MAT 681 ASSIGNMENT 2

Solve the following problems. Due in class Thursday, 8th September 2016.

 Define π_{≤i} as the map from X to itself that "projects" a monomial in n variables to a monomial in i variables. For example,

$$\pi_{\leq 3}\left(x_1^5 x_2^4 x_4 x_5^2\right) = x_1^5 x_2^4$$

You can think of $\pi_{\leq i}$ as "chopping" variables $x_{i+1}, x_{i+2}, \ldots, x_n$ off the monomial. More formally, if $1 \leq i \leq n$, then

$$\pi_{\leq i}: \mathbb{X} \to \mathbb{X} \quad \text{by} \quad \pi_{\leq i} \left(x_1^{a_1} \cdots x_n^{a_n} \right) = x_1^{a_1} \cdots x_i^{a_i}.$$

Show that the definition of the grevlex ordering is equivalent to the following:

Definition (Alternate definition of grevlex). We say that $t <_{\pi} u$ if there exists $i \in \{1, 2, ..., m\}$ such that $\text{tdeg}(\pi_{\leq k}(t)) = \text{tdeg}(\pi_{\leq k}(u))$ for each $k \in \{i + 1, i + 2, ..., n\}$ but $\text{tdeg}(\pi_{\leq i}(t)) < \text{tdeg}(\pi_{\leq i}(u))$.

2. Let w be a vector in $(\mathbb{N}^+)^n$. A weighted degree ordering with respect to w, which we will denote $<_w$, orders $t <_w u$ whenever

$$\sum_{i=1}^n w_i \deg_{x_i} t \quad <_{\mathbf{w}} \quad \sum_{i=1}^n w_i \deg_{x_i} u \quad .$$

When **w** is clear from context, which it often is, we simply write, "a weighted ordering." For instance, if $\mathbf{w} = (1, 2, 3)$, then

$$x <_{\mathbf{w}} y <_{\mathbf{w}} z <_{\mathbf{w}} x^4 <_{\mathbf{w}} yz$$

- (a) Show that <_w is by itself insufficient for an admissible ordering. A counterexample using w in the example above will work, but for bonus points you should show it for arbitrary w, since it gives you excellent practice refreshing your familiarity with vectors and linear algebra.
- (b) Find a value of w for which $<_{w}$ is really the first test in the grevlex ordering.
- (c) For the weighted ordering with respect to $\mathbf{w} = (1,3)$, sketch monomial diagrams that show:
 - (i) the region of monomials less than or equal to x^2y^3 , and
 - (ii) each line of monomials with an equal grading, up to total degree 9. (That is, you need not have any monomial with a grading larger than that of x^9 in your diagram.)
- (d) Propose a way to break ties in a weighted ordering, in a way that results in an admissible ordering. (*Hint:* Nothing stops you from adapting another ordering's approach to breaking ties. There is, therefore, more than one way to do this, but try to make it as uncomplicated as possible.)
- (e) Show that the ordering you describe in (d) is indeed admissible.
- 3. From *Peering into Advanced Mathematics*, all the exercises on pp. 23–24.