
ALGEBRAIC STRUCTURES

Definition. A structure F is a field if +, −, ×, and ÷ satisfy their “usual properties”. Suppose
a, b , c ∈ F.
For addition,

closure: a+ b gives a result in F;
associative: a+ b + c gives one, unique result, regardless of whether we first evaluate a+ b

or b + c ;
commutative: a+ b = b + c ;
identity: we can find 0 ∈ F such that a+ 0= a, 0+ a = a;
inverse: we can find −a ∈ F.

For multiplication,
closure: a× b gives a result in F;
associative: a× b × c gives one, unique result, regardless of whether we first evaluate a× b

or b × c ;
commutative: a× b = b × a;
identity: we can find 1 ∈ F such that a× 1= a, 1× a = a;
distributive: a× (b + c) = a× b + a× c .

Subtraction is merely addition of the inverse.
For division,

multiplicative inverse: we can find a−1 ∈ F.

Example (of fields). The rationalsQ, arithmetic modulo a prime Zp = Fp , finite fields Fpk .

Example (of non-fields). The natural numbersN do not have additive inverses for nonzero num-
bers. The integers Z have division only for ±1. Arithmetic modulo a non-prime Zn does not
have multiplicative inverses for numbers that share common divisors with n.

Remark. Some properties of a field that we mentioned in class can be proved “easily” from the
ones listed here. For instance, the zero product property states that if a and b are members of
a field and ab = 0, then a = 0 or b = 0. The reason is that if ab = 0 and a 6= 0, then the field
properties imply that a−1 is in the field, and by substitution a−1 (ab ) = a−1 · 0, so

�

a−1a
�

b = 0,
so 1b = 0, so b = 0.

If you are wondering how we know that a−1 · 0 = 0, that is because for any b in a field,
b ·0= b ·(0+ 0) = b ·0+b ·0. Since b ·0 is in the field, it has an additive inverse, so− (b · 0)+b ·0=
− (b · 0)+ (b · 0+ b · 0), so 0= [− (b · 0)+ b · 0], so 0= 0+ b · 0, so 0= b · 0.

Definition. A structure R is a ring if +, −, and × satisfy their “usual properties”, but perhaps
not ÷.

Example (of rings). Fields are rings where division also satisfies its “usual properties”, so every
field is a ring. The integers Z are also a ring. Arithmetic modulo a non-prime Zn is a ring.

Example (of non-rings). The natural numbers N lack additive inverses for most elements.



Remark. Rings that are not fields lack some multiplicative inverses. So, they might not satisfy
the zero product property. For example, in Z6 we have 4 · 3≡ 0 even though 4 6≡ 0 and 3 6≡ 0.

Definition. A structure G is an abelian group if its one operation acts like +, and satisfies its
“usual properties”.

Remark. A general group characterizes phenomena of interest whose operation is not commu-
tative, but otherwise behaves as usual. Such phenomena include matrix multiplication, function
composition, geometric translation and rotation, and list permutation. We do not study such
phenomena in this class.

Definition. A structure V is a vector space if V is a group under addition, and if scalar mul-
tiplication of elements of V by elements of its ground field F satisfies the “usual properties”.
Suppose a, b ∈ F and u,v ∈V . For scalar multiplication,

closure: av gives a result in V ;
compatibility: abv gives one, unique result, regardless of whether we first evaluate ab or

bv;
identity: 1v= v;
distribution of scalars: (a+ b )v= av+ bv;
distribution of vectors: a (u+ v) = au+ av.

Remark. A vectors space always has a basis, a set of linearly independent vectors whose linear
combinations generate the space. For a given vector space, the size of a basis is constant.

Example. Three-space R3 is a vector space over R, with basis {(0,0,1) , (0,1,0) , (1,0,0)}. The
finite field F8 is a vector space over F2, with basis

�

1, x, x2
	

. Notice that every element of F8 has
the form a · 1+ b · x + c · x2, where a, b , c ∈ F2.

Remark. Some properties of a vector space that we mentioned in class can be proved from the
ones listed here. For instance, we can show that 0v= 0 from the fact that

v+ 0v= 1v+ 0v= (1+ 0)v= 1v= v.


