
THE EUCLIDEAN ALGORITHM

I have isolated proofs at the end. Fancy not, even for a moment, that this means the proofs are
unimportant! They are essential to understanding the algorithm. Rather, I thought it easier to
use this as a reference if you could see the algorithms with the examples first, and the proofs later.

The Euclidean Algorithm. If b 6= 0, the following algorithm terminates with gcd (a, b ).
1: inputs
2: a, b ∈Z where b 6= 0
3: outputs
4: gcd (a, b )
5: do
6: Let n =max (a, b ), d =min (a, b )
7: while d 6= 0 do
8: Compute q , r ∈Z such that n = d q + r and 0≤ r < d
9: Let n = d , d = r

10: return n

Example. To compute gcd (30,286), the algorithm generates

286= 9× 30+ 16
30= 1× 16+ 14
16= 14× 1+ 2
14= 7× 2+ 0.

The Extended Euclidean Algorithm, or, Bezout’s Identity. For any integers a, b we can find
integers m, n such that

gcd (a, b ) = ma+ nb .

In addition, we can find m, n by reversing the equations generated during the Euclidean Algorithm.

Example (continued). Isolate the remainder in the generated equations:

2= 16+(−1)× 14(0.1)
14= 30+(−1)× 16(0.2)
16= 286+(−9)× 30.(0.3)

Equation (0.1) one has the form

gcd (30,286) = 16+(−1)× 14.

Into this, we substitute the value of 14 from equation (0.2), obtaining

gcd (30,286) = 16+(−1)× [30+(−1)× 16]
= 2× 16+(−1)× 30.



We now substitute the value of 16 from equation (0.3), obtaining

gcd (30,286) = 2× [286+(−9)30]+ (−1)× 30
= 2× 286+(−19)× 30.

The gcd property of ax+by= d. For fixed a, b ∈ Z, the smallest positive number d that can be
written in the form d = ax + b y, where x, y ∈Z, is d = gcd (a, b ).

The following corollary depends on the gcd property of ax+b y = d , and will not be explained
further.

Corollary. For fixed a, b ∈Z, if we can find x, y ∈Z such that 1= ax + b y, then gcd (a, b ) = 1.

SO WHY DOES THIS WORK?

Inspired by the Extended Euclidean Algorithm, we’ll explain everything in reverse.

Proof of the gcd property of ax + b y = d . Inasmuch as gcd (a, b ) divides both a and b , it divides
the left hand side of ax + b y = d . It must divide the right hand side, as well. The smallest
positive multiple of gcd (a, b ) is itself. �

The Euclidean Algorithm depends on the following Lemma, which should help answer the
question of why we do it this way.

Lemma 1. If a = b q + r then gcd (a, b ) = gcd (b , r ).

Proof of Lemma 1. Let d = gcd (a, b ) and d ′ = gcd (b , r ). Since a = b q+ r , we see that d ′ divides
the left hand side; thus, it divides a; hence d ′ is a common divisor of a and b . Since d is the
greatest common divisor of a and b , d ′ ≤ d .

Rewrite the equation as a− b q = r . We see that d divides the right hand side; thus, it divides
r ; hence d is a common divisor of b and r . Since d ′ is the greatest common divisor of b and r ,
d ≤ d ′.

We have shown that d ′ ≤ d ≤ d ′. This forces d = d ′, and the lemma is proved. �

Proof of the Euclidean Algorithm. We know from Lemma 1 that the gcd is preserved in each re-
mainder. The algorithm concludes when r = 0. Hence gcd (a, b ) = gcd (n, r ) = gcd (n, 0) = n.

Moreover, we know the algorithm terminates because r always satisfies 0≤ r < n, r decreases
on each pass through the loop, and no sequence of strictly decreasing positive numbers is infinite
(by the well ordering of the natural numbers).

Each equation generated by the Euclidean Algorithm has the form

ni = qi di + ri

where n1 = max (a, b ), d1 = min (a, b ), ni = di−1, and di = ri−1. Suppose k is index of the last
equation generated, so that nk = qk dk + 0.

Since gcd (a, b ) = dk , the next-to-last equation of the Euclidean Algorithm has the form

nk−1 = qk−1dk−1+ gcd (a, b ) .

Rewrite this to isolate gcd (a, b ):

(0.4) gcd (a, b ) = nk−1+
�

−qk−1

�

dk−1.

The equation before this in the Euclidean Algorithm has the form

nk−2 = qk−2dk−2+ rk−2,



but rk−2 = dk−1, so we can rewrite it as

dk−1 = nk−2+
�

−qk−2

�

dk−2,

and substitute into equation 0.4 to obtain

gcd (a, b ) = nk−1+
�

−qk−1

��

nk−2+
�

−qk−2

�

dk−2

�

= nk−1+
�

−qk−1

�

nk−2+
�

qk−1qk−2

�

dk−2.

Recall that nk−1 = dk−2, so we can rewrite this as

(0.5) gcd (a, b ) =
�

−qk−1

�

nk−2+
�

1+ qk−1qk−2

�

dk−2.

Again, rk−3 = dk−2, so we can repeat this until we run out of equations with n1 and d1, which we
assigned to be a and b . �


