are in a unique factorization domain) means that f
is a nonzero constant; that is, f 2 F. By the inverse property of fields, f �1 2 F ✓ F [x ], and
absorption implies that 1 = f · f �1 2 I .

Inductive hypothesis: Let k 2N+, and suppose that in any polynomial ring over a closed field
with n = k variables, VF = ; implies I =R.

Inductive step: Let n = k + 1. Assume VF = ;. If F contains a constant polynomial, then we
are done; thus, let f 2 F . Let d be the maximum degree of a term of f . Rewrite f by substituting

x1 = y1,
x2 = y2 + a2y1,

...
xn = yn + any1,

19The notation VF comes from the term variety in algebraic geometry.
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for some a1, . . . ,an 2 F. (We make the choice of which a1, . . . ,an specific below.) This can be a
little confusing, so let’s take an example.

Example 11.73. Suppose f = x1 + x2
2 x3. We rewrite f as

y1 +(y2 + a2y1)
2 (y3 + a3y1)

3 =

y1 +
Ä

y2
2 + 2a2y1y2 + a2

2 y2
1

äÄ

y4
3 + 3a3y1y3

3 + 3a2
3 y2

1 y2
3 + a3

3 y3
1 y3

ä

.

Take note of the forms within the parentheses.

Observe that if i 6= 1, then we rewrite xd
i as yd

i + a2y1yd�1
i · · ·+ ad

i yd
1 , so if both 1 < i < j

and b + c = d , then

x b
i xc

j =
Ä

y b
i + · · ·+ ab

i y b
1

ä

⇣

yc
j + · · ·+ ac

j yc
1

⌘

= ab
i ac

j y b+c
1 + g

Ä

y1, yi , y j
ä

= ab
i ac

j yd
1 + g

Ä

y1, yi , y j
ä

,

where degy1
g < d . Thus, we can collect terms containing yd

1 as

f = cyd
1 + g (y1, . . . , yn)

where c 2 F and degy g < d . Since F is infinite, we can find a2, . . . ,an such that c 6= 0.
Let ' : R�! F [y1, . . . , yn ] by

' ( f (x1, . . . , xn)) = f (y1, y2 + a2y1, . . . , yn + any1) ;

that is, ' substitutes every element of R with the values that we obtained so that f1 would have
the special form above. This is a ring isomomorphism (Exercise 11.76), so J = ' (I ) is an ideal
of F [y1, . . . , yn ]. If VJ 6= ;, then any b 2 VJ can be transformed into an element of VF (see
Exercise 11.77); hence VJ = ; as well.

Now let ⌘ : F [y1, . . . , yn ]�! F [y2, . . . , yn ] by ⌘ (g ) = g (0, y2, . . . , yn).

Example 11.74. For instance, ⌘
Ä

x3
1 + x1x2

3 + x2
2 x3 + x4

ä

= x2
2 x3 + x4.

Again, K = ⌘ (J ) is an ideal, though the proof is different (Exercise 11.79). We claim that
if VK 6= ;, then likewise VJ 6= ;. To see why, let h 2 ⌘ (F [y1, . . . , yn ]), and suppose b 2 Fn�1

satisfies h (b ) = 0. Let g be any element of F [y1, . . . , yn ] such that ⌘ (g ) = h; then

g
�

0, b1, . . . , bn�1
�

= h
�

b1, . . . , bn�1
�

= 0,

so that we can prepend 0 to any element of VK and obtain an element of VJ . Since VJ = ;, this is
impossible, so VK = ;.

Since VK = ; and K ✓ F [y2, . . . , yn ], the inductive hypothesis finally helps us see that K =
F [y2, . . . , yn ]. In other words, 1 2 K . Since K ⇢ J (see Exercise 11.79), 1 2 J . Since ' ( f ) 2 F if
and only if f 2 F (Exercise 11.78), there exists some f 2 hF i such that f 2 F.

Exercises
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Exercise 11.75. Show that the intersection of two radical ideals is also radical.

Exercise 11.76. Show that ' in the proof of Theorem 11.72 is a ring isomomorphism.

Exercise 11.77. Show that in the proof of Theorem 11.72, any b 2 V'(F ) can be rewritten to
obtain an element of VF . Hint: Reverse the translation that defines '.

Exercise 11.78. Show that in the proof of Theorem 11.72, ' ( f ) 2 F if and only if f 2 F.

Exercise 11.79. Show that ⌘ in the proof of Theorem 11.72, if J is an ideal of F [y1, . . . , yn ], then
⌘ (J ) is an ideal of F [y2, . . . , yn ]. Hint: F [y2, . . . , yn ] ( F [y1, . . . , yn ] and ⌘ (J ) = J \F [x2, . . . , yn ]
is an ideal of F [y2, . . . , yn ].

11.7: Elementary applications

We now turn our attention to posing, and answering, questions that make Gröbner bases
interesting. As in Section 11.6,
• F is an algebraically closed field—that is, all polynomials over F have their roots in F;
• R= F [x1, x2, . . . , xn ] is a polynomial ring;
• F ⇢R;
• VF ⇢ Fn is the set of common roots of elements of F ;
• I = hF i; and
• G = (g1, g2, . . . , gm) is a Gröbner basis of I with respect to an admissible ordering.

Note that C is algebraically closed, but R is not, since the roots of x2 + 1 2R [x ] are not in R.
Our first question regards membership in an ideal.

Theorem 11.80 (The Ideal Membership Problem). Let p 2 R. The fol-
lowing are equivalent:
(A) p 2 I , and
(B) p top-reduces to zero with respect to G.

Proof. That (A) =) (B): Assume that p 2 I . If p = 0, then we are done. Otherwise, the
definition of a Gröbner basis implies that lm (p) is top-reducible by some element of G; let r be
the result of this top-reduction. By Proposition 11.51, lm (r1) < lm (p). By the definition of an
ideal, r1 2 I . If r1 = 0, then we are done; otherwise the definition of a Gröbner basis implies
that lm (p) is top-reducible by some element of G. Continuing as above, we generate a list of
polynomials p, r1, r2, . . . such that

lm (p)> lm (r1)> lm (r2)> · · · .

By the well-ordering of M, this list cannot continue indefinitely, so eventually top-reduction
must be impossible. As long as ri 6= 0, we can continue this indefinitely, so the chain must
terminate with ri = 0.

That (B) =) (A): Assume that p top-reduces to zero with respect to G. By Lemma 11.55,
p 2 I .
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Now that we have ideal membership, let us return to a topic we considered briefly in Chapter 7.
In Exercise 8.24 you showed that

. . . the common roots of f1, f2, . . . , fm are common roots of all polynomials in the
ideal I .

Since I = hGi, the common roots of g1, g2, . . . , gm are common roots of all polynomials in
I . Thus if we start with a system F , and we want to analyze its polynomials, we can do so by
analyzing the roots of any Gröbner basis G of hF i. This might seem unremarkable, except that
like triangular linear systems, it is easy to analyze the roots of Gröbner bases! Our next result gives
an easy test for the existence of common roots.

Theorem 11.81. The following both hold.
(A) VF = VG ; that is, common roots of F are common roots of G,

and vice versa.
(B) F has no common roots if and only if G contains a nonzero con-

stant polynomial.

Proof. (A) Let ↵ 2VF . By definition, fi (↵1, . . . ,↵n) = 0 for each i = 1, . . . , m. By construction,
G ✓ hF i, so g 2G implies that g = h1 f1+ · · ·+ hm fm for certain h1, . . . , hm 2R. By substitution,

g (↵1, . . . ,↵n) =
m
X

i=1
hi (↵1, . . . ,↵n) fi (↵1, . . . ,↵n)

=
m
X

i=1
hi (↵1, . . . ,↵n) ·0

= 0.

That is, ↵ is also a common root of G. In other words, VF ✓VG .
On the other hand, F ✓ hF i = hGi by Exercise 11.58, so a similar argument shows that

VF ◆VG . We conclude that VF =VG .
(B) Let g be a nonzero constant polynomial, and observe that g (↵1, . . . ,↵n) 6= 0 for any

↵ 2 Fn . Thus, if g 2 G, then VG = ;. By (A), VF = VG = ;, so F has no common roots if G
contains a nonzero constant polynomial.

For the converse, we need the Weak Nullstellensatz, Theorem 11.72 on page 367. If F has no
common roots, then VF = ;, and by the Weak Nullstellensatz, I = R. In this case, 1R 2 I . By
definition of a Gröbner basis, there is some g 2G such that lm (g ) | lm (1R). This requires g to
be a constant.

Once we know common solutions exist, we want to know how many there are.

Theorem 11.82. There are finitely many complex solutions if and only if
for each i = 1, . . . , n we can find g 2G and a 2N such that lm (g ) = xa

i .

Remark 11.83. Theorem 11.82 is related to the strong Nullstellensatz.

Proof. We can find g 2 G and ↵ 2N such that lm (g ) = xa
i for each i = 1,2, . . . , n if and only

if R/I is finite; see Figure 11.2. The definition R/I is independent of any monomial ordering,
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Figure 11.2. This monomial diagram shades the monomials divisible by the leading monomials
of a Gröbner basis of I . If R/I is finite, then we cannot find infinitely many polynomials in R
and outside I . This includes the axes of the monomial diagram, which consist of the monomials
x, x2, x3, . . . and y, y2, y3, . . . . They must reduce into a finite R/I , so the Gröbner basis must
have polynomials whose leading monomials divide them: in this case, x2 and y3.

so we can assume the ordering is lexicographic without loss of generality.
Assume first that for each i = 1, . . . , n we can find g 2 G and a 2N such that lm (g ) = xa

i .
Since xn is the smallest variable, even xn�1 > xn , so g must be a polynomial in xn alone; any other
variable in a non-leading monomial would contradict the assumption that lm (g ) = xa

n . The
Fundamental Theorem of Algebra implies that g has a complex solution. We can back-substitute
these solutions into the remaining polynomials, using similar logic. Each back-substitution yields
only finitely many solutions. There are finitely many polynomials, so G has finitely many com-
plex solutions.

Conversely, assume G has finitely many solutions; call them ↵(1), . . . ,↵(`) 2 Fn . Let

J =
D

x1�↵(1)1 , . . . , xn�↵(1)n

E

\

· · ·
\

D

x1�↵(`)1 , . . . , xn�↵(`)n

E

.

Recall that J is an ideal. You will show in the exercises that I and J have the same common
solutions; that is, VI =VJ .

For any f 2
p

I , the fact that R is an integral domain implies that

f (↵) = 0 () f a (↵) = 0 9a 2N+,

so VI = VpI . Let K be the ideal of polynomials that vanish on VI . Notice that I ✓
p

I ✓ K
by definition. We claim that

p
I ◆ K as well. Why? Let p 2 K be nonzero. Consider the

polynomial ring F [x1, . . . , xn , y ] where y is a new variable. Let A = h f1, . . . , fm , 1� y pi. Notice
that VA = ;, since fi = 0 for each i implies that p = 0, but then 1� y p 6= 0. By Theorem 11.81,
any Gröbner basis of A has a nonconstant polynomial, call it c . By definition of A, there exist
H1, . . . , Hm+1 2 F [x1, . . . , xn , y ] such that

c = H1 f1 + · · ·+Hm fm +Hm+1 (1� y p) .
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Let hi = c�1Hi and
1 = h1 f1 + · · ·+ hm fm + hm+1 (1� y p) .

Put y = 1
p and we have

1 = h1 f1 + · · ·+ hm fm + hm+1 ·0
where each hi is now in terms of x1, . . . , xn and 1/ p. Clear the denominators by multiplying
both sides by a suitable power a of p, and we have

pa = h 01 f1 + · · ·+ h 0m fm

where each h 0i 2R. Since I = h f1, . . . , fmi, we see that pa 2 I . Thus p 2
p

I . Since p was abitrary
in K , we have

p
I ◆K , as claimed.

We have shown that K =
p

I . Since K is the ideal of polynomials that vanish on VI , and
by construction, VpI = VI = VJ . You will show in the exercises that J =

p

J , so VpI = VpJ .

Hence
p

I =
p

J . By definition of J ,

qj =
Ỳ

i=1

⇣

xj � a(i)
j

⌘

2 J

for each j = 1, . . . , n. Since
p

I = J , suitable choices of a1, . . . ,an 2N+ give us

q1 =
Ỳ

i=1

⇣

x1�↵(i)
1

⌘a1 , . . . , qn =
Ỳ

i=1

Ä

xn�↵(i)
n

äan 2 I .

Notice that lm (qi ) = xai
i for each i . Since G is a Gröbner basis of I , the definition of a Gröbner

basis implies that for each i there exists g 2G such that lm (g ) | lm (qi ). In other words, for each
i there exists g 2G and a 2N such that lm (g ) = xa

i .

Example 11.84. Recall the system from Example 11.53,

F =
Ä

x2 + y2�4, xy�1
ä

.

In Exercise 11.56 you computed a Gröbner basis in the lexicographic ordering. You probably
obtained a superset of

G =
Ä

x + y3�4y, y4�4y2 + 1
ä

.

G is also a Gröbner basis of hF i. Since G contains no constants, we know that F has common
roots. Since x = lm (g1) and y4 = lm (g2), we know that there are finitely many common roots.

We conclude by pointing in the direction of how to find the common roots of a system.
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Theorem 11.85 (The Elimination Theorem). Suppose the ordering is
lexicographic with x1 > x2 > · · · > xn . For all i = 1,2, . . . , n, each of
the following holds.
(A) bI = I \F

⇥

xi , xi+1, . . . , xn
⇤

is an ideal of F
⇥

xi , xi+1, . . . , xn
⇤

. (If
i = n, then bI = I \F.)

(B) bG = G\F
⇥

xi , xi+1, . . . , xn
⇤

is a Gröbner basis of the ideal bI .

Proof. For (A), let f , g 2 bI and h 2 F
⇥

xi , xi+1, . . . , xn
⇤

. Now f , g 2 I as well, we know that
f � g 2 I , and subtraction does not add any terms with factors from x1, . . . , xi�1, so f � g 2
F
⇥

xi , xi+1, . . . , xn
⇤

as well. By definition of bI , f � g 2 bI . Similarly, h 2 F [x1, x2, . . . , xn ] as
well, so f h 2 I , and multiplication does not add any terms with factors from x1, . . . , xi�1, so
f h 2 F

⇥

xi , xi+1, . . . , xn
⇤

as well. By definition of bI , f h 2 bI .
For (B), let p 2 bI . Again, p 2 I , so there exists g 2 G such that lm (g ) divides lm (p).

The ordering is lexicographic, so g cannot have any terms with factors from x1, . . . , xi�1. Thus
g 2 F

⇥

xi , xi+1, . . . , xn
⇤

. By definition of bG, g 2 bG. Thus bG satisfies the definition of a Gröbner
basis of bI .

The ideal bI is important enough to merit its own terminology.

Definition 11.86. For i = 1,2, . . . , n the ideal bI = I \F
⇥

xi , xi+1, . . . , xn
⇤

is called the ith elimination ideal of I .

Theorem 11.85 suggests that to find the common roots of F , we use a lexicographic ordering,
then:
• find common roots of G\F [xn ];
• back-substitute to find common roots of G\F

⇥

xn�1, xn
⇤

;
• . . .
• back-substitute to find common roots of G\F [x1, x2, . . . , xn ].

This is exactly how Gaussian elimination worked: reducing a matrix to row-echelon form gives
us a polynomial in the bottom row whose solutions we can calculate easily, then back-substitute
into previous rows.

Example 11.87. We can find the common solutions of the circle and the hyperbola in Figure 11.1
on page 352 using the Gröbner basis computed in Example 372 on page 11.84. Since

G =
Ä

x + y3�4y, y4�4y2 + 1
ä

,

we have
bG = G\C [y ] =

¶

y4�4y2 + 1
©

.

It isn’t hard to find the roots of this polynomial. Let u = y2; the resulting substitution gives us
the quadratic equation u2�4u + 1 whose roots are

u =
4±

∆

(�4)2�4 ·1 ·1
2

= 2±
p

3.
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Back-substituting u into bG,

y =±pu =±
∆

2±
p

3.

We can now back-substitute y into G to find that

x =�y3 + 4y

=⌥
✓

∆

2±
p

3
◆3
±4

∆

2±
p

3.

Thus there are four common roots, all of them real, illustrated by the four intersections of the
circle and the hyperbola.

Exercises.

Exercise 11.88. Determine whether x6 + x4 + 5y�2x + 3xy2 + xy + 1 is an element of the ideal
⌦

x2 + 1, xy + 1
↵

.

Exercise 11.89. Refer back to Exercise 11.68. How many solutions does this system have? If
infinitely many, what is the dimension?

Exercise 11.90. Consider the system

F = ( xy z + x z + 3y + 3,

x2y z2 + x2z2� y�1
ä

.

Exercise 11.91. Suppose A,B are ideals of R.
(a) Show that VA\B =V (A)[V (B).
(b) Explain why this shows that for the ideals I and J defined in the proof of Theorem 11.82,

VI =VJ .


