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Reference sheet for notation

[r ] the element r + nZ of Zn
〈g 〉 the group (or ideal) generated by g
A3 the alternating group on three elements
A⊳G for G a group, A is a normal subgroup of G
A⊳R for R a ring, A is an ideal of R
[G,G] commutator subgroup of a group G
[x, y ] for x and y in a group G, the commutator of x and y
Conja(H ) the group of conjugations of H by a
conjg (x) the automorphism of conjugation by g
D3 the symmetries of a triangle
d | n d divides n
deg f the degree of the polynomial f
Dn the dihedral group of symmetries of a regular polygon with n sides
Dn (R) the set of all diagonal matrices whose values along the diagonal is constant
dZ the set of integer multiples of d
f (G) for f a homomorphism and G a group (or ring), the image of G
F (α) field extension of F by al p ha
Frac (R) the set of fractions of a commutative ring R
FS the set of all functions mapping S to itself
G/A the set of left cosets of A
G\A the set of right cosets of A
g A the left coset of A with g
G ∼= H G is isomorphic to H
GLm (R) the general linear group of invertible matrices∏n

i=1
Gi the ordered n-tuples of G1, G2, . . . , Gn

G×H the ordered pairs of elements of G and H
g z for G a group and g , z ∈G, the conjugation of g by z, or z g z−1

H <G for G a group, H is a subgroup of G
ker f the kernel of the homomorphism f
lcm(t , u) the least common multiple of the monomials t and u
lm(p) the leading monomial of the polynomial p
lv (p) the leading variable of a linear polynomial p
M the set of monomials in one variable
Mn the set of monomials in n variables
NG(H ) the normalizer of a subgroup H of G
N the natural numbers {0,1,2, . . .}
N+ positive integers
Ωn the nth roots of unity; that is, all roots of the polynomial xn−1
ord (x) the order of x
P (S) the power set of S
Q8 the group of quaternions
R/A for R a ring and A an ideal subring of R, R/A is the quotient ring of R with

respect to A



〈r1, r2, . . . , rm〉 the ideal generated by r1, r2, . . . , rm
R[x1, x2, . . . , xn ] the ring of polynomials whose coefficients are in the ground ring R
Sn the group of all permutations of a list of n elements
S×T the Cartesian product of the sets S and T
T f the support of the polynomial f
tts (p) the trailing terms of p
Z(G) centralizer of a group G
Z∗

n
the set of elements of Zn that are not zero divisors

Z/nZ quotient group (resp. ring) of Z modulo the subgroup (resp. ideal) nZ

Z integers
Z
�p
−5
�

the ring of integers, adjoin
p
−5

Zn the quotient group Z/nZ
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Preface

Overview

These notes have two major parts: in one, we focus on an algebraic structure called a group;
in the other, we focus on a special kind of group, a ring.

In the first semester, I try to cover Chapters 1–5. Since a rigorous approach requires some
sort of introduction, those chapters are preceded by a review of basic ideas you should have seen
before – but only to set a foundation for what is to come.

We then move to monoids, relying on the natural numbers, matrices, and monomials as
natural examples.1 Monoids are not a popular way to start an algebra course, so much of that
chapter is optional. However, a brief glance at monoids allows us to introduce prized ideas that
we develop in much more depth with groups and rings, but in a context with which students are
far more familiar. Quite frankly, most students are not familiar at all with the ideas of number
theory and/or geometry that begin most books, which means they have to take on a lot more
new information than is necessary to understand algebra.

Ideally, we’d also cover Chapter 6 during the first semester, but I haven’t managed that in
years, and even then it was too rushed. Tempus fugit, and all that.

In the second semester, we definitely cover Chapters 6 through 8, along with at least one of
the later chapters. I include Chapter 12 for students who want to pursue a research project, and
need an introduction that builds on what came before. As of this writing, some of those chapters
still need major debugging, so don’t take anything you read there too seriously.

It is not easy to jump around these notes. Not much of the material can be omitted. Within
each chapter, many examples are used and reused; this applies to exercises, as well. I do try to
concentrate on a few important examples, re-examining them in the light of each new topic. One
consequence is that the presentation of rings in these notes depends on a thorough consideration
of the presentation of groups, which in turn depends on at least some of the material on monoids.
Some examples and exercises are referenced in subsequent chapters. On the other hand, most of
the material on monoids can be postponed until after groups. I usually omit solvable groups
(Section 3.6) and groups of automorphisms (Section 4.4).

To the student

Most people find advanced algebra quite difficult. There is no shame in that; I find it difficult,
too. I’m a little unusual in that I find it difficult but still love it. No other branch of mathematics
ever appealed to me the way algebra did. I sometimes joke that I earned a Ph.D. only because I
was too dumb to quit.

I want you to learn algebra, and to see why its ideas have excited not just me, but thousands
of others, most of whom are much, much smarter than me. My experiences teaching this class
motivate the following remarks.

How to succeed at algebra

1To some extent, I owe this idea to a superb, but graduate-level, text, [KR00].



There are certain laws of success in algebra, which I’m pretty sure apply not only to me, but
to everyone out there.

1. You won’t “get it” right away.
One of the big shocks to students who study algebra is that they can’t apply the same strategy

that they have applied successfully in other mathematical courses. In many undergraduate text-
books, each section introduces some property or technique, maybe explains why it works, then
illustrates an application of the property, asking you to repeat it on some problems. At most,
they ask you to adapt the method used to apply the property.

Algebra isn’t like that. The problems almost always require you to use some properties to
derive or explain other properties! That requires a new style of solving problems, one where you
develop the method of solution. Typically, this takes the form of a proof, a short explanation as
to why some property is true. You’re not really used to that, and you may even have thought
that you were studying mathematics precisely to escape writing! Sorry!

2. Anything worth doing requires effort and time.
It will take more than 30 minutes per week to succeed with the homework problems in this

class. It may well take more than 30 minutes per problem! Don’t let that intimidate you.
To some extent, society has not prepared you for this class. Modern technology can execute

in moments tasks that were once impossible, such as speak across the ocean. Books and films
tend to portray the process of discovery and invention as if it were also quick, but the reality is far
different. The people who developed these technologies did not do so with a snap of their fingers!
They spent years, if not their entire lives, trying to solve difficult and important problems.

The same is true with mathematics. For example, the material covered in Chapter 9 is com-
monly called “Galois Theory”. It’s entirely possible that the reason it isn’t called “Ruffini The-
ory” is that Paolo Ruffini, who discovered many of its principles, couldn’t get anyone to take
seriously a revolutionary notion. None of the leading minds of his day would talk with him
about it, which meant that he couldn’t see easily the flaws in his work, let alone correct them.
For that matter, the accomplishments of Evariste Galois were not recognized until decades af-
ter he stayed up all night before a duel to to write down ideas that had fermented in his mind.
Eventually, they would inebriate the world with understanding.

Algebra is worth spending time on. Don’t try to do it on the cheap, devoting only a few
spare moments here and there, while you dedicate your energies to Facebook, sports, or parties.
— Well, unless you post algebra discussions, or attend algebra parties. That would be pretty cool.

3. You actually have to know the definitions.
I strongly suggest writing down every definition on a notecard, and creating flashcards to quiz

yourself on basic definitions.
Most people no longer seem to think the meanings of words matter. This manifests itself even

in mathematics, where students who walk around with A’s in high school and college Calculus
can’t tell you the definition of a limit or a derivative! How do you earn a top score without
learning what the fundamental ideas mean?

By its nature, you can’t even understand the basic problems in algebra unless you know the
meaning of the terms. I can talk myself blue in the face while helping students, but a student
who can’t state the definition of the technical words used in the problem will not understand the
problem, let alone how to find the solution.

4. Don’t be afraid to make a fool of yourself.
The only “dumb” questions in this class are the ones where someone asks me what a word
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means. That’s a definition; if you can’t be bothered to look it up, I can’t be bothered to tell you.
All other questions pertinent to this material really are fair game. As I wrote above, I suc-

ceeded only because I was too dumb to quit. Every now and then some student works up the
courage to ask a question she’s sure will make her look stupid, but it’s pretty much always a very
good question. Often enough, I have to correct something stupid I said.

So, ask away. With any luck, you’ll end up embarrassing me.

Ways these notes try to help you succeed

I have tried to present a large number of “concrete” examples with a narrow range of objects.
Some examples are more important than others, and you will notice that I return frequently to
a few important objects, such as the monoids N and M; the groups D3, Q8, Zn , 〈ρ〉, 〈ϕ〉, Ωn ,
and GLn (R); the alternating, conjugation, and commutator subgroups; the identity homomor-
phism; and the rings Z, R [x ], Frac (R). I am not unique in emphasizing these; most textbooks
in algebra emphasize at least some of them.

Spend time familiarizing yourself with these examples. Students often make the mistake of
thinking that the purpose of the examples is to show them how to solve the exercises. While that
may be true in a textbook on, say, calculus, linear algebra, or differential equations, it can be a
fatal assumption in algebra. Here, the purpose of the examples is to illustrate the objects and ideas
that you have to understand in order to solve to the exercises. I suspect these notes are unusual
in dedicating entire sections to some of these objects, such as Ωn , Zn , and R [x ], but if not, that
only reinforce the point.

I could say the same about the exercises. Even if an exercise isn’t assigned, and you choose not
to solve it, familiarize yourself with the statement of the exercise. A significant proportion of the
exercises build on examples or even exercises that appear earlier.

An approach I’ve used that seems uncommon, if not unique, is the presence of fill-in-the-
blank exercises. I’ve designed these with two goals in mind. First, most algebra students are
overwhelmed by the rush of ideas and objects — and have very little experience solving theoretical
problems, where the “answer” is already given, and the “method of solution” is what they must
produce! So, I’ve taken some of the problems that seem to present students with more difficulty,
and sketched a proof where nearly every statement lacks either a phrase or a justification; students
need merely fill the hole. Second, even when students have a basic understanding of the proof of
a statement, they typically write a very poor proof. The fill-in-the-blank problems are meant to
illustrate what a correct proof looks like — although, in my attempt to leave no stone unturned,
they may seem pedantic.

Motivation

A two-semester sequence on modern algebra typically introduces students to the fundamental
ideas in group and ring theory. Lots of textbooks do a good job of that, and I always recommend
one or more to my classes.

However, most such books seem targeted at students with a strong mathematical background.
Like many instructors these days, I encounter many students with a weaker background in math-
ematical thinking. These students arrive with enthusiasm, and find the material fascinating. Some
may possess the great combination of talent, enthusiasm, and preparation, but most lack at least
one of those three.
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It wasn’t until I taught algebra that I realized just how many new ideas a student meets, in
contrast to other courses at the undergraduate level. Students seem to find algebra an “odd beast”;
at most institutions, I suspect, only analysis is comparable. Unlike analysis, however, most every
algebra text I’ve seen spends the first 50–100 pages on material that is not algebra. A common
example is to spend a lot of time developing number theory, such as the Euclidean algorithm,
unique factorization, Euler’s totient function, and so forth. Authors have very, very good reasons
for that, but I don’t have the luxury of that kind of time. I find it difficult to cover the amount of
material I feel is necessary for a credible course in algebra.

Desiring a mix of simplicity and utility, I decided to set out some notes that would throw the
class into algebraic problems and ideas as soon as possible. As it happens, another interest of mine
seems to have helped. Typically, an algebra text starts with groups, on account of their simplicity;
another large groups starts with rings, on account of the familiarity of their operations. I’ve
tried to marry the best of both worlds by starting with monoids, which are both simple and
familiar. An added bonus is that one can introduce very deep notions, such as direct products,
isomorphism, ideals (under another name), the Ascending Chain Condition, and even Hilbert
Functions, in a fast, intuitive way that is not at all superficial.

As the notes diverged more and more from the textbooks I was using, I committed them to
digital form, which allowed me to organize, edit, rearrange, modify, and extend them easily. By
now, it is more or less an unofficial textbook.
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Some interesting problems

We’d like to motivate this study of algebra with some problems that we hope you will find
interesting. Although we eventually solve them in this text, it might surprise you that in this
class, we’re interested not in the solutions, but in why the solutions work. I could in fact tell
you how to to solve them right here, and we’d be done soon enough; on to vacation! But then
you wouldn’t have learned what makes this course so beautiful and important. It would be like
walking through a museum with me as your tour guide. I can summarize the purpose of each
displayed article, but you can’t learn enough in a few moments to appreciate it in the same way
as someone familiar with fundamental notions in that field. The purpose of this course is to
familiarize you with fundamental notions of non-linear algebra.

Still, let’s take a preliminary stroll through the museum, and consider these exhibits.

Nimfinity

Consider the following game, which generalizes the ancient game of Nim. The playing board
is the first quadrant of the x-y axis. Players take turns doing the following:

1. Choose some point (a, b ) such that a and b are both integers, and that does not yet lie in a
shaded region been shaded.

2. Shade the region of points (c , d ) such that c ≥ a and d ≥ b .
The winner is the player who forces the last move. In the example shown below, the players have
chosen the points (1,2) and (3,0).

1 2 3 4

1

2

3

4

Questions:
• Must the game end? or is it possible to have a game that will continue indefinitely? Is this

true even if we use an n-dimensional playing board, where n > 2? And if so, why?
• Is there a way to count the number of moves remaining, even when there are infinitely

many moves?
• Suppose that for each nonnegative integer d , you are forbidden from picking a certain

number of points (a, b ) such that a + b = d . It doesn’t matter what the points are, only
that you may choose a certain number, and no more. Is there a strategy to win?

We answer some of these questions at the end of Chapter 1.

A card trick

Take twelve cards. Ask a friend to choose one, to look at it without showing it to you, then to
shuffle them thoroughly. Arrange the cards on a table face up, in rows of three. Ask your friend
what column the card is in; call that number α.



Now collect the cards, making sure they remain in the same order as they were when you
dealt them. Arrange them on a a table face up again, in rows of four. It is essential that you
maintain the same order; the first card you placed on the table in rows of three must be the first
card you place on the table in rows of four; likewise the last card must remain last. The only
difference is where it lies on the table. Ask your friend again what column the card is in; call that
number β.

In your head, compute x = 4α− 3β. If x does not lie between 1 and 12 inclusive, add or
subtract 12 until it is. Starting with the first card, and following the order in which you laid the
cards on the table, count to the xth card. This will be the card your friend chose.

Mastering this trick takes only a little practice. Understanding it requires quite a lot of back-
ground! We get to it in Chapter 6.

Internet commerce

Let’s go shopping!!! This being the modern age of excessive convenience, let’s go shopping on-
line!!! Before the online compnay sends you your product, however, they’ll want payment. This
requires you to submit some sensitive information, namely, your credit card number. Once you
submit that number, it will bounce happily around a few computers on its way to the company’s
server. Some of those computers might be in foreign countries. (It’s quite possible. Don’t ask.)
Any one of those machines could have a snooper. How can you communicate the information
in securely?

The solution is public-key cryptography. The bank’s computer tells your computer how to
send it a message. It supplies a special number used to encrypt the message, called an encryption
key. Since the bank broadcasts this in the clear over the internet, anyone in the world can see it.
What’s more, anyone in the world can look up the method used to decrypt the message.

You might wonder, How on earth is this secure?!? Public-key cryptography works because
there’s the decryption key remains with the company, hopefully secret. Secret? Whew! . . . or so
you think. A snooper could reverse-engineer this key using a “simple” mathematical procedure
that you learned in grade school: factoring an integer into primes, like, say, 21 = 3 ·7.

How on earth is this secure?!? Although the procedure is “simple”, the size of the integers in
use now is about 40 digits. Believe it or not, even a 40 digit integer takes even a computer far too
long to factor! So your internet commerce is completely safe. For now.

Factorization

How can we factor polynomials like p (x) = x6 +7x5 +19x4 +27x3 +26x2 +20x +8? There
are a number of ways to do it, but the most efficient ways involve modular arithmetic. We discuss
the theory of modular arithmetic later in the course, but for now the general principle will do:
pretend that the only numbers we can use are those on a clock that runs from 1 to 51. As with
the twelve-hour clock, when we hit the integer 52, we reset to 1; when we hit the integer 53, we
reset to 2; and in general for any number that does not lie between 1 and 51, we divide by 51 and
take the remainder. For example,

20 ·3 + 8 = 68  17.

How does this help us factor? When looking for factors of the polynomial p, we can simplify
multiplication by working in this modular arithmetic. This makes it easy for us to reject many
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possible factorizations before we start. In addition, the set {1,2, . . . , 51} has many interesting
properties under modular arithmetic that we can exploit further.

Conclusion

Non-linear algebra deals with interesting and important problems, while retaining a deep, the-
oretical character: we wonder more about why things are true than about how we can do things.
Algebraists can at times be concerned more with elegance and beauty than applicability and effi-
ciency. You may be tempted on many occasions to ask yourself the point of all this abstraction
and theory. Who needs this stuff?

Keep the examples above in mind; they show that algebra is not only useful, but necessary.
Its applications have been profound and broad. Eventually you will see how algebra addresses the
problems above; for now, you can only start to imagine.

The class “begins” here. Wipe your mind clean: unless it says otherwise here or in the follow-
ing pages, everything you’ve learned until now is suspect, and cannot be used to explain anything.
You should adopt the Cartesian philosophy of doubt.2

2Named after the mathematician and philosopher René Descartes, who inaugurated modern philosophy and claimed
to have spent a moment wondering whether he even existed. Cogito, ergo sum and all that.
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Chapter 0:
Foundations

This chapter re-presents ideas you have seen before, but may not have acquired comfort with
them. We will emphasize precise definitions and rely heavily on deductive precision, rather than
intuitive vagueness — sometimes called “hand waving”. Too often, people speak vaguely to each
other, and words contain different meanings for different people.

Do not mistake this dismissal for disdain; intuition is very important in the problem solving
process, and you will have to develop some intuition to succeed with this material. We will
emphasize intuitive notions as we introduce new terms. However, you should already have an
intuitive familiarity with most of the ideas presented in this section, so any weaknesses you have
will be with your ability to deduce a solution in precise words.

Gauss, no slouch in either mathematics or science, felt that mathematics is not merely a sci-
ence, but the queen of the sciences. Good science depends on clarity and reproducibility. This
can be hard going for a while, but if you accept it and engage it, you will find it very rewarding.

0.1: Sets and relations

Let’s start with some general tools of mathematics that you should have seen before now.

Sets

The most fundamental object in mathematics is the set. Sets can possess a property called
inclusion when all the elements of one set are also members of the other. More commonly,
people say that the set A is a subset of the set B if every element of A is also an element of B . If A
is a subset of B but not equal to B , we say that A is a proper subset of B . All sets have the empty
set as a subset; some people write the empty set as {}, but we will use ;, which is also common.

Notation 0.1. If A is a subset of B , we write A ⊆ B . If A is a proper subset, we can still write
A( B , but if we want to emphasize that they are not equal, we write A( B .

You should recognize these sets:
• the positive integers, N+ = {1,2,3, . . .}, also called the counting numbers,
• the natural numbers, N = {0,1,2, . . .}, and
• the integers, Z = {. . . ,−2,1,0,1,2, . . .}, which extend N+ to “complete” subtraction.

You are already familiar with the intuitive motivation for these numbers and also how they are
applied, so we won’t waste time rehashing that. Instead, let’s spend time re-presenting some basic
ideas of sets, especially the integers.

Notation 0.2. Notice that both N+ ⊆N⊆N and N+ (N⊆Z are true.

We can put sets together in several ways.



Definition 0.3. Let S and T be two sets. The Cartesian product of S
and T is the set of ordered pairs

S×T = {(s , t ) : s ∈ S, t ∈ T } .

The union of S and T is the set

S ∪T = {x : x ∈ S or x ∈ T } ,

the intersection of S and T is the set

S ∩T =
�

x : x ∈ S and x ∈ T
	

,

and the difference of S and T is the set

S\T =
�

x : x ∈ S and x 6∈ T
	

.

Example 0.4. Suppose S = {a, b} and T = {x + 1, y−1}. By definition,

S×T = {(a, x + 1) , (a, y−1) , (b , x + 1) , (b , y−1)} .

Example 0.5. If we let S = T = N, then S ×T = N×N, the set of all ordered pairs whose
entries are natural numbers. We can visualize this as a lattice, where points must have integer
co-ordinates:

(0,0)

(3,1)

(2,4)

Let B = {S,T ,Z} where

• S is the set of positive integers,
• T is the set of negative integers, and
• Z = {0}.

The elements of B are disjoint sets, by which we mean that they have nothing in common. In
addition, the elements of B cover Z, by which we mean that their union produces the entire set
of integers. This phenomenon, where a set can be described the union of smaller, disjoint sets, is
important enough to highlight with a definition.
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Definition 0.6. Suppose that A is a set and B is a family of subsets of A,
called classes. We say that B is a partition of A if
• the classes cover A: that is, A =

⋃
B∈B B ; and

• distinct classes are disjoint: that is, if B1,B2 ∈ B are distinct (B1 6=
B2), then B1∩B2 = ;.

The next section introduces a very important kind of partition.

Relations

We often want to describe a relationship between two elements of two or more sets. It turns
out that this relationship is also a set. Defining it this way can seem unnatural at first, but in the
long run, the benefits far outweigh the costs.

Definition 0.7. Any subset of S×T is relation on the sets S and T . A
function is any relation f such that (a, b ) ∈ f implies (a, c) 6∈ f for any
c 6= b . An equivalence relation on S is a subset R of S× S that satisfies
the properties
reflexive: for all a ∈ S, (a,a) ∈ R;
symmetric: for all a, b ∈ S, if (a, b ) ∈ R then (b ,a) ∈ R; and
transitive: for all a, b , c ∈ S, if (a, b ) ∈ R and (b , c) ∈ R then (a, c) ∈

R.

Notation 0.8. Even though relations and functions are sets, we usually write them in the manner
to which you are accustomed.
• We typically denote relations that are not functions by symbols such as< or⊆. If we want

a generic symbol for a relation, we usually write ∼.
• If ∼ is a relation, and we want to say that a and b are members of the relation, we write

not (a, b ) ∈∼, but a ∼ b , instead. For example, in a moment we will discuss the subset
relation ⊆, and we always write a ⊆ b instead of “(a, b ) ∈⊆”.
• We typically denote functions by letters, typically f , g , or h, or sometimes the Greek

letters, η, ϕ, ψ, or µ. Instead of writing f ⊆ S×T , we write f : S → T . If f is a function
and (a, b ) ∈ f , we write f (a) = b .
• The definition and notation of relations and sets imply that we can write a ∼ b and a ∼ c

for a relation ∼, but we cannot write f (a) = b and f (a) = c for a function f .

Example 0.9. Define a relation ∼ on Z in the following way. We say that a ∼ b if ab ∈N. Is
this an equivalence relation?

Reflexive? Let a ∈ Z. By properties of arithmetic, a2 ∈ N. By definition, a ∼ a, and the
relation is reflexive.

Symmetric? Let a, b ∈ Z. Assume that a ∼ b ; by definition, ab ∈N. By the commutative
property of arithmetic, ba ∈N also, so b ∼ a, and the relation is reflexive.

Transitive? Let a, b , c ∈Z. Assume that a ∼ b and b ∼ c . By definition, ab ∈N and b c ∈N.
I could argue that ac ∈N using the trick

ac =
(ab ) (b c)

b 2
,
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and pointing out that ab , b c , and b 2 are all natural, which suggests that ac is also natural. How-
ever, this argument contains a fatal flaw. Do you see it?

It lies in the fact that we don’t know whether b = 0. If b 6= 0, then the argument above works
just fine, but if b = 0, then we encounter division by 0, which you surely know is not allowed!
(If you’re not sure why it is not allowed, fret not. We explain this in a moment.)

This apparent failure should not discourage you; in fact, it gives us the answer to our orig-
inal question. We asked if ∼ was an equivalence relation. In fact, it is not, and what’s more, it
illustrates an important principle of mathematical study. Failures like this should prompt you to
explore whether you’ve found an unexpected avenue to answer a question. In this case, the fact
that a ·0 = 0 ∈N for any a ∈Z implies that 1∼ 0 and −1∼ 0. However, 1 6∼ −1! The relation is
not transitive, so it cannot be an equivalence relation!

Binary operations

Another important relation is defined by an operation.

Definition 0.10. Let S and T be sets. A binary operation from S to T
is a function f : S× S→ T . If S = T , we say that f is a binary operation
on S. A binary operation f on S is closed if f (a, b ) is defined for all
a, b ∈ S.

Example 0.11. Addition of the natural numbers is a function, + : N×N → N; the sentence,
2+3 = 5 can be thought of as +(2,3) = 5. Hence, addition is a binary operation on N. Addition
is defined for all natural numbers, so it is closed.

Subtraction of natural numbers can be viewed as a function, as well: − : N×N→Z. How-
ever, while subtraction is a binary operation, it is not closed, since it is not “on N”: the range
(Z) is not the same as the domain (N). This is the reason we need the integers: they “close”
subtraction of natural numbers.

In each set described above, you can perform arithmetic: add, subtract, multiply, and (in most
cases) divide. We need to make the meaning of these operations precise.3

Addition of positive integers is defined in the usual way: it counts the number of objects in
the union of two sets with no common element. To obtain the integers Z, we extend N+ with
two kinds of new objects.
• 0 is an object such that a + 0 = a for all a ∈N+ (the additive identity). This models the

union of a set of a objects and an empty set.
• For any a ∈ N+, we define its additive inverse, −a, as an object with the property that

a +(−a) = 0. This models removing a objects from a set of a objects, so that an empty set
remains.

Since 0 + 0 = 0, we are comfortable deciding that −0 = 0. To add with negative integers, let
a, b ∈N+ and consider a +(−b ):
• If a = b , then substitution implies that a +(−b ) = b +(−b ) = 0.
• Otherwise, let A be any set with a objects.

3We will not make the meanings as precise as possible; at this level, some things are better left to intuition. For
example, I will write later, “If I can remove a set with b objects from [a set with a objects]. . . ” What does this mean?
We will not define this, but leave it to your intuition.
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◦ If I can remove a set with b objects from A, and have at least one object left over, let
c ∈N+ be the number of objects left over; then we define a +(−b ) = c .
◦ If I cannot remove a set with b objects from A, then let c ∈ N+ be the smallest

number of objects I would need to add to A so that I could remove b objects. This
satisfies the equation a + c = b ; we then define a +(−b ) =−c .

For multiplication, let a ∈N+ and b ∈Z.
• 0 · b = 0 and b ·0 = 0;
• a · b is the result of adding a copies of b , or

(((b + b )+ b )+ · · · b )︸ ︷︷ ︸
a

;

and
• (−a) · b =− (a · b ).

We won’t bother with a proof, but we assert that such an addition and multiplication are defined
for all integers, and satisfy the following properties:
• a + b = b + a and ab = ba for all a, b ∈N+ (the commutative property).
• a +(b + c) = (a + b )+ c and (ab ) c = a (b c) for all a, b , c ∈N+ (the associative property).
• a (b + c) = ab + ac for all a, b , c ∈Z (the distributive property).

Notation 0.12. For convenience, we usually write a− b instead of a +(−b ).

We have not yet talked about the additive inverses of additive inverses. Suppose b ∈ Z\N; by
definition, b is an additive inverse of some a ∈ N+, a + b = 0, and b = −a. Since we want
addition to satisfy the commutative property, we must have b + a = 0, which suggests that we
can think of a as the additive inverse of b , as well! That is, −b = a. Written another way,
− (−a) = a. This also allows us to define the absolute value of an integer,

|a|=
(

a, a ∈N,

−a, a 6∈N.

Orderings

We have said nothing about the “ordering” of the natural numbers; that is, we do not “know”
yet whether 1 comes before 2, or vice versa. However, our definition of adding negatives has
imposed a natural ordering.

Definition 0.13. For any two elements a, b ∈Z, we say that:
• a ≤ b if b − a ∈N;
• a > b if b − a 6∈N;
• a < b if b − a ∈N+;
• a ≥ b if b − a 6∈N+.

So 3< 5 because 5−3 ∈N+. Notice how the negations work: the negation of < is not >.

Remark 0.14. Do not yet assume certain “natural” properties of these orderings. For example,
it is true that if a ≤ b , then either a < b or a = b . But why? You can reason to it from the
definitions given here, so you should do so.
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More importantly, you cannot yet assume that if a ≤ b , then a + c ≤ b + c . You can reason
to this property from the definitions, and you will do so in the exercises.

Some orderings enjoy special properties.

Definition 0.15. Let S be any set. A linear ordering on S is a relation∼
where for any a, b ∈ S one of the following holds:

a ∼ b , a = b , or b ∼ a.

Suppose we define a relation on the subsets of a set S by inclusion; that is, A∼ B if and only if
A⊆ B . This relation is not a linear ordering, since

{a, b} 6⊆ {c , d}, {a, b} 66= {c , d}, and {c , d} 6⊆ {a, b}.
By contrast, the orderings of Z are linear.

Theorem 0.16. The relations <, >, ≤, and ≥ are linear orderings of Z.

Our “proof” relies on some unspoken assumptions: in particular, the arithmetic on Z that we
described before. Try to identify where these assumptions are used, because when you write your
own proofs, you have to ask yourself constantly: Where am I using unspoken assumptions? In
such places, either the assertion must be something accepted by the audience,4 or you have to cite
a reference your audience accepts, or you have to prove it explicitly. It’s beyond the scope of this
course to discuss these assumptions in detail, but you should at least try to find them.

Proof. We show that < is linear; the rest are proved similarly.
Let a, b ∈ Z. Subtraction is closed for Z, so b − a ∈ Z. By definition, Z = N+ ∪ {0} ∪

{−1,−2, . . .}. Since b −a must be in one of those three subsets, let’s consider each possibility.

• If b − a ∈N+, then a < b .
• If b −a = 0, then recall that our definition of subtraction was that b −a = b +(−a). Since

b + (−b ) = 0, reasoning on the meaning of natural numbers tells us that −a = −b , and
thus a = b .
• Otherwise, b − a ∈ {−1,−2, . . .}. By definition, − (b − a) ∈N+. We know that (b − a)+

[− (b − a)] = 0. It is not hard to show that (b − a) + (a− b ) = 0, and reasoning on the
meaning of natural numbers tells us again that a− b =− (b − a). In other words, and thus
b < a.

We have shown that a < b , a = b , or b < a. Since a and b were arbitrary in Z, < is a linear
ordering.

It should be easy to see that the orderings and their linear property apply to all subsets of Z, in
particular N+ and N. That said, this relation behaves differently in N than it does in Z.

Linear orderings are already special, but some are extra special.

Definition 0.17. Let S be a set and ≺ a linear ordering on S. We say that
≺ is a well-ordering if

Every nonempty subset T of S has a smallest element a;
that is, there exists a ∈ T such that for all b ∈ T , a ≺ b or a = b .

4In your case, the instructor is the audience.
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Example 0.18. The relation< is not a well-ordering of Z, because Z itself has no smallest element
under the ordering.

Why not? Proceed by way of contradiction. Assume that Z has a smallest element, and call it
a. Certainly a−1 ∈Z also, but

(a−1)− a =−1 6∈N+,

so a 6< a− 1. Likewise a 6= a− 1. This contradicts the definition of a smallest element, so Z is
not well-ordered by <.

We now assume, without proof, the following principle.
The relations < and ≤ are well-orderings of N.

That is, any subset of N, ordered by these orderings, has a smallest element. This may sound
obvious, but it is very important, and what is remarkable is that no one can prove it.5 It is an
assumption about the natural numbers. This is why we state it as a principle (or axiom, if you
prefer). In the future, if we talk about the well-ordering of N, we mean the well-ordering <.

One consequence of the well-ordering property is the following fact.

Theorem 0.19. Let a1 ≥ a2 ≥ · · · be a nonincreasing sequence of natural
numbers. The sequence eventually stabilizes; that is, at some index i ,
ai = ai+1 = · · · .

Proof. Let T = {a1,a2, . . .}. By definition, T ⊆N. By the well-ordering principle, T has a least
element; call it b . Let i ∈ N+ such that ai = b . The definition of the sequence tells us that
b = ai ≥ ai+1 ≥ · · · . Thus, b ≥ ai+k for all k ∈N. Since b is the smallest element of T , we know
that ai+k ≥ b for all k ∈N. We have b ≥ ai+k ≥ b , which is possible only if b = ai+k . Thus,
ai = ai+1 = · · · , as claimed.

Another consequence of the well-ordering property is the principle of:

Theorem 0.20 (Mathematical Induction). Let P be a subset of N+. If P
satisfies (IB) and (IS) where
(IB) 1 ∈ P ;
(IS) for every i ∈ P , we know that i + 1 is also in P ;
then P = N+.

There are several versions of mathematical induction that appear: generalized induction, strong
induction, weak induction, etc. We present only this one as a theorem, but we use the others
without comment.

Proof. Let S = N+\P . We will prove the contrapositive, so assume that P 6= N+. Thus S 6= ;.
Note that S ⊆N+. By the well-ordering principle, S has a smallest element; call it n.

• If n = 1, then 1 ∈ S, so 1 6∈ P . Thus P does not satisfy (IB).

5You might try to prove the well-ordering of N using induction. You would in fact succeed, but that requires
you to assume induction. Why is induction true? In fact, you cannot explain that induction is true without the
well-ordering of N. In other words, well-ordering is equivalent to induction: each implies the other.
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Claim: Explain precisely why 0< a for any a ∈N+, and 0≤ a for any a ∈N.
Proof:

1. Let a ∈N+ be arbitrary.
2. By _____, a + 0 = a.
3. By _____, 0 =−0.
4. By _____, a +(−0) = a.
5. By definition of _____, a−0 = a.
6. By _____, a−0 ∈N+.
7. By definition of _____, 0< a.
8. A similar argument tells us that if a ∈N, then 0≤ a.

Figure 0.1. Material for Exercise 0.21

• If n 6= 1, then n > 1 by the properties of arithmetic. Since n is the smallest element of S
and n− 1 < n, we deduce that n− 1 6∈ S. Thus n− 1 ∈ P . Let i = n− 1; then i ∈ P and
i + 1 = n 6∈ P . Thus P does not satisfy (IS).

We have shown that if P 6= N+, then P fails to satisfy at least one of (IB) or (IS). This is the
contrapositive of the theorem.

Induction is an enormously useful tool, and we will make use of it from time to time. You
may have seen induction stated differently, and that’s okay. There are several kinds of induction
which are all equivalent. We use the form given here for convenience.

Exercises.

In this first set of exercises, we assume that you are not terribly familiar with creating and writing
proofs, so we provide a few outlines, leaving blanks for you to fill in. As we proceed through
the material, we expect you to grow more familiar and comfortable with thinking, so we provide
fewer outlines, and in the outlines that we do provide, we require you to fill in the blanks with
more than one or two words.

Exercise 0.21.
(a) Fill in each blank of Figure 0.1 with the justification.
(b) Why would someone writing a proof of the claim think to look at a−0?
(c) Why would that person start with a + 0 instead?

Exercise 0.22.
(a) Fill in each blank of Figure 0.2 with the justification.
(b) Why would someone writing a proof of this claim think to look at the values of a− b and

b − a?
(c) Why is the introduction of S essential, rather than a distraction?

Exercise 0.23. Let a ∈Z. Show that:
(a) a < a + 1;
(b) if a ∈N, then 0≤ a; and
(c) if a ∈N+, then 1≤ a.
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Claim: We can order any subset of Z linearly by <.
Proof:

1. Let S ⊆Z.
2. Let a, b ∈_____. We consider three cases.
3. If a− b ∈N+, then by a < b by _____.
4. If a− b = 0, then simple arithmetic shows that _____.
5. Otherwise, a− b ∈Z\N. By definition of opposites, b − a ∈_____.

(a) Then a < b by _____.
6. We have shown that we can order a and b linearly. Since a and b were arbitrary in _____,

we can order any two elements of that set linearly.

Figure 0.2. Material for Exercise 0.22

Exercise 0.24. Let a, b , c ∈Z.
(a) Prove that if a ≤ b , then a = b or a < b .
(b) Prove that if both a ≤ b and b ≤ a, then a = b .
(c) Prove that if a ≤ b and b ≤ c , then a ≤ c .

Exercise 0.25. Let a, b ∈N and assume that 0< a < b . Let d = b − a. Show that d < b .

Exercise 0.26. Let a, b , c ∈Z and assume that a ≤ b . Prove that
(a) a + c ≤ b + c ;
(b) if c ∈N+, then a ≤ ac ; and
(c) if c ∈N+, then ac ≤ b c .

Note: You may henceforth assume this for all the inequalities given in Definition 0.13.

Exercise 0.27. Let S ⊆N. We know from the well-ordering property that S has a smallest ele-
ment. Prove that this smallest element is unique.

Exercise 0.28. Show that > is not a well-ordering of N.

Exercise 0.29. Show that the ordering < of Z generalizes “naturally” to an ordering < of Q that
is also a linear ordering.

Exercise 0.30. By definition, a function is a relation. Can a function be an equivalence relation?

Exercise 0.31.
(a) Fill in each blank of Figure 0.3 with the justification.
(b) Why would someone writing a proof of the claim think to write that ai < ai+1?
(c) Why would someone want to look at the smallest element of A?

Definition 0.32. Let f : S→ U be a mapping of sets.
• We say that f is one-to-one if for every a, b ∈ S where f (a) =

f (b ), we have a = b .
• We say that f is onto if for every x ∈ U , there exists a ∈ S such

that f (a) = x.
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Let S be a well-ordered set.
Claim: Every strictly decreasing sequence of elements of S is finite.
Proof:

1. Let a1,a2, . . . ∈_____.
(a) Assume that the sequence is _____.
(b) In other words, ai+1 < ai for all i ∈_____.

2. By way of contradiction, suppose the sequence is _____.
(a) Let A = {a1,a2, . . .}.
(b) By definition of _____, A has a smallest element. Let’s call that smallest element b .
(c) By definition of _____, b = ai for some i ∈N+.
(d) By _____, ai+1 < ai .
(e) By definition of _____, ai+1 ∈A.
(f ) This contradicts the choice of b as the _____.

3. The assumption that the sequence is _____ is therefore not consistent with the assumption
that the sequence is _____.

4. As claimed, then, _____.

Figure 0.3. Material for Exercise 0.31

Exercise 0.33. Suppose that f : S→ U is a one-to-one, onto function. Let g : U → S by

g (u) = s ⇐⇒ f (s) = u.

(a) Show that g is also a one-to-one, onto function.
(b) Show that g undoes f , in the sense that for any s ∈ S, we have g ( f (s)) = s .

This justififies the notation of an inverse function; if two functions f and g satisfy the relation-
ship of Exercise 0.33, then each is the inverse function of the other, and we write g = f −1 and

f = g−1. Notice how this implies that f =
�

f −1
�−1

.

0.2: Division

Before looking at algebraic objectrs, we need one more property of the integers.

The Division Theorem

The last “arithmetic operation” that you know about is division, but this operation is. . . “in-
teresting”.

Theorem 0.34 (The Division Theorem for Integers). Let n, d ∈ Z with
d 6= 0. There exist unique q ∈ Z and r ∈ Z satisfying (D1) and (D2)
where
(D1) n = qd + r ;
(D2) 0≤ r < |d |.

One implication of this theorem is that division is not an operation on Z! An operation on Z is a
relation f : Z×Z→ Z, but the quotient and remainder imply that division is a relation of the
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form ÷ : (Z× (Z\{0}))→Z×Z. That is not a binary operation on Z. We explore this further
in a moment, but for now let’s turn to a proof of the theorem.

Proof. We consider two cases: d ∈N+, and d ∈Z\N. First we consider d ∈N+; by definitino
of absolute value, |d | = d . We must show two things: first, that q and r exist; second, that r is
unique.

Existence of q and r : First we show the existence of q and r that satisfy (D1). Let S =
{n− qd : q ∈Z} and M = S ∩N. You will show in Exercise 0.51 that M is non-empty. By the
well-ordering of N, M has a smallest element; call it r . By definition of S, there exists q ∈Z such
that n− qd = r . Properties of arithmetic imply that n = qd + r .

Does r satisfy (D2)? By way of contradiction, assume that it does not; then |d | ≤ r . We had
assumed that d ∈N+, so Exercises 0.21 and 0.25 implies that 0 ≤ r − d < r . Rewrite property
(D1) using properties of arithmetic:

n = qd + r

= qd + d +(r − d )

= (q + 1) d +(r − d ) .

Rewrite this as r − d = n− (q + 1) d , which shows that r − d ∈ S. Recall 0 ≤ r − d ; by defi-
nition, r − d ∈N. We have r − d ∈ S and r − d ∈N, so r − d ∈ S ∩N = M . But recall that
r − d < r , which contradicts the choice of r as the smallest element of M . This contradiction
implies that r satisfies (D2).

Hence n = qd + r and 0≤ r < d ; q and r satisfy (D1) and (D2).

Uniqueness of q and r : Suppose that there exist q ′, r ′ ∈Z such that n = q ′d + r ′ and 0≤ r ′ <
d . By definition of S, r ′ = n− q ′d ∈ S; by assumption, r ′ ∈N, so r ′ ∈ S ∩N = M . We chose r
to be minimal in M , so 0≤ r ≤ r ′ < d . By substitution,

r ′− r =
�

n− q ′d
�− (n− qd )

=
�

q− q ′
�

d .

Moreover, r ≤ r ′ implies that r ′− r ∈ N, so by substitution,
�

q− q ′
�

d ∈ N. Similarly, 0 ≤
r ≤ r ′ implies that 0 ≤ r ′− r ≤ r ′. By substitution, 0 ≤ �q− q ′

�
d ≤ r ′. Since d ∈ N+, it

must be that q − q ′ ∈ N also (repeated addition of a negative giving a negative), so 0 ≤ q − q ′.
If 0 6= q − q ′, then 1 ≤ q − q ′. By Exercise 0.26, d ≤ �q− q ′

�
d . By Exercise 0.24, we see that

d ≤ �q− q ′
�

d ≤ r ′ < d . This states that d < d , a contradiction. Hence q − q ′ = 0, and by
substitution, r − r ′ = 0.

We have shown that if 0 < d , then there exist unique q , r ∈ Z satisfying (D1) and (D2). We
still have to show that this is true for d < 0. In this case, 0< |d |, so we can find unique q , r ∈Z

such that n = q |d |+ r and 0 ≤ r < |d |. By properties of arithmetic, q |d | = q (−d ) = (−q) d ,
so n = (−q) d + r .
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Definition 0.35 (terms associated with division). Let n, d ∈ Z and sup-
pose that q , r ∈Z satisfy the Division Theorem. We call n the dividend,
d the divisor, q the quotient, and r the remainder.

Moreover, if r = 0, then n = qd . In this case, we say that d divides
n, and write d | n. We also say that n is divisible by d . If we cannot find
such an integer q , then d does not divide n, and we write d ∤ n.

In the past, you have probably heard of this as “divides evenly.” In advanced mathematics, we
typically leave off the word “evenly”.

As noted, division is not a binary operation on Z, or even on Z\{0}. That doesn’t seem
especially tidy, so we define a set that allows us to make an operation of division:
• the rational numbers, sometimes called the fractions, Q =

�
a/b : a, b ∈Z and b 6= 0

	
.

We observe the conventions that a/1 = a and a/b = c/d if ad = b c . This makes division into
a binary operation on Q\{0}, though not on Q since division by zero remains undefined.

Remark 0.36. Why do we insist that b 6= 0? Basically, it doesn’t make sense. The very idea of
division means that if a/b = c , then a = b c . So, let a/0 = c . In that case, a = 0c . This is true
only if a = 0, so we can’t have b = 0. On the other hand, this reasoning doesn’t apply to 0/0, so
what about allowing that to be in Q? Actually, that offends our notion of an operation! Why?
because if we put 0/0 ∈Q, it is not hard to show that both 0/0 = 1 and 0/0 = 2 , which would
imply that 1 = 2!

We have built a chain of sets N+ ( N ( Z ( Q, extending each set with some useful ele-
ments. Even this last extension of this still doesn’t complete arithmetic, since the fundamental
Pythagorean Theorem isn’t closed in Q! Take a right triangle with two legs, each of length 1; the
hypotenuse must have length

p
2. As we show later in the course, this number is not rational!

That means we cannot compute all measurements along a line using Q alone. This motivates a
definition to remedy the situation:
• the real numbers contain a number for every possible measurement of distance along a

line.6

We now have
N+ (N(Z(Q(R.

In the exercises, you will generalize the ordering < to the set Q. As for an ordering on R, we
leave that to a class in analysis, but you can treat it as you have in the past.

Do we need anything else? Indeed, we do: before long, we will see that even these sets are
insufficient for algebra.

Equivalence classes

Recall that an equivalence relation satisfies the reflexive, symmetric, and transitive properties.
Under an equivalence relation, different elements of a set are considered “equivalent”.

Example 0.37. Let ∼ be a relation on Z such that a ∼ b if and only if a and b have the same
remainder after division by 4. Then 7∼ 3 and 7∼ 19 but 7 6∼ 6.

6Speaking precisely, R is the set of limits of “nice sequences” of rational numbers. By “nice”, we mean that the
elements of the sequence eventually grow closer together than any rational number. The technical term for this is a
Cauchy sequence. For more on this, see any textbook on real analysis.
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We will find it very useful to group elements that are equivalent under a certain relation.

Definition 0.38. Let ∼ be an equivalence relation on a set A, and let
a ∈A. The equivalence class of a in A with respect to ∼ is

[a] = {b ∈ S : a ∼ b} .

Example 0.39. Continuing our example above, 3,19 ∈ [7] but 6 6∈ [7].

It turns out that equivalence relations partition a set! We will prove this in a moment, but we
should look at a concrete example first.

Normally, we think of the division of n by d as dividing a set of n objects into q groups,
where each group contains d elements, and r elements are left over. For example, n = 23 apples
divided among d = 6 bags gives q = 3 apples per bag and r = 5 apples left over.

Another way to look at division by d is that it divides Z into d sets of integers. Each integer
falls into a set according to its remainder after division. An illustration using n = 4:

Z: . . . -2 -1 0 1 2 3 4 5 6 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

division by 4: . . . 2 3 0 1 2 3 0 1 2 . . .
Here Z is divided into four sets

A = {. . . ,−4,0,4,8, . . .}= [0]
B = {. . . ,−3,1,5,9, . . .}= [1]
C = {. . . ,−2,2,6,10, . . .}= [2]
D = {. . . ,−1,3,7,11, . . .}= [3] .

(1)

Observe two important facts:
• the sets A, B , C , and D cover Z; that is,

Z = A∪B ∪C ∪D ;

and
• the sets A, B , C , and D are disjoint; that is,

A∩B = A∩C = A∩D = B ∩C = B ∩D = C ∩D = ;.

We can diagram this:

Z =

A
B
C
D

This should remind you of a partition! (Definition 0.6)

Example 0.40. Let B = {A,B ,C , D} where A, B , C , and D are defined as in (1). Since the
elements of B are disjoint, and they cover Z, we conclude that B is a partition of Z.

A more subtle property is at work here: division has actually produced for us an equivalence
relation on the integers.
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Theorem 0.41. Let d ∈Z\{0}, and define a relation ≡d in the following
way: for any m, n ∈ Z, we say that m ≡d n if and only if they have the
same remainder after division by d . This is an equivalence relation.

Proof. We have to prove that ≡d is reflexive, symmetric, and transitive.
Reflexive? Let n ∈Z. The Division Theorem tells us that the remainder of division of n by d

is unique, so n ≡d n.
Symmetric? Let m, n ∈Z, and assume that m ≡d n. This tells us that m and n have the same

remainder after division by d . It obviously doesn’t matter whether we state m first or n first; we
can just as well say that n and m have the same remainder after division by d . That is, n ≡d m.

Transitive? Let ℓ, m, n ∈Z, and assume that ℓ≡d m and m ≡d n. This tells us that ℓ and m
have the same remainder after division by d , and m and n have the same remainder after division
by d . The Division Theorem tells us that the remainder of division of n by d is unique, so ℓ and
n have the same remainder after division by d . That is, ℓ≡d n.

We have seen that division induces both a partition and an equivalence relation. Do equivalence
relations always coincide with partitions? Surprisingly, yes!

Theorem 0.42. An equivalence relation partitions a set, and any parti-
tion of a set defines an equivalence relation.

Actually, it isn’t so surprising if you understand the proof, or even if you just think about the
meaning of an equivalence relation. The reflexive property implies that every element is in rela-
tion with itself, and the other two properties help ensure that no element can be related to two
elements that are not themselves related. The proof provides some detail.

Proof. Does any partition of any set define an equivalence relation? Let S be a set, andB a partition
of S. Define a relation ∼ on S in the following way: x ∼ y if and only if x and y are in the same
element of B. That is, if X ∈ B is the set such that x ∈X , then y ∈X as well.

We claim that ∼ is an equivalence relation. It is reflexive because a partition covers the set;
that is, S =

⋃
B∈B, so for any x ∈ S, we can find B ∈ B such that x ∈ B , which means the

statement that “x is in the same element of B as itself” (x ∼ x) actually makes sense. The relation
is symmetric because x ∼ y means that x and y are in the same element of B, which is equivalent
to saying that y and x are in the same element of B; after all, set membership is not affected by
which element we list first. So, if x ∼ y, then y ∼ x. Finally, the relation is transitive because
distinct elements of a partition are disjoint. Let x, y, z ∈ S, and assume x ∼ y and y ∼ z. Choose
X ,Z ∈ B such that x ∈ X and z ∈ Z . The symmetric property tells us that z ∼ y, and the
definition of the relation implies that y ∈ X and y ∈ Z . The fact that they share a common
element tells us that X and Z are not disjoint (X ∩Z 6= ;). By the definition of a partition, X and
Z are not distinct.

Does an equivalence relation partition a set? Let S be a set, and ∼ an equivalence relation on
S. If S is empty, the claim is vacuously true, so assume S is non-empty. Let x ∈ S. Notice that
[x ] 6= ;, since the reflexive property of an equivalence relation guarantees that x ∼ x, which
implies that x ∈ [x ].

Let B be the set of all equivalence classes of elements of x; that is, B = {[x ] : x ∈ S}. We have
already seen that every x ∈ S appears in its own equivalence class, so B covers S. Are distinct
equivalence classes also disjoint?
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Let X ,Y ∈ B and assume that assume that X ∩Y 6= ;; this means that we can choose z ∈
X ∩Y . By definition, X = [x ] and Y = [y ] for some x, y ∈ S. By definition of X = [x ] and
Y = [y ], we know that x ∼ z and y ∼ z. Now let w ∈X be arbitary; by definition, x ∼ w; by the
symmetric property of an equivalence relation, w ∼ x and z ∼ y; by the transitive property of an
equivalence relation, w ∼ z, and by the same reasoning, w ∼ y. Since w was an arbitrary element
of X , every element of X is related to y; in other words, every element of X is in [y ] = Y , so
X ⊆ Y .

A similar argument shows that X ⊇ Y . By definition of set equality, X = Y . We took
two arbitrary equivalence classes of S, and showed that if they were not disjoint, then they were
not distinct. The contrapositive states that if they are distinct, then they are disjoint. Since the
elements of B are equivalence classes of S, we conclude that distinct elements of B are disjoint.
They also cover S, so as claimed, B is a partition of S induced by the equivalence relation.

Exercises.

Exercise 0.43. Identify the quotient and remainder when dividing:
(a) 10 by −5;
(b) −5 by 10;
(c) −10 by −4.

Exercise 0.44. Prove that if a ∈Z, b ∈N+, and a | b , then a ≤ b .

Exercise 0.45. Show that a ≤ |a| for all a ∈Z.

Exercise 0.46. Show that divisibility is transitive for the integers; that is, if a, b , c ∈Z, a | b , and
b | c , then a | c .

Exercise 0.47. Extend the definition of < so that we can order rational numbers. That is, find a
criterion on a, b , c , d ∈Z that tells us when a/b < c/d .

Definition 0.48. We define lcm, the least common multiple of two in-
tegers, as

lcm (a, b ) = min
�

n ∈N+ : a | n and b | n	 .

This is a precise definition of the least common multiple that you should
already be familiar with: it’s the smallest (min) positive (n ∈N+) multi-
ple of a and b (a | n, and b | n).

Exercise 0.49.
(a) Fill in each blank of Figure 0.4 with the justification.
(b) One part of the proof claims that “A similar argument shows that b | r .” State this argu-

ment in detail.

Exercise 0.50. Define a relation ≡ on Q, the set of real numbers, in the following way:
a ≡ b if and only if a− b ∈Z.
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Let a, b , c ∈Z.
Claim: If a and b both divide c , then lcm (a, b ) also divides c .
Proof:

1. Let d = lcm (a, b ). By _____, we can choose q , r such that c = qd + r and 0≤ r < d .
2. By definition of _____, both a and b divide d .
3. By definition of _____, we can find x, y ∈Z such that c = ax and d = ay.
4. By _____, ax = q (ay)+ r .
5. By _____, r = a (x− qy).
6. By definition of _____, a | r . A similar argument shows that b | r .
7. We have shown that a and b divide r . Recall that 0 ≤ r < d , and _____. By definition of

lcm, r = 0.
8. By _____, c = qd = qlcm (a, b ).
9. By definition of _____, lcm (a, b ) divides c .

Figure 0.4. Material for Exercise 0.49

(a) Give some examples of rational numbers that are related. Include examples where a and b
are not themselves integers.

(b) Show that that a ≡ b if they have the same fractional part. That is, if we write a and b in
decimal form, we see exactly the same numbers on the right hand side of the decimal point,
in exactly the same order. (You may assume, without proof, that we can write any rational
number in decimal form.)

(c) Is ≡ an equivalence relation?
For any a ∈Q, let Sa be the set of all rational numbers b such that a ≡ b . We’ll call these new

sets classes.
(d) Is every a ∈Q an element of some class? Why?
(e) Show that if Sa 6= Sb , then Sa ∩ Sb = ;.

Exercise 0.51.
(a) Fill in each blank of Figure 0.5 with the justification.
(b) Why would someone writing a proof of the claim think to look at n− qd ?
(c) Why would this person want to find a value of q?

Exercise 0.52. Let X and Y on the lattice L = Z×Z. Let’s say that addition is performed as with
vectors:

X + Y = (x1 + y1, x2 + y2) ,

multiplication is performed by this very odd definition:

X ·Y = (x1y1− x2y2, x1y2 + x2y1) ,

and the magnitude of a point is devided by the usual Euclidean metric,

‖X ‖=
q

x2
1
+ x2

2
.

(a) Suppose D = (3,1). Calculate (c , 0) ·D for several different values of c . How would you
describe the results geometrically?
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Let n, d ∈Z, where d ∈N+. Define M = {n− qd : q ∈Z}.
Claim: M ∩N 6= ;.
Proof: We consider two cases.

1. First suppose n ∈N.
(a) Let q =_____. By definition of Z, q ∈Z.

(You can reverse-engineer this answer if you look down a little.)
(b) By properties of arithmetic, qd =_____.
(c) By _____, n− qd = n.
(d) By hypothesis, n ∈_____.
(e) By _____, n− qd ∈Z.

2. It’s possible that n 6∈N, so now let’s assume that, instead.
(a) Let q =_____. By definition of Z, q ∈Z.

(Again, you can reverse-engineer this answer if you look down a little.)
(b) By substitution, n− qd =_____.
(c) By _____, n− qd =−n (d −1).
(d) By _____, n 6∈N, but it is in Z. Hence, −n ∈N+.
(e) Also by _____, d ∈N+, so arithmetic tells us that d −1 ∈N.
(f ) Arithmetic now tells us that −n (d −1) ∈N. (pos×natural=natural)
(g) By _____, n− qd ∈Z.

3. In both cases, we showed that n− qd ∈N. By definition of _____, n− qd ∈M .
4. By definition of _____, n− qd ∈M ∩N.
5. By definition of _____, M ∩N 6= ;.

Figure 0.5. Material for Exercise 0.51

(b) With the same value of D , calculate (0, c) D for several different values of c . How would
you describe the results geometrically?

(c) Suppose N = (10,4), D = (3,1), and R = N − (3,0) ·D . Show that ‖R‖< ‖D‖.
(d) Suppose N = (10,4), D = (1,3), and R = N − (3,3) ·D . Show that ‖R‖< ‖D‖.
(e) Use the results of (a) and (b) to provide a geometric description of how N , D , and R are

related in (c) and (d).
(f) Suppose N = (10,4) and D = (2,2). Find Q such that if R = N −Q ·D , then ‖R‖< ‖D‖.

Try to build on the geometric ideas you gave in (e).
(g) Show that for any N , D ∈ L with D 6= (0,0), you can find Q, R ∈ L such that N ·D + R

and ‖R‖< ‖D‖. Again, try to build on the geometric ideas you gave in (e).

0.3: Linear algebra

Linear algebra is the study of algebraic objects related to linear polynomials. It includes not
only matrices and operations on matrices, but vector spaces, bases, and linear transformations.
For the most part, we will focus on matrices and on linear transformations.

Matrices
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Definition 0.53. An m× n matrix is a list of m lists (rows) of n num-
bers. If m = n, we call the matrix square, and say that the dimension of
the matrix is m.

Notation 0.54. We write the j th element of row i of the matrix A as ai j . If ai j = 0 and we are
especially lazy, then we often omit writing it in the matrix. If the dimension of A is m, then we
write dimA = m.

Example 0.55. If

A =




1 1
1
5 1


 ,

then a21 = 0 while a32 = 5. Notice that A is a 3×3 matrix; or, dimA = 3.

Definition 0.56. The transpose of a matrix A is the matrix B satisfying
bi j = a j i . In other words, the j th element of row i of B is the i th element

of row j of A. A column of a matrix is a row of its transpose.

Notation 0.57. We often write AT for the transpose of A.

Example 0.58. If A is the matrix of the previous example, then

AT =




1
1 5

1 1


 .

While non-square matrices are important, we consider mostly square matrices in this class, with
the exception of m× 1 matrices, which are also called column vectors. It is easy to define three
operations for matrices:

We add matrices by adding entries in the same row and column. That is, if A and B are m×n
matrices and C = A+ B , then ci j = ai j + bi j for all 1≤ i ≤ m and all 1≤ j ≤ n. Notice that C
is also an m× n matrix.

We subtract matrices in the same way.
We multiply matrices a little differently. If A is an m× r matrix, B is an r × n matrix, and

C = AB , then C is the m× n matrix whose entries satisfy

ci j =
n∑

k=1

ai k bk j ;

that is, the j th element in row i of C is the sum of the products of corresponding elements of
row i of A and column j of B .

Example 0.59. If A is the matrix of the previous example and

B =




1 5 −1
1
−5 1


 ,
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then

AB =




1 ·1 + 0 ·0 + 1 ·0 1 ·5 + 0 ·1 + 1 ·−5 1 ·−1 + 0 ·0 + 1 ·1
0 ·1 + 1 ·0 + 0 ·0 0 ·5 + 1 ·1 + 0 ·−5 0 ·−1 + 1 ·0 + 0 ·1
0 ·1 + 5 ·0 + 1 ·0 0 ·5 + 5 ·1 + 1 ·−5 0 ·−1 + 5 ·0 + 1 ·1




=




1
1

1


 .

If we take the matrices of the previous example and let I = AB , then something interesting
happens:

AI = I A = A and BI = I B = B .

The pattern of this matrix ensures that the property remains true for any matrix, as long as
you’re working in the correct dimension. That is, I is an “identity” matrix. In particular, it’s the
identity of multiplication. Is there another identity matrix? Certainly there is for addition; you
can probably guess that one yourself; just let the matrix contain only zeros.

Can there be another identity matrix for multiplication? In fact, there cannot. Rather than
show this directly, however, we will wait until Section 17. For now, we’ll consolidate our current
gains. First, some notation.

Notation 0.60.
• We write 0 (that’s a bold zero) for any matrix whose elements are all zero; that is, ai j = 0

for all 1≤ i , j ≤ dim0.
• We write In for the matrix of dimension n satisfying
◦ ai i = 1 for any i = 1,2, . . . , n; and
◦ ai j = 0 for any i 6= j .

Now, a formal statement of the result.

Theorem 0.61. The zero matrix 0 is an identity for matrix addition. The
matrix In is an identity for matrix multiplication.

Notice that there’s a bit of imprecision in this statement. You have to infer from the statement
that n ∈ N+, 0 is an n× n matrix, and we mean that 0 is an identity for addition when we’re
talking about other matrices of dimension n. We should not infer that the statement means that
0 is an identity for matrices of dimension m + 2; that would be silly, as the addition would be
undefined. When reading theorems, you sometimes have to read between the lines.

Proof. Let A be a matrix of dimension n. By definition, the j th element in row i of A+ 0 is
ai j + 0 = ai j . This is true regardless of the values of i and j , so A+ 0 = A. A similar argument
shows that 0+ A = A. Since A is arbitrary, 0 really is an additive identity.

As for In , we point out that the j th element of row i of AIn is (by definition of multiplication)
∑

k=1,...,m
k 6= j

ai k ·0 + ai j ·1.

Simplifying this gives us ai j . This is true regardless of the values of i and j , so AIn = A. A similar
argument shows that InA = A. Since A is arbitrary, In really is a multiplicative identity.
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Given a matrix A, an inverse of A is any matrix B such that A+ B = 0 (if B is an additive
inverse) and AB = In (if B is a multiplicative inverse). Additive inverses always exist, and it is easy
to construct them. Multiplicative inverses do not exist for some matrices, even when the matrix
is square. Because of this we call a matrix is invertible if it has a multiplicative matrix.

Notation 0.62. We write the additive inverse of a matrix A and−A, and the multiplicative inverse
of A as A−1.

Example 0.63. The matrices A and B of the previous example are inverses; that is, A = B−1 and
B = A−1.

We want one more property before we move on.

Theorem 0.64. Matrix multiplication is associative if the entries of the
matrices are associative under multiplication and commutative under ad-
dition. That is, if A, B , and C are matrices with those properties, then
A(BC ) = (AB)C .

Proof. Let A be an m× r matrix, B an r × s matrix, and C an s × n matrix. By definition, the
ℓth element in row i of AB is

(AB)iℓ =
r∑

k=1

ai k bkℓ.

Likewise, the j th element in row i of (AB)C is

((AB)C )i j =
s∑

ℓ=1

(AB)iℓ cℓ j =
s∑

ℓ=1



 

r∑

k=1

ai k bkℓ

!
cℓ j


 .

Notice that cℓ j is multiplied to a sum; we can distribute it and obtain

((AB)C )i j =
s∑

ℓ=1

r∑

k=1

(ai k bkℓ) cℓ j . (2)

We turn to the other side of the equation. By definition, the j th element in row k of BC is

(BC )k j =
s∑

ℓ=1

bkℓcℓ j .

Likewise, the j th element in row i of A(BC ) is

(A(BC ))i j =
r∑

k=1

 
ai k

s∑

ℓ=1

bkℓcℓ j

!
.

This time, ai k is multiplied to a sum; we can distribute it and obtain

(A(BC ))i j =
r∑

k=1

s∑

ℓ=1

ai k

�
bkℓcℓ j

�
.
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By the associative property of the entries,

(A(BC ))i j =
r∑

k=1

s∑

ℓ=1

(ai k bkℓ) cℓ j . (3)

The only difference between equations (2) and (3) is in the order of the summations: whether we
add up the k’s first or the ℓ’s first. That is, the sums have the same terms, but those terms appear
in different orders! We assumed the entries of the matrices were commutative under addition, so
the order of the terms does not matter; we have

((AB)C )i j = (A(BC ))i j .

We chose arbitrary i and j , so this is true for all entries of the matrices. The matrices are equal,
which means (AB)C = A(BC ),

Linear transformations

We can view matrices as a special sort of function over other matrices. A common example
of this is to consider the set D of n× 1 column vectors. If M is an n× n matrix, we can define a
function fM : D→ D by

fM (x) = Mx.

Read this as, “ fM maps x to the product of M and x.”

Example 0.65. If

M =




1 1
1
5 1


 and x =




1
3
−2


 ,

then

fM (x) = Mx =



−1

3
13


 .

This function is a special example of what we call a linear transformation. To define it pre-
cisely, we have to use the term vector space. If you do not remember that term, or never learned
it, first go slap whomever taught you linear algebra, then content yourself with the knowledge
that, in this class, it will be enough to know that any set D of all possible column vectors with n
rows is a vector space for any n ∈N+. Whatever that is. Then go slap your former linear algebra
teacher again.

Definition 0.66. Let V be a vector space over the real numbers R, and
f a function on V . We say that f is a linear transformation if it pre-
serves
• scalar multiplication, that is, f (av) = a f (v) for any a ∈ R and

any v ∈V , and
• vector addition, that is, f (u + v) = f (u) + f (v) for any u, v ∈

V .
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Eventually, you will learn about a special kind of function that works very similarly to linear
transformations, called a homomorphism. For now, let’s look at the classic example of a linear
transformation, a matrix.

Example 0.67. Recall M and x from Example 0.65. Let

y =




3
0
2


 .

Using the definitions of matrix addition and matrix multiplication, you can verify that

M (x+y) =




4
3
15


 ,

and also

Mx+ My =



−1

3
17


+




5
0
−2


=




4
3
15


 .

Now let a = 4. Using the definitions of matrix and scalar multiplication, you can verify that

M (ax) =



−4
12
68


 ,

and also

aMx = 4



−1

3
17


=



−4
12
68


 .

The example does not show that fM is a linear transformation, because we tested M only with
particular vectors x and y, and with a particular scalar a. To show that fM is a linear trasnforma-
tion, you’d have to show that fM preserves scalar multiplication and vector addition on all scalars
and vectors. Who has time for that? There are infinitely many of them, after all! Better to knock
it off with a theorem whose proof relies on symbolic, or “generic”, structure.

Theorem 0.68. For any matrix A of dimension n, the function fA on all
n×1 column vectors is a linear transformation.

Proof. Let A be a matrix of dimension n.

First we show that fA preserves scalar multiplication. Let c ∈ R and x be an n× 1 column
vector. By definition of scalar multiplication, the element in row i of cx is c xi . By definition of
matrix multiplication, the element in row i of A(cx) is

m∑

k=1

[ai k (c xk)] .
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Apply the commutative, associative, and distributive properties of the field to rewrite this as

c
m∑

k=1

ai k xk .

On the other hand, the element in row i of Ax is, by definition of matrix multiplication,

m∑

k=1

ai k xk .

If we multiply it by c , we find that A(cx) = cAx, as claimed.
We leave it to you to show that fA preserves vector addition; see Exercise 0.84.

An important aspect of a linear transformation is the kernel.

Definition 0.69. The kernel of a linear transformation f is the set of
vectors that are mapped to 0. In other words, the kernel is the set

{v ∈V : f (v) = 0} .

Notation 0.70. We write ker f for the kernel of f . We also write ker M when we mean ker fM .

Example 0.71. Let

M =




1 0 5
0 1 0
0 0 0


 .

Let

x =




1
2
1


 and y =



−5

0
1


 .

Since

Mx =




6
2
0


 and My =




0
0
0


= 0,

we see that x is not in the kernel of M , but y is. In fact, it can be shown (you will do so in the
exercises) that

ker M =



v ∈V : v =



−5c

0
c


 ∃c ∈ F



 .

The kernel has a lot of important and fascinating properties, but exploring them goes well beyond
the scope of this course.

Determinants

An important property of a square matrix A is its determinant, denoted by detA. We won’t
explain why it’s important here, beyond saying that it has the property of being invariant when
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you rewrite the matrix in certain ways (see, for example, Theorem 0.77). We don’t even define it
terribly precisely; we simply summarize what you ought to know:
• to every matrix, we can associate a unique scalar, called its determinant;
• we can compute the determinant using a technique called expansion by minors along any

row or column; and
• the determinant enjoys a number of useful properties, some of which are listed below.

Example 0.72. Recall the matrix A from Example (0.55). If we expand by minors on the first
row, we find that

detA = 1 · (−1)1+1

����
1 0
5 1

����+ 0 · (−1)1+2

����
0 0
0 1

����+ 1 · (−1)1+3

����
0 1
0 5

����
= 1.

We call a matrix singular if its determinant is zero, and nonsingular otherwise. The matrix A in
the example above is nonsingular.

We now summarize the properties of the determinant. One caveat: these properties are not
necessarily true if the entries of the matrices do not come from R. In many cases, they are true
when the entries come from other sets, but to go into the details requires more work than we
have time for here. One particular property that we state without proof is:

Proposition 0.73. The determinant of a matrix is invariant with respect
to the choice of row or column for the expansion by cofactors. That is, it
doesn’t matter which row or column of a matrix you choose; you always
get the same answer for that matrix.

Proving Proposition 0.73 would take a lot of time, and isn’t really useful for this course. Any
half-decent textbook on linear algebra will have the proof, so you can look it up there, if you like.

Notation 0.74. We write ai for the i th row of matrix A, and Aî ĵ for the submatrix of A formed

by removing row i and column j .

For the remaining properties, the proof is either an exercise, or appears in an appendix to this
section after the exercises.

Theorem 0.75. If B is the same as the square matrix A, except that row i
has been multiplied by a scalar c , then detB = c detA.

Proof. See page 30.

Theorem 0.76. For any square matrix A, detA = detAT .

Proof. You do it! See Exercise 0.88.

The next theorem requires some lesser properties, which we will relegate to the status of “lem-
mas”, as they aren’t quite so important, though they are interesting on their own. First, we state
the theorem.
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Theorem 0.77. If A is a square matrix and B is a matrix found by adding
a multiple of one row of A to another, then detA = detB .

Now, we state and prove each of the special properties we will need.

Lemma 0.78. If B is the same as the square matrix A, except that row i
has been exchanged with row j , then detB =−detA.

Proof. See page 30.

Lemma 0.79. If the square matrix A has two identical rows, then detA =
0.

Proof. See page 31.

Lemma 0.80. Let b1, . . . , bn ∈R. If

A =




a1
a2
...

an




and B =




a11 + b1 a12 + b2 · · · a1n + bn
a2
...

an




,

then

detB = detA+ det




b1 b2 · · · bn
a2
...

an




.

Proof. See page 32.

Theorem 0.81. A square matrix A is singular if and only if we can write
its first row as a linear combination of the others. That is, if we write ai
for the i th row of A and dimA = n, then we can find c2, . . . , cn ∈R such
that

a1 = c2a2 + · · ·+ cnan .

Proof. You do it! See Exercise 0.81.

Theorem 0.82. For any two matrices A and B of dimension n,
det (AB) = detA ·detB .

Proof. See page 32.
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Theorem 0.83. An inverse exists of a matrix A exists if and only if
detA 6= 0; that is, if and only if A is nonsingular.

Proof. You do it! See Exercise 0.83.

Exercises.

Exercise 0.84. Show that matrix multiplication distributes over a sum of vectors. In other words,
complete the proof of Theorem 0.68.

Exercise 0.85. Let

M =




1 1
1
5 −1


 and N =




1 0 5
0 1 0
0 0 0


 .

Show that
ker M = {0} ,

but

kerN =



v ∈V : v =



−5c

0
c


 ∃c ∈ F



 .

Exercise 0.86. Use Theorem 0.77 to prove Theorem 0.81. That is, show that a matrix is singular
if and only if we can write its first row as a linear combination of the others.

Exercise 0.87. Use Theorems 0.77 and 0.82 to prove Theorem 0.83. That is, show that a matrix
has an inverse if and only if its determinant is nonzero.

Exercise 0.88. Prove Theorem 0.76. That is, show that for any matrix A, detA = detAT .

Exercise 0.89. Show that detA−1 = (detA)−1.
Note: In the first, we have the inverse of a matrix; in the second, we have the inverse of a number!

Exercise 0.90. Let i be the imaginary number such that i2 =−1, and let Q8 be the set of quater-
nions, defined by the matrices

�±1,±i,±j,±k
	

where

1 =

�
1 0
0 1

�
, i =

�
i 0
0 −i

�
,

j =

�
0 1
−1 0

�
, k =

�
0 i
i 0

�
.

(a) Show that i2 = j2 = k2 =−1.
(b) Show that ij = k, jk = i, and ik =−j.
(c) Show that xy =−yx as long as x,y 6=±1.
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Exercise 0.91. A matrix A is orthogonal if its transpose is also its inverse. Let n ∈N+ and O (n)
be the set of all orthogonal n× n matrices.
(a) Show that this matrix is orthogonal:

�
cosα sinα
− sinα cosα

�
.

(b) Suppose A is orthogonal. Show that detA =±1.

Proofs of some properties of determinants.

Proof of Theorem 0.75. Let A and B satisfy the hypotheses. Write

A =




a1
...

ai−1
ai

ai+1
...

an




and B =




a1
...

ai−1
cai

ai+1
...

an




.

Expand the determinants of both matrices along row i ; then

detA =
n∑

j=1

ai j (−1)i+ j detAî ĵ ,

while

detB =
n∑

j=1

�
cai j

�
(−1)i+ j detAî ĵ .

Apply the distributive property to factor out the common c , and we have

detB = c
n∑

j=1

ai j (−1)i+ j detAî ĵ = c detA .

Proof of Lemma 28. We prove the lemma for the case i = 1 and j = 2; the other cases are similar.
We proceed by induction on the dimension n of the matrices.

For the inductive base, we consider n = 2; we have

A =

�
a b
c d

�
and B =

�
c d
a b

�
.

Expansion by cofactors gives us detA = ad − b c and detB = b c − ad . In other words, detA =
−detB .
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For the inductive hypothesis, we assume that for all matrices of dimension smaller than n,
exchanging the first two rows negates the determinant.

For the inductive step, expand detA along column 1. By definition,

detA =
n∑

i=1

ai1 (−1)i+1 detAî 1̂.

Rewrite so that the first two elements are not part of the sum:

detA = a11 (−1)1+1 detA1̂1̂ + a21 (−1)2+1 detA2̂1̂ +
n∑

i=3

ai1 (−1)i+1 detAî 1̂

= a11 detA1̂1̂− a21 detA2̂1̂ +
n∑

i=3

ai1 (−1)i+1 detAî 1̂.

In a similar way, we find that

detB = b11 detB1̂1̂− b21 detB2̂1̂ +
n∑

i=3

bi1 (−1)i+1 detBî 1̂.

Recall that the difference between A and B is that we exchanged the first two rows of A to obtain
B . Thus, b11 = a21, b21 = a11, B1̂1̂ = A2̂1̂, and B2̂1̂ = A1̂1̂ (it may take a moment to see why the
matrices have that relationship, but it’s not hard to see, in the end). For i ≥ 3, however, bi1 = ai1,
while Bî 1̂ is almost the same as Aî 1̂ — the difference except that the first two rows, a1 and a2, are
exchanged! The dimensions of these matrices are n− 1, so the inductive hypothesis applies, and
detBî 1̂ =−detAî 1̂.Making the appropriate substitutions, we find that

detB = a21 detA2̂1̂− a11 detA1̂1̂ +
n∑

i=3

ai1 (−1)i+1 �−detAî 1̂

�

=−

a11 detA1̂1̂ + a21 detA2̂1̂ +

n∑

i=3

ai1 (−1)i+1 �detAî 1̂

�



=−detA.

Proof of Lemma 28. Without loss of generality, we assume that the first two rows of the square
matrix A are identical; the other cases are similar. Construct a second matrix B by exchanging
the first two rows of A. We can write

A =




a1
a1
a3
...

an




and B =




a1
a1
a3
...

an




.

Notice that A = B ! By substitution, detA = detB . On the other hand, Lemma 0.78 implies that
detB =−detA. Thus, detA =−detA, so 2detA = 0, so detA = 0.
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Proof of Lemma 28. Expand the determinant of B along its first row to see that

detB =
n∑

j=1

�
a1 j + b j

�
(−1)1+ j detB1̂ ĵ .

The distributive, associative, and commutative properties allow us to rewrite this equation as

detB =
n∑

j=1

a1 j (−1)1+ j detB1̂ ĵ +
n∑

j=1

b j (−1)1+ j detB1̂ ĵ .

If you look at A and B , you will see that A1̂ ĵ = B1̂ ĵ for every j = 1, . . . , n: after all, the only

difference between A and B lies in the first row, which is by definition excluded from A1̂ ĵ and B1̂ ĵ .

By substitution, then,

detB = detA+ det




b1 b2 · · · bn
a2
...

an




,

as claimed.

Proof of Theorem 0.77. Without loss of generality, we may assume that we constructed B from
A by adding a multiple of the second row to the first. That is,

A =




a1
a2
...

an




and B =




a1 + ca2
a2
...

an




.

By Lemma 0.80,

detB = det




a1 + ca2
a2
...

an




= det




a1
a2
...

an




+ det




ca2
a2
...

an




.

Now apply Theorem 0.75 and Lemma 0.79 to see that

detB = detA+ c det




a2
a2
...

an




= detA+ c ·0 = detA.

Proof of Theorem 0.82. If detA = 0, then Theorem 0.81 tells us that we can find real numbers
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c2, . . . , cn such that a1 =
∑n

k=2
ckak . By properties of matrix multiplication,

a1B =

 
n∑

k=2

ckak

!
B =

n∑

k=2

ck (akB) .

Notice that ai B is the i th row of AB , so this new equation shows that the first row of AB is a
linear combination of the other rows. Theorem 0.81 again implies that det (AB) = 0.

Now suppose detA 6= 0. A fact of linear algebra that we do not repeat here is that we can
write

A = E1E2 · · ·Em ,

where we constrsuct each Ei by applying one of the operations of Theorem 0.75, Lemma 0.78,
or Lemma 0.80 to In . Thus,

det (AB) = det (E1 · · ·EmB) .

Let C = E2 · · ·EmB ; we have det (AB) = det (E1C ). We now consider three possible values of E1.
Case 1: If E1 is the result of swapping two rows of In , then det E1 = −1. On the other hand,

E1C is the same as C , except that two rows of C are swapped — the same two rows as in E1, in
fact. So det (E1C ) =−detC = det E1 ·detC .

Case 2: If E1 is the result of multiplying a row of In by a constant c ∈R, then det E1 = c . On
the other hand, E1C is the same as C , except that a row of C has been multiplied by a constant
c ∈R — the same row as in E1, in fact. So det (E1C ) = c detC = det E1 ·detC .

Case 3: If E1 is the result of adding a multiple of a row of In to another row, then det E1 =
det In = 1. On the other hand, E1C is the same as C , except that a multiple of a row of C has
been added to another row of C — the same two rows as E1, in fact, and the same multiple. So
det (E1C ) = detC = det E1 detC .

In each case, we found that det (E1C ) = det E1 detC . Thus, det (AB) = det E1 ·det (E2 · · ·EmB).
We now repeat this process for each of the Ei , obtaining

det (AB) = det E1 · · ·det Em detB = detAdetB .
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Part I

Monoids and groups



Chapter 1:
Monoids

Algebra was created to solve problems. Like other branches of mathematics, it started off
solving very applied problems of a certain type; that is, polynomial equations. When studying
algebra the last few years, you have focused on techniques necessary for solving the simplest
examples of polynomial equations: for example, factoring, isolating a variable, and taking roots.

These techniques work well for linear equations, and if you massage the problem a bit, they
work well for quadratic equations, too. It’s quite hard to apply these techniques to polynomials
of degree three and four, however, and impossible to apply them to all polynomials of degree five
or higher. You might say that these techniques do not scale well. Because of this, algebra took a
radically different turn in the 19th century (pun intended), one that develops not just techniques,
but structures and viewpoints that can be used to solve a vast array of problems, many of which
are surprisingly different.

This chapter introduces some new, but important algebraic ideas. We will try to be intuitive,
but don’t confuse “intuitive” with “vague”; we will maintain precision. We will use very concrete
examples. True, these examples are probably not as concrete as you might like, but believe me
when I tell you that the examples I will use are more concrete than the usual presentation. One
goal is to get you to use these examples when thinking about the more general ideas later on. It
will be important not only that you reproduce what you read here, but that you explore and play
with the ideas and examples, specializing or generalizing them as needed to attack new problems.

Success in this course will require you to balance these inductive and deductive approaches.

1.1: From integers and monomials to monoids

We now move from one set that you may consider to be “arithmetical” to another that you
will definitely recognize as “algebraic”. In doing so, we will notice a similarity in the mathemati-
cal structure. That similarity will motivate our first steps into modern algebra, with monoids.

Monomials

Let x represent an unknown quantity. The set of “univariate monomials in x” is

M = {xa : a ∈N} , (4)

where xa , a “monomial”, represents precisely what you’d think: the product of a copies of x. In
other words,

xa =
a∏

i=1

x = x · x · · · · · x︸ ︷︷ ︸
n times

.

We can extend this notion. Let x1, x2, . . . , xn represent unknown quantities. The set of
“multivariate monomials in x1, x2, . . . , xn” is

Mn =

(
m∏

i=1

�
x

ai1

1
x

ai2

2
· · · xai n

n

�
: m,ai j ∈N

)
. (5)
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(“Univariate” means “one variable”; “multivariate” means “many variables”.) For monomials, we
allow neither coefficients nor negative exponents. The definition of Mn indicates that any of its
elements is a “product of products”.

Example 1.1. The following are monomials:

x2, 1 = x0 = x0
1

x0
2
· · · x0

n
, x2y3xy4.

Notice from the last product that the variables need not commute under multiplication; that
depends on what they represent. This is consistent with the definition of Mn , each of whose
elements is a product of products. We could write x2y3xy4 in those terms as

�
x2y3

��
xy4
�

=
m∏

i=1

�
x

ai1

1
x

ai2

2

�

with m = 2, a11 = 2, a12 = 3, a21 = 1, and a22 = 4.

The following are not monomials:

x−1 =
1

x
,
p

x = x
1
2 ,

3
p

x2 = x
2
3 .

Similarities between M and N

We are interested in similarities between N and M. Why? Suppose that we can identify a
structure common to the two sets. If we make the obvious properties of this structure precise,
we can determine non-obvious properties that must be true about N, M, and any other set that
adheres to the structure.

If we can prove a fact about a structure,
then we don’t have to re-prove that fact for all its elements.

This saves time and increases understanding.
It is harder at first to think about general structures rather than concrete objects, but time, effort,
and determination bring agility.

To begin with, what operation(s) should we normally associate with M? We normally as-
sociate addition and multiplication with the natural numbers, but the monomials are not closed
under addition. After all, x2 + x4 is a polynomial, not a monomial. On the other hand, x2 · x4 is
a monomial, and in fact xa x b ∈M for any choice of a, b ∈N. This is true about monomials in
any number of variables.

Lemma 1.2. Let n ∈N+. Both M and Mn are closed under multiplica-
tion.

Proof for M. Let t , u ∈M. By definition, there exist a, b ∈N such that t = xa and u = x b .
By definition of monomial multiplication, we see that

t u = xa+b .
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Since addition is closed in N, the expression a + b simplifies to a natural number. Call this
number c . By substitution, t u = x c . This has the form of a univariate monomial; compare it
with the description of a monomial in equation (4). So, t u ∈M. Since we chose t and u to be
arbitrary elements of M, and found their product to be an element of M, we conclude that M is
closed under multiplication.

Easy, right? We won’t usually state all those steps explicitly, but we want to do so at least once.

What about Mn? The lemma claims that multiplication is closed there, too, but we haven’t
proved that yet. I wanted to separate the two, to show how operations you take for granted in the
univariate case don’t work so well in the multivariate case. The problem here is that the variables
might not commute under multiplication. If we knew that they did, we could write something
like,

t u = x
a1+b1

1
· · · xan+bn

n
,

so long as the a’s and the b ’s were defined correctly. Unfortunately, if we assume that the vairables
are commutative, then we don’t prove the statement for everything that we would like. This
requires a little more care in developing the argument. Sometimes, it’s just a game of notation, as
it will be here.

Proof for Mn . Let t , u ∈Mn . By definition, we can write

t =
mt∏

i=1

�
x

ai1

1
· · · xai n

n

�
and u =

mu∏

i=1

�
x

bi1

1
· · · x bi n

n

�
.

(We give subscripts to mt and mu because t and u might have a different number of elements
in their product. Since mt and mu are not the same symbol, it’s possible they have a different
value.) By substitution,

t u =

 
mt∏

i=1

�
x

ai1

1
· · · xai n

n

�! mu∏

i=1

�
x

bi1

1
· · · x bi n

n

�!
.

Intuitively, you want to declare victory; we’ve written t u as a product of variables, right? All we
see are variables, organized into two products.

Unfortunately, we’re not quite there yet. To show that t u ∈ Mn , we must show that we
can write it as one product of a list of products, rather than two. This turns out to be as easy as
making the symbols do what your head is telling you: two lists of products of variables, placed
side by side, make one list of products of variables. To show that it’s one list, we must identify
explicitly how many “small products” are in the “big product”. There are mt in the first, and mu
in the second, which makes mt + mu in all. So we know that we should be able to write

t u =
mt +mu∏

i=1

�
x

ci1

1
· · · x ci n

n

�
(6)

for appropriate choices of ci j . The hard part now is identifying the correct values of ci j .

In the list of products, the first few products come from t . How many? There are mt from t .
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The rest are from u. We can specify this precisely using a piecewise function:

ci j =

(
ai j , 1≤ i ≤ mt

bi j , mt < i .

Specifying ci j this way justifies our claim that t u has the form shown in equation (6). That satis-
fies the requirements of Mn , so we can say that t u ∈Mn . Since t and u were chosen arbitrarily
from Mn , it is closed under multiplication.

You can see that life is a little harder when we don’t have all the assumptions we would like to
make; it’s easier to prove that Mn is closed under multiplication if the variables commute under
multiplication; we can simply imitate the proof for M. You will do this in one of the exercises.

As with the proof for M, we were somewhat pedantic here; don’t expect this level of detail
all the time. Pedantry has the benefit that you don’t have to read between the lines. That means
you don’t have to think much, only recall previous facts and apply very basic logic. However,
pedantry also makes proofs long and boring. While you could shut down much of your brain
while reading a pedantic proof, that would be counterproductive. Ideally, you want to reader
to think while reading a proof, so shutting down the brain is bad. Thus, a good proof does not
recount every basic definition or result for the reader, but requires her to make basic recollections
and inferences.

Let’s look at two more properties.

Lemma 1.3. Let n ∈ N+. Multiplication in M satifies the commuta-
tive property. Multiplication in both M and Mn satisfies the associative
property.

Proof. We show this to be true for M; the proof for Mn we will omit (but it can be done as it
was above). Let t , u, v ∈M. By definition, there exist a, b , c ∈N such that t = xa , u = x b , and
v = x c . By definition of monomial multiplication and by the commutative property of addition
in M, we see that

t u = xa+b = x b+a = u t .

As t and u were arbitrary, multiplication of univariate monomials is commutative.

By definition of monomial multiplication and by the associative property of addition in N,
we see that

t (uv) = xa
�

x b x c
�

= xa x b+c

= xa+(b+c) = x(a+b )+c

= xa+b x c = (t u) v.

You might ask yourself, Do I have to show every step? That depends on what the reader needs
to understand the proof. In the equation above, it is essential to show that the commutative and
associative properties of multiplication in M depend strictly on the commutative and associative
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properties of addition in N. Thus, the steps

xa+b = x b+a and xa+(b+c) = x(a+b )+c ,

with the parentheses as indicated, are absolutely crucial, and cannot be omitted from a good proof.7

Another property the natural numbers have is that of an identity: both additive and multi-
plicative. Since we associate only multiplication with the monomials, we should check whether
they have a multiplicative identity. I hope this one doesn’t surprise you!

Lemma 1.4. Both M and Mn have 1 = x0 = x0
1

x0
2
· · · x0

n
as a multiplica-

tive identity.

We won’t bother proving this one, but leave it to the exercises.

Monoids

There are quite a few other properties that the integers and the monomials share, but the
three properties we have mentioned here are already quite interesting, and as such are precisely
the ones we want to highlight. This motivates the following definition.

Definition 1.5. Let M be a set, and ◦ an operation on M . We say that the
pair (M ,◦) is a monoid if it satisfies the following properties:
(closed) for any x, y ∈M , we have x ◦ y ∈M ;
(associative) for any x, y, z ∈M , we have (x ◦ y) ◦ z = x ◦ (y ◦ z); and
(identity) there exists an identity element e ∈ M such that for any

x ∈M , we have e ◦ x = x ◦ e = x.
We may also say that M is a monoid under ◦.

So far, then, we know the following:

Theorem 1.6. N is a monoid under both addition and multiplication,
while M and Mn are monoids under multiplication.

Proof. For N, this is part of its definition. For M and Mn , see Lemmas 1.2, 1.3, and 1.4.

Generally, we don’t write the operation in conjunction with the set; we write the set alone,
leaving it to the reader to infer the operation. In some cases, this might lead to ambiguity; after
all, both (N,+) and (N,×) are monoids, so which should we prefer? We will prefer (N,+) as
the usual monoid associated with N. Thus, we can write that N, M, and Mn are examples of
monoids: the first under addition, the others under multiplication.

What other mathematical objects are examples of monoids?

Example 1.7. Let m, n ∈ N+. The set of m× n matrices with integer entries, written Zm×n ,
satisfies properties that make it a monoid under addition:
• closure is guaranteed by the definition;

7Of course, a professional mathematician would not even prove these things in a paper, because they are well-known
and easy. On the other hand, a good professional mathematician would feel compelled to include in a proof steps
that include novel and/or difficult information.
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• the associative property is guaranteed by the associative property of its elements; and
• the additive identity is 0, the zero matrix, by Theorem 0.61;

Example 1.8. The set of square matrices with integer entries Zm×m satisfies properties that make
it a monoid under multiplication:for multiplication,
• closure is guaranteed by the definition;
• the associative property is guaranteed by Theorem 0.64; and
• the multiplicative identity is In , by Theorem 0.61.

Your professor almost certainly didn’t call the set of square matrices a monoid at the time.

Here’s an example you probably haven’t seen before.

Example 1.9. Let S be a set, and let FS be the set of all functions mapping S to itself, with the
proviso that for any f ∈ FS , f (s) is defined for every s ∈ S. We can show that FS is a monoid
under composition of functions, since
• for any f , g ∈ FS , we also have f ◦ g ∈ FS , where f ◦ g is the function h such that for any

s ∈ S,
h (s) = ( f ◦ g ) (s) = f (g (s))

(notice how important it was that g (s) have a defined value regardless of the value of s );
• for any f , g , h ∈ FS , we have ( f ◦ g ) ◦ h = f ◦ (g ◦ h), since for any s ∈ S,

(( f ◦ g ) ◦ h) (s) = ( f ◦ g ) (h (s)) = f (g (h (s)))

and
( f ◦ (g ◦ h)) (s) = f ((g ◦ h) (s)) = f (g (h (s))) ;

• if we consider the function ι ∈ FS where ι (s) = s for all s ∈ S, then for any f ∈ FS , we have
ι◦ f = f ◦ ι= f , since for any s ∈ S,

(ι◦ f ) (s) = ι ( f (s)) = f (s)

and
( f ◦ ι) (s) = f (ι (s)) = f (s)

(we can say that ι ( f (s)) = f (s) because f (s) ∈ S).

Although monoids are useful, they don’t capture all the properties that interest us. Not all
the properties we found for N will hold for M, let alone for all monoids. After all, monoids
characterize the properties of a set with respect to only one operation. Because of this, they
cannot describe properties based on two operations.

For example, the Division Theorem requires two operations: multiplication (by the quotient)
and addition (of the remainder). So, there is no “Division Theorem for Monoids”; it simply
doesn’t make sense in the context. If we want to generalize the Division Theorem to other sets,
we will need a more specialized structure. We will actually meet one later! (in Section 7.4.)

Here is one useful property that we can prove already. A natural question to ask about
monoids is whether the identity of a monoid is unique. (We asked it about the matrices, back in
Section 0.3.) It isn’t hard to show that it is.
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Theorem 1.10. Suppose that M is a monoid, and there exist e , i ∈M such
that e x = x and xi = x for all x ∈M . Then e = i , so that the identity of
a monoid is unique.

“Unique” in mathematics means exactly one. To prove uniqueness of an object x, you consider a
generic object y that shares all the properties of x, then reason to show that x = y. This is not a
contradiction, because we didn’t assume that x 6= y in the first place; we simply wondered about
a generic y. We did the same thing with the Division Theorem (Theorem 0.34 on page 13).

Proof. Suppose that e is a left identity, and i is a right identity. Since i is a right identity, we
know that

e = e i .

Since e is a left identity, we know that
e i = i .

By substitution,
e = i .

We chose an arbitrary left identity of M and an arbitrary right identity of M , and showed that
they were in fact the same element. Hence left identities are also right identities. This implies in
turn that there is only one identity: any identity is both a left identity and a right identity, so the
argument above shows that any two identities are in fact identical.

Exercises.

Exercise 1.11. Is N a monoid under:
(a) subtraction?
(b) division?
Be sure to explain your answer.

Exercise 1.12. Is Z a monoid under:
(a) addition?
(b) subtraction?
(c) multiplication?
(d) division?
Be sure to explain your answer.

Exercise 1.13. Consider the set B = {F ,T } with the operation ∨ where

F ∨ F = F

F ∨T = T

T ∨ F = T

T ∨T = T .

This operation is called Boolean or.
Is (B ,∨) a monoid? If so, explain how it justifies each property.
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Exercise 1.14. Consider the set B = {F ,T } with the operation ⊕ where

F ⊕ F = F

F ⊕T = T

T ⊕ F = T

T ⊕T = F .

This operation is called Boolean exclusive or, or xor for short.
Is (B ,⊕) a monoid? If so, explain how it justifies each property.

Exercise 1.15. Suppose multiplication of x and y commutes. Show that multiplication in Mn is
both closed and associative.

Exercise 1.16.
(a) Show that N [x ], the ring of polynomials in one variable with integer coefficients, is a

monoid under addition.
(b) Show that N [x ] is also a monoid if the operation is multiplication.
(c) Explain why we can replace N by Z and the argument would remain valid. (Hint: think

about the structure of these sets.)

Exercise 1.17. Recall the lattice L from Exercise 0.52.
(a) Show that L is a monoid under the addition defined in that exercise.
(b) Show that L is a monoid under the multiplication defined in that exercise.

Exercise 1.18. Let A be a set of symbols, and L the set of all finite sequences that can be con-
structed using elements of A. Let ◦ represent concatenation of lists. For example, (a, b )◦(c , d , e , f ) =
(a, b , c , d , e , f ). Show that (L,◦) is a monoid.

Definition 1.19. For any set S, let P (S) denote the set of all subsets of
S. We call this the power set of S.

Exercise 1.20.
(a) Suppose S = {a, b}. Compute P (S), and show that it is a monoid under ∪ (union).
(b) Let S be any set. Show that P (S) is a monoid under ∪ (union).

Exercise 1.21.
(a) Suppose S = {a, b}. Compute P (S), and show that it is a monoid under ∩ (intersection).
(b) Let S be any set. Show that P (S) is a monoid under ∩ (intersection).

Exercise 1.22.
(a) Fill in each blank of Figure 1.1 with the justification.
(b) Is (N, lcm) also a monoid? If so, do we have to change anything about the proof? If not,

which property fails?

Exercise 1.23. Recall the usual ordering < on M: xa < x b if a < b . Show that this is a well-
ordering.
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Claim:
�
N+, lcm

�
is a monoid. Note that the operation here looks unusual: instead of something

like x ◦ y, you’re looking at lcm (x, y).
Proof:

1. First we show closure.
(a) Let a, b ∈_____, and let c = lcm (a, b ).
(b) By definition of _____, c ∈N.
(c) By definition of _____, N is closed under lcm.

2. Next, we show the associative property. This is one is a bit tedious. . .
(a) Let a, b , c ∈_____.
(b) Let m = lcm (a, lcm (b , c)), n = lcm (lcm (a, b ) , c), and ℓ = lcm (b , c). By _____,

we know that ℓ, m, n ∈N.
(c) We claim that lcm (a, b ) divides m.

i. By definition of _____, both a and lcm (b , c) divide m.
ii. By definition of _____, we can find x such that m = ax.

iii. By definition of _____, both b and c divide m.
iv. By definition of _____, we can find y such that m = b y
v. By definition of _____, both a and b divide m.

vi. By Exercise _____, lcm (a, b ) divides m.
(d) Recall that _____ divides m. Both lcm (a, b ) and _____ divide m.

(Both blanks expect the same answer.)
(e) By definition of _____, n ≤ m.
(f ) A similar argument shows that m ≤ n; by Exercise _____, m = n.
(g) By _____, lcm (a, lcm (b , c)) = lcm (lcm (a, b ) , c).
(h) Since a, b , c ∈N were arbitrary, we have shown that lcm is associative.

3. Now, we show the identity property.
(a) Let a ∈_____.
(b) Let ι=_____.
(c) By arithmetic, lcm (a, ι) = a.
(d) By definition of _____, ι is the identity of N under lcm.

4. We have shown that (N, lcm) satisfies the properties of a monoid.

Figure 1.1. Material for Exercise 1.22

Remark 1.24. While we can define a well-ordering on Mn , it is a much more complicated propo-
sition, which we take up in Section 11.2.

Exercise 1.25. In Exercise 0.46, you showed that divisibility is transitive in the integers.
(a) Show that divisibility is transitive in any monoid; that is, if M is a monoid, a, b , c ∈ M ,

a | b , and b | c , then a | c .
(b) In fact, you don’t need all the properties of a monoid for divisibility to be transitive! Which

properties do you need?

1.2: Isomorphism
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We’ve seen that several important sets share the monoid structure. In particular, (N,+) and
(M,×) are very similar. Are they in fact identical as monoids? If so, the technical word for this is
isomorphism. How can we determine whether two monoids are isomorphic? We will look for a
way to determine whether their operations behave the same way.

Imagine two offices. How would you decide if the offices were equally suitable for a certain
job? First, you would need to know what tasks have to be completed, and what materials you
need for those tasks. For example, if your job required you to keep books for reference, you
would want to find a bookshelf in the office. If it required you to write, you would need a desk,
and perhaps a computer. If it required you to communicate with people in other locations, you
might need a phone. Having made such a list, you would then want to compare the two offices.
If they both had the equipment you needed, you’d think they were both suitable for the job at
hand. It wouldn’t really matter how the offices satisfied the requirements; if one had a desk by
the window, and the other had it on the side opposite the window, that would be okay. If one
office lacked a desk, however, it wouldn’t be up to the required job.

Deciding whether two sets are isomorphic is really the same idea. First, you decide what
structure the sets have, which you want to compare. (So far, we’ve only studied monoids, so
for now, we care only whether the sets have the same monoid structure.) Next, you compare
how the sets satisfy those structural properties. If you’re looking at finite monoids, an exhaustive
comparison might work, but exhaustive methods tend to become exhausting, and don’t scale
well to large sets. Besides, we deal with infinite sets like N and M often enough that we need a
non-exhaustive way to compare their structure. Functions turn out to be just the tool we need.

How so? Let S and T be any two sets. Recall that a function f : S → T is a relation that
sends every input x ∈ S to precisely one value in T , the output f (x). You have probably heard
the geometric interpretation of this: f passes the “vertical line test.” You might suspect at this
point that we are going to generalize the notion of function to something more general, just as we
generalized Z, M, etc. to monoids. To the contrary; we will specialize the notion of a function
in a way that tells us important information about a monoid.

Suppose M and N are monoids. If they are isomorphic, their monoid structure is identical,
so we ought to be able to build a function that maps elements with a certain behavior in M to
elements with the same behavior in N . (Table to table, phone to phone.) What does that mean?
Let x, y, z ∈ M and a, b , c ∈ N . Suppose that f (x) = a, f (y) = b , f (z) = c , and xy = z. If M
and N have the same structure as monoids, then:
• since xy = z,
• we want ab = c , or

f (x) f (y) = f (z)

Substituting xy for z suggests that we want the property

f (x) f (y) = f (xy) .

Of course, we would also want to preserve the identity: f ought to be able to map the identity
of M to the identity of N . In addition, just as we only need one table in the office, we want to
make sure that there is a one-to-one correspondence between the elements of the monoids. If
we’re going to reverse the function, it needs to be onto. That more or less explains why we define
isomorphism in the following way:
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Definition 1.26. Let (M ,×) and (N ,+) be monoids. If there exists a
function f : M −→N such that
• f (1M ) = 1N ( f preserves the identity)
and
• f (xy) = f (x)+ f (y) for all x, y ∈M , ( f preserves the operation)

then we call f a homomorphism. If f is also a bijection, then we say
that M is isomorphic to N , write M ∼= N , and call f an isomorphism.a

(A bijection is a function that is both one-to-one and onto.)
aThe word homomorphism comes from the Greek words for same and shape; the word
isomorphism comes from the Greek words for identical and shape. The shape is the effect
of the operation on the elements of the group. Isomorphism shows that the group
operation behaves the same way on elements of the range as on elements of the domain.

If you do not remember the definitions of one-to-one and onto, see Definition 0.32 on page 12.
Another way of saying that a function f : S → U is onto is to say that f (S) = U ; that is, the
image of S is all of U , or that every element of U corresponds via f to some element of S.

We used (M ,×) and (N ,+) in the definition partly to suggest our goal of showing that M

and N are isomorphic, but also because they could stand for any monoids. You will see in due
course that not all monoids are isomorphic, but first let’s see about M and N.

Example 1.27. We claim that (M,×) is isomorphic to (N,+). To see why, let f : M −→N by

f (xa) = a.

First we show that f is a bijection.
To see that it is one-to-one, let t , u ∈ M, and assume that f (t ) = f (u). By definition

of M, t = xa and u = x b for a, b ∈ N. Susbtituting this into f (t ) = f (u), we find that
f (xa) = f

�
x b
�

. The definition of f allows us to rewrite this as a = b . In this case, xa = x b ,
so t = u. We assumed that f (t ) = f (u) for arbitrary t , u ∈M, and showed that t = u; that
proves f is one-to-one.

To see that f is onto, let a ∈N. We need to find t ∈M such that f (t ) = a. Which t should
we choose? We want f

�
x?
�

= a, and f
�

x?
�

= ?, so the “natural” choice seems to be t = xa .
That would certainly guarantee f (t ) = a, but can we actually find such an object t in M? Since
xa ∈M, we can in fact make this choice! We took an arbitrary element a ∈N, and showed that
f maps some element of M to a; that proves f is onto.

So f is a bijection. Is it also an isomorphism? First we check that f preserves the operation.
Let t , u ∈M.8 By definition of M, t = xa and u = x b for a, b ∈N. We now manipulate f (t u)
using definitions and substitutions to show that the operation is preserved:

f (t u) = f
�

xa x b
�

= f
�

xa+b
�

= a + b

= f (xa)+ f
�

x b
�

= f (t )+ f (u) .

8The definition uses the variables x and y, but those are just letters that stand for arbitrary elements of M . Here
M = M and we can likewise choose any two letters we want to stand in place of x and y. It would be a very bad idea
to use x when talking about an arbitrary element of M, because there is an element of M called x. So we choose t
and u instead.
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Does f also preserve the identity? We usually write the identity of M = M as the symbol 1, but
recall that this is a convenient stand-in for x0. On the other hand, the identity (under addition)
of N = N is the number 0. We use this fact to verify that f preserves the identity:

f (1M ) = f (1) = f
�

x0
�

= 0 = 1N .

(We don’t usually write 1M and 1N , but I’m doing it here to show explicitly how this relates to
the definition.)

We have shown that there exists a bijection f : M −→N that preserves the operation and the
identity. We conclude that M ∼= N.

On the other hand, is (N,+) ∼= (N,×)? You might think this is easier to verify, since the
sets are the same. Let’s see what happens.

Example 1.28. Suppose there does exist an isomorphism f : (N,+)→ (N,×). What would have
to be true about f ? Let a ∈N such that f (1) = a; after all, f has to map 1 to something! An
isomorphism must preserve the operation, so

f (2) = f (1 + 1) = f (1)× f (1) = a2 and

f (3) = f (1 +(1 + 1)) = f (1)× f (1 + 1) = a3, so that

f (n) = · · ·= an for any n ∈N.

So f sends every integer in (N,+) to a power of a.
Think about what this implies. For f to be a bijection, it would have to be onto, so every

element of (N,×) would have to be an integer power of a. This is false! After all, 2 is not an
integer power of 3, and 3 is not an integer power of 2.

The claim was correct: (N,+) 6∼= (N,×).

Exercises.

Exercise 1.29. Show that the monoids “Boolean or” and “Boolean xor” from Exercises 1.13
and 1.14 are not isomorphic.

Exercise 1.30. Let (M ,×), (N ,+), and (P ,⊓) be monoids.
(a) Show that the identity function ι (x) = x is an isomorphism on M .
(b) Suppose that we know (M ,×) ∼= (N ,+). That means there is an isomorphism f : M →N .

One of the requirements of isomorphism is that f be a bijection. Recall from previous
classes that this means f has an inverse function, f −1 : N → M . Show that f −1 is an
isomorphism.

(c) Suppose that we know (M ,×) ∼= (N ,+) and (N ,+) ∼= (P ,⊓). As above, we know there
exist isomorphisms f : M →N and g : N → P . Let h = g ◦ f ; that is, h is the composition
of the functions g and f . Explain why h : M → P , and show that h is also an isomorphism.

(d) Explain how (a), (b), and (c) prove that isomorphism is an equivalence relation.

1.3: Direct products
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It might have occurred to you that a multivariate monomial is really a vector of univariate
monomials. (Pat yourself on the back if so.) If not, here’s an example:

x6
1

x3
2

looks an awful lot like
�

x6, x3
�

.

So, we can view any element of Mn as a list of n elements of M. In fact, if you multiply two
multivariate monomials, you would have a corresponding result to multiplying two vectors of
univariate monomials componentwise:

�
x6

1
x3

2

��
x2

1
x2

�
= x8

1
x4

2
and

�
x6, x3

�
×
�

x2, x
�

=
�

x8, x4
�

.

Last section, we showed that (M,×) ∼= (N,+), so it should make sense that we can simplify this
idea even further:

x6
1

x3
2

looks an awful lot like (6,3) , and in fact (6,3)+ (2,1) = (8,4) .

We can do this with other sets, as well.

Definition 1.31. Let r ∈ N+ and S1, S2, . . . , Sr be sets. The Cartesian
product of S1, . . . , Sr is the set of all lists of r elements where the i th
entry is an element of Si ; that is,

S1×· · ·× Sr = {(s1, s2, . . . , sn) : si ∈ Si} .

Example 1.32. We already mentioned a Cartesian product of two sets in the introduction to this
chapter. Another example would be N×M; elements of N×M include

�
2, x3

�
and

�
0, x5

�
. In

general, N×M is the set of all ordered pairs where the first entry is a natural number, and the
second is a monomial.

If we can preserve the structure of the underlying sets in a Cartesian product, we call it a direct
product.

Definition 1.33. Let r ∈ N+ and M1, M2, . . . , Mr be monoids. The di-
rect product of M1, . . . , Mr is the pair

(M1×· · ·×Mr ,⊗)

where M1×· · ·×Mr is the usual Cartesian product, and⊗ is the “natural”
operation on M1×· · ·×Mr .

What do we mean by the “natural” operation on M1× · · · ×Mr ? Let x, y ∈ M1× · · · ×Mr ; by
definition, we can write

x = (x1, . . . , xr ) and y = (y1, . . . , yr )

where each xi and each yi is an element of Mi . Then

x⊗ y = (x1y1, x2y2, . . . , xr yr )
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where each product xi yi is performed according to the operation that makes the corresponding
Mi a monoid.

Example 1.34. Recall that N×M is a Cartesian product; if we consider the monoids (N,×) and
(M,×), we can show that the direct product is a monoid, much like N and M! To see why, we
check each of the properties.

(closure) Let t , u ∈ N×M. By definition, we can write t = (a, xα) and u =
�

b , xβ
�

for
appropriate a,α, b ,β ∈N. Then

t u = (a, xα)⊗
�

b , xβ
�

=
�

ab , xαxβ
�

(def. of ⊗)

=
�

ab , xα+β
�
∈N×M.

We took two arbitrary elements of N×M, multiplied them according to the new
operation, and obtained another element of N×M; the operation is therefore closed.

(associativity) Let t , u, v ∈N×M. By definition, we can write t = (a, xα), u =
�

b , xβ
�

, and
v = (c , xγ ) for appropriate a,α, b ,β, c ,γ ∈N. Then

t (uv) = (a, xα)⊗
��

b , xβ
�
⊗ (c , xγ )

�

= (a, xα)⊗
�

b c , xβxγ
�

=
�

a (b c) , xα
�

xβxγ
��

.

To show that this equals (t u) v, we have to rely on the associative properties of N and
M:

t (uv) =
�
(ab ) c ,

�
xαxβ

�
xγ
�

=
�

ab , xαxβ
�
⊗ (c , xγ )

=
�
(a, xα)⊗

�
b , xβ

��
⊗ (c , xγ )

= (t u) v.

We took three elements of N×M, and showed that the operation was associative for
them. Since the elements were arbitrary, the operation is associative.

(identity) We claim that the identity of N×M is (1,1) =
�
1, x0

�
. To see why, let t ∈N×M.

By definition, we can write t = (a, xα) for appropriate a,α ∈N. Then

(1,1)⊗ t = (1,1)⊗ (a, xα) (subst.)

= (1× a, 1× xα) (def. of ⊗)

= (a, xα) = t

and similarly t ⊗ (1,1) = t . We took an arbitrary element of N×M, and showed that
(1,1) acted as an identity under the operation ⊗ with that element. Since the element
was arbitrary, (1,1) must be the identity for N×M.

Interestingly, if we had used (N,+) instead of (N,×) in the previous example, we still would
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have obtained a direct product! Indeed, the direct product of monoids is always a monoid!

Theorem 1.35. The direct product of monoids M1, . . . , Mr is itself a
monoid. Its identity element is (e1, e2, . . . , er ), where each ei denotes the
identity of the corresponding monoid Mi .

Proof. You do it! See Exercise 1.38.

We finally turn our attention the question of whether Mn and Mn are the same.
Admittedly, the two are not identical: Mn is the set of products of powers of n distinct vari-

ables, whereas Mn is a set of lists of powers of one variable. In addition, if the variables are not
commutative (remember that this can occur), then Mn and Mn are not at all similar. Think

about (xy)4 = xy xy xy xy; if the variables are commutative, we can combine them into x4y4,
which looks likes (4,4). If the variables are not commutative, however, it is not at all clear how
we could get (xy)4 to correspond to an element of N×N.

That leads to the following result.

Theorem 1.36. The variables of Mn are commutative if and only if
Mn
∼= Mn .

Proof. Assume the variables of Mn are commutative. Let f : Mn −→Mn by

f
�

x
a1

1
x

a2

2
· · · xan

n

�
= (xa1 , xa2 , . . . , xan ) .

The fact that we cannot combine ai and a j if i 6= j shows that f is one-to-one, and any element�
x b1 , . . . , x bn

�
of Mn has a preimage x

b1

1
· · · x bn

n in Mn ; thus f is a bijection.

Is it also an isomorphism? To see that it is, let t , u ∈ Mn . By definition, we can write

t = x
a1

1
· · · xan

n and u = x
b1

1
· · · x bn

n for appropriate a1, b1 . . . ,an , bn ∈N. Then

f (t u) = f
��

x
a1

1
· · · xan

n

��
x

b1

1
· · · x bn

n

��
(substitution)

= f
�

x
a1+b1

1
· · · xan+bn

n

�
(commutative)

=
�

xa1+b1 , . . . , xan+bn
�

(definition of f )

= (xa1 , . . . , xan )⊗
�

x b1 , . . . , x bn
�

(def. of ⊗)

= f (t )⊗ f (u) . (definition of f )

Hence f is an isomorphism, and we conclude that Mn
∼= Mn .

Conversely, suppose Mn
∼= Mn . By Exercise 1.30, Mn ∼= Mn . By definition, there exists a

bijection f : Mn −→Mn satisfying Definition 1.26. Let t , u ∈Mn ; by definition, we can find

ai , b j ∈N such that t = x
a1

1
· · · xan

n and u = x
b1

1
· · · x bn

n . Since f preserves the operation, f (t u) =
f (t )⊗ f (u). Now, f (t ) and f (u) are elements of Mn , which is commutative by Exercise 1.39
(with the Si = M here). Hence f (t )⊗ f (u) = f (u)⊗ f (t ), so that f (t u) = f (u)⊗ f (t ).
Using the fact that f preserves the operation again, only in reverse, we see that f (t u) = f (u t ).
Recall that f , as a bijection, is one-to-one! Thus t u = u t , and Mn is commutative.
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Notation 1.37. Although we used ⊗ in this section to denote the operation in a direct product,
this is not standard; I was trying to emphasize that the product is different for the direct product
than for the monoids that created it. In general, the product x⊗ y is written simply as xy. Thus,
the last line of the proof above would have f (t ) f (u) instead of f (t )⊗ f (u).

Exercises.

Exercise 1.38. Prove Theorem 1.35. Use Example 1.34 as a guide.

Exercise 1.39. Suppose M1, M2, . . . , and Mn are commutative monoids. Show that the direct
product M1×M2×· · ·×Mn is also a commutative monoid.

Exercise 1.40. Show that Mn ∼= Nn . What does this imply about Mn and Nn?

Exercise 1.41. Recall the lattice L from Exercise 0.52. Exercise 1.17 shows that this is both a
monoid under addition and a monoid under multiplication, as defined in that exercise. Is either
monoid isomorphic to N2?

Exercise 1.42. Let Tn
S

denote the set of terms in n variables whose coefficients are elements of

the set S. For example, 2xy ∈T2
Z

and πx3 ∈T1
R

.
(a) Show that if S is a monoid, then so is Tn

S
.

(b) Show that if S is a monoid, then Tn
S
∼= S×Mn .

Exercise 1.43. We define the kernel of a monoid homomorphism ϕ : M →N as

kerϕ = {(x, y) ∈M ×M : ϕ (x) = ϕ (y)} .

Recall from this section that M ×M is a monoid.
(a) Show that kerϕ is a “submonoid” of M ×M ; that is, it is a subset that is also a monoid.
(b) Fill in each blank of Figure 1.2 with the justification.
(c) Denote K = kerϕ, and define M /K in the following way.

A coset xK is the set S of all y ∈M such that (x, y) ∈K , and M /K is the set
of all such cosets.

Show that
(i) every x ∈M appears in at least one coset;
(ii) M /K is a partition of M .
Suppose we try to define an operation on the cosets in a “natural” way:

(xK) ◦ (yK) = (xy)K .

It can happen that two cosets X and Y can each have different representations: X = xK =
wK , and Y = yK = zK . It often happens that xy 6= w z, which could open a can of
worms:

X Y = (xK) (yK) = (xy)K 6= (w z)K = (wK) (zK) = X Y .

Obviously, we’d rather that not happen, so
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Claim: kerϕ is an equivalence relation on M . That is, if we define a relation ∼ on M by x ∼ y
if and only if (x, y) ∈ kerϕ, then ∼ satisfies the reflective, symmetric, and transitive proper-
ties.

1. We prove the three properties in turn.
2. The reflexive property:

(a) Let m ∈M .
(b) By _____, ϕ (m) = ϕ (m).
(c) By _____, (m, m) ∈ kerϕ.
(d) Since _____, every element of M is related to itself by kerϕ.

3. The symmetric property:
(a) Let a, b ∈M . Assume a and b are related by kerϕ.
(b) By _____, ϕ (a) = ϕ (b ).
(c) By _____, ϕ (b ) = ϕ (a).
(d) By _____, b and a are related by kerϕ.
(e) Since _____, this holds for all pairs of elements of M .

4. The transitive property:
(a) Let a, b , c ∈M . Assume a and b are related by kerϕ, and b and c are related by kerϕ.
(b) By _____, ϕ (a) = ϕ (b ) and ϕ (b ) = ϕ (c).
(c) By _____, ϕ (a) = ϕ (c).
(d) By _____, a and c are related by kerϕ.
(e) Since _____, this holds for any selection of three elements of M .

5. We have shown that a relation defined by kerϕ satisfies the reflexive, symmetric, and tran-
sitive properties. Thus, kerϕ is an equivalence relation on M .

Figure 1.2. Material for Exercise 1.43(b)

(iii) Fill in each blank of Figure 1.3 with the justification.
Once you’ve shown that the operation is well defined, show that
(iv) M /K is a monoid with this operation.
This means that we can use monoid morphisms to create new monoids.

1.4: Absorption and the Ascending Chain Condition

We conclude our study of monoids by introducing a new object, and a fundamental notion.

Absorption

Definition 1.44. Let M be a monoid, and A ⊆ M . If ma ∈ A for every
m ∈ M and a ∈ A, then A absorbs from M . We also say that A is an
absorbing subset, or that satisfies the absorption property.

Notice that if A absorbs from M , then A is closed under multiplication: if x, y ∈ A, then A⊆ M
implies that x ∈ M , so by absorption, xy ∈ A, as well. Unfortunately, that doesn’t make A a
monoid, as 1M might not be in A.
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Let M and N be monoids, ϕ a homomorphism from M to N , and K = kerϕ.
Claim: The “natural” operation on cosets of K is well defined.
Proof:

1. Let X ,Y ∈_____. That is, X and Y are cosets of K .
2. By _____, there exist x, y ∈M such that X = xK and Y = yK .
3. Assume there exist w, z ∈_____ such that X = wK and Y = zK . We must show that

(xy)K = (w z)K .
4. Let a ∈ (xy)K .
5. By definition of coset, _____∈K .
6. By _____, ϕ (xy) = ϕ (a).
7. By _____, ϕ (x)ϕ (y) = ϕ (a).
8. We claim that ϕ (x) = ϕ (w) and ϕ (y) = ϕ (z).

(a) To see why, recall that by _____, xK = X = wK and yK = Y = zK .
(b) By part _____ of this exercise, (x, x) ∈K and (w, w) ∈K .
(c) By _____, x ∈ xK and w ∈ wK .
(d) By _____, w ∈ xK .
(e) By _____, (x, w) ∈ kerϕ.
(f ) By _____, ϕ (x) = ϕ (w). A similar argument shows that ϕ (y) = ϕ (z).

9. By _____, ϕ (w)ϕ (z) = ϕ (a).
10. By _____, ϕ (w z) = ϕ (a).
11. By definition of coset, _____∈K .
12. By _____, a ∈ (w z)K .
13. By _____, (xy)K ⊆ (w z)K . A similar argument shows that (xy)K ⊇ (w z)K .
14. By definition of equality of sets, _____.
15. We have see that the representations of _____ and _____ do not matter; the product is the

same regardless. Coset multiplication is well defined.

Figure 1.3. Material for Exercise 1.43

Example 1.45. Write 2Z for the set of even integers. By definition, 2Z ( Z. Notice that 2Z is
not a monoid, since 1 6∈ 2Z. On the other hand, any a ∈ 2Z has the form a = 2z for some z ∈Z.
Thus, for any m ∈Z, we have

ma = m (2z) = 2 (mz) ∈ 2Z.

Since a and m were arbitrary, 2Z absorbs from Z.

The set of integer multiples of an integer is important enough that it inspires notation.

Notation 1.46. We write dZ for the set of integer multiples of d .

So 2Z = {. . . ,−2,0,2,4, . . .} is the set of integer multiples of 2; 5Z is the set of integer multi-
ples of 5; and so forth. You will show in Exercise 1.56 that dZ absorbs multiplication from Z,
but not addition.

The monomials provide another important example of absorption.

Example 1.47. Let A be an absorbing subset of M2. Suppose that xy2, x3 ∈ A, but none of their
factors is in A. Since A absorbs from M2, all the monomial multiples of xy2 and x3 are also in A.
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We can illustrate this with a monomial diagram:

1 2 3 4

-1

1

2

3

4

xy2

x3

Every dot represents a monomial in A; the dot at (1,2) represents the monomial xy2, and the
dots above it represent xy3, xy4, . . . . Notice that multiples of xy2 and x3 lie above and to the right
of these monomials.

The diagram suggests that we can identify special elements of subsets that absorb from the
monomials.

Definition 1.48. Suppose A is an absorbing subset of Mn , and t ∈ A. If
no other u ∈A divides t , then we call t a generator of A.

In the diagram above, xy2 and x3 are the generators of an ideal corresponding to the monomials
covered by the shaded region, extending indefinitely upwards and rightwards. The name “gener-
ator” is apt, because every monomial multiple of these two xy2 and x3 is also in A, but nothing
“smaller” is in A, in the sense of divisibility.

This leads us to a remarkable result.

Dickson’s Lemma and the Ascending Chain Condition

Theorem 1.49 (Dickson’s Lemma). Every absorbing subset of Mn has a
finite number of generators.

(Actually, Dickson proved a similar result for a similar set, but is more or less the same.) The
proof is a little complicated, so we’ll illustrate it using some monomial diagrams. In Figure 1.4(A),
we see an absorbing subset A. (The same as you saw before.) Essentially, the argument projects A
down one dimension, as in Figure 1.4(B). In this smaller dimension, an argument by induction
allows us to choose a finite number of generators, which correspond to elements of A, illustrated
in Figure 1.4(C). These corresponding elements of A are always generators of A, but they might
not be all the generators of A, shown in Figure 1.4(C) by the red circle. In that case, we take
the remaining generators of A, use them to construct a new absorbing subset, and project again
to obtain new generators, as in Figure 1.4(D). The thing to notice is that, in Figures 1.4(C) and
1.4(D), the y-values of the new generators decrease with each projection. This cannot continue
indefinitely, since N is well-ordered, and we are done.

Proof. Let A be an absorbing subset of Mn . We proceed by induction on the dimension, n.
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1 2 3 4

-1

1

2

3

4

xy2

x3

1 2 3 4

-1

1

2

3

4

(A) (B)

1 2 3 4

-1

1

2

3

4

1 2 3 4

-1

1

2

3

4

(C) (D)

Figure 1.4. Illustration of the proof of Dickson’s Lemma.

For the inductive base, assume n = 1. Let S be the set of exponents of monomials in A. Since
S ⊆N, it has a minimal element; call it a. By definition of S, xa ∈A. We claim that xa is, in fact,
the one generator of A. To see why, let u ∈ A. Suppose that u | xa ; by definition of monomial
divisibility, u = x b and b ≤ a. Since u ∈A, it follows that b ∈ S. Since a is the minimal element
of S, a ≤ b . We already knew that b ≤ a, so it must be that a = b . The claim is proved: no other
element of A divides xa . Thus, xa is a generator, and since n = 1, the generator is unique.

For the inductive hypothesis, assume that any absorbing subset of Mn−1 has a finite number
of generators.

For the inductive step, we use A to construct a sequence of absorbing subsets of Mn−1 in the
following way.

• Let B1 be the set of all monomials in Mn−1 such that t ∈ B1 implies that t xa
n
∈ A for some

a ∈N. We call this a projection of A onto Mn−1.
We claim that B1 absorbs from Mn−1. To see why, let t ∈ B1, and let u ∈ Mn−1 be
any monomial multiple of t . By definition, there exists a ∈ N such that t xa

n
∈ A. Since

A absorbs from Mn , and u ∈ Mn−1 ( Mn , absorption implies that u
�

t xa
n

�
∈ A. The

associative property tells us that (u t ) xa
n
∈ A, and the definition of B1 tells us that u t ∈ B1.
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Since t1 is an arbitrary element of B1, u is an arbitrary multiple of t , and we found that
u ∈ B1, we can conclude that B1 absorbs from Mn−1.
This result is important! By the inductive hypothesis, B1 has a finite number of generators;
call them {t1, . . . , tm}. Each of these generators corresponds to an element of A. Let T1 =¦

t1x
a1
n , . . . , tm x

am
n

©
( A such that a1 is the smallest element of N such that t1x

a1
n ∈ A, . . . ,

am is the smallest element of N such that tm x
am
n ∈ A. (Such a smallest element must exist

on account of the well-ordering of N.)
We now claim that T1 is a list of some of the generators of A. To see this, assume by way of
contradiction that we can find some u ∈ T1 that is not a generator of A. The definition of
a generator means that there exists some other v ∈A that divides u. We can write u = t xa

n
and v = t ′x b

n
for some a, b ∈N; then t , t ′ ∈ B1. Here, things fall apart! After all, t ′ also

divides t , contradicting the assumption that t ′ is a generator of B1.
• If T1 is a complete list of the generators of A, then we are done. Otherwise, let A(1) be the

absorbing subset whose elements are multiples of the generators of A that are not in T1.
Let B2 be the projection of A(1) onto Mn−1. As before, B2 absorbs from Mn−1, and the
inductive hypothesis implies that it has a finite number of generators, which correspond to
a set T2 of generators of A(1).
• As long as Ti is not a complete list of the generators of A, we continue building

◦ an absorbing subset A(i) whose elements are multiples of the generators of A that are
not in Ti ;
◦ an absorbing subset Bi+1 whose elements are the projections of A(i) onto Mn−1, and
◦ sets Ti+1 of generators of A that correspond to generators of Bi+1.

Can this process continue indefinitely? No, it cannot. First, if t ∈ Ti+1, then write it as t = t ′xa
n
.

On the one hand,
t ∈A(i) (A(i−1) ( · · ·A(1) (A,

so t ′ was an element of every B j such that j ≤ i . That means that for each j , t ′ was divisible by
at least one generator u ′

j
of B j . However, t was not in the absorbing subsets generated by T1, . . . ,

Ti . So the u j ∈ T j corresponding to u ′
j

does not divide t . Write t = x
a1

1
· · · xa1

n and u = x
b1

1
· · · x bn

n .

Since u ′ | t ′, bk ≤ ak for each k = 1, . . . , n−1. Since u ∤ t , bn > an .
In other words, the minimal degree of xn is decreasing in Ti as i increases. This gives us a

strictly decreasing sequence of natural numbers. By the well-ordering property, such a sequence
cannot continue indefinitely. Thus, we cannot create sets Ti containing new generators of A
indefinitely; there are only finitely many such sets. In other words, A has a finite number of
generators.

This fact leads us to an important concept, that we will exploit greatly, starting in Chapter 8.

Definition 1.50. Let M be a monoid. Suppose that, for any ideals A1,
A2, . . . of M , we can guarantee that if A1 ⊆ A2 ⊆ · · · , then there is some
n ∈N+ such that An = An+1 = · · · . In this case, we say that M satisfies
the ascending chain condition,, or that M is Noetherian.

A look back at the Hilbert-Dickson game



4. Absorption and the Ascending Chain Condition 56

We conclude with two results that will, I hope, delight you. There is a technique for counting
the number of elements not shaded in the monomial diagram.

Definition 1.51. Let A be an absorbing subset of Mn . The Hilbert
Function HA (d ) counts the number of monomials of total degree d and
not in A. The Affine Hilbert Function H aff

A
(d ) is the sum of the Hilbert

Function for degree no more than d ; that is, H aff
A

(d ) =
∑d

i=0
HA (d ).

Example 1.52. In the diagram of Example 1.47, H (0) = 1, H (1) = 2, H (2) = 3, H (3) = 2, and
H (d ) = 1 for all d ≥ 4. On the other hand, H aff (4) = 9.

The following result is immediate.

Theorem 1.53. Suppose that A is the absorbing subset generated by the
moves chosen in a Hilbert-Dickson game, and let d ∈N. The number
of moves (a, b ) possible in a Hilbert-Dickson game with a + b ≤ d is
H aff

A
(d ).

Corollary 1.54. Every Hilbert-Dickson game must end in a finite num-
ber of moves.

Proof. Every i th move in a Hilbert-Dickson game corresponds to the creation of a new absorb-
ing subset Ai of M2. Let A be the union of these Ai ; you will show in Exercise 1.57 that A also
absorbs from M2. By Dickson’s Lemma, A has finitely many generators; call them t1, . . . , tm .
Each t j appears in A, and the definition of union means that each t j must appear in some Ai j

. Let

k be the largest such i j ; that is, k = max{i1, . . . , im}. Practically speaking, “largest” means “last
chosen”, so each ti has been chosen at this point. Another way of saying this in symbols is that

t1, . . . , tm ∈
⋃k

i=1
Ai . All the generators of A are in this union, so no element of A can be absent!

So A =
⋃k

i=1
Ai ; in other words, the ideal is generated after finitely many moves.

Dickson’s Lemma is a perfect illustration of the Ascending Chain Condition. It also illustrates a
relationship between the Ascending Chain Condition and the well-ordering of the integers: we
used the well-ordering of the integers repeatedly to prove that Mn is Noetherian. You will see
this relationship again in the future.

Exercises.

Exercise 1.55. Is 2Z an absorbing subset of Z under addition? Why or why not?

Exercise 1.56. Let d ∈Z and A = dZ. Show that A is an absorbing subset of Z.

Exercise 1.57. Fill in each blank of Figure 1.5 with its justification.

Exercise 1.58. Let L be the lattice defined in Exercise 0.52. Exercise 1.17 shows that L is a monoid
under its strange multiplication. Let P = (3,1) and A be the absorbing subset generated by P .
Sketch L and P , distinguishing the elements of P from those of L using different colors, or an X ,
or some similar distinguishing mark.
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Suppose A1, A2, . . . absorb from a monoid M , and Ai ⊆Ai+1 for each i ∈N+.
Claim: Show that A =

⋃∞
i=1

Ai also absorbs from M .
1. Let m ∈M and a ∈A.
2. By _____, there exists i ∈N+ such that a ∈Ai .
3. By _____, ma ∈Ai .
4. By _____, Ai ⊆A.
5. By _____, ma ∈A.
6. Since _____, this is true for all m ∈M and all a ∈A.
7. By _____, A also absorbs from M .

Figure 1.5. Material for Exercise 1.57



Chapter 2:
Groups

In Chapter 1, we described monoids. In this chapter, we study a group, which is a special kind
of monoid. What motivates us is the observation that the set of integers is a monoid, but also
more than a monoid.

How? The natural numbers are closed under addition: for any two a, b ∈N, we know that
a + b ∈ N also. This is also true about the integers: for any a, b ∈ Z, a + b ∈ Z. However,
the integers are also closed under subtraction, while the natural numbers are not! Even though
3,5 ∈N, 3−5 =−2 6∈N!

That is, groups are special in that every element in the group has an inverse element. It is not
entirely wrong to say that groups actually have two operations. You will see in a few moments
that the integers are a group under addition: not only does it satisfy the properties of a monoid,
but each of its elements also has an additive inverse in Z. Stated a different way, Z has a second
operation, subtraction. However, the conditions on this second operation are so restrictive (it
has to “undo” the first operation) that most mathematicians won’t consider groups to have two
operations; they prefer to say that a property of the group operation is that every element has an
inverse element.

This property is essential to a large number of mathematical phenomena. We describe a
special class of groups called the cyclic groups (Section 2.3) and then look at two groups related to
important mathematical problems. The first, D3, describes symmetries of a triangle using groups
(Section 2.2). The second, Ωn , consists of the roots of unity (Section 2.4).

2.1: Groups

This first section looks only at some very basic properties of groups, and some very basic
examples.

Precise definition, first examples

Definition 2.1. Let G be a set, and ◦ a binary operation on G. We say
that the pair (G,◦) is a group if it satisfies the following properties.
(closure) for any x, y ∈G, we have x ◦ y ∈G;
(associative) for any x, y, z ∈G, we have (x ◦ y) ◦ z = x ◦ (y ◦ z);
(identity) there exists an identity element e ∈ G; that is, for any

x ∈G, we have x ◦ e = e ◦ x = x; and
(inverses) each element of the group has an inverse; that is, for any

x ∈G we can find y ∈G such that x ◦ y = y ◦ x = e .
We may also say that G is a group under ◦. We say that (G,◦) is an
abelian group if it also satisfies
(commutative) the operation is commutative; that is, xy = y x for all

x, y ∈G.
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Notation 2.2. If the operation is addition, we may refer to the group as an additive group or a
group under addition. We also write −x instead of x−1, and x +(−y) or even x− y instead of
x + y−1, keeping with custom. Additive groups are normally abelian.

If the operation is multiplication, we may refer to the group as a multiplicative group or
a group under multiplication. The operation is usually understood from context, so we typ-
ically write G rather than (G,+) or (G,×) or (G,◦). We will write (G,+) when we want to
emphasize that the operation is addition.

Example 2.3. Certainly Z is an additive group; in fact, it is abelian. Why?
• We know it is a monoid under addition.
• Every integer has an additive inverse in Z.
• Addition of integers is commutative.

However, while N is a monoid under addition, it is not a group. Why not? The problem is with
inverses. We know that every natural number has an additive inverse; after all, 2 + (−2) = 0.
Nevertheless, the inverse property is not satisfied because −2 6∈ N! It’s not enough to have an
inverse in some set; the inverse be in the same set! For this reason, N is not a group.

Example 2.4. In addition to Z, the following sets are groups under addition.
• the set Q of rational numbers;
• the set R of real numbers; and
• if S = Z,Q, or R, the set S m×n of m×n matrices whose elements are in S. (It’s important

here that the operation is addition.)
However, none of them is a group under multiplication. On the other hand, the set of invertible
n× n matrices with elements in Q or R is a multiplicative group. We leave the proof to the
exercises, but this fact builds on properties you learned in linear algebra, such as those described
in Section 0.3.

Definition 2.5. We call the set of invertible n×n matrices with elements
in R the general linear group of degree n, and write GLn (R) for this
set.

Order of a group, Cayley tables

Mathematicians of the 20th century invested substantial effort in an attempt to classify all
finite, simple groups. (You will learn later what makes a group “simple”.) Replicating that achieve-
ment is far, far beyond the scope of these notes, but we can take a few steps in this area.

Definition 2.6. Let S be any set. We write |S | to indicate the number of
elements in S, and say that |S | is the size or cardinality of S. If there is an
infinite number of elements in S, then we write |S | =∞. We also write
|S | < ∞ to indicate that |S | is finite, if we don’t want to state a precise
number.

For any group G, the order of G is the size of G. A group has finite
order if |G|<∞ and infinite order if |G|=∞.

Here are three examples of finite groups; in fact, they are all of order 2.
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Example 2.7. The sets

{1,−1} ,
��

1 0
0 1

�
,

� −1 0
0 1

��
,

and

��
1 0
0 1

�
,

�
1 0
0 −1

��

are all groups under multiplication:
• In the first group, the identity is 1, and −1 is its own inverse; closure is obvious, and you

know from arithmetic that the associative property holds.
• In the second and third groups, the identity is the identity matrix; each matrix is its own

inverse; closure is easy to verify, and you know from linear algebra that the associative
property holds.

I will now make an extraordinary claim:
Claim 1. For all intents and purposes, there is only one group of order two.

This claim may seem preposterous on its face; after all, the example above has three com-
pletely different groups of order two. In fact, the claim is quite vague, because we’re using vague
language. After all, what is meant by the phrase, “for all intents and purposes”? Basically, we
meant that:
• group theory cannot distinguish between the groups as groups; or,
• their multiplication table (or addition table, or whatever-operation table) has the same

structure.
If you read the second characterization and think, “he means they’re isomorphic!”, then pat
yourself on the back. Unfortunately, we won’t look at this notion seriously until Chapter 4, but
Chapter 1 gave you a rough idea of what that meant: the groups are identical as groups.

We will prove the claim above in a “brute force” manner, by looking at the table generated
by the operation of the group. Now, “the table generated by the operation of the group” is an
ungainly phrase, and quite a mouthful. Since the name of the table depends on the operation
(multiplication table, addition table, etc.), we have a convenient phrase that describes all of them.

Definition 2.8. The table listing all results of the operation of a monoid
or group is its Cayley table.

Since groups are monoids, we can call their table a Cayley table, too.
Back to our claim. We want to build a Cayley table for a “generic” group of order two.

We will show that there is only one possible way to construct such a table. As a consequence,
regardless of the set and its operation, every group of order 2 behaves exactly the same way. It
does not matter one whit what the elements of G are, or the fancy name we use for the operation,
or the convoluted procedure we use to simplify computations in the group. If there are only two
elements, and it’s a group, then it always works the same. Why?

Example 2.9. Let G be an arbitrary group of order two. By definition, it has an identity, so write
G = {e ,a} where e represents the known identity, and a the other element.

We did not say that e represents the only identity. For all we know, a might also be an identity;
is that possible? In fact, it is not possible; why? Remember that a group is a monoid. We showed
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in Proposition 2.12 that the identity of a monoid is unique; thus, the identity of a group is unique;
thus, there can be only one identity, e .

Now we build the addition table. We have to assign a ◦ a = e . Why?
• To satisfy the identity property, we must have e ◦ e = e , e ◦ a = a, and a ◦ e = a.
• To satisfy the inverse property, a must have an additive inverse. We know the inverse can’t

be e , since a ◦ e = a; so the only inverse possible is a itself! That is, a−1 = a. (Read that as,
“the inverse of a is a.”) So a ◦ a−1 = a ◦ a = e .

So the Cayley table of our group looks like:
◦ e a
e e a
a a e

The only assumption we made about G is that it was a group of order two. That means this table
applies to any group of order two, and we have determined the Cayley table of all groups of order
two!

In Definition 2.1 and Example 2.9, the symbol ◦ is a placeholder for any operation. We
assumed nothing about its actual behavior, so it can represent addition, multiplication, or other
operations that we have not yet considered. Behold the power of abstraction!

Other elementary properties of groups

Notation 2.10. We adopt the following convention:
• If we know only that G is a group under some operation, we write ◦ for the operation and

proceed as if the group were multiplicative, so that xy is shorthand for x ◦ y.
• If we know that G is a group and a symbol is provided for its operation, we usually use

that symbol for the group, but not always. Sometimes we treat the group as if it were
multiplicative, writing xy instead of the symbol provided.
• We reserve the symbol + exclusively for additive groups.

The following fact looks obvious—but remember, we’re talking about elements of any group, not
merely the sets you have worked with in the past.

Proposition 2.11. Let G be a group and x ∈G. Then
�

x−1
�−1

= x. If G
is additive, we write instead that − (−x) = x.

Proposition 2.11 says that the inverse of the inverse of x is x itself; that is, if y is the inverse of x,
then x is the inverse of y.

Proof. You prove it! See Exercise 2.15.

Proposition 2.12. The identity of a group is both two-sided and unique;
that is, every group has exactly one identity. Also, the inverse of an
element is both two-sided and unique; that is, every element has exactly
one inverse element.

Proof. Let G be a group. We already pointed out that, since G is a monoid, and the identity of
a monoid is both two-sided and unique, the identity of G is unique.
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We turn to the question of the inverse. First we show that any inverse is two-sided. Let x ∈G.
Let w be a left inverse of x, and y a right inverse of x. Since y is a right inverse,

xy = e .

By the identity property, we know that e x = x. So, substitution and the associative property
give us

(xy) x = e x

x (y x) = x.

Since w is a left inverse, w x = e , so substitution, the associative property, the identity property,
and the inverse property give

w (x (y x)) = w x

(w x) (y x) = w x

e (y x) = e

y x = e .

Hence y is a left inverse of x. We already knew that it was a right inverse of x, so right inverses
are in fact two-sided inverses. A similar argument shows that left inverses are two-sided inverses.

Now we show that inverses are unique. Suppose that y, z ∈G are both inverses of x. Since y
is an inverse of x,

xy = e .

Since z is an inverse of x,
x z = e .

By substitution,
xy = x z.

Multiply both sides of this equation on the left by y to obtain

y (xy) = y (x z) .

By the associative property,
(y x) y = (y x) z,

and by the inverse property,
e y = e z.

Since e is the identity of G,
y = z.

We chose two arbitrary inverses of x, and showed that they were the same element. Hence the
inverse of x is unique.

In Example 2.9, the structure of a group compelled certain assignments for the operation. We
can infer a similar conclusion for any group of finite order.
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Theorem 2.13. Let G be a group of finite order, and let a, b ∈ G. Then
a appears exactly once in any row or column of the Cayley table that is
headed by b .

It might surprise you that this is not necessarily true for a monoid; see Exercise 2.23.

Proof. First we show that a cannot appear more than once in any row or column headed by b .
In fact, we show it only for a row; the proof for a column is similar.

The element a appears in a row of the Cayley table headed by b any time there exists c ∈ G
such that b c = a. Let c , d ∈G such that b c = a and b d = a. (We have not assumed that c 6= d .)
Since a = a, substitution implies that b c = b d . Thus

c =
id.

ec =
inv.

�
b−1b

�
c =

ass.
b−1 (b c)

=
subs.

b−1 (b d ) =
ass.

�
b−1b

�
d =

inv.
ed =

id.
d .

By the transitive property of equality, c = d . This shows that if a appears in one column of the
row headed by b , then that column is unique; a does not appear in a different column.

We still have to show that a appears in at least one row of the addition table headed by b .
This follows from the fact that each row of the Cayley table contains |G| elements. What applies
to a above applies to the other elements, so each element of G can appear at most once. Thus,
if we do not use a, then only n− 1 pairs are defined, which contradicts either the definition of
an operation (b x must be defined for all x ∈G) or closure (that b x ∈G for all x ∈G). Hence a
must appear at least once.

Definition 2.14. Let G1, . . . , Gn be groups. The direct product of G1,
. . . , Gn is the cartesian product G1×· · ·×Gn together with the operation
⊗ such that for any (g1, . . . , gn) and (h1, . . . , hn) in G1×· · ·×Gn ,

(g1, . . . , gn)⊗ (h1, . . . , hn) = (g1h1, . . . , gn hn) ,

where each product gi hi is performed according to the operation of Gi .
In other words, the direct product of groups generalizes the direct product
of monoids.

You will show in the exercises that the direct product of groups is also a group.

Exercises.

Exercise 2.15.
(a) Fill in each blank of Figure 2.1 with the appropriate justification or statement.
(b) Why should someone think to look at the product of x and x−1 in order to show that�

x−1
�−1

= x?

Exercise 2.16. Explain why (M,×) is not a group.

Exercise 2.17. Is
�
N+, lcm

�
a group? (See Exercise 1.22.)



1. Groups 64

Let G be a group, and x ∈G.

Claim:
�

x−1
�−1

= x; or, if the operation is addition, − (−x) = x.
Proof:

1. By _____, x · x−1 = e and x−1 · x = e .

2. By _____,
�

x−1
�−1

= x.
3. Negative are merely how we express opposites when the operation is addition, so− (−x) =

x.
Figure 2.1. Material for Exercise 2.15

Exercise 2.18. Let G be a group, and x, y, z ∈ G. Show that if x z = y z, then x = y; or if the
operation is addition, that if x + z = y + z, then x = y.

Exercise 2.19. Show in detail that R2×2 is an additive group.

Exercise 2.20. Recall the Boolean-or monoid (B ,∨) from Exercise 1.13. Is it a group? If so, is it
abelian? Explain how it justifies each property. If not, explain why not.

Exercise 2.21. Recall the Boolean-xor monoid (B ,⊕) from Exercise 1.14. Is it a group? If so, is it
abelian? Explain how it justifies each property. If not, explain why not.

Exercise 2.22. In Section 17, we showed that FS , the set of all functions, is a monoid for any S.
(a) Show that FR, the set of all functions on the real numbers R, is not a group.
(b) Describe a subset of FR that is a group. Another way of looking at this question is: what

restriction would you have to impose on any function f ∈ FS to fix the problem you found
in part (a)?

Exercise 2.23. Indicate a monoid you have studied that does not satisfy Theorem 2.13. That is,
find a monoid M such that (i) M is finite, and (ii) there exist a, b ∈ M such that in the the Cayley
table, a appears at least twice in a row or column headed by b .

Exercise 2.24. Show that the Cartesian product

Z×Z := {(a, b ) : a, b ∈Z}

is a group under the direct product’s notion of addition; that is,

x + y = (a + c , b + d ) .

Exercise 2.25. Let (G,◦) and (H ,∗) be groups, and define

G×H = {(a, b ) : a ∈G, b ∈H} .

Define an operation † on G×H in the following way. For any x, y ∈ G×H , write x = (a, b )
and y = (c , d ); we say that

x † y = (a ◦ c , b ∗ d ) .

(a) Show that (G×H , †) is a group.
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(b) Show that if G and H are both abelian, then so is G×H .

Exercise 2.26. Let n ∈N+. Let G1, G2, . . . , Gn be groups, and consider

n∏

i=1

Gi = G1×G2×· · ·×Gn

= {(a1,a2, . . . ,an) : ai ∈Gi ∀i = 1,2, . . . , n}

with the operation † where if x = (a1,a2, . . . ,an) and y = (b1, b2, . . . , bn), then

x † y = (a1b1,a2b2, . . . ,an bn) ,

where each product ai bi is performed according to the operation of the group Gi . Show that∏n
i=1

Gi is a group, and notice that this shows that the direct product of groups is a group, as
claimed above. (We used ⊗ instead of † there, though.)

Exercise 2.27. Let m ∈N+.
(a) Show in detail that Rm×m is a group under addition.
(b) Show by counterexample that Rm×m is not a group under multiplication.

Exercise 2.28. Let m ∈N+. Explain why GLm (R) satisfies the identity and inverse properties
of a group.

Exercise 2.29. Let R+ = {x ∈R : x > 0}, and × the ordinary multiplication of real numbers.
Show that

�
R+,×� is a group.

Exercise 2.30. Define Q∗ to be the set of non-zero rational numbers; that is,

Q∗ =
§ a

b
: a, b ∈Z where a 6= 0 and b 6= 0

ª
.

Show that Q∗ is a multiplicative group.

Exercise 2.31. Show that every group of order 3 has the same structure.

Exercise 2.32. Not every group of order 4 has the same structure, because there are two Cayley
tables with different structures. One of these groups is the Klein four-group, where each element
is its own inverse; the other is called a cyclic group of order 4, where not every element is its own
inverse. Determine the Cayley tables for each group.

Exercise 2.33. Let G be a group, and x, y ∈G. Show that xy−1 ∈G.

Exercise 2.34.

(a) Let m ∈ N+ and G = GLm (R). Show that there exist a, b ∈ G such that (ab )−1 6=
a−1b−1.

(b) Suppose that H is an arbitrary group.
(i) Explain why we cannot assume that for every a, b ∈H , (ab )−1 = a−1b−1.
(ii) Fill in the blanks of Figure 2.2 with the appropriate justification or statement.
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Claim: Any two elements a, b of any group G satisfy (ab )−1 = b−1a−1.
Proof:

1. Let _____.
2. By the _____, _____, and _____ properties of groups,

(ab ) b−1a−1 = a
�

b · b−1
�

a−1 = aea−1 = aa−1 = e .

3. We chose _____ arbitrarily, so this holds for all elements of all groups, as claimed.

Figure 2.2. Material for Exercise 2.34

Exercise 2.35. Let ◦ denote the ordinary composition of functions, and consider the following
functions that map any point P = (x, y) ∈R2 to another point in R2:

I (P ) = P ,

F (P ) = (y, x) ,

X (P ) = (−x, y) ,

Y (P ) = (x,−y) .

(a) Let P = (2,3). Label the points P , I (P ), F (P ), X (P ), Y (P ), (F ◦X ) (P ), (X ◦Y ) (P ),
and (F ◦ F ) (P ) on an x-y axis. (Some of these may result in the same point; if so, label the
point twice.)

(b) Show that F ◦ F = X ◦X = Y ◦Y = I .
(c) Show that G = {I , F ,X ,Y } is not a group.
(d) Find the smallest group G such that G ⊂G. While you’re at it, construct the Cayley table

for G.
(e) Is G abelian?

Definition 2.36. Let G be any group.
1. For all x, y ∈ G, define the commutator of x and y to be

x−1y−1xy. We write [x, y ] for the commutator of x and y.
2. For all z, g ∈ G, define the conjugation of g by z to be z g z−1.

We write g z for the conjugation of g by z.

Exercise 2.37. (a) Explain why [x, y ] = e iff x and y commute.
(b) Show that [x, y ]−1 = [y, x ]; that is, the inverse of [x, y ] is [y, x ].
(c) Show that (g z)−1 =

�
g−1
�z

; that is, the inverse of conjugation of g by z is the conjugation
of the inverse of g by z.

(d) Fill in each blank of Figure 2.3 with the appropriate justification or statement.

2.2: The symmetries of a triangle

In this section, we show that the symmetries of an equilateral triangle form a group. We call
this group D3. This group is not abelian. You already know that groups of order 2, 3, and 4 are
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Claim: [x, y ]z = [x z , y z ] for all x, y, z ∈G.
Proof:

1. Let _____.
2. By _____, [x z , y z ] =

�
z x z−1, zy z−1

�
.

3. By _____,
�

z x z−1, zy z−1
�

=
�

z x z−1
�−1 �

zy z−1
�−1 �

z x z−1
��

zy z−1
�
.

4. By Exercise _____,

�
z x z−1

�−1 �
zy z−1

�−1 �
z x z−1

��
zy z−1

�
=

=
�

z x−1z−1
��

zy−1z−1
��

z x z−1
��

zy z−1
�

.

5. By _____,

�
z x−1z−1

��
zy−1z−1

��
z x z−1

��
zy z−1

�
=

�
z x−1

��
z−1z

�
y−1

�
z−1z

�
x
�

z−1z
��

y z−1
�

.

6. By _____,

�
z x−1

��
z−1z

�
y−1

�
z−1z

�
x
�

z−1z
��

y z−1
�

=

=
�

z x−1
�

e y−1e xe
�

y z−1
�

.

7. By _____,
�

z x−1
�

e y−1e xe
�

y z−1
�
=
�

z x−1
�

y−1x
�

y z−1
�
.

8. By _____,
�

z x−1
�

y−1x
�

y z−1
�
= z

�
x−1y−1xy

�
z−1.

9. By _____, z
�

x−1y−1xy
�

z−1 = z [x, y ] z−1.
10. By _____, z [x, y ] z−1 = [x, y ]z .
11. By _____, [x z , y z ] = [x, y ]z .

Figure 2.3. Material for Exercise 2.37(c)

abelian; in Section 3.3 you will learn why a group of order 5 must also be abelian. Thus, D3 is
the smallest non-abelian group.

Intuitive development of D3

To describe D3, start with an equilateral triangle in R2, with its center at the origin. We want
to look at its group of symmetries. Intuitively, a “symmetry” is a transformation of the plane
that leaves the triangle in the same location, even if its points are in different locations. “Trans-
formations” include actions like rotation, reflection (flip), and translation (shift). Translating the
plane in some direction certainly won’t leave the triangle intact, but rotation and reflection can.
Two obvious symmetries of an equilateral triangle are a 120◦ rotation through the origin, and a
reflection through the y-axis. We’ll call the first of these ρ, and the second ϕ. See Figure 2.4.

It is helpful to observe two important properties.

Theorem 2.38. If ϕ and ρ are as specified, then ϕρ= ρ2ϕ.

For now, we consider intuitive proofs only. Detailed proofs appear later in the section.
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32

1

ρ

(a)

32

1

ϕ

π

(b)

Figure 2.4. Rotation and reflection of the triangle

Intuitive proof. The expression ϕρ means to apply ρ first, then ϕ. It’ll help if you sketch what
takes place here. Rotating 120◦ moves vertex 1 to vertex 2, vertex 2 to vertex 3, and vertex 3
to vertex 1. Flipping through the y-axis leaves the top vertex in place; since we performed the
rotation first, the top vertex is now vertex 3, so vertices 1 and 2 are the ones swapped. Thus,
vertex 1 has moved to vertex 3, vertex 3 has moved to vertex 1, and vertex 2 is in its original
location.

On the other hand, ρ2ϕ means to apply ϕ first, then apply ρ twice. Again, it will help to
sketch what follows. Flipping through the y-axis swaps vertices 2 and 3, leaving vertex 1 in the
same place. Rotating twice then moves vertex 1 to the lower right position, vertex 3 to the top
position, and vertex 2 to the lower left position. This is the same arrangement of the vertices as
we had for ϕρ, which means that ϕρ= ρ2ϕ.

You might notice that there’s a gap in our reasoning: we showed that the vertices of the
triangle ended up in the same place, but not the points in between. That requires a little more
work, which is why we provide detailed proofs later.

By the way, did you notice something interesting about Corollary 2.38? It implies that the
operation in D3 is non-commutative! We have ϕρ= ρ2ϕ, and a little logic shows that ρ2ϕ 6= ρϕ:
thus ϕρ 6= ρϕ. After all, ρϕ

Another “obvious” symmetry of the triangle is the transformation where you do nothing –
or, if you prefer, where you effectively move every point back to itself, as in a 360◦ rotation, say.
We’ll call this symmetry ι. It gives us the last property we need to specify the group, D3.

Theorem 2.39. In D3, ρ3 = ϕ2 = ι.

Intuitive proof. Rotating 120◦ three times is the same as rotating 360◦, which is the same as
not rotating at all! Likewise, ϕ moves any point (x, y) to (x,−y), and applying ϕ again moves
(x,−y) back to (x, y), which is the same as not flipping at all!

We are now ready to specify D3.
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Definition 2.40. Let D3 =
�
ι,ϕ,ρ,ρ2,ρϕ,ρ2ϕ

	
.

Theorem 2.41. D3 is a group under composition of functions.

Proof. To prove this, we will show that all the properties of a group are satisfied. We will start
the proof, and leave you to finish it in Exercise 2.45.

Closure: In Exercise 2.45, you will compute the Cayley table of D3. There, you will see that
every composition is also an element of D3.

Associative: Way back in Section 17, we showed that FS , the set of functions over a set S,
was a monoid under composition for any set S. To do that, we had to show that composition
of functions was associative. There’s no point in repeating that proof here; doing it once is good
enough for a sane person. Symmetries are functions; after all, they map any point in R2 to
another point in R2, with no ambiguity about where the point goes. So, we’ve already proved
this.

Identity: We claim that ι is the identity function. To see this, let σ ∈ D3 be any symmetry;
we need to show that ισ = ι and σι = σ . For the first, apply σ to the triangle. Then apply ι.
Since ι effectively leaves everything in place, all the points are in the same place they were after
we applied σ . In other words, ισ = σ . The proof that σι= σ is similar.

Alternately, you could look at the result of Exercise 2.45; you will find that ισ = σι = σ for
every σ ∈ D3.

Inverse: Intuitively, rotation and reflection are one-to-one-functions: after all, if a point P is
mapped to a point R by either, it doesn’t make sense that another point Q would also be mapped
to R. Since one-to-one functions have inverses, every element σ of D3 must have an inverse
function σ−1, which undoes whatever σ did. But is σ−1 ∈ D3, also? Since σ maps every point of
the triangle onto the triangle, σ−1 will undo that map: every point of the triangle will be mapped
back onto itself, as well. So, yes, σ−1 ∈ D3.

Here, the intuition is a little too imprecise; it isn’t that obvious that rotation is a one-to-one
function. Fortunately, the result of Exercise 2.45 shows that ι, the identity, appears in every row
and column. That means that every element has an inverse.

Detailed proof that D3 contains all symmetries of the triangle

To prove that D3 contains all symmetries of the triangle, we need to make some notions more
precise. First, what is a symmetry? A symmetry of any polygon is a distance-preserving function
on R2 that maps points of the polygon back onto itself. Notice the careful wording: the points
of the polygon can change places, but since they have to be mapped back onto the polygon, the
polygon itself has to remain in the same place.

Let’s look at the specifics for our triangle. What functions are symmetries of the triangle? To
answer this question, we divide it into two parts.

1. What are the distance-preserving functions that map R2 to itself, and leave the origin undis-
turbed? Here, distance is measured by the usual metric,

d =
Æ

(x2− x1)
2 +(y2− y1)

2.
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(You might wonder why we don’t want the origin to move. Basically, if a function α
preserves both distances between points and a figure centered at the origin, then the origin
cannot move, since then its distance to points on the figure would change.)

2. Not all of the functions identitifed by question (1) map points on the triangle back onto
the triangle; for example a 45◦ degree rotation does not. Which ones do?

Lemma 2.42 answers the first question.

Lemma 2.42. Let α : R2→R2. If
• α does not move the origin; that is, α (0,0) = (0,0), and
• the distance between α (P ) and α (R) is the same as the distance

between P and R for every P , R ∈R2,
then α has one of the following two forms:

ρ=

�
cos t − sin t
sin t cos t

�
∃t ∈R

or

ϕ =

�
cos t sin t
sin t −cos t

�
∃t ∈R.

The two values of t may be different.

Proof. Assume that α (0,0) = (0,0) and for every P , R ∈ R2 the distance between α (P ) and
α (R) is the same as the distance between P and R. We can determine α precisely merely from
how it acts on two points in the plane!

First, let P = (1,0). Write α (P ) = Q = (q1, q2); this is the point where α moves Q. The
distance between P and the origin is 1. Since α (0,0) = (0,0), the distance between Q and the

origin is
Æ

q2
1
+ q2

2
. Because α preserves distance,

1 =
q

q2
1
+ q2

2
,

or
q2

1
+ q2

2
= 1.

The only values for Q that satisfy this equation are those points that lie on the circle whose center
is the origin. Any point on this circle can be parametrized as

(cos t , sin t )

where t ∈ [0,2π) represents an angle. Hence, α (P ) = (cos t , sin t ).

Let R = (0,1). Write α (R) = S = (s1, s2). An argument similar to the one above shows that
S also lies on the circle whose center is the origin. Moreover, the distance between P and R is

p
2,

so the distance between Q and S is also
p

2. That is,

Æ
(cos t − s1)

2 +(sin t − s2)
2 =
p

2,
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or
(cos t − s1)

2 +(sin t − s2)
2 = 2. (7)

We can simplify (7) to obtain

−2 (s1 cos t + s2 sin t )+
�

s2
1
+ s2

2

�
= 1. (8)

To solve this, recall that the distance from S to the origin must be the same as the distance from
R to the origin, which is 1. Hence

q
s2
1
+ s2

2
= 1

s2
1
+ s2

2
= 1.

Substituting this into (8), we find that

−2 (s1 cos t + s2 sin t )+ s2
1
+ s2

2
= 1

−2 (s1 cos t + s2 sin t )+ 1 = 1

−2 (s1 cos t + s2 sin t ) = 0

s1 cos t =−s2 sin t . (9)

At this point we can see that s1 = sin t and s2 = −cos t would solve the problem; so would
s1 =− sin t and s2 = cos t . Are there any other solutions?

Recall that s2
1
+ s2

2
= 1, so s2 = ±

Æ
1− s2

1
. Likewise sin t = ±

p
1− cos2 t . Substituting into

equation (9) and squaring (so as to remove the radicals), we find that

s1 cos t =−
q

1− s2
1
·
Æ

1− cos2 t

s2
1

cos2 t =
�

1− s2
1

��
1− cos2 t

�

s2
1

cos2 t = 1− cos2 t − s2
1
+ s2

1
cos2 t

s2
1

= 1− cos2 t

s2
1

= sin2 t

∴ s1 =± sin t .

Along with equation (9), this implies that s2 = ∓cos t . Thus there are two possible values of s1
and s2.

It can be shown (see Exercise 2.48) that α is a linear transformation on the vector space R2

with the basis
¦
~P , ~R

©
= {(1,0) , (0,1)}. Linear algebra tells us that we can describe any linear

transformation over a finite-dimensional vector space as a matrix. If s = (sin t ,−cos t ) then

α=

�
cos t sin t
sin t −cos t

�
;

otherwise

α=

�
cos t − sin t
sin t cos t

�
.
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The lemma names the first of these forms ϕ and the second ρ.

Before answering the second question, let’s consider an example of what the two basic forms of
α do to the points in the plane.

Example 2.43. Consider the set of points

S = {(0,2) , (±2,1) , (±1,−2)} ;

these form the vertices of a (non-regular) pentagon in the plane. Let t = π/4; then

ρ=

 p
2

2
−
p

2
2p

2
2

p
2

2

!
and ϕ =

 p
2

2

p
2

2p
2

2
−
p

2
2

!
.

If we apply ρ to every point in the plane, then the points of S move to

ρ (S) = {ρ (0,2) ,ρ (−2,1) ,ρ (2,1) ,ρ (−1,−2) ,ρ (1,−2)}

=

(�
−
p

2,
p

2
�

,

 
−
p

2−
p

2

2
,−
p

2 +

p
2

2

!
,

 
p

2−
p

2

2
,
p

2 +

p
2

2

!
,

 
−
p

2

2
+
p

2,−
p

2

2
−
p

2

!
,

 p
2

2
+
p

2,

p
2

2
−
p

2

!)

≈ {(−1.4,1.4) , (−2.1,−0.7) , (0.7,2.1) ,

(0.7,−2.1) , (2.1,−0.7)} .

This is a 45◦ (π/4) counterclockwise rotation in the plane.

If we apply ϕ to every point in the plane, then the points of S move to

ϕ (S) = {ϕ (0,2) ,ϕ (−2,1) ,ϕ (2,1) ,ϕ (−1,−2) ,ϕ (1,−2)}
≈ {(1.4,−1.4) , (−0.7,−2.1) , (2.1,0.7) ,

↓(−2.1,0.7) , (−0.7,2.1)} .

This is shown in Figure 2.5 . The line of reflection for ϕ has slope
�

1− cos π
4

�
/ sin π

4
. (You will

show this in Exercise 2.50)

The second questions asks which of the matrices described by Lemma 2.42 also preserve the
triangle.

• The first solution (ρ) corresponds to a rotation of degree t of the plane. To preserve the
triangle, we can only have t = 0, 2π/3, 4π/3 (0◦, 120◦, 240◦). (See Figure 2.4(a).) Let ι
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ρ ϕ

Figure 2.5. Actions of ρ and ϕ on a pentagon, with t = π/4

correspond to t = 0, the identity rotation; notice that

ι=
�

cos0 − sin0
sin0 cos0

�
=

�
1 0
0 1

�
,

which is what we would expect for the identity. We can let ρ correspond to a counterclock-
wise rotation of 120◦, so

ρ=

�
cos 2π

3
− sin 2π

3
sin 2π

3
cos 2π

3

�
=

 
−1

2
−
p

3
2p

3
2
−1

2

!
.

A rotation of 240◦ is the same as rotating 120◦ twice. We can write that as ρ ◦ρ or ρ2;
matrix multiplication gives us

ρ2 =

 
−1

2
−
p

3
2p

3
2
−1

2

! 
−1

2
−
p

3
2p

3
2
−1

2

!

=

 
−1

2

p
3

2

−
p

3
2
−1

2

!
.

• The second solution (ϕ) corresponds to a flip along the line whose slope is

m = (1− cos t )/ sin t .

One way to do this would be to flip across the y-axis (see Figure 2.4(b)). For this we need
the slope to be undefined, so the denominator needs to be zero and the numerator needs to
be non-zero. One possibility for t is t = π (but not t = 0). So

ϕ =

�
cosπ sinπ
sinπ −cosπ

�
=

� −1 0
0 1

�
.
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There are two other flips, but we can actually ignore them, because they are combinations
of ϕ and ρ. (Why? See Exercise 2.47.)

We can now give more detailed proofs of Theorems 2.38 and 2.39. We’ll prove the first here, and
you’ll prove the second in the exercises.

Detailed proof of Theorem 2.38. Compare

ϕρ=

� −1 0
0 1

� −1
2
−
p

3
2p

3
2
−1

2

!
=

 
1
2

p
3

2p
3

2
−1

2

!

and

ρ2ϕ =

 
−1

2
−
p

3
2p

3
2
−1

2

! 
−1

2
−
p

3
2p

3
2
−1

2

!� −1 0
0 1

�

=

 
−1

2

p
3

2

−
p

3
2
−1

2

!� −1 0
0 1

�

=

 
1
2

p
3

2p
3

2
−1

2

!
.

Exercises.

Unless otherwise specified ρ and ϕ refer to the elements of D3.

Exercise 2.44. Show explicitly (by matrix multiplication) that ρ3 = ϕ2 = ι.

Exercise 2.45. The multiplication table for D3 has at least this structure:
◦ ι ϕ ρ ρ2 ρϕ ρ2ϕ
ι ι ϕ ρ ρ2 ρϕ ρ2ϕ
ϕ ϕ ρ2ϕ
ρ ρ ρϕ
ρ2 ρ2

ρϕ ρϕ
ρ2ϕ ρ2ϕ

Complete the multiplication table, writing every element in the form ρmϕn , never with ϕ before
ρ. Do not use matrix multiplication; instead, use Theorems 2.38 and 2.39.

Exercise 2.46. Find a geometric figure (not a polygon) that is preserved by at least one rotation,
at least one reflection, and at least one translation. Keep in mind that, when we say “preserved”,
we mean that the points of the figure end up on the figure itself — just as a 120◦ rotation leaves
the triangle on itself.

Exercise 2.47. Two other values of t allow us to define flips for the triangle. Find these values of
t , and explain why their matrices are equivalent to the matrices ρϕ and ρ2ϕ.
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Exercise 2.48. Show that any function α satisfying the requirements of Theorem 2.42 is a linear
transformation; that is, for all P ,Q ∈R2 and for all a, b ∈R, α (aP + bQ) = aα (P )+ bα (Q).
Use the following steps.

(a) Prove that α (P ) ·α (Q) = P ·Q, where · denotes the usual dot product (or inner product)
on R2.

(b) Show that α (1,0) ·α (0,1) = 0.

(c) Show that α ((a, 0)+ (0, b )) = aα (1,0)+ bα (0,1).

(d) Show that α (aP ) = aα (P ).

(e) Show that α (P + Q) = α (P )+α (Q).

Exercise 2.49. Show that the only stationary point in R2 for the general ρ is the origin. That is,
if ρ (P ) = P , then P = (0,0). (By “general”, we mean any ρ, not just the one in D3.)

Exercise 2.50. Fill in each blank of Figure 2.6 with the appropriate justification.
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Claim: The only stationary points of ϕ lie along the line whose slope is (1− cos t )/ sin t , where
t ∈ [0,2π) and t 6= 0,π. If t = 0, only the x-axis is stationary, and for t = π, only the y-axis.
Proof:

1. Let P ∈R2. By _____, there exist x, y ∈R such that P = (x, y).
2. Assume ϕ leaves P stationary. By _____,�

cos t sin t
sin t −cos t

��
x
y

�
=

�
x
y

�
.

3. By linear algebra, �
_____
_____

�
=

�
x
y

�
.

4. By the principle of linear independence, _____= x and _____= y.
5. For each equation, collect x on the left hand side, and y on the right, to obtain(

x (_____) =−y (_____)

x (_____) = y (_____)
.

6. If we solve the first equation for y, we find that y =_____.
(a) This, of course, requires us to assume that _____6= 0.
(b) If that was in fact zero, then t =_____, _____ (remembering that t ∈ [0,2π)).

7. Put these values of t aside. If we solve the second equation for y, we find that y =_____.
(a) Again, this requires us to assume that _____6= 0.
(b) If that was in fact zero, then t =_____. We already put this value aside, so ignore it.

8. Let’s look at what happens when t 6=_____ and _____.
(a) Multiply numerator and denominator of the right hand side of the first solution by

the denominator of the second to obtain y =_____.
(b) Multiply right hand side of the second with denominator of the first: y =_____.
(c) By _____, sin2 t = 1− cos2 t . Substitution into the second solution gives the first!
(d) That is, points that lie along the line y =_____ are left stationary by ϕ.

9. Now consider the values of t we excluded.
(a) If t =_____, then the matrix simplifies to ϕ =_____.
(b) To satisfy ϕ (P ) = P , we must have _____= 0, and _____ free. The points that satisfy

this are precisely the _____-axis.
(c) If t =_____, then the matrix simplifies to ϕ =_____.
(d) To satisfy ϕ (P ) = P , we must have _____= 0, and _____ free. The points that satisfy

this are precisely the _____-axis.

Figure 2.6. Material for Exercise 2.50

2.3: Cyclic groups and order of elements

Here we re-introduce the familiar notation of exponents, in a manner consistent with what
you learned for exponents of real numbers. We use this to describe an important class of groups
that recur frequently.

Cyclic groups and generators
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Notation 2.51. Let G be a group, and g ∈ G. If we want to perform the operation on g ten
times, we could write

10∏

i=1

g = g · g · g · g · g · g · g · g · g · g

but this grows tiresome. Instead we will adapt notation from high-school algebra and write

g 10.

We likewise define g−10 to represent

10∏

i=1

g−1 = g−1 · g−1 · g−1 · g−1 · g−1 · g−1 · g−1 · g−1 · g−1 · g−1.

Indeed, for any n ∈N+ and any g ∈G we adopt the following convention:
• g n means to perform the operation on n copies of g , so g n =

∏n
i=1

g ;

• g−n means to perform the operation on n copies of g−1, so g−n =
∏n

i=1
g−1 =

�
g−1
�n

;

• g 0 = e , and if I want to be annoying I can write g 0 =
∏0

i=1
g .

In additive groups we write instead n g =
∑n

i=1
g , (−n) g =

∑n
i=1 (−g ), and 0g = 0.

Notice that this definition assume n is positive.

Definition 2.52. Let G be a group. If there exists g ∈G such that every
element x ∈ G has the form x = g n for some n ∈ Z, then G is a cyclic
group and we write G = 〈g 〉. We call g a generator of G.

The idea of a cyclic group is that it has the form

¦
. . . , g−2, g−1, e , g 1, g 2, . . .

©
.

If the group is additive, we would of course write

{. . . ,−2g ,−g , 0, g , 2g , . . .} .

Example 2.53. Z is cyclic, since any n ∈Z has the form n · 1. Thus Z = 〈1〉. In addition, n has
the form (−n) · (−1), so Z = 〈−1〉 as well. Both 1 and −1 are generators of Z.

You will show in the exercises that Q is not cyclic.

In Definition 2.52 we referred to g as a generator of G, not as the generator. There could in
fact be more than one generator; we see this in Example 2.53 from the fact that Z = 〈1〉= 〈−1〉.
Here is another example.

Example 2.54. Let

G =





�
1 0
0 1

�
,

�
0 −1
1 0

�
,

�
0 1
−1 0

�
,

� −1 0
0 −1

�




(GLm (R) .
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It turns out that G is a group; both the second and third matrices generate it. For example,

�
0 −1
1 0

�2

=

� −1 0
0 −1

�

�
0 −1
1 0

�3

=

�
0 1
−1 0

�

�
0 −1
1 0

�4

=

�
1 0
0 1

�
.

An important question arises here. Given a group G and an element g ∈G, define

〈g 〉=
¦

. . . , g−2, g−1, e , g , g 2, . . .
©

.

We know that every cyclic group has the form 〈g 〉 for some g ∈G. Is the converse also true that
〈g 〉 is a group for any g ∈G? As a matter of fact, yes!

Theorem 2.55. For every group G and for every g ∈G, 〈g 〉 is an abelian
group.

To prove Theorem 2.55, we need to make sure we can perform the usual arithmetic on exponents.

Lemma 2.56. Let G be a group, g ∈ G, and m, n ∈ Z. Each of the
following holds:
(A) g m g−m = e ; that is, g−m = (g m)−1.
(B) (g m)n = g mn .
(C) g m g n = g m+n .

The proof will justify this argument by applying the notation described at the beginning of this
chapter. We have to be careful with this approach, because in the lemma we have m, n ∈Z, but
the notation was given under the assumption that n ∈ N+. To make this work, we’ll have to
consider the cases where m and n are positive or negative separately. We call this a case analysis.

Proof. Each claim follows by case analysis.

(A) If m = 0, then g−m = g 0 = e = e−1 =
�

g 0
�−1

= (g m)−1.
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Otherwise, m 6= 0. First assume that m ∈N+. By notation, g−m =
∏m

i=1
g−1. Hence

g m g−m =
def.

 
m∏

i=1

g

! 
m∏

i=1

g−1

!

=
ass.

 
m−1∏

i=1

g

!�
g · g−1

� m−1∏

i=1

g−1

!

=
id.

 
m−1∏

i=1

g

!
e

 
m−1∏

i=1

g−1

!

=
inv.

 
m−1∏

i=1

g

! 
m−1∏

i=1

g−1

!

...

= e .

Since the inverse of an element is unique, g−m = (g m)−1.
Now assume that m ∈ Z\N. Since m is negative, we cannot express the product using
m; the notation discussed on page 76 requires a positive exponent. Consider instead bm =
|m| ∈ N+. Since the opposite of a negative number is positive, we can write −m = bm
and − bm = m. Since bm is positive, we can apply the notation to it directly; g−m = g bm =∏ bm

i=1
g , while g m = g− bm =

∏ bm
i=1

g−1. (To see this in a more concrete example, try it

with an actual number. If m = −5, then bm = |−5| = 5 = − (−5), so g m = g−5 = g− bm

and g−m = g 5 = g bm .) As above, we have

g m g−m =
subs.

g− bm g bm =
not.




bm∏

i=1

g−1






bm∏

i=1

g


= e .

Hence g−m = (g m)−1.
(B) If n = 0, then (g m)n = (g m)0 = e because anything to the zero power is e . Assume first

that n ∈N+. By notation, (g m)n =
∏n

i=1
g m . We split this into two subcases.

(B1) If m ∈N, we have

(g m)n =
not.

n∏

i=1

 
m∏

i=1

g

!
=
ass.

mn∏

i=1

g =
not.

g mn .

(B2) Otherwise, let bm = |m| ∈N+ and we have

(g m)n =
subs.

�
g− bm

�n
=

not.

n∏

i=1




bm∏

i=1

g−1




=
ass.

bmn∏

i=1

g−1 =
not.

�
g−1
� bmn

=
not.

g− bmn =
subs.

g mn .
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What if n is negative? Let bn = −n; by notation, (g m)n = (g m)−bn =
∏bn

i=1 (g m)−1. By

(A), this becomes
∏bn

i=1
g−m . By notation, we can rewrite this as

�
g−m

�bn . Since bn ∈N+,
we can apply case (B1) or (B2) as appropriate, so

(g m)n =
�

g−m�bn =
(B1) or (B2)

g (−m)bn

=
integers!

g m(−bn) =
subst

g mn .

(C) We consider three cases.
If m = 0 or n = 0, then g 0 = e , so g−0 = g 0 = e .
If m, n have the same sign (that is, m, n ∈ N+ or m, n ∈ Z\N), then write bm = |m|,
bn = |n|, gm = g

bm
m , and gn = g

bn
n . This effects a really nice trick: if m ∈ N+, then

gm = g , whereas if m is negative, gm = g−1. This notational trick allows us to write g m =∏ bm
i=1

gm and g n =
∏bn

i=1
gn , where gm = gn and bm and bn are both positive integers. Then

g m g n =
bm∏

i=1

gm

bn∏

i=1

gn =
bm∏

i=1

gm

bn∏

i=1

gm

=
bm+bn∏

i=1

gm = (gm) bm+bn = g m+n .

Since g and n were arbitrary, the induction implies that g n g−n = e for all g ∈G, n ∈N+.
Now consider the case where m and n have different signs. In the first case, suppose m is
negative and n ∈N+. As in (A), let bm = |m| ∈N+; then

g m g n =
�

g−1
�−m

g n =




bm∏

i=1

g−1



 

n∏

i=1

g

!
.

If bm ≥ n, we have more copies of g−1 than g , so after cancellation,

g m g n =
bm−n∏

i=1

g−1 = g−( bm−n) = g m+n .

Otherwise, bm < n, and we have more copies of g than of g−1. After cancellation,

g m g n =
n− bm∏

i=1

g = g n− bm = g n+m = g m+n .

The remaining case (m ∈N+, n ∈Z\N) is similar, and you will prove it for homework.

These properties of exponent arithmetic allow us to show that 〈g 〉 is a group.

Proof of Theorem 2.55. We show that 〈g 〉 satisfies the properties of an abelian group. Let x, y, z ∈
〈g 〉. By definition of 〈g 〉, there exist a, b , c ∈Z such that x = g a , y = g b , and z = g c . We will
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use Lemma 2.56 implicitly.

• By substitution, xy = g a g b = g a+b ∈ 〈g 〉. So 〈g 〉 is closed.
• By substitution, x (y z) = g a

�
g b g c

�
. These are elements of G by inclusion (that is, 〈g 〉 ⊆

G so x, y, z ∈G), so the associative property in G gives us

x (y z) = g a
�

g b g c
�

=
�

g a g b
�

g c = (xy) z.

• By definition, e = g 0 ∈ 〈g 〉.
• By definition, g−a ∈ 〈g 〉, and x · g−a = g a g−a = e . Hence x−1 = g−a ∈ 〈g 〉.
• Using the fact that Z is commutative under addition,

xy = g a g b = g a+b = g b+a = g b g a = y x.

The order of an element

Given an element and an operation, Theorem 2.55 links them to a group. It makes sense,
therefore, to link an element to the order of the group that it generates.

Definition 2.57. Let G be a group, and g ∈G. We say that the order of
g is ord (g ) = |〈g 〉|. If ord (g ) =∞, we say that g has infinite order.

If the order of a group is finite, then we can write an element in different ways.

Example 2.58. Recall Example 2.54; we can write

�
1 0
0 1

�
=

�
0 −1
1 0

�0

=

�
0 −1
1 0

�4

=

�
0 −1
1 0

�8

= · · · .

Since multiples of 4 give the identity, let’s take any power of the matrix, and divide it by 4. The
Division Theorem allows us to write any power of the matrix as 4q + r , where 0≤ r < 4. Since
there are only four possible remainders, and multiples of 4 give the identity, positive powers of
this matrix can generate only four possible matrices:

�
0 −1
1 0

�4q

=

�
1 0
0 1

�
,

�
0 −1
1 0

�4q+1

=

�
1 0
0 1

��
0 −1
1 0

�
=

�
0 −1
1 0

�
,

�
0 −1
1 0

�4q+2

=

�
1 0
0 1

�� −1 0
0 −1

�
=

� −1 0
0 −1

�
,

�
0 −1
1 0

�4q+3

=

�
1 0
0 1

��
0 1
−1 0

�
=

�
0 1
−1 0

�
.
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We can do the same with negative powers; the Division Theorem still gives us only four
possible remainders. Let’s write

g =

�
0 −1
1 0

�
.

Thus
〈g 〉=

¦
I2, g , g 2, g 3

©
.

The example suggests that if the order of an element G is n ∈N, then we can write

〈g 〉=
¦

e , g , g 2, . . . , g n−1
©

.

This explains why we call 〈g 〉 a cyclic group: once they reach ord (g ), the powers of g “cycle”.To
prove this in general, we have to show that for a generic cyclic group 〈g 〉 with ord (g ) = n,
• n is the smallest positive power that gives us the identity; that is, g n = e , and
• for any two integers between 0 and n, the powers of g are different; that is, if 0≤ a < b < n,

then g a 6= g b .
Theorem 2.59 accomplishes that, and a bit more as well.

Theorem 2.59. Let G be a group, g ∈G, and ord (g ) = n. Then
(A) for all a, b ∈N such that 0≤ a < b < n, we have g a 6= g b .
In addition, if n <∞, each of the following holds:
(B) g n = e ;
(C) n is the smallest positive integer d such that g d = e ; and
(D) if a, b ∈Z and n | (a− b ), then g a = g b .

Proof. The fundamental assertion of the theorem is (A). The remaining assertions turn out to
be corollaries.

(A) By way of contradiction, suppose that there exist a, b ∈N such that 0 ≤ a < b < n and
g a = g b ; then e = (g a)−1 g b . By Lemma 2.56, we can write

e = g−a g b = g−a+b = g b−a .

Let S =
�

m ∈N+ : g m = e
	
. By the well-ordering property of N, there exists a smallest

element of S; call it d . Recall that a < b , so b − a ∈N+, so g b−a ∈ S. By the choice of d ,
we know that d ≤ b − a. By Exercise 0.25, d ≤ b − a < b , so 0< d < b < n.
We can now list d distinct elements of 〈g 〉:

g , g 2, g 3, . . . , g d = e . (10)

Using Lemma 2.56 again, we extrapolate that g d+1 = g , g d+2 = g 2, etc., so

〈g 〉=
¦

e , g , g 2, . . . , g d−1
©

.

We see that |〈g 〉|= d , but this contradicts the assumption that n = ord (g ) = |〈d 〉|.
(B) Let S =

�
m ∈N+ : g m = e

	
. Is S non-empty? Since 〈g 〉<∞, there must exist a, b ∈N+

such that a < b and g a = g b . Using the inverse property and substitution, g 0 = e =
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g b (g a)−1. By Lemma 2.56, g 0 = g b−a . By definition, b − a ∈ N+. Hence S is non-
empty.
By the well-ordering property of N, there exists a smallest element of S; call it d . Since
〈g 〉 contains n elements, 1 < d ≤ n. If d < n, that would contradict assertion (A) of this
theorem (with a = 0 and b = d ). Hence d = n, and g n = e , and we have shown (A).

(C) In (B), S is the set of all positive integers m such that g m = e ; we let the smallest element be
d , and thus d ≤ n. On the other hand, (A) tells us that we cannot have d < n; otherwise,
g d = g 0 = e . Hence, n ≤ d . We already had d ≤ n, so the two must be equal.

(D) Let a, b ∈Z. Assume that n | (a− b ). Let q ∈Z such that nq = a− b . Then

g b = g b · e = g b · eq

= g b · (g n)q = g b · g nq

= g b · g a−b = g b+(a−b ) = g a .

We conclude therefore that, at least when they are finite, cyclic groups are aptly named: increasing
powers of g generate new elements until the power reaches n, in which case g n = e and we “cycle
around”.

Exercises.

Exercise 2.60. Recall from Example 2.54 the matrix

A =

� −1 0
0 −1

�
.

Express A as a power of the other non-identity matrices of the group.

Exercise 2.61. Complete the proof of Lemma 2.56(C).

Exercise 2.62. Fill in each blank of Figure 2.7 with the justification or statement.

Exercise 2.63. Show that any group of 3 elements is cyclic.

Exercise 2.64. Is the Klein 4-group (Exercise 2.32 on page 65) cyclic? What about the cyclic group
of order 4?

Exercise 2.65. Show that Q is not cyclic.

Exercise 2.66. Use a fact from linear algebra to explain why GLm (R) is not cyclic.

2.4: The roots of unity
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Let G be a group, and g ∈G. Let d , n ∈Z and assume ord (g ) = d .
Claim: g n = e if and only if d | n.
Proof:

1. Assume that g n = e .
(a) By _____, there exist q , r ∈Z such that n = qd + r and 0≤ r < d .
(b) By _____, g qd+r = e .
(c) By _____, g qd g r = e .

(d) By _____,
�

g d
�q

g r = e .
(e) By _____, eq g r = e .
(f ) By _____, e g r = e . By the identity property, g r = e .
(g) By _____, d is the smallest positive integer such that g d = e .
(h) Since _____, it cannot be that r is positive. Hence, r = 0.
(i) By _____, g = qd . By definition, then d | n.

2. Now we show the converse. Assume that _____.
(a) By definition of divisibility, _____.
(b) By substitution, g n =_____.
(c) By Lemma 2.56, the right hand side of that equation can be rewritten as to _____.
(d) Recall that ord (g ) = d . By Theorem 2.59, g d = e , so we can rewrite the right hand

side again as _____.
(e) A little more simplification turns the right hand side into _____, which obviously

simplifies to e .
(f ) By _____, then, g n = e .

3. We showed first that if g n = e , then d |n; we then showed that _____. This proves the
claim.

Figure 2.7. Material for Exercise 2.62

One of the major motivations in the development of group theory was to study roots of
polynomials. A polynomial, of course, has the form

ax + b , ax2 + b x + c , ax3 + b x2 + c x + d , . . .

A root of a polynomial f (x) is any a such that f (a) = 0. For example, if f (x) = x4−1, then 1
and -1 are both roots of f . However, they are not the only roots of f ! For the full explanation,
you’ll need to read about polynomial rings and ideals in Chapters 7 and 8, but we can take some
first steps in that direction already.

Imaginary and complex numbers

First, notice that f factors as f (x) = (x−1) (x + 1)
�

x2 + 1
�
. The roots 1 and -1 show up in

the linear factors, and they’re the only possible roots of those factors. So, if f has other roots, we
would expect them to be roots of x2 + 1. However, the square of a real number is nonnegative;
adding 1 forces it to be positive. So, x2 + 1 has no roots in R.

Let’s make a root up, anyway. If it doesn’t make sense, we should find out soon enough. Let’s
call this polynomial g (x) = x2 +1, and say that g has a root, which we’ll call i , for “imaginary”.
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Since i is a root of g , we have the equation

0 = g (i) = i2 + 1,

or i2 =−1.

We’ll create a new set of numbers by adding i to the set R. Since R is a monoid under
multiplication and a group under addition, we’d like to preserve those properties as well. This
means we have to define multiplication and addition for our new set, and maybe add more objects,
too.

We start with R∪{i}. Does multiplication add any new elements? Since i2 =−1, and−1 ∈R

already, we’re okay there. On the other hand, for any b ∈R, we’d like to multiply b and i . Since
b i is not already in our new set, we’ll have to add it if we want to keep multiplication closed.
Our set has now expanded to R∪{b i : b ∈R}.

Let’s look at addition. Our new set has real numbers like 1 and “imaginary” numbers like 2i ;
if addition is to satisfy closure, we need 1 + 2i to be in the set, too. That’s not the case yet, so we
have to extend our set by a + b i for any a, b ∈R. That gives us

R∪{b i : b ∈R}∪{a + b i : a, b ∈R} .

If you think about it, the first two sets are in the third; just let a = 0 or b = 0 and you get b i or
a, respectively. So, we can simplify our new set to

{a + b i : a, b ∈R} .

Do we need anything else?

We haven’t checked closure of addition. In fact, we still haven’t defined addition of complex
numbers. We will borrow an idea from polynomials, and add complex numbers by adding like
terms; that is, (a + b i) + (c + d i) = (a + c) + (b + d ) i . Closure implies that a + c ∈ R and
b + d ∈ R, so this is just another expression in the form already described. In fact, we can also
see what additive inverses look like; after all, (a + b i) + (−a− b i) = 0. We don’t have to add
any new objects to our set to maintain the group structure of addition.

We also haven’t checked closure of multiplication in this larger set — or even defined it, re-
ally. Again, let’s borrow an idea from polynomials, and multiply complex numbers using the
distributive property; that is,

(a + b i) (c + d i) = ac + ad i + b c i + b d i2.

Remember that i2 =−1, and we can combine like terms, so the expression above simplifies to

(a + b i) (c + d i) = (ac − b d )+ (ad + b c) i .

Since ac− b d ∈R and ad + b c ∈R, this is just another expression in the form already described.
Again, we don’t have to add any new objects to our set.
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Definition 2.67. The complex numbers are the set

C =
¦

a + b i : a, b ∈R, i2 =−1
©

.

The real part of a + b i is a, and the imaginary part is b .

We can now state with confidence that we have found what we wanted to obtain.

Theorem 2.68. C is a monoid under multiplication, and an abelian group
under addition.

Proof. Let x, y, z ∈ C. Write x = a + b i , y = c + d i , and z = e + f i , for some a, b , c , d , e , f ∈
R. Let’s look at multiplication first.

closure? We built C to be closed under multiplication, so the discussion above suffices.
associative? We need to show that

(xy) z = x (y z) . (11)

Expanding the product on the left, we have

[(a + b i) (c + d i)] (e + f i) = [(ac − b d )+ (ad + b c) i ] (e + f i) .

Expand again, and we get

[(a + b i) (c + d i)] (e + f i) = [(ac − b d ) e− (ad + b c) f ]

+ [(ac − b d ) f +(ad + b c) e ] i .

Now let’s look at the product on the right of equation (11). Expanding it, we have

(a + b i) [(c + d i) (e + f i)] = (a + b i) [(c e− d f )+ (c f + d e) i ] .

Expand again, and we get

(a + b i) [(c + d i) (e + f i)] = [a (c e− d f )− b (c f + d e)]

+ [a (c f + d e)+ b (c e− d f )] i .

If you look carefully, you will see that both expansions resulted in the same complex
number:

(ace− b d e− ad f − b c f )+ (ac f − b d f + ad e + b ce) i .

Thus, multiplication is C is associative.
identity? We claim that 1 ∈ R is the multiplicative identity even for C. Recall that we can

write 1 = 1 + 0i . Then,

1x = (1 + 0i) (a + b i) = (1a−0b )+ (1b + 0a) i = a + b i = x.

Since x was arbitrary in C, it must be that 1 is, in fact, the identity.
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We have shown that C is a monoid under multiplication. What about addition; it is a group? We
leave that to the exercises.

There are a lot of wonderful properties of C that we could discuss. For example, you can see that
the roots of x2 +1 lie in C, but what of the roots of x2 +2? It turns out that they’re in there, too.
In fact, every polynomial of degree n with real coefficients has n roots in C! We need a lot more
theory to discuss that, however, so we pass over it for the time being. In any case, we can now
talk about a group that is both interesting and important.

Remark 2.69. You may wonder if we really can just make up some number i , and build a new
set by adjoining it to R. Isn’t that just a little, oh, imaginary? Actually, no, it is quite concrete,
and we can provide two very sound justifications.

First, mathematicians typically model the oscillation of a pendulum by a differential equa-
tions of the form y ′′+ ay = 0. As any book in the subject explains, we have good reason to solve
such differential equations by resorting to auxiliary polynomial equations of the form r 2 + a = 0.
The solutions to this equation are r = ±i

p
a, so unless the oscillation of a pendulum is “imagi-

nary”, i is quite “real”.
Second, we can construct from the real numbers a set that looks an awful lot like these pur-

ported complex numbers, using a very sensible approach, and we can even show that this set is
isomorphic to the complex numbers in all the ways that we would like. That’s a bit beyond us;
you will learn more in Section 8.4.

The complex plane

We can diagram the real numbers along a line. In fact, it’s quite easy to argue that what makes
real numbers “real” is precisely the fact that they measure location or distance along a line. That’s
only one-dimensional, and you’ve seen before that we can do something similar on the plane or
in space using R2 and R3.

What about the complex numbers? By definition, any complex number is the sum of its real
and imaginary parts. We cannot simplify a + b i any further using this representation, much as
we cannot simplify the point (a, b ) ∈R2 any further. Since R2 forms a vector space over R, does
C also form a vector space over R? In fact, it does! Here’s a quick reminder of what makes a
vector space:
• addition of vectors must satisfy closure and the associative, commutative, identity, and

inverse properties;
• multiplication of vectors by scalars must have an identity scalar, must be associative on the

scalars, and must satisfy the properties of distribution of scalars to vectors and vice-versa.
The properties for addition of vectors are precisely the properties of a group — and Theorem 2.68
tells us that C is a group under addition! All that remains is to show that C satisfies the required
properties of multiplication. You will do that in Exercise 2.83.

Right now, we are more interested in the geometric implications of this relationship. We’ve
already hinted that C and R2 have a similar structure. Let’s start with the notion of dimension.
Do you remember what that word means? Essentially, the dimension of a vectors space is the
number of basis vectors needed to describe a vector space. Do C and R2 have the same dimension
over R? For that, we need to identify a basis of C over R.
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i

2+3i

−2i

Figure 2.8. Two elements of C, visualized as points on the complex plane

Theorem 2.70. C is a vector space over R with basis {1, i}.

Proof. We have already discussed why C is a vector space over R; we still have to show that
{0, i} is a basis of C. This is straightforward from the definition of C, as any element can be
written in terms of the basis elements as a + b i = a ·1 + b · i .

We see from Theorem 2.70 that C and R2 do have the same dimension! After all, any point of
R2 can be written as (a, b ) = a (1,0)+ b (0,1), so a basis of R2 is {(1,0) , (0,1)}.

This will hopefully prompt you to realize that C and R2 are identical as vector spaces. For our
purposes, what matters that we can map any point of C to a unique point of R2, and vice-versa.

Theorem 2.71. There is a one-to-one, onto function from C to R2 that
maps the basis vectors 1 to (1,0) and i to (0,1).

Proof. Let ϕ : C → R2 by ϕ (a + b i) = (a, b ). That is, we map a complex number to R2 by
sending the real part to the first entry (the x-ordinate) and the imaginary part to the second entry
(the y-ordinate). As desired, ϕ (1) = (1,0) and ϕ (i) = (0,1).

Is this a bijection? We see that ϕ is one-to-one by the fact that if ϕ (a + b i) = ϕ (c + d i),
then (a, b ) = (c , d ); equality of points in R2 implies that a = c and b = d ; equality of complex
numbers implies that a + b i = c + d i . We see that ϕ is onto by the fact that for any (a, b ) ∈R2,
ϕ (a + b i) = (a, b ).

Since R2 has a nice, geometric representation as the x-y plane, we can represent complex numbers
in the same way. That motivates our definition of the complex plane, which is nothing more than
a visualization of C in R2.

Take a look at Figure 2.8. We have labeled the x-axis as R and the y-axis as iR. We call the
former the real axis and the latter the imaginary axis of the complex plane. This agrees with
our mapping above, which sent the real part of a complex number to the x-ordinate, and the
imaginary part to the y-ordinate. Thus, the complex number 2 + 3i corresponds to the point
(2,3), while the complex number −2i corresponds to the point (0,−2).
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We could say a great deal about the complex plane, but that would distract us from our main
goal, which is to proceed further in group theory. Even so, we should not neglect one important
and beautiful point.

Roots of unity

Any root of the polynomial f (x) = xn−1 is called a root of unity. These are very important
in the study of polynomial roots. At least some of them satisfy a very nice form.

Theorem 2.72. Let n ∈N+. The complex number

ω = cos

�
2π

n

�
+ i sin

�
2π

n

�

is a root of f (x) = xn−1.

To prove Theorem 2.72, we need a different property ofω.

Lemma 2.73. Ifω is defined as in Theorem 2.72, then

ωm = cos

�
2πm

n

�
+ i sin

�
2πm

n

�

for every m ∈N+.

Proof. We proceed by induction on m. For the inductive base, the definition of ω shows that
ω1 has the desired form. For the inductive hypothesis, assume that ωm has the desired form; in
the inductive step, we need to show that

ωm+1 = cos

�
2π (m + 1)

n

�
+ i sin

�
2π (m + 1)

n

�
.

To see why this is true, use the trigonometric sum identities cos (α+β) = cosα cosβ−sinα sinβ
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and sin (α+β) = sinα cosβ+ sinβcosα to rewriteωm+1, like so:

ωm+1 =ωm ·ω

=
ind.
hyp.

�
cos

�
2πm

n

�
+ i sin

�
2π

n

��

·
�

cos

�
2π

n

�
+ i sin

�
2π

n

��

= cos

�
2πm

n

�
cos

�
2π

n

�
+ i sin

�
2π

n

�
cos

�
2πm

n

�

+ i sin

�
2πm

n

�
cos

�
2π

n

�
− sin

�
2πm

n

�
sin

�
2π

n

�

=

�
cos

�
2πm

n

�
cos

�
2π

n

�
− sin

�
2πm

n

�
sin

�
2π

n

��

+ i

�
sin

�
2π

n

�
cos

�
2πm

n

�

+ sin

�
2πm

n

�
cos

�
2π

n

��

= cos

�
2π (m + 1)

n

�
+ i sin

�
2π (m + 1)

n

�
.

Once we have Lemma 2.73, proving Theorem 2.72 is spectacularly easy.

Proof of Theorem 2.72. Substitution and the lemma give us

ωn−1 =

�
cos

�
2πn

n

�
+ i sin

�
2πn

n

��
−1

= cos2π+ i sin2π−1

= (1 + i ·0)−1 = 0,

soω is indeed a root of xn−1.

As promised, 〈ω〉 gives us a nice group.

Theorem 2.74. The nth roots of unity are Ωn =
�
1,ω,ω2, . . . ,ωn−1

	
,

where ω is defined as in Theorem 2.72. They form a cyclic group of
order n under multiplication.

The theorem does not claim merely that Ωn is a list of some nth roots of unity; it claims that
Ωn is a list of all nth roots of unity. Our proof is going to cheat a little bit, because we don’t
quite have the machinery to prove that Ωn is an exhaustive list of the roots of unity. We will
eventually, however, and you should be able to follow the general idea now. The idea is called
unique factorization. Basically, let f be a polynomial of degree n. Suppose that we have n roots
of f ; call them α1, α2, . . . , αn . The parts you have to take on faith (for now) are twofold. First,
x−αi is a factor of f for each αi . Each linear factor adds one to the degree of a polynomial, and
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f has degree n, so the number of linear factors cannot be more than n. Second, and this is not
quite so clear, there is only one way to factor f into linear polynomials

(You can see this in the example above with x4− 1, but Theorem 7.45 on page 224 will have
the details. You should have seen that theorem in your precalculus studies, and since it doesn’t
depend on anything in this section, the reasoning is not circular.)

If you’re okay with that, then you’re okay with everything else.

Proof. For m ∈N+, we use the associative property of multiplication in C and the commuta-
tive property of multiplication in N+:

(ωm)n−1 =ωmn−1 =ωnm−1 = (ωn)m−1 = 1m−1 = 0.

Henceωm is a root of unity for any m ∈N+. Ifωm =ωℓ, then

cos

�
2πm

n

�
= cos

�
2πℓ

n

�
and sin

�
2πm

m

�
= sin

�
2πℓ

n

�
,

and we know from trigonometry that this is possible only if

2πm

n
=

2πℓ

n
+ 2πk

2π

n
(m−ℓ) = 2πk

m−ℓ= kn.

That is, m− ℓ is a multiple of n. Since Ωn lists only those powers from 0 to n− 1, the powers
must be distinct, so Ωn contains n distinct roots of unity. (See also Exercise 2.82.) As there can
be at most n distinct roots, Ωn is a complete list of nth roots of unity.

Now we show that Ωn is a cyclic group.

(closure) Let x, y ∈Ωn ; you will show in Exercise 2.79 that xy ∈Ωn .
(associativity) The complex numbers are associative under multiplication; since Ωn ⊆ C, the

elements of Ωn are also associative under multiplication.
(identity) The multiplicative identity in C is 1. This is certainly an element of Ωn , since

1n = 1 for all n ∈N+.
(inverses) Let x ∈Ωn ; you will show in Exercise 2.80 that x−1 ∈Ωn .
(cyclic) Theorem 2.72 tells us that ω ∈ Ωn ; the remaining elements are powers of ω.

Hence Ωn = 〈ω〉.

Combined with the explanation we gave earlier of the complex plane, Theorem 2.74 gives us
a wonderful symmetry for the roots of unity.

Example 2.75. We’ll consider the case where n = 7. According to the theorem, the 7th roots of
unity are Ω7 =

�
1,ω,ω2, . . . ,ω6

	
where

ω = cos

�
2π

7

�
+ i sin

�
2π

7

�
.
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i

ω2

ω3

ω4

ω5 ω6

ω

1

Figure 2.9. The seventh roots of unity, on the complex plane

According to Lemma 2.73,

ωm = cos

�
2πm

7

�
+ i sin

�
2πm

7

�
,

where m = 0,1, . . . , 6. By substitution, the angles we are looking at are

0,
2π

7
,
4π

7
,
6π

7
,
8π

7
,
10π

7
,
12π

7
.

Recall that in the complex plane, any complex number a + b i corresponds to the point (a, b )
on R2. The Pythagorean identity cos2α+ sin2α = 1 tells us that the coordinates of the roots of
unity lie on the unit circle. Since the angles are at equal intervals, they divide the unit circle into
seven equal arcs! See Figure 2.9.

Although we used n = 7 in this example, we used no special properties of that number in the
argument. That tells us that this property is true for any n: the nth roots of unity divide the unit
circle of the complex plane into n equal arcs!

Here’s an interesting question: isω is the only generator of Ωn? In fact, no. A natural follow-
up: are all the elements of Ωn generators of the group? Likewise, no. Well, which ones are? We
are not yet ready to give a precise criterion that signals which elements generate Ωn , but they do
have a special name.

Definition 2.76. We call any generator of Ωn a primitive nth root of
unity.

Exercises.

Unless stated otherwise, n ∈N+ andω is a primitive n-th root of unity.

Exercise 2.77. Show that C is a group under addition.
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Exercise 2.78.
(a) Find all the primitive square roots of unity, all the primitive cube roots of unity, and all

the primitive quartic (fourth) roots of unity.
(b) Sketch all the square roots of unity on a complex plane. (Not just the primitive ones, but

all.) Repeat for the cube and quartic roots of unity, each on a separate plane.
(c) Are any cube roots of unity not primitive? what about quartic roots of unity?

Exercise 2.79.
(a) Suppose that a and b are both positive powers of ω. Adapt Lemma 2.73 to show that ab

is also a power ofω.
(b) Explain why this shows that Ωn is closed under multiplication.

Exercise 2.80.
(a) Letω be a 14th root of unity; let α=ω5, and β=ω14−5 =ω9. Show that αβ= 1.
(b) More generally, let ω be a primitive n-th root of unity, Let α = ωa , where a ∈ N and

a < n. Show that β=ωn−a satisfies αβ= 1.
(c) Explain why this shows that every element of Ωn has an inverse.

Exercise 2.81. Suppose β is a root of xn− b .
(a) Show thatωβ is also a root of xn− b , whereω is any nth root of unity.
(b) Use (a) and the idea of unique factorization that we described right before the proof of

Theorem 2.74 to explain how we can use β and Ωn to list all n roots of xn− b .

Exercise 2.82.
(a) For eachω ∈Ω6, find x, y ∈R such thatω = x + yi . Plot all the points (x, y) on a graph.
(b) Do you notice any pattern to the points? If not, repeat part (a) for Ω7, Ω8, etc., until you

see the pattern.

Exercise 2.83.
(a) Show that C satisfies the requirements of a vector space for scalar multiplication.
(b) Show that C and R2 are isomorphic as monoids under addition.

Exercise 2.84. Recall from Exercise 0.90 the set of quaternions
�±1,±i,±j,±k

	
, where

1 =

�
1 0
0 1

�
, i =

�
i 0
0 −i

�
,

j =

�
0 1
−1 0

�
, k =

�
0 i
i 0

�
.

(a) Use the properties of these matrices that you proved earlier to build the Cayley table of Q8.
(In this case, the Cayley table is the multiplication table.)

(c) Show that Q8 is a group under matrix multiplication.
(d) Explain why Q8 is not an abelian group.

Exercise 2.85. In Exercise 2.84 you showed that the quaternions form a group under matrix mul-
tiplication. Verify that H = {1,−1, i,−i} is a cyclic group. What elements generate H ?
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Exercise 2.86. Show that Q8 is not cyclic.



Chapter 3:
Subgroups

A subset of a group is not necessarily a group; for example, {2,4} ⊂Z, but {2,4} doesn’t sat-
isfy any properties of an additive group unless we change the definition of addition. Some subsets
of groups are groups, and one of the keys to algebra consists in understanding the relationship
between subgroups and groups.

We start this chapter by describing the properties that guarantee that a subset is a “subgroup”
of a group (Section 3.1). We then explore how subgroups create cosets, equivalence classes within
the group that perform a role similar to division of integers (Section 3.2). It turns out that in
finite groups, we can count the number of these equivalence classes quite easily (Section 3.3).

Cosets open the door to a special class of groups called quotient groups, (Sections 3.4), one of
which is a very natural, very useful tool (Section 3.5) that will eventually allow us to devise some
“easy” solutions for problems in Number Theory (Chapter 6).

3.1: Subgroups

Definition 3.1. Let G be a group and H ⊆ G be nonempty. If H is also
a group under the same operation as G, then H is a subgroup of G. If
{e}(H (G, then H is a proper subgroup of G.

Notation 3.2. If H is a subgroup of G, then we write H <G.

Example 3.3. Check that the following statements are true by verifying that the properties of a
group are satisfied.
(a) Z is a subgroup of Q.
(b) Let 4Z := {4m : m ∈Z}= {. . . ,−4,0,4,8, . . .}. Then 4Z is a subgroup of Z.
(c) Let d ∈Z and dZ := {d m : m ∈Z}. Then dZ is a subgroup of Z.
(d) 〈i〉 is a subgroup of Q8.

Checking all four properties of a group is cumbersome. It would be convenient to verify that a
set is a subgroup by checking fewer properties. It also makes sense that if a group is abelian, then
its subgroups would be abelian, so we shouldn’t have to check the abelian property. In that case,
which properties must we check to decide whether a subset is a subgroup?

We can eliminate the associative and abelian properties from consideration. In fact, the oper-
ation remains associative and commutative for any subset.

Lemma 3.4. Let G be a group and H ⊆G. Then H satisfies the associa-
tive property of a group. In addition, if G is abelian, then H satisfies the
commutative property of an abelian group. So, we only need to check
the closure, identity, and inverse properties to ensure that G is a group.

Be careful: Lemma 3.4 neither assumes nor concludes that H is a subgroup. The other three prop-
erties may not be satisfied: H may not be closed; it may lack an identity; or some element may
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lack an inverse. The lemma merely states that any subset automatically satisfies two important
properties of a group.

Proof. If H = ;, then the lemma is true trivially.
Otherwise, H 6= ;. Let a, b , c ∈ H . Since H ⊆G, we have a, b , c ∈G. Since the operation is

associative in G, a (b c) = (ab ) c ; that is, the operation remains associative for H . Likewise, if G
is abelian, then ab = ba; that is, the operation also remains commutative for H .

Lemma 3.4 has reduced the number of requirements for a subgroup from four to three. Amaz-
ingly, we can simplify this further, to only one criterion.

Theorem 3.5 (The Subgroup Theorem). Let H ⊆ G be nonempty. The
following are equivalent:
(A) H <G;
(B) for every x, y ∈H , we have xy−1 ∈H .

Notation 3.6. If G were an additive group, we would write x− y instead of xy−1.

Proof. By Exercise 2.33 on page 65, (A) implies (B).
Conversely, assume (B). By Lemma 3.4, we need to show only that H satisfies the closure,

identity, and inverse properties. We do this slightly out of order:

identity: Let x ∈H . By (B), e = x · x−1 ∈H .9

inverse: Let x ∈H . Since H satisfies the identity property, e ∈H . By (B), x−1 = e · x−1 ∈H .
closure: Let x, y ∈ H . Since H satisfies the inverse property, y−1 ∈ H . By (B), xy = x ·�

y−1
�−1 ∈H .

Since H satisfies the closure, identity, and inverse properties, H <G.

Let’s take a look at the Subgroup Theorem in action.

Example 3.7. Let d ∈ Z. We claim that dZ < Z. (Here dZ is the set defined in Example 3.3.)
Why? Let’s use the Subgroup Theorem.

Let x, y ∈ dZ. If we can show that x − y ∈ dZ, we will satisfy part (B) of the Subgroup
Theorem. The theorem states that (B) is equivalent to (A); that is, dZ is a group. That’s what we
want, so let’s try to show that x− y ∈ dZ; that is, x− y is an integer multiple of d .

Since x and y are by definition integer multiples of d , we can write x = d m and y = d n for
some m, n ∈Z. Note that −y =− (d n) = d (−n). Then

x− y = x +(−y) = d m + d (−n)

= d (m +(−n)) = d (m− n) .

Now, m− n ∈Z, so x− y = d (m− n) ∈ dZ.
We did it! We took two integer multiples of d , and showed that their difference is also an

integer multiple of d . By the Subgroup Theorem, dZ<Z.

The following geometric example gives a visual image of what a subgroup “looks” like.

9Notice that here we are replacing the y in (B) with x. This is fine, since nothing in (B) requires x and y to be distinct.
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4

Figure 3.1. H and K from Example 3.8

Example 3.8. Recall that Ris a group under addition, and let G be the direct product R×R.
Geometrically, this is the set of points in the x-y plane. As is usual with a direct product, we
define an addition for elements of G in the natural way: for P1 = (x1, y1) and P2 = (x2, y2),
define

P1 + P2 = (x1 + x2, y1 + y2) .

Let H be the x-axis; a set definition would be, H = {x ∈G : x = (a, 0) ∃a ∈R}. We claim
that H < G. Why? Use the Subgroup Theorem! Let P ,Q ∈ H . By the definition of H , we can
write P = (p, 0) and Q = (q , 0) where p, q ∈R. Then

P −Q = P +(−Q) = (p, 0)+ (−q , 0) = (p− q , 0) .

Membership in H requires the first ordinate to be real, and the second to be zero. As P −Q
satisfies these requirements, P −Q ∈H . The Subgroup Theorem implies that H <G.

Let K be the line y = 1; a set definition would be, K = {x ∈G : x = (a, 1) ∃a ∈R}. We claim
that K 6<G. Why not? Again, use the Subgroup Theorem! Let P ,Q ∈ K . By the definition of K ,
we can write P = (p, 1) and Q = (q , 1) where p, q ∈R. Then

P −Q = P +(−Q) = (p, 1)+ (−q ,−1) = (p− q , 0) .

Membership in K requires the second ordinate to be one, but the second ordinate of P −Q is
zero, not one. Since P −Q 6∈K , the Subgroup Theorem tells us that K is not a subgroup of G.

There’s a more intuitive explanation as to why K is not a subgroup; it doesn’t contain the
origin. In a direct product of groups, the identity is formed using the identities of the component
groups. In this case, the identity is (0,0), which is not in K .

Figure 3.1 gives a visualization of H and K . You will diagram another subgroup of G in
Exercise 3.16.
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Examples 3.7 and 3.8 give us examples of how the Subgroup Theorem verifies subgroups of
abelian groups. Two interesting examples of nonabelian subgroups appear in D3.

Example 3.9. Recall D3 from Section 2.2. Both H = {ι,ϕ} and K =
�
ι,ρ,ρ2

	
are subgroups of

D3. Why? Certainly H ,K ( G, and Theorem 2.55 on page 78 tells us that H and K are groups,
since H = 〈ϕ〉, and K = 〈ρ〉.

If a group satisfies a given property, a natural question to ask is whether its subgroups also
satisfy this property. Cyclic groups are a good example: is every subgroup of a cyclic group also
cyclic? The answer relies on the Division Theorem (Theorem 0.34 on page 13).

Theorem 3.10. Subgroups of cyclic groups are also cyclic.

Proof. Let G be a cyclic group, and H < G. From the fact that G is cyclic, choose g ∈ G such
that G = 〈g 〉.

First we must find a candidate generator of H . If H = {e}, then H = 〈e〉= 
g 0
�
, and we are

done. So assume there exists x ∈ H such that x 6= e . By inclusion, every element x ∈ H is also
an element of G, which is generated by g , so x = g n for some n ∈Z. Without loss of generality,
we may assume that n ∈N+; after all, we just showed that we can choose x 6= e , so n 6= 0, and if
n 6∈N, then closure of H implies that x−1 = g−n ∈H , so choose x−1 instead.

Now, if you were to take all the positive powers of g that appear in H , which would you
expect to generate H ? Certainly not the larger ones! The ideal candidate for the generator would
be the smallest positive power of g in H , if it exists. Let S be the set of positive natural numbers
i such that g i ∈ H ; in other words, S =

¦
i ∈N+ : g i ∈H

©
. From the well-ordering of N, there

exists a smallest element of S; call it d , and assign h = g d .
We claim that H = 〈h〉. Let x ∈ H ; then x ∈ G. By hypothesis, G is cyclic, so x = g a for

some a ∈Z. By the Division Theorem, we know that there exist unique q , r ∈Z such that

• a = qd + r , and
• 0≤ r < d .

Let y = g r ; by Exercise 2.61, we can rewrite this as

y = g r = g a−qd = g a g−(qd ) = x ·
�

g d
�−q

= x · h−q .

Now, x ∈ H by definition, and h−q ∈ H by closure and the existence of inverses, so by closure
y = x · h−q ∈H as well. We chose d as the smallest positive power of g in H , and we just showed
that g r ∈ H . Recall that 0 ≤ r < d . If 0 < r ; then g r ∈ H , so r ∈ S. But r < d , which
contradicts the choice of d as the smallest element of S. Hence r cannot be positive; instead,
r = 0 and x = g a = g qd = hq ∈ 〈h〉.

Since x was arbitrary in H , every element of H is in 〈h〉; that is, H ⊆ 〈h〉. Since h ∈ H and
H is a group, closure implies that H ⊇ 〈h〉, so H = 〈h〉. In other words, H is cyclic.

We again look to Z for an example.

Example 3.11. Recall from Example 2.53 on page 77 that Z is cyclic; in fact Z = 〈1〉. By Theo-
rem 3.10, dZ is cyclic. In fact, dZ = 〈d 〉. Can you find another generator of dZ?

Exercises.
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Let G be any group and g ∈G.
Claim: 〈g 〉<G.
Proof:

1. Let x, y ∈_____.
2. By definition of _____, there exist m, n ∈Z such that x = g m and y = g n .
3. By _____, y−1 = g−n .
4. By _____, xy−1 = g m+(−n) = g m−n .
5. By _____, xy−1 ∈ 〈g 〉.
6. By _____, 〈g 〉<G.

Figure 3.2. Material for Exercise 3.14

Exercise 3.12. Recall that Ωn , the nth roots of unity, is the cyclic group 〈ω〉.
(a) Compute Ω2 and Ω4, and explain why Ω2 <Ω4.
(b) Compute Ω8, and explain why both Ω2 <Ω8 and Ω4 <Ω8.
(b) Explain why, if d | n, then Ωd <Ωn .

Exercise 3.13. Show that even though the Klein 4-group is not cyclic, each of its proper subgroups
is cyclic (see Exercises 2.32 on page 65 and 2.64 on page 83).

Exercise 3.14.
(a) Fill in each blank of Figure 3.2 with the appropriate justification or expression.
(b) Why would someone take this approach, rather than using the definition of a subgroup?

Exercise 3.15.

(a) Let Dn (R) = {aIn : a ∈R} ⊆ Rn×n ; that is, Dn (R) is the set of all diagonal matrices
whose values along the diagonal is constant. Show that Dn (R) < Rn×n . (In case you’ve
forgotten Exercise 2.27, the operation here is addition.)

(b) Let D∗
n (R) = {aIn : a ∈R\{0}} ⊆GLn (R); that is, D∗

n (R) is the set of all non-zero diag-
onal matrices whose values along the diagonal is constant. Show that D∗

n (R) <GLn (R).
(In case you’ve forgotten Definition 2.5, the operation here is multiplication.)

Exercise 3.16. Let G = R2 := R×R, with addition defined as in Exercise 2.25 and Example 3.8.
Let

L = {x ∈G : x = (a,a) ∃a ∈R} .
(a) Describe L geometrically.
(b) Show that L<G.
(c) Suppose ℓ ⊆ G is any line. Identify the simplest criterion possible that decides whether

ℓ <G. Justify your answer.

Exercise 3.17. Let G be an abelian group. Let H , K be subgroups of G. Let

H + K = {x + y : x ∈H , y ∈K} .

Show that H + K <G.

Exercise 3.18. Let H = {ι,ϕ}< D3.
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Let G be a group and A1, A2, . . . , Am subgroups of G. Let

B = A1∩A2∩ · · ·∩Am .

Claim: B <G.
Proof:

1. Let x, y ∈_____.
2. By _____, x, y ∈Ai for all i = 1, . . . , m.
3. By _____, xy−1 ∈Ai for all i = 1, . . . , m.
4. By _____, xy−1 ∈ B .
5. By _____, B <G.

Figure 3.3. Material for Exercise 3.20

(a) Find a different subgroup K of D3 with only two elements.
(b) Let H K = {xy : x ∈H , y ∈K}. Show that H K 6< D3.
(c) Why does the result of (b) not contradict the result of Exercise 3.17?

Exercise 3.19. Explain why R cannot be cyclic.

Exercise 3.20. Fill each blank of Figure 3.3 with the appropriate justification or expression.

Exercise 3.21. Let G be a group and H , K two subgroups of G. Let A = H ∪K . Show that A
need not be a subgroup of G.

Exercise 3.22. Recall the set of orthogonal matrices from Exercise 0.91.
(a) Show that O (n)<GL (n). We call O (n) the orthogonal group.

Let SO (n) be the set of all orthogonal n×n matrices whose determinant is 1. We call SO (n)
the special orthogonal group.
(b) Show that SO (n)<O (n).

3.2: Cosets

One of the most powerful tools in group theory is that of cosets. Students often have a hard
time wrapping their minds around cosets, so we’ll start with an introductory example that should
give you an idea of how cosets “look” in a group. Then we’ll define cosets, and finally look at
some of their properties.

The idea

Recall the illustration of how the Division Theorem partitions the integers according to their
remainder (Section 0.2). Two aspects of division were critical for this:
• existence of a remainder, which implies that every integer belongs to at least one class, which

in turn implies that the union of the classes covers Z; and
• uniqueness of the remainder, which implies that every integer ends up in only one set, so

that the classes are disjoint.
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Using the vocabulary of groups, recall that A = 4Z<Z (page 95). All the elements of B have the
form 1 + a for some a ∈ A. For example, −3 = 1 + (−4). Likewise, all the elements of C have
the form 2 + a for some a ∈ A, and all the elements of D have the form 3 + a for some a ∈ A. So
if we define

1 + A := {1 + a : a ∈A} ,
then

1 + A = {. . . , 1 +(−4) , 1 + 0,1 + 4,1 + 8, . . .}
= {. . . ,−3,1,5,9, . . .}
= B .

Likewise, we can write A = 0 + A and C = 2 + A, D = 3 + A.

Pursuing this further, you can check that

· · ·=−3 + A = 1 + A = 5 + A = 9 + A = · · ·

and so forth. Interestingly, all the sets in the previous line are the same as B ! In addition, 1+A =
5 + A, and 1− 5 = −4 ∈ A. The same holds for C : 2 + A = 10 + A, and 2− 10 = −8 ∈ A. This
relationship will prove important at the end of the section.

So the partition by remainders of division by four is related to the subgroup A of multiples
of 4. This will become very important in Chapter 6. How can we generalize this phenomen to
other groups, even nonabelian ones?

Definition 3.23. Let G be a group and A<G. Let g ∈G. We define the
left coset of A with g as

g A = {ga : a ∈A}

and the right coset of A with g as

Ag = {a g : a ∈A} .

As usual, if A is an additive subgroup, we write the left and right cosets of A with g as g + A and
A+ g .

In general, left cosets and right cosets are not equal, partly because the operation might not
commute. If we speak of “cosets” without specifying “left” or “right”, we means “left cosets”.

Example 3.24. Recall the group D3 from Section 2.2 and the subgroup H = 〈ϕ〉 = {ι,ϕ} from
Example 3.9. In this case,

ρH = {ρ,ρϕ} and Hρ= {ρ,ϕρ} .
Since ϕρ= ρ2ϕ 6= ρϕ, we see that ρH 6= Hρ.

Sometimes, the left coset and the right coset are equal. This is always true in abelian groups,
as illustrated by Example 3.25.

Example 3.25. Consider the subgroup H = {(a, 0) : a ∈R} of R2 from Exercise 3.16. Let p =
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(3,−1) ∈R2. The coset of H with p is

p + H = {(3,−1)+ q : q ∈H}
= {(3,−1)+ (a, 0) : a ∈R}
= {(3 + a,−1) : a ∈R} .

Sketch some of the points in p + H , and compare them to your sketch of H in Exercise 3.16.
How does the coset compare to the subgroup?

Generalizing this further, every coset of H has the form p + H where p ∈ R2. Elements of
R2 are points, so p = (x, y) for some x, y ∈R. The coset of H with p is

p + H = {(x + a, y) : a ∈R} .

Sketch several more cosets. How would you describe the set of all cosets of H in R2?

The group does not have to be abelian in order to have the left and right cosets equal. When
deciding if g A = Ag , we are not deciding whether elements of G commute, but whether subsets of
G are equal. Returning to D3, we can find a subgroup whose left and right cosets are equal even
though the group is not abelian and the operation is not commutative.

Example 3.26. Let K =
�
ι,ρ,ρ2

	
; certainly K < D3, after all, K = 〈ρ〉. In this case, αK = Kα for

all α ∈ D3:
α αK Kα

ι K K
ϕ

�
ϕ,ϕρ,ϕρ2

	 �
ϕ,ρϕ,ρ2ϕ

	

ρ K K
ρ2 K K
ρϕ

�
ρϕ, (ρϕ)ρ, (ρϕ)ρ2

	 �
ρϕ,ϕ,ρ2ϕ

	

ρ2ϕ
�
ρ2ϕ,

�
ρ2ϕ

�
ρ,
�
ρ2ϕ

�
ρ2
	 �

ρ2ϕ,ρϕ,ϕ
	

In each case, the sets ϕK and Kϕ are equal, even though ϕ does not commute with ρ. (You should
verify these computations by hand.)

Properties of Cosets

We could forgive you for concluding from this that cosets are useful for little more than a
generalization of division; after all, you don’t realize how powerful division is. The rest of this
chapter should correct any such misapprehension; for now, we present some properties of cosets
that illustrate further their similarities to division.

Theorem 3.27. The cosets of a subgroup partition the group.

Putting this together with Theorem 0.42 implies another nice result.

Corollary 3.28. Let A<G. Define a relation ∼ on x, y ∈G by

x ∼ y ⇐⇒ x is in the same coset of A as y.

This relation is an equivalence relation.
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We will make use of this result, in due course.

Proof of Theorem 3.27. Let G be a group, and A<G. We have to show two things:

(CP1) the cosets of A cover G, and
(CP2) distinct cosets of A are disjoint.

We show (CP1) first. Let g ∈ G. The definition of a group tells us that g = g e . Since e ∈ A by
definition of subgroup, g = g e ∈ g A. Since g was arbitrary, every element of G is in some coset
of A. Hence the union of all the cosets is G.

For (CP2), let X and Y be arbitrary cosets of A. Assume that X and Y are distinct; that is,
X 6= Y . We need to show that they are disjoint; that is, X ∩Y = ;. By way of contradiction,
assume that X 6= Y but X ∩Y 6= ;. Since X 6= Y , one of the two cosets contains an element
that does not appear in the other; without loss of generality, assume that z ∈ X but z 6∈ X . By
definition, there exist x, y ∈ G such that X = xA and Y = yA; we can write z = xa for some
a ∈ A. Since X ∩Y 6= ;, there exists some w ∈ X ∩Y ; by definition, we can find b , c ∈ A such
that w = x b = yc . Solve this last equation for x, and we have x = (yc) b−1. Substitute this into
the equation for z, and we have

z = xa =
�
(yc) b−1

�
a =

ass.
y
�

c b−1a
�

.

Since A is a subgroup, hence a group, it is closed under inverses and multiplication, so c b−1a ∈A.
But then z = y

�
c b−1a

� ∈ yA, which contradicts the choice of z! The assumption that we could
find distinct cosets that are not disjoint must have been false, and since X and Y were arbitrary,
this holds for all cosets of A.

Having shown (CP2) and (CP1), we have shown that the cosets of A partition G.

We conclude this section with three facts that allow us to decide when cosets are equal.

Lemma 3.29 (Equality of cosets). Let G be a group and H < G. All of
the following hold:
(CE1) eH = H .
(CE2) For all a ∈G, a ∈H iff aH = H .
(CE3) For all a, b ∈G, aH = b H if and only if a−1b ∈H .

As usual, you should keep in mind that in additive groups these conditions translate to
(CE1) 0 + H = H .
(CE2) For all a ∈G, if a ∈H then a + H = H .
(CE3) For all a, b ∈G, a + H = b + H if and only if a− b ∈H .

Proof. We only sketch the proof here. You will fill in the details in Exercise 3.36. Remember
that part of this problem involves proving that two sets are equal, and to prove that, you should
prove that each is a subset of the other.

(CE1) is “obvious” (but fill in the details anyway).
We’ll skip (CE2) for the moment, and move to (CE3). Since (CE3) is also an equivalence,

we have to prove two directions. Let a, b ∈ G. First, assume that aH = b H . By the identity
property, e ∈ H , so b = b e ∈ b H . Hence, b ∈ aH ; that is, we can find h ∈ H such that b = ah.
By substitution and the properties of a group, a−1b = a−1 (ah) = h, so a−1b ∈H .
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Conversely, assume that a−1b ∈H . We must show that aH = b H , which requires us to show
that aH ⊆ b H and aH ⊇ b H . Since a−1b ∈H , we have

b = a
�

a−1b
�
∈ aH .

We can thus write b = ah for some h ∈ H . Let y ∈ b H ; then y = bbh for some bh ∈ H , and we

have y = (ah)bh ∈H . Since y was arbitrary in b H , we now have aH ⊇ b H .
Although we could build a similar argument to show that aH ⊆ b H , instead we point out

that aH ⊇ b H implies that aH ∩ b H 6= ;. The cosets are not disjoint, so by Theorem 3.27, they
are not distinct: aH = b H .

Now we turn to (CE2). Let a ∈G, and assume a ∈ H . By the inverse property, a−1 ∈ H . We
know that e ∈ H , so by closure, a−1e ∈ H . We can now use (CE3) and (CE1) to determine that
aH = eH = H .

Exercises.

Exercise 3.30. Show explicitly why left and right cosets are equal in abelian groups.

Exercise 3.31. In Exercise 3.12, you showed that Ω2 < Ω8. Compute the left and right cosets of
Ω2 in Ω8.

Exercise 3.32. Let {e ,a, b ,a + b} be the Klein 4-group. (See Exercises 2.32 on page 65, 2.64 on
page 83, and 3.13 on page 99.) Compute the cosets of 〈a〉.

Exercise 3.33. In Exercise 3.18 on page 99, you found another subgroup K of order 2 in D3. Does
K satisfy the property αK = Kα for all α ∈ D3?

Exercise 3.34. Recall the subgroup L of R2 from Exercise 3.16 on page 99.
(a) Give a geometric interpretation of the coset (3,−1)+ L.
(b) Give an algebraic expression that describes p + L, for arbitrary p ∈R2.
(c) Give a geometric interpretation of the cosets of L in R2.
(d) Use your geometric interpretation of the cosets of L in R2 to explain why the cosets of L

partition R2.

Exercise 3.35. Recall Dn (R) from Exercise 3.15 on page 99. Give a description in set notation
for �

0 3
0 0

�
+ D2 (R) .

List some elements of the coset.

Exercise 3.36.
(a) Fill in each blank of Figure 3.4 with the appropriate justification or statement.

3.3: Lagrange’s Theorem
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Let G be a group and H <G.
Claim: eH = H .

1. First we show that _____. Let x ∈ eH .
(a) By definition, _____.
(b) By the identity property, _____.
(c) By definition, _____.
(d) We had chosen an arbitrary element of eH , so by inclusion, _____.

2. Now we show the converse. Let _____.
(a) By the identity property, _____.
(b) By definition, _____∈ eH .
(c) We had chosen an arbitrary element, so by inclusion, _____.

Figure 3.4. Material for Exercise 3.36

This section introduces an important result describing the number of cosets a subgroup can
have. This leads to some properties regarding the order of a group and any of its elements.

Notation 3.37. Let G be a group, and A< G. We write G/A for the set of all left cosets of A.
That is,

G/A = {g A : g ∈G} .
We also write A\G for the set of all right cosets of A:

A\G = {Ag : g ∈G} .

Example 3.38. Let G = Z and A = 4Z. We saw in Example 0.40 that

G/A = Z/4Z = {A, 1 + A, 2 + A, 3 + A} .

We actually “waved our hands” in Example 0.40. That means that we did not provide a very
detailed argument, so let’s show the details here. Recall that 4Z is the set of multiples of Z, so
x ∈A iff x is a multiple of 4. What about the remaining elements of Z?

Let x ∈Z; then
x + A = {x + z : z ∈A}= {x + 4n : n ∈Z} .

Use the Division Theorem to write
x = 4q + r

for unique q , r ∈Z, where 0≤ r < 4. Then

x + A = {(4q + r )+ 4n : n ∈Z}= {r + 4 (q + n) : n ∈Z} .

By closure, q + n ∈Z. If we write m in place of 4 (q + n), then m ∈ 4Z. So

x + A = {r + m : m ∈ 4Z}= r + 4Z.

The distinct cosets of A are thus determined by the distinct remainders from division by 4. Since
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the remainders from division by 4 are 0, 1, 2, and 3, we conclude that

Z/A = {A, 1 + A, 2 + A, 3 + A}

as claimed above.

Example 3.39. Let G = D3 and K =
�
ι,ρ,ρ2

	
as in Example 3.26, then

G/K = D3/ 〈ρ〉= {K ,ϕK} .

Example 3.40. Let H <R2 be as in Example 3.8 on page 96; that is,

H =
¦
(a, 0) ∈R2 : a ∈R

©
.

Then
R2/H =

¦
r + H : r ∈R2

©
.

It is not possible to list all the elements of G/H , but some examples would be

(1,1)+ H , (4,−2)+ H .

Here’s a question for you to think about. Speaking geometrically, what do the elements of G/H
look like? This question is similar to Exercise 3.34.

It is important to keep in mind that G/A is a set whose elements are also sets. As a result,
showing equality of two elements of G/A requires one to show that two sets are equal.

When G is finite, a simple formula gives us the size of G/A.

Theorem 3.41 (Lagrange’s Theorem). Let G be a group of finite order,
and A<G. Then

|G/A|=
|G|
|A|

.

Lagrange’s Theorem states that the number of elements in G/A is the same as the quotient of the
order of G by the order of A. The notation of cosets is somewhat suggestive of the relationship we
illustrated at the begining of Section 3.2 between cosets and division of the integers. Nevertheless,
Lagrange’s Theorem is not as obvious as the notation might imply: we can’t “divide” the sets G
and A. We are not moving the absolute value bars “inside” the fraction; nor can we, as G/A is
not a number. Rather, we are dividing, or partitioning, if you will, the group G by by the cosets
of its subgroup A, obtaining the set of cosets G/A.

Proof. From Theorem 3.27 we know that the cosets of A partition G. How many such cosets
are there? |G/A|, by definition! Each coset has the same size, |A|. A basic principle of counting
tells us that the number of elements of G is thus the product of the number of elements in each
coset and the number of cosets. That is, |G/A| · |A|= |G|. This implies the theorem.

The next-to-last sentence of the proof contains the statement |G/A| · |A| = |G|. Since |A| is
the order of the group A, and |G/A| is an integer, we conclude that:
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Claim: The order of an element of a group divides the order of a group.
Proof:

1. Let G _____.
2. Let x _____.
3. Let H = 〈_____〉.
4. By _____, every integer power of x is in G.
5. By _____, H is the set of integer powers of x.
6. By _____, H <G.
7. By _____, |H | divides |G|.
8. By _____, ord (x) divides |H |.
9. By definition, there exist m, n ∈_____ such that |H |= mord (x) and |G|= n |H |.

10. By substitution, |G|=_____.
11. _____.

(This last statement must include a justification.)

Figure 3.5. Material for Exercise 3.46

Corollary 3.42. The order of a subgroup divides the order of a group.

Example 3.43. Let G be the Klein 4-group (see Exercises 2.32 on page 65, 2.64 on page 83, and 3.13
on page 99). Every subgroup of the Klein 4-group has order 1, 2, or 4. As predicted by Corol-
lary 3.42, the orders of the subgroups divide the order of the group.

Likewise, the order of {ι,ϕ} divides the order of D3.
By contrast, the subset H K of D3 that you computed in Exercise 3.18 on page 99 has four

elements. Since 4 ∤ 6, the contrapositive of Lagrange’s Theorem implies that H K cannot be a
subgroup of D3.

From the fact that every element g generates a cyclic subgroup 〈g 〉 < G, Lagrange’s Theorem
also implies an important consequence about the order of any element of any finite group.

Corollary 3.44. In a finite group G, the order of any element divides the
order of a group.

Proof. You do it! See Exercise 3.46.

Exercises.

Exercise 3.45. Recall from Exercise 3.12 that if d | n, then Ωd < Ωn . How many cosets of Ωd
are there in Ωn?

Exercise 3.46. Fill in each blank of Figure 3.5 with the appropriate justification or expression.

Exercise 3.47. Suppose that a group G has order 8, but is not cyclic. Show that g 4 = e for all
g ∈G.

Exercise 3.48. Let G be a group, and g ∈G. Show that g |G| = e .
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Exercise 3.49. Suppose that a group has five elements. Why must it be abelian?

Exercise 3.50. Find a sufficient (but not necessary) condition on the order of a group of order at
least two that guarantees that the group is cyclic.

3.4: Quotient Groups

Let A< G. Is there a natural generalization of the operation of G that makes G/A a group?
By a “natural” generalization, we mean something like

(g A) (hA) = (g h)A.

“Normal” subgroups

The first order of business it to make sure that the operation even makes sense. The technical
word for this is that the operation is well-defined. What does that mean? A coset can have differ-
ent representations. An operation must be a function: for every pair of elements, it must produce
exactly one result. The relation above would not be an operation if different representations of a
coset gave us different answers. Example 3.51 shows how it can go wrong.

Example 3.51. Recall H = 〈ϕ〉 < D3 from Example 3.24. Let X = ρH and Y = ρ2H . Notice
that (ρϕ) H = {ρϕ, ι}= ρH , so X has two representations, ρH and (ρϕ) H .

Were the operation well-defined, X Y would have the same value, regardless of the representa-
tion of X . That is not the case! When we use the the first representation,

X Y = (ρH )
�
ρ2H

�
=
�
ρ ◦ρ2

�
H = ρ3H = ιH = H .

When we use the second representation,

X Y = ((ρϕ) H )
�
ρ2H

�
=
�
(ρϕ)ρ2

�
H =

�
ρ
�
ϕρ2

��
H

= (ρ (ρϕ)) H =
�
ρ2ϕ

�
H 6= H .

On the other hand, sometimes the operation is well-defined.

Example 3.52. Recall the subgroup A = 4Z of Z. Let B ,C , D ∈ Z/A, so B = b + 4Z, C =
c + 4Z, and D = d + 4Z for some b , c , d ∈Z.

We have to make sure that we cannot have B = D and B + C 6= D + C . For example, if
B = 1 + 4Z and D = 5 + 4Z, B = D . Does it follow that B + C = D + C ?

From Lemma 3.29, we know that B = D iff b − d ∈ A = 4Z. That is, b − d = 4m for some
m ∈Z. Let x ∈ B + C ; then x = (b + c)+ 4n for some n ∈Z. By substitution,

x = ((d + 4m)+ c)+ 4n = (d + c)+ 4 (m + n) ∈ D + C .

Since x was arbitrary in B + C , we have B + C ⊆ D + C . A similar argument shows that
B + C ⊇ D + C , so the two are, in fact, equal.
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The operation was well-defined in the second example, but not the first. What made for the
difference? In the second example, we rewrote

((d + 4m)+ c)+ 4n = (d + c)+ 4 (m + n) ,

but that relies on the fact that addition commutes in an abelian group. Without that fact, we could
not have swapped c and 4m.

Does that mean we cannot make a group out of cosets of nonabelian groups? Not quite.
The key in Example 3.52 was not that Z is abelian, but that we could rewrite (4m + c)+ 4n as
c + (4m + 4n), then simplify 4m + 4n to 4 (m + n). The abelian property makes it easy to do
that, but we don’t need the group G to be abelian; we need the subgroup A to satisfy it. If A were
not abelian, we could still make it work if, after we move c left, we get some element of A to its
right, so that it can be combined with the other one. That is, we have to be able to rewrite any
ac as ca′, where a′ is also in A. We need not have a = a′! Let’s emphasize that, changing c to g
for an arbitrary group G:

The operation defined above is well-defined
iff

for every g ∈G and for every a ∈A
there exists a′ ∈A such that ga = a′ g .

Think about this in terms of sets: for every g ∈ G and for every a ∈ A, there exists a′ ∈ A such
that ga = a′ g . Here ga ∈ g A is arbitrary, so g A⊆Ag . The other direction must also be true, so
g A⊇Ag . In other words,

The operation defined above is well-defined
iff g A = Ag for all g ∈G.

This property merits a definition.

Definition 3.53. Let A<G. If

g A = Ag

for every g ∈G, then A is a normal subgroup of G.

Notation 3.54. We write A⊳G to indicate that A is a normal subgroup of G.

Although we have outlined the argument above, we should show explicitly that if A is a normal
subgroup, then the operation proposed for G/A is indeed well-defined.

Lemma 3.55. Let A<G. Then (CO1) implies (CO2).
(CO1) A⊳G.
(CO2) Let X ,Y ∈ G/A and x, y ∈ G such that X = xA and Y = yA.

The operation · on G/A defined by

X Y = (xy)A

is well-defined for all x, y ∈G.

Proof. Let W ,X ,Y ,Z ∈G/A and choose w, x, y, z ∈G such that W = wA, X = xA, Y = yA,
and Z = zA. To show that the operation is well-defined, we must show that if W = X and
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Y = Z , then W Y = X Z regardless of the values of w, x, y, or z. Assume therefore that W = X
and Y = Z . By substitution, wA = xA and yA = zA. By Lemma 3.29(CE3), w−1x ∈ A and
y−1z ∈A.

Since W Y and X Z are sets, showing that they are equal requires us to show that each is a
subset of the other. First we show that W Y ⊆ X Z . To do this, let t ∈ W Y = (wy)A. By
definition of a coset, t = (wy)a for some a ∈A. What we will do now is rewrite t by

• using the fact that A is normal to move some element of a left, then right, through the
representation of t ; and

• using the fact that W = X and Y = Z to rewrite products of the form wα̌ as xα̂ and yα̇ as
zα̈, where α̌, α̂, α̇, α̈ ∈A.

How, precisely? By the associative property, t = w (ya). By definition of a coset, ya ∈ yA. By
hypothesis, A is normal, so yA = Ay; thus, ya ∈ Ay. By definition of a coset, there exists ǎ ∈ A
such that ya = ǎy. By substitution, t = w (ǎy). By the associative property, t = (wǎ) y. By
definition of a coset, wǎ ∈ wA. By hypothesis, A is normal, so wA = Aw. Thus wǎ ∈ Aw. By
hypothesis, W = X ; that is, wA = xA. Thus wǎ ∈ xA, and by definition of a coset, wǎ = xâ
for some â ∈ A. By substitution, t = (xâ) y. The associative property again gives us t = x (ây);
since A is normal we can write ây = yȧ for some ȧ ∈A. Hence t = x (yȧ). Now,

yȧ ∈ yA = Y = Z = zA,

so we can write yȧ = zä for some ä ∈A. By substitution and the definition of coset arithmetic,

t = x (zä) = (x z) ä ∈ (x z)A = (xA) (zA) = X Z .

Since t was arbitrary in W Y , we have shown that W Y ⊆ X Z . A similar argument shows
that W Y ⊇X Z ; thus W Y = X Z and the operation is well-defined.

An easy generalization of the argument of Example 3.52 shows the following Theorem.

Theorem 3.56. Let G be an abelian group, and H <G. Then H ⊳G.

Proof. You do it! See Exercise 3.65.

We said before that we don’t need an abelian group to have a normal subgroup. Here’s a great
example.

Example 3.57. Let
A3 =

¦
ι,ρ,ρ2

©
< D3.

We call A3 the alternating group on three elements. We claim that A3 ⊳D3. Indeed,
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σ σA3 A3σ

ι A3 A3

ρ A3 A3

ρ2 A3 A3

ϕ
ϕA3 =

�
ϕ,ϕρ,ϕρ2

	

=
�
ϕ,ρ2ϕ,ρϕ

	
= A3ϕ

A3ϕ = ϕA3

ρϕ

�
ρϕ, (ρϕ)ρ, (ρϕ)ρ2

	

=
�
ρϕ,ϕ,ρ2ϕ

	
= ϕA3

ϕA3

ρ2ϕ

�
ρ2ϕ,

�
ρ2ϕ

�
ρ,
�
ρ2ϕ

�
ρ2
	

=
�
ρ2ϕ,ρϕ,ϕ

	
= ϕA3

ϕA3

We have left out some details, though we also computed this table in Example 3.26, where we
called the subgroup K instead of A3. You should check the computation carefully, using exten-
sively the fact that ϕρ= ρ2ϕ.

Quotient groups

The set of cosets of a normal subgroup is, as desired, a group.

Theorem 3.58. Let G be a group. If A⊳G, then G/A is a group.

Proof. Assume A⊳G. By Lemma 3.55, the operation is well-defined, so it remains to show that
G/A satisfies the properties of a group.

(closure) Closure follows from the fact that multiplication of cosets is well-defined when
A⊳G, as shown in Lemma 3.55: Let X ,Y ∈ G/A, and choose g1, g2 ∈ G such
that X = g1A and Y = g2A. By definition of coset multiplication, X Y =
(g1A) (g2A) = (g1 g2)A∈ G/A. Since X ,Y were arbitrary in G/A, coset mul-
tiplication is closed.

(associativity) The associative property of G/A follows from the associative property of G.
Let X ,Y ,Z ∈ G/A; choose g1, g2, g3 ∈ G such that X = g1A, Y = g2A, and
Z = g3A. Then

(X Y )Z = [(g1A) (g2A)] (g3A) .

By definition of coset multiplication,

(X Y )Z = ((g1 g2)A) (g3A) .

By the definition of coset multiplication,

(X Y )Z = ((g1 g2) g3)A.

(Note the parentheses grouping g1 g2.) Now apply the associative property of G
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and reverse the previous steps to obtain

(X Y )Z = (g1 (g2 g3))A

= (g1A) ((g2 g3)A)

= (g1A) [(g2A) (g3A)]

= X (Y Z) .

Since (X Y )Z = X (Y Z) and X ,Y ,Z were arbitrary in G/A, coset multiplica-
tion is associative.

(identity) We claim that the identity of G/A is A itself. Let X ∈ G/A, and choose g ∈ G
such that X = g A. Since e ∈A, Lemma 3.29 on page 103 implies that A = eA, so

X A = (g A) (eA) = (g e)A = g A = X .

Since X was arbitrary in G/A and X A = X , A is the identity of G/A.
(inverse) Let X ∈ G/A. Choose g ∈ G such that X = g A, and let Y = g−1A. We claim

that Y = X−1. By applying substitution and the operation on cosets,

X Y = (g A)
�

g−1A
�

=
�

g g−1
�

A = eA = A.

Hence X has an inverse in G/A. Since X was arbitrary in G/A, every element
of G/A has an inverse.

We have shown that G/A satisfies the properties of a group.

Definition 3.59. Let G be a group, and A⊳G. Then G/A is the quotient
group of G with respect to A, also called G mod A.

Normally we simply say “the quotient group” rather than “the quotient group of G with respect
to A.”

Example 3.60. Since A3 is a normal subgroup of D3, D3/A3 is a group. By Lagrange’s Theorem,
it has 6/3 = 2 elements. The composition table is

◦ A3 ϕA3

A3 A3 ϕA3

ϕA3 ϕA3 A3

We meet an important quotient group in Section 3.5.

Exercises.

Exercise 3.61. Show that for any group G, {e}⊳G and G ⊳G.

Exercise 3.62. Recall from Exercise 3.12 that if d | n, then Ωd <Ωn .
(a) Explain how we know that, in fact, Ωd ⊳Ωn .
(b) Compute the Cayley table of the quotient group Ω8/Ω2. Does it have the same structure

as the Klein 4-group, or as the Cyclic group of order 4?
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Exercise 3.63. Let H = 〈i〉<Q8.

(a) Show that H ⊳Q8 by computing all the cosets of H .

(b) Compute the multiplication table of Q8/H .

Exercise 3.64. Let H = 〈−1〉<Q8.

(a) Show that H ⊳Q8 by computing all the cosets of H .

(b) Compute the multiplication table of Q8/H .

(c) With which well-known group does Q8/H have the same structure?

Exercise 3.65. Let G be an abelian group. Explain why for any H <G we know that H ⊳G.

Definition 3.66. Let G be a group, g ∈ G, and H < G. Define the
conjugation of H by g as

g H g−1 = {h g : h ∈H} .

(The notation h g is the definition of conjugation from Exercise 2.37 on
page 66; that is, h g = g h g−1.)
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Let G be a group, and H <G.
Claim: H ⊳G if and only if H = g H g−1 for all g ∈G.
Proof:

1. First, we show that if H ⊳G, then _____.
(a) Assume _____.
(b) By definition of normal, _____.
(c) Let g_____.
(d) We first show that H ⊆ g H g−1.

i. Let h_____.
ii. By 1b, h g ∈_____.

iii. By definition, there exists h ′ ∈H such that h g =_____.
iv. Multiply both sides on the right by g−1 to see that h =_____.
v. By _____, h ∈ g H g−1.

vi. Since h was arbitrary, _____.
(e) Now we show that H ⊇ g H g−1.

i. Let x ∈_____.
ii. By _____, x = g h g−1 for some h ∈H .

iii. By _____, g h ∈H g .
iv. By _____, there exists h ′ ∈H such that g h = h ′ g .
v. By _____, x =

�
h ′ g
�

g−1.
vi. By _____, x = h ′.

vii. By _____, x ∈H .
viii. Since x was arbitrary, _____.

(f) We have shown that H ⊆ g H g−1 and H ⊇ g H g−1. Thus, _____.
2. Now, we show _____: that is, if H = g H g−1 for all g ∈G, then H ⊳G.

(a) Assume _____.
(b) First, we show that g H ⊆H g .

i. Let x ∈_____.
ii. By _____, there exists h ∈H such that x = g h.

iii. By _____, g−1x = h.
iv. By _____, there exists h ′ ∈H such that h = g−1h ′ g .

(A key point here is that this is true for all g ∈G.)
v. By _____, g−1x = g−1h ′ g .

vi. By _____, x = g
�

g−1h ′ g
�
.

vii. By _____, x = h ′ g .
viii. By _____, x ∈H g .

ix. Since x was arbitrary, _____.
(c) The proof that _____ is similar.
(d) We have show that _____. Thus, g H = H g .

Figure 3.6. Material for Exercise 3.67

Exercise 3.67. Fill in each blank of Figure 3.6 with the appropriate justification or statement.10

10Certain texts define a normal subgroup this way; that is, a subgroup H is normal if every conjugate of H is precisely
H . They then prove that in this case, any left coset equals the corresponding right coset.
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Let G be a group. The centralizer of G is

Z (G) = {g ∈G : x g = g x ∀x ∈G} .

Claim: Z (G) ⊳G.
Proof:

1. First, we must show that Z (G)<G.
(a) Let g , h, x_____.
(b) By _____, x g = g x and x h = h x.
(c) By _____, x h−1 = h−1x.
(d) By _____, h−1 ∈ Z (G).
(e) By the associative property and the definition of Z (G),�

g h−1
�

x =_____=_____=. . . = x
�

g h−1
�
.

(Fill in more blanks as needed.)
(f) By _____, g h−1 ∈ Z (G).
(g) By _____, Z (G)<G.

2. Now, we show that Z (G) is normal.
(a) Let x_____.
(b) First we show that xZ (G)⊆ Z (G) x.

i. Let y_____.
ii. By definition of cosets, there exists g ∈ Z (G) such that y =_____.

iii. By definition of z (G), _____.
iv. By definition of _____, y ∈ Z (G) x.
v. By _____, xZ (G)⊆ Z (G) x.

(c) A similar argument shows that _____.
(d) By definition, _____. That is, Z (G) is normal.

Figure 3.7. Material for Exercise 3.71

Exercise 3.68. Recall the subgroup L of R2 from Exercises 3.16 on page 99 and 3.34 on page 104.
(a) Explain how we know that L⊳R2 without checking that p + L = L + p for any p ∈R2.
(b) Sketch two elements of R2/L and show their sum.

Exercise 3.69. Explain why every subgroup of Dm (R) is normal.

Exercise 3.70. Show that Q8 is not a normal subgroup of GLm (C).

Exercise 3.71. Fill in every blank of Figure 3.7 with the appropriate justification or statement.

Exercise 3.72. Let G be a group, and H <G. Define the normalizer of H as

NG (H ) = {g ∈G : g H = H g} .

Show that H ⊳NG (H ).

Exercise 3.73. Let G be a group, and A< G. Suppose that |G/A| = 2; that is, the subgroup A
partitions G into precisely two left cosets. Show that:
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• A⊳G; and
• G/A is abelian.

Exercise 3.74. Recall from Exercise 2.37 on page 66 the commutator of two elements of a group.
Let [G,G] denote the intersection of all subgroups of G that contain [x, y ] for all x, y ∈G.
(a) Compute [D3, D3].
(b) Compute [Q8,Q8].
(c) Show that [G,G]<G.
(d) Fill in each blank of Figure 3.8 with the appropriate justification or statement.

Definition 3.75. We call [G,G] the commutator subgroup of G, and
make use of it in Section 3.6.

Claim: For any group G, [G,G] is a normal subgroup of G.
Proof:

1. Let _____.
2. We will use Exercise 3.67 to show that [G,G] is normal. Let g ∈_____.
3. First we show that [G,G]⊆ g [G,G] g−1. Let h ∈ [G,G].

(a) We need to show that h ∈ g [G,G] g−1. It will suffice to show that this is true if h has
the simpler form h = [x, y ], since _____. Thus, choose x, y ∈G such that h = [x, y ].

(b) By _____, h = x−1y−1xy.
(c) By _____, h = e x−1e y−1e xe ye .
(d) By _____, h =

�
g g−1

�
x−1

�
g g−1

�
y−1

�
g g−1

�
x
�

g g−1
�

y
�

g g−1
�
.

(e) By _____, h = g
�

g−1x−1 g
��

g−1y−1 g
��

g−1x g
��

g−1y g
�

g−1.

(f ) By _____, h = g
�

x−1
�g−1 �

y−1
�g−1 �

x g−1��
y g−1�

g−1.

(g) By Exercise 2.37 on page 66(c), h =_____.
(h) By definition of the commutator, h =_____.
(i) By _____, h ∈ g [G,G] g−1.
(j) Since _____, [G,G]⊆ g [G,G] g−1.

4. Conversely, we show that [G,G]⊇ g [G,G] g−1. Let h ∈ g [G,G] g−1.
(a) We need to show that h ∈ [G,G]. It will suffice to show this is true if h has the

simpler form h = g [x, y ] g−1, since _____. Thus, choose x, y ∈ G such that h =
g [x, y ] g−1.

(b) By _____, h = [x, y ]g .
(c) By _____, h = [x g , y g ].
(d) By _____, h ∈G.
(e) Since _____, [G,G]⊇ g [G,G] g−1.

5. We have shown that [G,G]⊆ g [G,G] g−1 and [G,G]⊇ g [G,G] g−1. By _____, [G,G] =
g [G,G] g−1.

Figure 3.8. Material for Exercise 3.74

3.5: “Clockwork” groups



5. “Clockwork” groups 117

By Theorem 3.56, every subgroup H of Z is normal. Let n ∈ Z; since nZ < Z, it follows
that nZ ⊳Z. Thus Z/nZ is a quotient group.

We used nZ in many examples of subgroups. One reason is that you are accustomed to
working with Z, so it should be conceptually easy. Another reason is that the quotient group
Z/nZ has a vast array of applications in number theory and computer science. You will see
some of these in Chapter 6. Because this group is so important, we give it several special names.

Definition 3.76. Let n ∈Z. We call the quotient group Z/nZ

• Z mod n, or
• the linear residues modulo n.

Notation 3.77. It is common to write Zn instead of Z/nZ.

Example 3.78. You already saw a bit of Z4 = Z/4Z at the beginning of Section 3.2 and again
in Example 3.52. Recall that Z4 = {4Z, 1 + 4Z, 2 + 4Z, 3 + 4Z}. Addition in this group will
always give us one of those four representations of the cosets:

(2 + 4Z)+ (1 + 4Z) = 3 + 4Z;

(1 + 4Z)+ (3 + 4Z) = 4 + 4Z = 4Z;

(2 + 4Z)+ (3 + 4Z) = 5 + 4Z = 1 + 4Z;

and so forth.
Reasoning similar to that used at the beginning of Section 3.2 would show that

Z31 = Z/31Z = {31Z, 1 + 31Z, . . . , 30 + 31Z} .

We show this explicitly in Theorem 3.82.

Before looking at some properties of Zn , let’s look for an easier way to talk about its elements. It
is burdensome to write a + nZ whenever we want to discuss an element of Zn , so we adopt the
following convention.

Notation 3.79. Let A∈Zn and choose r ∈Z such that A = r + nZ.
• If it is clear from context that A is an element of Zn , then we simply write r instead of

r + nZ.
• If we want to emphasize that A is an element of Zn (perhaps there are a lot of integers

hanging about) then we write [r ]n instead of r + nZ.
• If the value of n is obvious from context, we simply write [r ].

To help you grow accustomed to the notation [r ]n , we use it for the rest of this chapter, even
when n is mind-bogglingly obvious.

The first property is that, for most values of n, Zn has finitely many elements. To show that
there are finitely many elements of Zn , we rely on the following fact, which is important enough
to highlight as a separate result.

Lemma 3.80. Let n ∈Z\{0} and [a]n ∈Zn . Use the Division Theorem
to choose q , r ∈ Z such that a = qn + r and 0 ≤ r < |n|. Then [a]n =
[r ]n .
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The proof of Lemma 3.80 on the preceding page is similar to the discussion in Example 3.38 on
page 105, so you might want to reread that.

Proof. We give two different proofs. Both are based on the fact that [a]n and [r ]n are cosets; so
showing that they are equal is tantamount to showing that a and r are different elements of the
same set.

(1) By definition and substitution,

[a]n = a + nZ

= (qn + r )+ nZ

= {(qn + r )+ nd : d ∈Z}
= {r + n (q + d ) : d ∈Z}
= {r + nm : m ∈Z}
= r + nZ

= [r ]n .

(2) Rewrite a = qn + r as a− r = qn. By definition, a− r ∈ nZ. The immensely useful
Lemma 3.29 shows that a + nZ = r + nZ, and the notation implies that [a]n = [r ]n .

Definition 3.81. On account of Lemma 3.80, we can designate the re-
mainder of division of a by n, whose value is between 0 and |n| − 1,
inclusive, as the canonical representation of [a]n in Zn .

Theorem 3.82. Zn is finite for every nonzero n ∈ Z. In fact, if n 6= 0
then Zn has |n| elements corresponding to the remainders from division
by n: 0, 1, 2, . . . , n−1.

Proof. Lemma 3.80 on the preceding page states that every element of such Zn can be repre-
sented by [r ]n for some r ∈Z where 0≤ r < |n|. But there are only |n| possible choices for such
a remainder.

Let’s look at how we can perform arithmetic in Zn .

Lemma 3.83. Let d , n ∈Z and [a]n , [b ]n ∈Zn . Then

[a]n +[b ]n = [a + b ]n

and
d [a]n = [da]n .

For example, [3]7 +[9]7 = [3 + 9]7 = [12]7 = [5]7 and −4 [3]5 = [−4 ·3]5 = [−12]5 = [3]5.
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Figure 3.9. Addition in Zn is “clockwork”: [n−1]n +[2]n = [1]n .

Proof. The proof really amounts to little more than manipulating the notation. By the defini-
tions of coset addition and of Zn ,

[a]n +[b ]n = (a + nZ)+ (b + nZ)

= (a + b )+ nZ

= [a + b ]n .

For d [a]n , we consider three cases.

If d = 0, then d [a]n = [0]n by Notation 2.51 on page 76, and [0]n = [0 · a]n = [da]n . By
substitution, then, d [a]n = [da]n .

If d is positive, then the expression d [a]n is the sum of d copies of [a]n , which the Lemma’s
first claim (now proved) implies to be

[a]n +[a]n + · · ·+[a]n︸ ︷︷ ︸
d times

= [2a]n +[a]n + · · ·+[a]n︸ ︷︷ ︸
d−2 times

...

= [da]n .

If d is negative, then Notation 2.51 again tells us that d [a]n is the sum of |d | copies of − [a]n .
So, what is the additive inverse of [a]n? Using the first claim, [a]n +[−a]n = [a +(−a)]n = [0]n ,
so − [a]n = [−a]n . By substitution,

d [a]n = |d | (− [an ]) = |d | [−a]n

= [|d | · (−a)]n = [−d · (−a)]n = [da]n .

Lemmas 3.80 and 3.83 imply that each Zn acts as a “clockwork” group. Why?

• To add [a]n and [b ]n , let c = a + b .
• If 0≤ c < |n|, then you are done. After all, division of c by n gives q = 0 and r = c .
• Otherwise, c < 0 or c ≥ |n|, so we divide c by n, obtaining q and r where 0≤ r < |n|. The

sum is [r ]n .

We call this “clockwork” because it counts like a clock: if you sit down at 5 o’clock and wait two
hours, you rise at not at 13 o’clock, but at 13−12 = 1 o’clock. See Figure 3.9.
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It should be clear from Example 2.9 on page 60 as well as Exercise 2.31 on page 65 that Z2
and Z3 have precisely the same structure as the groups of order 2 and 3. On the other hand, we
saw in Exercise 2.32 on page 65 that there are two possible structures for a group of order 4: the
Klein 4-group, and a cyclic group. Which structure does Z4 have?

Example 3.84. Use Lemma 3.83 to observe that



[1]4
�

=
�
[0]4 , [1]4 , [2]4 , [3]4

	

since [2]4 = [1]4 +[1]4, [3]4 = [2]4 +[1]4, and [0]4 = 0 · [1]4 (or [0]4 = [3]4 +[1]4).

The fact that Z4 was cyclic makes one wonder: is Zn always cyclic? Yes!

Theorem 3.85. Zn is cyclic for every n ∈Z.

This theorem has a more general version, which you will prove in the homework.

Proof. Let n ∈Z and [a]n ∈Zn . By Lemma 3.83,

[a]n = [a ·1]n = a [1]n ∈


[1]n

�
.

Since [a]n was arbitrary in Zn , Zn ⊆


[1]n

�
. Closure implies that Zn ⊇



[1]n

�
, so in fact

Zn =


[1]n

�
, and Zn is therefore cyclic.

Not every non-zero element necessarily generates Zn . We know that [2]4 +[2]4 = [4]4 = [0]4,
so in Z4, we have 


[2]4
�

=
�
[0]4 , [2]4

	
(Z4.

A natural and interesting followup question is, which non-zero elements do generate Zn? You
need a bit more background in number theory before you can answer that question, but in the
exercises you will build some more addition tables and use them to formulate a hypothesis.

The following important lemma gives an “easy” test for whether two integers are in the same
coset of Zn .

Lemma 3.86. Let a, b , n ∈ Z and assume that n 6= 0. The following are
equivalent.
(A) a + nZ = b + nZ.
(B) [a]n = [b ]n .
(C) n | (a− b ).

Proof. You do it! See Exercise 3.93.

Exercises.

Exercise 3.87. We showed that Zn is finite for n 6= 0. What if n = 0? How many elements would
it have? Illustrate a few additions and subtractions, and indicate whether you think that Z0 is an
interesting or useful group.
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Exercise 3.88. In the future, we won’t actually talk about Zn for n < 0. Show that this is because
Zn = Z|n|.

Exercise 3.89. Write out the Cayley tables for Z2 and Z3. Remember that the operation is addi-
tion.

Exercise 3.90. Write down the Cayley table for Z5. Remember that the operation is addition.
Which elements generate Z5?

Exercise 3.91. Write down the Cayley table for Z6.Remember that the operation is addition.
Which elements generate Z6?

Exercise 3.92. Compare the results of Example 3.84 and Exercises 3.89, 3.90, and 3.91. Formulate
a conjecture as to which elements generate Zn . Do not try to prove your example.

Exercise 3.93. Prove Lemma 3.86.

Exercise 3.94. Prove the following generalization of Theorem 3.85: If G is a cyclic group and
A⊳G, then G/A is cyclic.

3.6: “Solvable” groups

One of the major motivations of group theory was the question of whether a polynomial can
be solved by radicals. For example, if we have a quadratic equation ax2 + b x + c = 0, then11

x =
−b ±

p
b 2−4ac

2a
.

Since the solution contains nothing more than addition, multiplication, and radicals, we say that
a quadratic equation is solvable by radicals.

Similar formulas can be found for cubic and quartic equations. When mathematicians turned
their attention to quintic equations, however, they hit a wall: they weren’t able to use previous
techniques to find a “quintic formula”. Eventually, it was shown that this is because some quin-
tic equations are not solvable by radicals. The method they used to show this is based on the
following concept.

Definition 3.95. If a group G contains subgroups G0, G1, . . . , Gn such
that
• G0 = {e};
• Gn = G;
• Gi−1 ⊳Gi ; and
• Gi /Gi−1 is abelian,

then G is a solvable group. The chain of subgroups G0, . . . , Gn is called
a normal series.

11Well, as long as a 6= 0. But then you wouldn’t consider it quadratic, would you?
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Example 3.96. Any finite abelian group G is solvable: let G0 = {e} and G1 = G. Subgroups of an
abelian group are always normal, so G0 ⊳G1. In addition, X ,Y ∈G1/G0 implies that X = x {e}
and Y = y {e} for some x, y ∈G1 = G. Since G is abelian,

X Y = (xy) {e}= (y x) {e}= Y X .

Example 3.97. The group D3 is solvable. To see this, let n = 2 and G1 = 〈ρ〉:
• By Exercise 3.61 on page 112, {e} ⊳G1. To see that G1/ {e} is abelian, note that for any

X ,Y ∈ G1/ {e}, we can write X = x {e} and Y = y {e} for some x, y ∈ G1. By definition
of G1, we can write x = ρa and y = ρb for some a, b ∈ Z. We can then fall back on the
commutative property of addition in Z to show that

X Y = (xy) {e}= ρa+b {e}
= ρb+a {e}= (y x) {e}= Y X .

• By Exercise 3.73 on page 115 and the fact that |G1|= 3 and |G2|= 6, we know that G1 ⊳G2.
The same exercise tells us that G2/G1 is abelian.

The following properties of solvable subgroups are very useful in a branch of algebra called
Galois Theory.

Theorem 3.98. Every quotient group of a solvable group is solvable.

Proof. Let G be a group and A⊳G. We need to show that G/A is solvable. Since G is solvable,
choose a normal series G0, . . . , Gn . For each i = 0, . . . , n, put

Ai = {g A : g ∈Gi} .

We claim that the chain A0, A1, . . . , An likewise satisfies the definition of a solvable group.

First, we show that Ai−1 ⊳Ai for each i = 1, . . . , n. Let X ∈ Ai ; by definition, X = xA for
some x ∈ Gi . We have to show that X Ai−1 = Ai−1X . Let Y ∈ Ai−1; by definition, Y = yA for

some y ∈ Gi−1. Recall that Gi−1 ⊳Gi , so there exists by ∈ Gi−1 such that xy = by x. Let bY = byA;

since by ∈Gi−1, bY ∈Ai−1. Using substitution and the definition of coset arithmetic, we have

X Y = (xy)A = (by x)A = bY X ∈Ai−1X .

Since Y was arbitrary in Ai−1, X Ai−1 ⊆Ai−1X . A similar argument shows that X Ai−1 ⊇Ai−1X ,
so the two are equal. Since X is an arbitrary coset of Ai−1 in Ai , we conclude that Ai−1 ⊳Ai .

Second, we show that Ai /Ai−1 is abelian. Let X ,Y ∈ Ai /Ai−1. By definition, we can write
X = SAi−1 and Y = T Ai−1 for some S,T ∈ Ai . Again by definition, there exist s , t ∈ Gi such
that S = sA and T = tA. Let U ∈ Ai−1; we can likewise write U = uA for some u ∈ Gi−1.
Since Gi /Gi−1 is abelian, (s t )Gi−1 = (t s)Gi−1; thus, (s t ) u = (t s) v for some v ∈ Gi−1. By
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definition, vA∈Ai−1. By substitution and the definition of coset arithmetic, we have

X Y = (ST )Ai−1 = ((s t )A)Ai−1

= [(s t )A] (uA) = ((s t ) u)A

= ((t s) v)A = [(t s)A] (vA)

= ((t s)A)Ai−1 = (T S)Ai−1

= Y X .

Since X and Y were arbitrary in the quotient group Ai /Ai−1, we conclude that it is abelian.
We have constructed a normal series in G/A; it follows that G/A is solvable.

The following result is also true:

Theorem 3.99. Every subgroup of a solvable group is solvable.

Proving it, however, is a little more difficult. We need the definition of the commutator from
Exercises 2.37 on page 66 and 3.74 on page 116.

Definition 3.100. Let G be a group. The commutator subgroup G′

of G is the intersection of all subgroups of G that contain [x, y ] for all
x, y ∈G.

Notice that G′ <G by Exercise 3.20.

Notation 3.101. We wrote G′ as [G,G] in Exercise 3.74.

Lemma 3.102. For any group G, G′ ⊳G. In addition, G/G′ is abelian.

Proof. You showed that G′ ⊳G in Exercise 3.74 on page 116. To show that G/G′ is abelian, let
X ,Y ∈ G/G′. Write X = xG′ and Y = yG′ for appropriate x, y ∈ G. By definition, X Y =
(xy)G′. Let g ′ ∈G′; by definition, g ′ = [a, b ] for some a, b ∈G. Since G′ is a group, it is closed
under the operation, so [x, y ] [a, b ] ∈ G′. Let z ∈ G′ such that [x, y ] [a, b ] = z. Rewrite this
expression as �

x−1y−1xy
�
[a, b ] = z =⇒ (xy) [a, b ] = (y x) z.

(Multiply both sides of the equation on the left by y x.) Hence

(xy) g ′ = (xy) [a, b ] = (y x) z ∈ (y x)G′.

Since g ′ was arbitrary, (xy)G′ ⊆ (y x)G′. A similar argument shows that (xy)G′ ⊇ (y x)G′.
Thus

X Y = (xy)G′ = (y x)G′ = Y X ,

and G/G′ is abelian.

Lemma 3.103. If H ⊆G, then H ′ ⊆G′.
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Proof. You do it! See Exercise 3.107.

Notation 3.104. Define G(0) = G and G(i) =
�

G(i−1)
�′

; that is, G(i) is the commutator sub-

group of G(i−1).

Lemma 3.105. A group is solvable if and only if G(n) = {e} for some
n ∈N.

Proof. (=⇒) Suppose that G is solvable. Let G0, . . . , Gn be a normal series for G. We claim
that G(n−i) ⊆ Gi . If this claim were true, then G(n−0) ⊆ G0 = {e}, and we would be done. We
proceed by induction on n− i ∈N.

Inductive base: If n− i = 0, then G(n−i) = G = Gn . Also, i = n, so G(n−i) = Gn = Gi , as
claimed.

Inductive hypothesis: Assume that the assertion holds for n− i .

Inductive step: By definition, G(n−i+1) =
�

G(n−i)
�′

. By the inductive hypothesis, G(n−i) ⊆
Gi ; by Lemma 3.103,

�
G(n−i)

�′ ⊆G′
i
. Hence

G(n−i+1) ⊆G′
i
. (12)

Recall from the properties of a normal series that Gi /Gi−1 is abelian; for any x, y ∈Gi , we have

(xy)Gi−1 =
�

xGi−1

��
yGi−1

�

=
�

yGi−1

��
xGi−1

�
= (y x)Gi−1.

By Lemma 3.29 on page 103, (y x)−1 (xy) ∈ Gi−1; in other words, [x, y ] = x−1y−1xy ∈ Gi−1.
Since x and y were arbitrary in Gi , we have G′

i
⊆ Gi−1. Along with (12), this implies that

G(n−(i−1)) = G(n−i+1) ⊆Gi−1.
We have shown the claim; thus, G(n) = {e} for some n ∈N.
(⇐=) Suppose that G(n) = {e} for some n ∈N. We have

{e}= G(n) <G(n−1) < · · ·<G(0) = G.

By Lemma 3.102, the subgroups form a normal series; that is,

{e}= G(n) ⊳G(n−1) ⊳ · · ·⊳G(0) = G

and G(n−i)/G(n−(i−1)) is abelian for each i = 0, . . . , n− 1. As this is a normal series, we have
shown that G is solvable.

We can now prove Theorem 3.99.

Proof of Theorem 3.99. Let H < G. Assume G is solvable; by Lemma 3.105, G(n) = {e}. By
Lemma 3.103, H (i) ⊆G(i) for all n ∈N, so H (n) ⊆ {e}. By the definition of a group, H (n) ⊇ {e},
so the two are equal. By the same lemma, H is solvable.

Exercises.
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Exercise 3.106. Explain why Ωn is solvable for any n ∈N+.

Exercise 3.107. Show that if H ⊆G, then H ′ ⊆G′.

Exercise 3.108. Show that Q8 is solvable.

Exercise 3.109. In the textbook God Created the Integers. . . the theoretical physicist Stephen
Hawking reprints some of the greatest mathematical results in history, adding some commentary.
For an excerpt from Evariste Galois’ Memoirs, Hawking sums up the main result this way.

To be brief, Galois demonstrated that the general polynomial of degree n could be
solved by radicals if and only if every subgroup N of the group of permutations Sn
is a normal subgroup. Then he demonstrated that every subgroup of Sn is normal
for all n ≤ 4 but not for any n > 5.

—p. 105
Unfortunately, Hawking’s explanation is completely wrong, and this exercise leads you towards
an explanation as to why.12 You have not yet studied the groups of permutations Sn , but you will
learn in Section 5.1 that the group S3 is really the same as D3. So we look at D3, instead.
(a) Find all six subgroups of D3.
(b) It is known that the general polynomial of degree 3 can be solved by radicals. According

to the quote above, what must be true about all the subgroups of D3?
(c) Why is Hawking’s explanation of Galois’ result “obviously” wrong?

(To be precise, S3 is “isomorphic” to D3. We discuss group isomorphisms in Chapter 4 on the
next page. Exercise 5.37 of Chapter ?? on page ?? asks you to show that S3

∼= D3. We talk about
solvability by radicals in Chapter 9 on page 266.)

12Perhaps Hawking was trying to simplify what Galois actually showed, and went too far. (I’ve done much worse
in my lifetime.) In fact, Galois showed that a polynomial of degree n could be solved by radicals if and only if a
corresponding group, now called its Galois group, was a solvable group. He then showed that the Galois group of
x5 + 2x + 5 was not a solvable group.



Chapter 4:
Isomorphisms

We have on occasion observed that different groups have the same Cayley table. We have also
talked about different groups having the same structure: regardless of whether a group of order
two is additive or multiplicative, its elements behave in exactly the same fashion. The groups may
consist of elements whose construction was quite different, and the definition of the operation
may also be different, but the “group behavior” is nevertheless identical.

We saw in Chapter 1 that algebraists describe such a relationship between two monoids as
isomorphic. Isomorphism for groups has the same intuitive meaning as isomorphism for monoids:

If two groups G and H have identical group structure,
we say that G and H are isomorphic.

We want to study isomorphism of groups in quite a bit of detail, so to define isomorphism pre-
cisely, we start by reconsidering another topic that you studied in the past, functions. There we
will also introduce the related notion of homomorphism. Despite the same basic intuitive defini-
tion, the precise definition of group homorphism turns out simpler than for monoids. This is
the focus of Section 4.1. Section 4.2 lists some results that should help convince you that the ex-
istence of an isomorphism does, in fact, show that two groups have an identical group structure.
Section 4.3 describes how we can create new isomorphisms from a homomorphism’s kernel, a
special subgroup defined by a homomorphism. Section 4.4 introduces a class of isomorphism
that is important for later applications, an automorphism.

4.1: Homomorphisms

Groups have more structure than monoids. Just as a monoid homomorphism would require
that we preserve both identities and the operation (page 45), you might infer that the requirements
for a group isomorphism are stricter than those for a monoid isomorphism. After all, you have
to preserve not only identities and the operation, but inverses as well.

In fact, the additional structure of groups allows us to have fewer requirements for a group
homomorphism.

Group isomorphisms

Definition 4.1. Let (G,×) and (H ,+) be groups. If there exists a func-
tion f : G→H that preserves the operation, which is to say that

f (xy) = f (x)+ f (y) for every x, y ∈G,

then we call f a group homomorphism.

This definition requires the preservation of neither inverses nor identities! You might conclude
from this that group homomorphism aren’t even monoid homomorphisms; we will see in a
moment that this is quite untrue!
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Notation 4.2. As with monoids, you have to be careful with the fact that different groups have
different operations. Depending on the context, the proper way to describe the homomorphism
property may be
• f (xy) = f (x)+ f (y);
• f (x + y) = f (x) f (y);
• f (x ◦ y) = f (x)⊙ f (y);
• etc.

Example 4.3. A trivial example of a homomorphism, but an important one, is the identity func-
tion ι : G→G by ι (g ) = g for all g ∈G. It should be clear that this is a homomorphism, since
for all g , h ∈G we have

ι (g h) = g h = ι (g ) ι (h) .

For a non-trivial homomorphism, let f : Z→ 2Z by f (x) = 4x. Then f is a group homo-
morphism, since for any x ∈Z we have

f (x)+ f (y) = 4x + 4y = 4 (x + y) = f (x + y) .

Hopefully, the homomorphism property reminds you of certain special functions and oper-
ations that you studied in Linear Algebra or Calculus. Recall from Exercise 2.29 that R+, the set
of all positive real numbers, is a multiplicative group.

Example 4.4. Let f : (GLm (R) ,×)→ (R\{0} ,×) by f (A) = detA. By Theorem 0.82, detA ·
detB = det (AB). Thus

f (A) · f (B) = detA ·detB = detA ·detB = det (AB) = f (AB) ,

implying that f is a homomorphism of groups.

Let’s look at a clockwork group.

Example 4.5. Let n ∈ Z such that n > 1, and let f : (Z,+) → (Zn ,+) by the assignment
f (x) = [x ]n . We claim that f is a homomorphism. Why? From Lemma 3.83, we know that for
any x, y ∈Zn , f (x + y) = [x + y ]n = [x ]n +[y ]n = f (x)+ f (y).

By preserving the operation, we preserve an enormous amount of information about a group.
If there is a homomorphism f from G to H , then elements of the image of G,

f (G) =
�

h ∈H : ∃g ∈G such that f (g ) = h
	

act the same way as their preimages in G.
This does not imply that the group structure is the same. In Example 4.5, for example, f is

a homomorphism from an infinite group to a finite group; even if the group operations behave
in a similar way, the groups themselves are inherently different. If we can show that the groups
have the same “size” in addition to a similar operation, then the groups are, for all intents and
purposes, identical.

How do we decide that two groups have the same size? For finite groups, this is “easy”: count
the elements. We can’t do that for infinite groups, so we need something a little more general.13

13The standard method in set theory of showing that two sets are the same “size” is to show that there exists a one-
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Definition 4.6. Let f : G → H be a homomorphism of groups. If f is
also a bijection, then we say that G is isomorphic to H , write G ∼= H ,
and call f an isomorphism.

Example 4.7. Recall the homomorphisms of Example 4.3,

ι : G→G by ι (g ) = g and f : Z→ 2Z by f (x) = 4x.

First we show that ι is an isomorphism. We already know it’s a homomorphism, so we need only
show that it’s a bijection.
one-to-one: Let g , h ∈ G. Assume that ι (g ) = ι (h). By definition of ι, g = h. Since g and h

were arbitrary in G, ι is one-to-one.
onto: Let g ∈ G. We need to find x ∈ G such that ι (x) = g . Using the definition of ι,

x = g does the job. Since g was arbitrary in G, ι is onto.
Now we show that f is not a bijection, and hence not an isomorphism.
not onto: There is no element a ∈ Z such that f (a) = 2. If there were, 4a = 2. The only

possible solution to this equation is a = 1/2 6∈Z.
This is despite the fact that f is one-to-one:
one-to-one: Let a, b ∈ Z. Assume that f (a) = f (b ). By definition of f , 4a = 4b . Then

4 (a− b ) = 0; by the zero product property of the integers, 4 = 0 or a− b = 0.
Since 4 6= 0, we must have a− b = 0, or a = b . We assumed f (a) = f (b ) and
showed that a = b . Since a and b were arbitrary, f is one-to-one.

Example 4.8. Recall the homomorphism of Example 4.4,

f : GLm (R)→R+ by f (A) = |detA| .

We claim that f is onto, but not one-to-one.
That f is not one-to-one: Observe that f maps both of the following two diagonal matrices to

2, even though the matrices are unequal:

A =




2
1

1
...




and B =




1
2

1
1

...




.

(Unmarked entries are zeroes.)
That f is onto: Let x ∈R+; then f (A) = x where A is the diagonal matrix

A =




x
1

1
...




.

to-one, onto function between the sets. For example, one can use this definition to show that Z and Q are the same
size, but Z and R are not. So an isomorphism is a homomorphism that also shows that two sets are the same size.
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(Again, unmarked entries are zeroes.)

We cannot conclude from these examples that Z 6∼= 2Z and that R+ 6∼= Rm×n . Why not?
In each case, we were considering only one of the (possibly many) homomorphisms. It is quite
possible that we could find different homomorphisms that would be bijections, showing that
Z ∼= 2Z and that R+ ∼= Rm×n . The first assertion is in fact true, while the second is not; you
will explain why in the exercises.

Properties of group homorphism

We turn now to three important properties of group homomorphism. For the rest of this
section, we assume that (G,×) and (H ,◦) are groups. Notice that the operations are both “mul-
tiplicative”.

We still haven’t explored the relationship between group homomorphisms and monoid ho-
momorphisms. If a group homomorphism has fewer criteria, can it actually guarantee more
structure? Theorem 4.9 answers in the affirmative.

Theorem 4.9. Let f : G → H be a homomorphism of groups. Denote
the identity of G by eG , and the identity of H by eH . Then f
preserves identities: f (eG) = eH ; and
preserves inverses: for every x ∈G, f

�
x−1
�
= f (x)−1.

Read the proof below carefully, and identify precisely why this theorem holds for groups, but
not for monoids.

Proof. That f preserves identities: Let x ∈ G, and y = f (x). By the property of homomor-
phisms,

eH y = y = f (x) = f (eG x) = f (eG) f (x) = f (eG) y.

By the transitive property of equality,

eH y = f (eG) y.

Multiply both sides of the equation on the right by y−1 to obtain

eH = f (eG) .

This shows that f , an arbitrary homomorphism of arbitrary groups, maps the identity of the
domain to the identity of the range.

That f preserves inverses: Let x ∈G. By the property of homomorphisms and by the fact that
f preserves identity,

eH = f (eG) = f
�

x · x−1
�

= f (x) · f
�

x−1
�

.

Thus
eH = f (x) · f

�
x−1
�

.

Pay careful attention to what this equation says! “The product of f (x) and f
�

x−1
�

is the identity,”
which means that those two elements must be inverses! Hence, f

�
x−1
�

is the inverse of f (x),
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which we write as
f
�

x−1
�

= f (x)−1 .

The trick, then, is that the property of inverses guaranteed to groups allows us to do more
than we can do in a monoid. In this case, more structure in the group led to fewer conditions for
equivalence. This is not true in general; we we discuss rings, we will see that more structure can
lead to more conditions.

If homomorphisms preserve the inverse after all, it makes sense that “the inverse of the image
is the image of the inverse.” Corollary 4.10 affirms this.

Corollary 4.10. Let f : G → H be a homomorphism of groups. Then

f
�

x−1
�−1

= f (x) for every x ∈G.

Proof. You do it! See Exercise 4.23.

It will probably not surprise you that homomorphisms preserve powers of an element.

Theorem 4.11. Let f : G→ H be a homomorphism of groups. Then f
preserves powers of elements of G. That is, if f (g ) = h, then f (g n) =
f (g )n = hn .

Proof. You do it! See Exercise 4.28.

Naturally, if homomorphisms preserve powers of an element, they must also preserve cyclic
groups.

Corollary 4.12. Let f : G → H be a homomorphism of groups. If
G = 〈g 〉 is a cyclic group, then f (g ) determines f completely. In other
words, the image f (G) is a cyclic group, and f (G) = 〈 f (g )〉.

Proof. Assume that G = 〈g 〉; that is, G is cyclic. We have to show that two sets are equal. By
definition, for any x ∈G we can find n ∈Z such that x = g n .

First we show that f (G) ⊆ 〈 f (g )〉. Let y ∈ f (G) and choose x ∈ G such that y = f (x).
Since G is a cyclic group generated by g , we can choose n ∈Z such that x = g n . By substitution
and Theorem 4.11, y = f (x) = f (g n) = f (g )n . By definition, y ∈ 〈 f (g )〉. Since y was
arbitrary in f (G), f (G)⊆ 〈 f (g )〉.

Now we show that f (G)⊇ 〈 f (g )〉. Let y ∈ 〈 f (g )〉, and choose n ∈Z such that y = f (g )n .
By Theorem 4.11, y = f (g n). Since g n ∈G, f (g n) ∈ f (G), so y ∈ f (G). Since y was arbitrary
in 〈 f (g )〉, f (G)⊇ 〈 f (g )〉.

We have shown that f (G) ⊆ 〈 f (g )〉 and f (G) ⊇ 〈 f (g )〉. By equality of sets, f (G) =
〈 f (g )〉.
The final property of homomorphism that we check here is an important algebraic property of
functions; it should remind you of a topic in Section 0.3. It will prove important in subsequent
sections and chapters.
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Definition 4.13. Let G and H be groups, and f : G → H a homomor-
phism. Let

Z = {g ∈G : f (g ) = eH } ;
that is, Z is the set of all elements of G that f maps to the identity of H .
We call Z the kernel of f , written ker f .

Theorem 4.14. Let f : G → H be a homomorphism of groups. Then
ker f ⊳G.

Proof. You do it! See Exercise 4.25.

Exercises.

Exercise 4.15.
(a) Show that f : Z→ 2Z by f (x) = 2x is an isomorphism. Hence Z ∼= 2Z.
(b) Show that Z ∼= nZ for every nonzero integer n.

Exercise 4.16. Let n ≥ 1 and f : Z−→Zn by f (a) = [a]n .
(a) Show that f is a homomorphism.
(b) Explain why f cannot possibly be an isomorphism.
(c) Determine ker f . (It might help to use a specific value of n first.)
(d) Indicate how we know that Z/ ker f ∼= Zn . (Eventually, we will show that G/ ker f ∼= H

for any homomorphism f : G −→H that is onto.)

Exercise 4.17. Show that Z2 is isomorphic to the group of order two from Example 2.9 on
page 60. Caution! Remember to denote the operations properly: Z2 is additive, but we used
◦ for the operation of the group of order two.

Exercise 4.18. Show that Z2 is isomorphic to the Boolean xor group of Exercise 2.21 on page 64.
Caution! Remember to denote the operation in the Boolean xor group correctly.

Exercise 4.19. Show that Zn
∼= Ωn for n ∈N+.

Exercise 4.20. Suppose we try to define f : Q8 −→Ω4 by f (i) = f (j) = f (k) = i , and f (xy) =
f (x) f (y) for all other x,y ∈Q8. Show that f is not a homomorphism.

Exercise 4.21. Show that Z is isomorphic to Z0. (Because of this, people generally don’t pay
attention to Z0. See also Exercise 3.87 on page 120.)

Exercise 4.22. Recall the subgroup L of R2 from Exercises 3.16 on page 99, 3.34 on page 104,
and 3.68 on page 115. Show that L ∼= R.

Exercise 4.23. Prove Corollary 4.10.

Exercise 4.24. Suppose f is an isomorphism. How many elements does ker f contain?
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Claim: kerϕ ⊳G.
Proof:

1. By _____, it suffices to show that for any g ∈G, kerϕ = g (kerϕ) g−1. So, let g ∈_____.
2. First we show that (kerϕ)⊇ g (kerϕ) g−1. Let x ∈ g (kerϕ) g−1.

(a) By _____, there exists k ∈ kerϕ such that x = g k g−1.
(b) By _____, ϕ (x) = ϕ

�
g k g−1

�
.

(c) By _____, ϕ (x) = ϕ (g )ϕ (k)ϕ (g )−1.
(d) By _____, ϕ (x) = ϕ (g ) eHϕ (g )−1.
(e) By _____, ϕ (x) = eH .
(f ) By definition of the kernel, _____.
(g) Since _____, g (kerϕ) g−1 ⊆ kerϕ.

3. Now we show the converse; that is, _____. Let k ∈ kerϕ.
(a) Let x = g−1k g . Notice that if x ∈ kerϕ, then we would have what we want, since in

this case _____.
(b) In fact, x ∈ kerϕ. After all, _____.
(c) Since _____, kerϕ ⊆ g (kerϕ) g−1.

4. By _____, kerϕ = g (kerϕ) g−1.

Figure 4.1. Material for Exercise 4.25

Exercise 4.25. Let G and H be groups, and ϕ : G→H a homomorphism.

(a) Show that kerϕ <G.
(b) Fill in each blank of Figure 4.1 with the appropriate justification or statement.

Exercise 4.26. Let ϕ be a homomorphism from a finite group G to a group H . Recall from
Exercise 4.25 that kerϕ ⊳G. Explain why |kerϕ| · |ϕ (G)| = |G|. (This is sometimes called the
Homomorphism Theorem.)

Exercise 4.27. Let f : G → H be an isomorphism. Isomorphisms are by definition one-to-one
functions, so f has an inverse function f −1. Show that f −1 : H →G is also an isomorphism.

Exercise 4.28. Prove Theorem 4.11.

Exercise 4.29. Let f : G→H be a homomorphism of groups. Assume that G is abelian.
(a) Show that f (G) is abelian.
(b) Is H abelian? Explain why or why not.

Exercise 4.30. Let f : G→H be a homomorphism of groups. Let A<G. Show that f (A)<H .

Exercise 4.31. Let f : G→H be a homomorphism of groups. Let A⊳G.
(a) Show that f (A) ⊳ f (G).
(b) Do you think that f (A) ⊳H ? Justify your answer.

Exercise 4.32. Show that if G is a group, then G/ {e} ∼= G and G/G ∼= {e}.

Exercise 4.33. Recall the orthogonal group and the special orthogonal group from Exercise 3.22.
Let ϕ : O (n)→Ω2 by ϕ (A) = detA.
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(a) Show that ϕ is a homomorphism, but not an isomorphism.
(b) Explain why kerϕ = SO (n).

Exercise 4.34. In Chapter 1, the definition of an isomorphism for monoids required that the
function map the identity to the identity (Definition 1.26 on page 45). By contrast, Theorem 4.9
shows that the preservation of the operation guarantees that a group homomorphism maps the
identity to the identity, so we don’t need to require this in the definition of an isomorphism for
groups (Definition 4.6).

The difference between a group and a monoid is the existence of an inverse. Use this to show
that, in a monoid, you can have a function that preserves the operation, but not the identity. In
other words, show that Theorem 4.9 is false for monoids.

4.2: Consequences of isomorphism

Throughout this section, (G,×) and (H ,◦) are groups.
The purpose of this section is to show why we use the name isomorphism: if two groups are

isomorphic, then they are indistinguishable as groups. The elements of the sets are different, and
the operation may be defined differently, but as groups the two are identical. Suppose that two
groups G and H are isomorphic. We will show that
• isomorphism is an equivalence relation;
• G is abelian iff H is abelian;
• G is cyclic iff H is cyclic;
• every subgroup A of G corresponds to a subgroup A′ of H (in particular, if A is of order n,

so is A′);
• every normal subgroup N of G corresponds to a normal subgroup N ′ of H ;
• the quotient group G/N corresponds to a quotient group H /N ′.

All of these depend on the existence of an isomorphism f : G→ H . In particular, uniqueness is
guaranteed only for any one isomorphism; if two different isomorphisms f , f ′ exist between G
and H , then a subgroup A of G may well correspond to two distinct subgroups B and B ′ of H .

Isomorphism is an equivalence relation

The fact that isomorphism is an equivalence relation will prove helpful with the equivalence
properties; for example, “G is cyclic iff H is cyclic.” So, we start with that one first.

Theorem 4.35. Isomorphism is an equivalence relation. That is, ∼= satis-
fies the reflexive, symmetric, and transitive properties.

Proof. First we show that ∼= is reflexive. Let G be any group, and let ι be the identity homomor-
phism from Example 4.3. We showed in Example 4.7 that ι is an isomorphism. Since ι : G→G,
G ∼= G. Since G was an arbitrary group, ∼= is reflexive.

Next, we show that ∼= is symmetric. Let G, H be groups and assume that G ∼= H . By
definition, there exists an isomorphism f : G→H . By Exercise 4.27, f −1 is also a isomorphism.
Hence H ∼= G.
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Finally, we show that ∼= is transitive. Let G, H ,K be groups and assume that G ∼= H and
H ∼= K . By definition, there exist isomorphisms f : G→ H and g : H → K . Define h : G→ K
by

h (x) = g ( f (x)) .

We claim that h is an isomorphism. We show each requirement in turn:
That h is a homomorphism, let x, y ∈G. By definition of h, h (x · y) = g ( f (x · y)). Applying

the fact that g and f are both homomorphisms,

h (x · y) = g ( f (x · y)) = g ( f (x) · f (y)) = g ( f (x)) · g ( f (y)) = h (x) · h (y) .

Thus h is a homomorphism.
That h is one-to-one, let x, y ∈G and assume that h (x) = h (y). By definition of h,

g ( f (x)) = g ( f (y)) .

By hypothesis, g is an isomorphism, so by definition it is one-to-one, so if its outputs are equal,
so are its inputs. In other words,

f (x) = f (y) .

Similarly, f is an isomorphism, so x = y. Since x and y were arbitrary in G, h is one-to-one.
That h is onto, let z ∈ K . We claim that there exists x ∈G such that h (x) = z. Since g is an

isomorphism, it is by definition onto, so there exists y ∈ H such that g (y) = z. Since f is an
isomorphism, there exists x ∈G such that f (x) = y. Putting this together with the definition of
h, we see that

z = g (y) = g ( f (x)) = h (x) .

Since z was arbitrary in K , h is onto.
We have shown that h is a one-to-one, onto homorphism. Thus h is an isomorphism, and

G ∼= K .

Isomorphism preserves basic properties of groups

We now show that isomorphism preserves two basic properties of groups that we introduced
in Chapter 2: abelian and commutative. Both proofs make use of the fact that isomorphism is an
equivalence relation; in particular, that the relation is symmetric.

Theorem 4.36. Suppose that G ∼= H . Then G is abelian iff H is abelian.

Proof. Let f : G → H be an isomorphism. Assume that G is abelian. We must show that H
is abelian. By Exercise 4.29, f (G) is abelian. Since f is an isomorphism, and therefore onto,
f (G) = H . Hence H is abelian.

We turn to the converse. Assume that H is abelian. Since isomorphism is symmetric, H ∼= G.
Along with the above argument, this implies that if H is abelian, then G is, too.

Hence, G is abelian iff H is abelian.

Theorem 4.37. Suppose G ∼= H . Then G is cyclic iff H is cyclic.
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Proof. Let f : G → H be an isomorphism. Assume that G is cyclic. We must show that H is
cyclic; that is, we must show that every element of H is generated by a fixed element of H .

Since G is cyclic, by definition G = 〈g 〉 for some g ∈ G. Let h = f (g ); then h ∈ H . We
claim that H = 〈h〉.

Let x ∈ H . Since f is an isomorphism, it is onto, so there exists a ∈ G such that f (a) = x.
Since G is cyclic, there exists n ∈Z such that a = g n . By Theorem 4.11,

x = f (a) = f (g n) = f (g )n = hn .

Since x was an arbitrary element of H and x is generated by h, all elements of H are generated
by h. Hence H = 〈h〉 is cyclic.

Since isomorphism is symmetric, H ∼= G. Along with the above argument, this implies that
if H is cyclic, then G is, too.

Hence, G is cyclic iff H is cyclic.

Isomorphism preserves the structure of subgroups

Theorem 4.38. Suppose G ∼= H . Every subgroup A of G is isomorphic
to a subgroup B of H . Moreover, each of the following holds.
(A) |A| iff |B |.
(B) A is normal iff B is normal.

Proof. Let f : G → H be an isomorphism. Let A be a subgroup of G. By Exercise 4.30,
f (A)<H .

We claim that f is one-to-one and onto from A to f (A). Onto is immediate from the defini-
tion of f (A). The one-to-one property holds because f is one-to-one in G and A⊆G. We have
shown that f (A)<H and that f is one-to-one and onto from A to f (A). Hence A∼= f (A).

Claim (A) follows from the fact that f is a bijection: this is the definition of when two sets
have equal size.

For claim (B), assume A⊳G. We want to show that B ⊳H ; that is, xB = B x for every x ∈ H .
Let x ∈ H and y ∈ B ; since f is an isomorphism, it is onto, so f (g ) = x and f (a) = y for some
g ∈G and some a ∈A. By substitution and the homomorphism property,

xy = f (g ) f (a) = f (ga) .

Since A⊳G, g A = Ag , so there exists a′ ∈A such that ga = a′ g . Let y ′ = f
�
a′
�
. By substitution

and the homomorphism property,

xy = f
�
a′ g
�
= f

�
a′
�

f (g ) = y ′x.

By definition and substitution, we have y ′ = f
�
a′
� ∈ f (A) = B . We conclude that, xy = y ′x ∈

B x.
We have shown that for arbitrary x ∈ H and arbitrary y ∈ B , there exists y ′ ∈ B such that

xy = y ′x. Hence xB ⊆ B x. A similar argument shows that xB ⊇ B x, so xB = B x. This is the
definition of a normal subgroup, so B ⊳H .
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Since isomorphism is symmetric, B ∼= A. Along with the above argument, this implies that if
B ⊳H , then A⊳G, as well.

Hence, A is normal iff B is normal.

Theorem 4.39. Suppose G ∼= H as groups. Every quotient group of G is
isomorphic to a quotient group of H .

We use Lemma 3.29(CE3) on page 103 on coset equality heavily in this proof; you may want to
go back and review it.

Proof. Let f : G→ H be an isomorphism. Consider an arbitrary quotient group of G defined
as G/A, where A⊳G. Let B = f (A); by Theorem 4.38 B ⊳H , so H /B is a quotient group. We
want to show that G/A∼= H /B .

To that end, define a new function fA : G/A→H /B by

fA (X ) = f (g )B where X = g A∈G/A.

Keep in mind that fA maps cosets to cosets, using the relation f from group elements to group
elements.

We claim that fA is an isomorphism. You probably expect that we “only” have to show that
fA is a bijection and a homomorphism, but this is not true. We have to show first that fA is well-
defined. Do you remember what this means? If not, reread page 108. Once you understand the
definition, ask yourself, why do we have to show fA is well-defined?

Just we must define the operation for cosets to give the same result regardless of two cosets’
representation, a function on cosets must give the same result regardless of that coset’s repre-
sentation. Let X be any coset in G/A. It is usually the case that X can have more than one
representation; that is, we can find g 6= bg where X = g A = bg A. For example, suppose you
want to build a function from Z5 to another set. Suppose that we want f ([2]) = x. Recall that
in Z5, · · · = [−3] = [2] = [7] = [12] = · · · . If f is defined in such a way that we would think
f ([−3]) 6= x, we would have a problem, since we need to ensure that f ([−3]) = f ([2])! For
another example, consider D3. We know that ϕA3 = (ρϕ)A3, even though ϕ 6= ρϕ; see Exam-
ple 3.57 on page 110. If f (g ) 6= f (bg ), then fA (X ) would have more than one possible value,
since

fA (X ) = fA (g A) = f (g ) 6= f (bg ) = fA (bg A) = f (X ) .

In other words, fA would not be a function, since at least one element of the domain (X ) would
correspond to at least two elements of the range ( f (g ) and f (bg )). See Figure 4.2. A homomor-
phism must first be a function, so if fA is not even a function, then it is not well-defined.

That fA is well-defined: Let X ∈G/A and consider two representations g1A and g2A of X . Let
Y1 = fA (g1A) and Y2 = fA (g2A). By definition of fA,

Y1 = f (g1)B and Y2 = f (g2)B .

To show that fA is well-defined, we must show that Y1 = Y2. By hypothesis, g1A = g2A.
Lemma 3.29(CE3) implies that g−1

2
g1 ∈ A. Recall that f (A) = B ; by definitino of the image,
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g A
f

// f (g )B
OO

6=?

��

X

=

OO

fA

;;v
v

v
v

v

fA

##H
H

H
H

H

=
��
bg A

f
// f (bg )B

Figure 4.2. When defining a mapping whose domain is a quotient group, we must be careful to
ensure that a coset with different representations has the same value. In the diagram above, X has
the two representations g A and bg A, and fA is defined using f . Inb this case, is f (g ) = f (bg )? If
not, then fA (X ) would have two different values, and fA would not be a function.

f
�

g−1
2

g1

�
∈ B . The homomorphism property implies that

f (g2)
−1 f (g1) = f

�
g−1

2

�
f (g1) = f

�
g−1

2
g1

�
∈ B .

Lemma 3.29(CE3) again implies that f (g1)B = f (g2)B , or Y1 = Y2, so there is no ambiguity in
the definition of fA as the image of X in H /B ; the function is well-defined.

That fA is a homomorphism: Let X ,Y ∈G/A and write X = g1A and Y = g2A for appropriate
g1, g2 ∈G. Now

fA (X Y ) = fA ((g1A) · (g2A)) (substitution)

= fA (g1 g2 ·A) (coset multiplication in G/A)

= f (g1 g2)B (definition of fA)

= ( f (g1) f (g2)) ·B (homomorphism property)

= f (g1)A′ · f (g2)B (coset multiplication in H /B)

= fA (g1A) · fA (g2A) (definition of fA)

= fA (X ) · fA (Y ) (substitution).

By definition, fA is a homomorphism.

That fA is one-to-one: Let X ,Y ∈G/A and assume that fA (X ) = fA (Y ). Let g1, g2 ∈G such
that X = g1A and Y = g2A. The definition of fA implies that

f (g1)B = fA (X ) = fA (Y ) = f (g2)B ,

so by Lemma 3.29(CE3) f (g2)
−1 f (g1) ∈ B . Recall that B = f (A), so there exists a ∈ A such

that f (a) = f (g2)
−1 f (g1). The homomorphism property implies that

f (a) = f
�

g−1
2

�
f (g1) = f

�
g−1

2
g1

�
.
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Recall that f is an isomorphism, hence one-to-one. The definition of one-to-one implies that

g−1
2

g1 = a ∈A.

Applying Lemma 3.29(CE3) again gives us g1A = g2A, and

X = g1A = g2A = Y .

We took arbitrary X ,Y ∈G/A and showed that if fA (X ) = fA (Y ), then X = Y . It follows that
fA is one-to-one.

That fA is onto: You do it! See Exercise 4.40.

Exercises.

Exercise 4.40. Show that the function fA defined in the proof of Theorem 4.39 is onto.

Exercise 4.41. Recall from Exercise 2.85 on page 93 that 〈i〉 is a cyclic group of Q8.
(a) Show that 〈i〉 ∼= Z4 by giving an explicit isomorphism.
(b) Let A be a proper subgroup of 〈i〉. Find the corresponding subgroup of Z4.
(c) Use the proof of Theorem 4.39 to determine the quotient group of Z4 to which 〈i〉/A is

isomorphic.

Exercise 4.42. Recall from Exercise 4.22 on page 131 that the set

L =
¦

x ∈R2 : x = (a,a) ∃a ∈R
©

defined in Exercise 3.16 on page 99 is isomorphic to R.
(a) Show that Z ⊳R.
(b) Give the precise definition of R/Z.
(c) Explain why we can think of R/Z as the set of classes [a] such that a ∈ [0,1). Choose one

such [a] and describe the elements of this class.
(d) Find the subgroup H of L that corresponds to Z < R. What do this section’s theorems

imply that you can conclude about H and L/H ?
(e) Use the homomorphism fA defined in the proof of Theorem 4.39 to find the images fZ (Z)

and fZ (π+ Z).
(f ) Use the answer to (c) to describe L/H intuitively. Choose an element of L/H and describe

the elements of this class.

4.3: The Isomorphism Theorem

In this section, we identify an important relationship between a subgroup A< G that has a
special relationship to a homomorphism, and the image of the quotient group f (G/A). First,
an example.

Motivating example
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Example 4.43. Recall A3 =
�
ι,ρ,ρ2

	
⊳D3 from Example 3.57. We saw that D3/A3 has only two

elements, so it must be isomorphic to any group of two elements. First we show this explicitly:
Let µ : D3/A3→Z2 by

µ (X ) =

(
0, X = A3;

1, otherwise.

Is µ a homomorphism? Recall that A3 is the identity element of D3/A3, so for any X ∈ D3/A3

µ (X ·A3) = µ (X ) = µ (X )+ 0 = µ (X )+µ (A3) .

This verifies the homomorphism property for all products in the Cayley table of D3/A3 except
(ϕA3) · (ϕA3), which is easy to check:

µ ((ϕA3) · (ϕA3)) = µ (A3) = 0 = 1 + 1 = µ (ϕA3)+µ (ϕA3) .

Hence µ is a homomorphism. The property of isomorphism follows from the facts that

• µ (A3) 6= µ (ϕA3), so µ is one-to-one, and

• both 0 and 1 have preimages, so µ is onto.

Notice further that kerµ= A3.

Something subtle is at work here. Let f : D3→Z2 by

f (x) =

(
0, x ∈A3;

1, otherwise.

Is f a homomorphism? The elements of A3 are ι, ρ, and ρ2; f maps these elements to zero, and
the other three elements of D3 to 1. Let x, y ∈ D3 and consider the various cases:

Case 1. Suppose first that x, y ∈A3. Since A3 is a group, closure implies that xy ∈A3. Thus

f (xy) = 0 = 0 + 0 = f (x)+ f (y) .

Case 2. Next, suppose that x ∈ A3 and y 6∈ A3. Since A3 is a group, closure implies that
xy 6∈ A3. (Otherwise xy = z for some z ∈ A3, and multiplication by the inverse implies that
y = x−1z ∈A3, a contradiction.) Thus

f (xy) = 1 = 0 + 1 = f (x)+ f (y) .

Case 3. If x 6∈A3 and y ∈A3, then a similar argument shows that f (xy) = f (x)+ f (y).

Case 4. Finally, suppose x, y 6∈ A3. Inspection of the Cayley table of D3 (Exercise 2.45 on
page 74) shows that xy ∈A3. Hence

f (xy) = 0 = 1 + 1 = f (x)+ f (y) .

We have shown that f is a homomorphism from D3 to Z2. Again, ker f = A3.

In addition, consider the function η : D3→ D3/A3 by

η (x) =

(
A3, x ∈A3;

ϕA3, otherwise.
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It is easy to show that this is a homomorphism; we do so presently.
Now comes the important observation: Look at the composition function η ◦µ whose do-

main is D3 and whose range is Z2:

(µ ◦η) (ι) = µ (η (ι)) = µ (A3) = 0;

(µ ◦η) (ρ) = µ (η (ρ)) = µ (A3) = 0;

(µ ◦η)
�
ρ2
�

= µ
�
η
�
ρ2
��

= µ (A3) = 0;

(µ ◦η) (ϕ) = µ (η (ϕ)) = µ (ϕA3) = 1;

(µ ◦η) (ρϕ) = µ (η (ρϕ)) = µ (ϕA3) = 1;

(µ ◦η)
�
ρ2ϕ

�
= µ

�
η
�
ρ2ϕ

��
= µ (ϕA3) = 1.

We have

(µ ◦η) (x) =

(
0, x ∈A3;

1, otherwise,

or in other words
µ ◦η= f .

In words, f is the composition of a “natural” mapping between D3 and D3/A3, and the isomor-
phism from D3/A3 to Z2. But another way of looking at this is that the isomorphismµ is related
to f and the “natural” homomorphism.

The Isomorphism Theorem

This remarkable correspondence can make it easier to study quotient groups G/A:
• find a group H that is “easy” to work with; and
• find a homomorphism f : G→H such that
◦ f (g ) = eH for all g ∈A, and
◦ f (g ) 6= eH for all g 6∈A.

If we can do this, then H ∼= G/A, and as we saw in Section 4.2 studying G/A is equivalent to
studying H .

The reverse is also true: suppose that a group G and its quotient groups are relatively easy
to study, whereas another group H is difficult. The isomorphism theorem helps us identify a
quotient group G/A that is isomorphic to H , making it easier to study.

Another advantage, which we realize later in the course, is that computation in G can be
difficult or even impossible, while computation in G/A can be quite easy. This turns out to be
the case with Z when the coefficients grow too large; we will work in Z p for several values of p,
and reconstruct the correct answers.

We need to formalize this observation in a theorem, but first we have to confirm something
that we claimed earlier:

Lemma 4.44. Let G be a group and A⊳G. The function η : G → G/A
by

η (g ) = g A

is a homomorphism.
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Proof. You do it! See Exercise 4.47.

Definition 4.45. We call the homomorphism η of Lemma 4.44 the nat-
ural homomorphism from G to G/A.

What’s special about A3 in the example that began this section? Of course, A3 is a normal sub-
group of D3, but something you might not have noticed is that it was the kernel of f . We use this
to formalize the observation of Example 4.43.

Theorem 4.46 (The Isomorphism Theorem). Let G and H be groups,
f : G→ H a homomorphism that is onto, and ker f = A. Then G/A∼=
H , and the isomorphism µ : G/A→ H satisfies f = µ ◦ η, where η :

G→G/A is the natural homomorphism.

We can illustrate Theorem 4.46 by the following diagram:

G
f

//

η ""DD
DD

DD
DD

H

G/A

µ

<<yyyyyyyy

The idea is that “the diagram commutes”, or f = µ ◦η.

Proof. We are given G, H , f and A. Define µ : G/A→H in the following way:

µ (X ) = f (g ) , where X = g A.

We claim that µ is an isomorphism from G/A to H , and moreover that f = µ ◦η.

Since the domain of µ consists of cosets which may have different representations, we must
show first that µ is well-defined. Suppose that X ∈G/A has two representations X = g A = g ′A
where g , g ′ ∈G and g 6= g ′. We need to show that µ (g A) = µ

�
g ′A
�
. From Lemma 3.29(CE3),

we know that g−1 g ′ ∈ A, so there exists a ∈ A such that g−1 g ′ = a, so g ′ = ga. Applying the
definition of µ and the homomorphism property,

µ
�

g ′A
�
= f

�
g ′
�
= f (ga) = f (g ) f (a) .

Recall that a ∈A = ker f , so f (a) = eH . Substitution gives

µ
�

g ′A
�
= f (g ) · eH = f (g ) = µ (g A) .

Hence µ
�

g ′A
�
= µ (g A) and µ (X ) is well-defined.

Is µ a homomorphism? Let X ,Y ∈ G/A; we can represent X = g A and Y = g ′A for some
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g , g ′ ∈G. We see that

µ (X Y ) = µ
�
(g A)

�
g ′A
��

(substitution)

= µ
��

g g ′
�

A
�

(coset multiplication)

= f
�

g g ′
�

(definition of µ)

= f (g ) f
�

g ′
�

(homomorphism)

= µ (g A)µ
�

g ′A
�

. (definiition of µ)

Thus µ is a homomorphism.
Is µ one-to-one? Let X ,Y ∈ G/A and assume that µ (X ) = µ (Y ). Represent X = g A and

Y = g ′A for some g , g ′ ∈G; we see that

f
�

g−1 g ′
�

= f
�

g−1
�

f
�

g ′
�

(homomorphism)

= f (g )−1 f
�

g ′
�

(homomorphism)

= µ (g A)−1µ
�

g ′A
�

(definition of µ)

= µ (X )−1µ (Y ) (substitution)

= µ (Y )−1µ (Y ) (substitution)

= eH , (inverses)

so g−1 g ′ ∈ ker f . By hypothesis, ker f = A, so g−1 g ′ ∈ A. Lemma 3.29(CE3) now tells us that
g A = g ′A, so X = Y . Thus µ is one-to-one.

Is µ onto? Let h ∈H ; we need to find an element X ∈G/A such that µ (X ) = h. By hypote-
hesis, f is onto, so there exists g ∈G such that f (g ) = h. By definition of µ and substitution,

µ (g A) = f (g ) = h,

so µ is onto.
We have shown that µ is an isomorphism; we still have to show that f = µ ◦ η, but the

definition of µ makes this trivial: for any g ∈G,

(µ ◦η) (g ) = µ (η (g )) = µ (g A) = f (g ) .

Exercises

Exercise 4.47. Prove Lemma 4.44.

Exercise 4.48. Use Exercise 4.33 to explain why Ω2
∼= O (n)/SO (n).

Exercise 4.49. Recall the normal subgroup L of R2 from Exercises 3.16, 3.34, and 3.68 on pages 99,
104, and 115, respectively. In Exercise 4.22 on page 131 you found an explicit isomorphism
L ∼= R.
(a) Use the Isomorphism Theorem to find an isomorphism R2/L ∼= R.
(b) Argue from this that R2/R ∼= R.
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Let G and H be groups, and A⊳G.
Claim: If G/A∼= H , then there exists a homomorphism ϕ : G→H such that kerϕ = A.

1. Assume _____.
2. By hypothesis, there exists f _____.
3. Let η : G→G/A be the natural homomorphism. Define ϕ : G→H by ϕ (g ) =_____.
4. By _____, ϕ is a homomorphism.
5. We claim that A⊆ kerϕ. To see why,

(a) By _____, the identity of G/A is A.
(b) By _____, f (A) = eH .
(c) Let a ∈A. By definition of the natural homomorphism, η (a) =_____.
(d) By _____, f (η (a)) = eH .
(e) By _____, ϕ (a) = eH .
(f ) Since _____, A⊆ kerϕ.

6. We further claim that A⊇ kerϕ. To see why,
(a) Let g ∈G\A. By definition of the natural homomorphism, ϕ (g ) 6=_____.
(b) By _____, f (η (g )) 6= eH .
(c) By _____, ϕ (g ) 6= eH .
(d) By _____, g 6∈ kerϕ.
(e) Since g was arbitrary in G\A, _____.

7. We have shown that A⊆ kerϕ and A⊇ kerϕ. By _____, A = kerϕ.

Figure 4.3. Material for Exercise 4.52

(c) Describe geometrically how the cosets of R2/L are mapped to elements of R.

Exercise 4.50. Recall the normal subgroup 〈−1〉 of Q8 from Exercises 2.84 on page 93 and 3.64
on page 113.
(a) Use Lagrange’s Theorem to explain why Q8/ 〈−1〉 has order 4.
(b) We know from Exercise 2.32 on page 65 that there are only two groups of order 4, the

Klein 4-group and the cyclic group of order 4, which we can represent by Z4. Use the
Isomorphism Theorem to determine which of these groups is isomorphic to Q8/ 〈−1〉.

Exercise 4.51. Recall the kernel of a monoid homomorphism from Exercise 1.43 on page 50, and
that group homomorphisms are also monoid homomorphisms. These two definitions do not
look the same, but in fact, one generalizes the other.
(a) Show that if x ∈ G is in the kernel of a group homomorphism f : G → H if and only

(x, e) ∈ ker f when we view f as a monoid homomorphism.
(b) Show that x ∈ G is in the kernel of a group homomorphism f : G→ H if and only if we

can find y, z ∈G such that f (y) = f (z) and y−1z = x.
(c) Explain how this shows that Exercise 1.43 “lays the groundwork” for a “monoid general-

ization” of the Isomorphism Theorem.
(d) Formulate and prove a “Monoid Isomorphism Theorem.”

Exercise 4.52. Fill in each blank of Figure 4.3 with the appropriate justification or statement.
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4.4: Automorphisms and groups of automorphisms

In this section, we use isomorphisms to build a new kind of group, useful for analyzing roots
of polynomial equations. We will discuss the applications of these groups in Chapter 9, but they
are of independent interest, as well.

Definition 4.53. Let G be a group. If f : G → G is an isomorphism,
then we call f an automorphism.

An automorphism14 is an isomorphism whose domain and range are the same set. Thus, to show
that some function f is an automorphism, you must show first that the domain and the range of
f are the same set. Afterwards, you show that f satisfies the homomorphism property, and then
that it is both one-to-one and onto.

Example 4.54.
(a) An easy automorphism for any group G is the identity isomorphism ι (g ) = g :

• its range is by definition G;
• it is a homomorphism because ι

�
g · g ′�= g · g ′ = ι (g ) · ι

�
g ′
�
;

• it is one-to-one because ι (g ) = ι
�

g ′
�

implies (by evaluation of the function) that g =
g ′; and
• it is onto because for any g ∈G we have ι (g ) = g .

(b) An automorphism in (Z,+) is f (x) =−x:
• its range is Z because of closure;
• it is a homomorphism because f (x + y) =− (x + y) =−x− y = f (x)+ f (y);
• it is one-to-one because f (x) = f (y) implies that −x =−y, so x = y; and
• it is onto because for any x ∈Z we have f (−x) = x.

(c) An automorphism in D3 is f (x) = ρ2xρ:
• its range is D3 because of closure;
• it is a homomorphism because f (xy) = ρ2 (xy)ρ= ρ2 (x · ι · y)ρ= ρ2

�
x ·ρ3 · y�ρ=�

ρ2xρ
� · �ρ2yρ

�
= f (x) · f (y);

• it is one-to-one because f (x) = f (y) implies that ρ2xρ = ρ2yρ, and multiplication
on the left by ρ and on the right by ρ2 gives us x = y; and
• it is onto because for any y ∈ D3, choose x = ρyρ2 and then f (x) = ρ2

�
ρyρ2

�
ρ =�

ρ2ρ
� · y · �ρ2ρ

�
= ι · y · ι= y.

The automorphism of Example 4.54(c) generalizes to an important way. Recall the conjuga-
tion of one element of a group by another, introduced in Exercise 2.37 on page 66. By fixing the
second element, we can turn this into a function on a group.

Definition 4.55. Let G be a group and a ∈ G. Define the function of
conjugation by a to be conja (x) = a−1xa.

In Example 4.54(c), we had a = ρ and conja (x) = a−1xa = ρ2xρ.
You have already worked with conjugation in previous exercises, such as showing that it can

provide an alternate definition of a normal subgroup (Exercises 2.37 on page 66 and 3.67 on
page 114). Beyond that, conjugating a subgroup always produces another subgroup:

14The word comes Greek words that mean self and shape.
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Lemma 4.56. Let G be a group, and a ∈ G. Then conja is an automor-
phism. Moreover, for any H <G,

�
conja (h) : h ∈H

	
<G.

Proof. You do it! See Exercise 4.64.

The subgroup
�
conja (h) : h ∈H

	
is important enough to identify by a special name.

Definition 4.57. Suppose H < G, and a ∈ G. We say that�
conja (h) : h ∈H

	
is the group of conjugations of H by a, and de-

note it by Conja (H ).

Conjugation of a subgroup H by an arbitrary a ∈ G is not necessarily an automorphism; there
can exist H < G and a ∈ G\H such that H 6= �conja (h) : h ∈H

	
. On the other hand, if H is

a normal subgroup of G, then we do have H =
�
conja (h) : h ∈H

	
; this property can act as an

alternate definition of a normal subgroup. You will explore this in the exercises.
Now it is time to identify the new group that we promised at the beginning of the section.

The automorphism group

Notation 4.58. Write Aut (G) for the set of all automorphisms of G. We typically denote ele-
ments of Aut (G) by Greek letters (α, β, . . . ), rather than Latin letters ( f , g , . . . ).

Example 4.59. We compute Aut (Z4). Let α ∈ Aut (Z4) be arbitrary; what do we know about
α? By definition, its range is Z4, and by Theorem 4.9 on page 129 we know that α (0) = 0. Aside
from that, we consider all the possibilities that preserve the isomorphism properties.

Recall from Theorem 3.85 on page 120 that Z4 is a cyclic group; in fact Z4 = 〈1〉. Corol-
lary 4.12 on page 130 tells us that α (1) will tell us everything we want to know about α. So,
what can α (1) be?

Case 1. Can we have α (1) = 0? If so, then α (1) = α (0). This is not one-to-one, so we cannot
have α (1) = 0.

Case 2. Can we have α (1) = 1? Certainly α (1) = 1 if α is the identity homomorphism ι, so
we can have α (1) = 1.

Case 3. Can we have α (1) = 2? If so, then the homomorphism property implies that

α (2) = α (1 + 1) = α (1)+α (1) = 4 = 0 = α (0) .

This is not one-to-one, so we cannot have α (1) = 2.
Case 4. Can we have α (1) = 3? If so, then the homomorphism property implies that

α (2) = α (1 + 1) = α (1)+α (1) = 3 + 3 = 6 = 2; and

α (3) = α (2 + 1) = α (2)+α (1) = 2 + 3 = 5 = 1.

In this case, α is both one-to-one and onto. We were careful to observe the homomorphism
property when determining α, so we know that α is a homomorphism. So we can have
α (1) = 2.
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Figure 4.4. The elements of Aut (Z4).

We found only two possible elements of Aut (Z4): the identity automorphism and the automor-
phism determined by α (1) = 3. Figure 4.4 illustrates the two mappings.

If Aut (Z4) were a group, then the fact that it contains only two elements would imply that
Aut (Z4)

∼= Z2. But is it a group?

Lemma 4.60. For any group G, Aut (G) is a group under the operation
of composition of functions.

On account of this lemma, we can justifiably refer to Aut (G) as the automorphism group.

Proof. Let G be any group. We show that Aut (G) satisfies each of the group properties from
Definition 2.1.

(closed) Let α,θ ∈Aut (G). We must show that α ◦θ ∈Aut (G) as well:

• the domain and range of α ◦θ are both G because the domain and range of both α and
θ are both G;
• α ◦θ is a homomorphism because for any g , g ′ ∈G we have,

(α ◦θ)
�

g · g ′�= α
�
θ
�

g · g ′�� (def. of comp.)

= α
�
θ (g ) ·θ

�
g ′
��

(θ a homom.)

= α (θ (g )) ·α
�
θ
�

g ′
��

(α a homom.)

= (α ◦θ) (g ) · (α ◦θ)
�

g ′
�

; (def. of comp.)

• α ◦θ is one-to-one because

◦ if (α ◦θ) (g ) = (α ◦θ)
�

g ′
�
, then by the definition of composition, α (θ (g )) =

α
�
θ
�

g ′
��

;
◦ since α is one-to-one, θ (g ) = θ

�
g ′
�
;

◦ since θ is one-to-one, g = g ′; and

• α ◦θ is onto because for any z ∈G,

◦ α is onto, so there exists y ∈G such that α (y) = z, and
◦ θ is onto, so there exists x ∈G such that θ (x) = y, so
◦ (α ◦θ) (x) = α (θ (x)) = α (y) = z.

We have shown that α ◦ θ satisfies the properties of an automorphism; hence, α ◦ θ ∈
Aut (G), and Aut (G) is closed under the composition of functions.

(associative) The associative property is sastisfied because the operation is composition of func-
tions, which is associative.
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(identity) Denote by ι the identity homomorphism; that is, ι (g ) = g for all g ∈G. We showed
in Example 4.54(a) that ι is an automorphism, so ι ∈ Aut (G). Let α ∈ Aut (G); we claim
that ι◦α= α ◦ ι= α. Let x ∈G and write y = α (x). We have

(ι◦α) (x) = ι (α (x)) = ι (y) = y = α (x) ,

and likewise (α ◦ ι) (x) = α (x). Since x was arbitrary in G, we have ι◦α= α ◦ ι= α.
(inverse) Let α ∈ Aut (G). Since α is an automorphism, it is an isomorphism. You showed in

Exercise 4.27 that α−1 is also an isomorphism. The domain and range of α are both G, so
the domain and range of α−1 are also both G. Hence α−1 ∈Aut (G).

Since Aut (G) is a group, we can compute Aut (Aut (G)), and the same theory holds, so we
can compute Aut (Aut (Aut (G))), and so forth. In the exercises, you will compute Aut (G) for
some other groups.

Exercises.

Exercise 4.61. Show that f (x) = x2 is an automorphism on the group
�
R+,×�, but not on the

group (R,×).

Exercise 4.62. Recall the subgroup A3 =
�
ι,ρ,ρ2

	
of D3.

(a) List the elements of Conjρ (A3).
(b) List the elements of Conjϕ (A3).
(c) In both (a) and (b), we saw that Conja (A3) = A3 for a = ρ,ϕ. This makes sense, since

A3 ⊳D3. Find a subgroup K of D3 and an element a ∈ D3 where Conja (K) 6= K .

Exercise 4.63. Let H = 〈i〉<Q8. List the elements of Conjj (H ).

Exercise 4.64. Prove Lemma 4.56 on page 145 in two steps:
(a) Show first that conja is an automorphism.
(b) Show that

�
conja (h) : h ∈H

	
is a group.

Exercise 4.65. Determine the automorphism group of Z5.

Exercise 4.66. Determine the automorphism group of D3.



Chapter 5:
Groups of permutations

This chapter introduces groups of permutations. Now, what is a permutation, and why are
they so important?

Certain applications of mathematics involve the rearrangement of a list of n elements. It is
common to refer to such rearrangements as permutations.

Definition 5.1. A list is a sequence. Let V be any finite list. A permuta-
tion is a one-to-one function whose domain and range are both V .

We require V to be a list rather than a set because for a permutation, the order of the elements
matters: the lists (a, d , k, r ) 6= (a, k, d , r ) even though {a, d , k, r } = {a, k, d , r }. For the sake of
convenience, we usually write V as a list of natural numbers between 1 and |V |, but it can be any
finite list.

Let’s take a concrete example. Suppose you have a list of numbers, (1,3,2,7), and you rear-
range them by switching the first two entries in the list, (3,1,2,7). The action of switching those
first two numbers is a permutation. There is no doubt as to the outcome of the action, so this
action is a function. Thus, permutations are special kinds of functions.

The importance of permutations is twofold. First, group theory is a pretty neat and useful
thing in itself, and we will see in this chapter that all finite groups can be modeled by groups of
permutations. Anything that can model every possible group is by that very fact important.

The second reason permutations are important has to do with the factorization of polynomi-
als. The polynomial x4−1 can be factored as

(x + 1) (x−1) (x + i) (x− i) ,

but it can also be factored as

(x−1) (x + 1) (x− i) (x + i) .

On account of the commutative property, it doesn’t matter what order we list the factors; this
corresponds to a permutation, and is related to another idea that we will study, called field ex-
tensions. Field extensions can be used to solve polynomials equations, and since the order of the
extensions doesn’t really matter, permutations are important to determining the structure of the
extension that solves a polynomial.

Section 5.1 introduces you to groups of permutations, while Section 5.2 describes a conve-
nient way to write permutations. Sections 5.3 and 5.5 introduce you to two special classes of
groups of permutation. The main goal of this chapter is to show that groups of permutations are,
in some sense, “all there is” to group theory, which we accomplish in Section 5.4. We conclude
with a great example of an application of symmetry groups in Section 5.6.

5.1: Permutations

In this first section, we consider some basic properties of permutations.
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Permutations as functions

Example 5.2. Let S = (a, d , k, r ). Define a permutation on the elements of S by

f (x) =





r , x = a;

a, x = d ;

k, x = k;

d , x = r .

Notice that f is one-to-one, and f (S) = (r ,a, k, d ).
We can represent the same permutation on V = (1,2,3,4), a generic list of four elements.

Define a permutation on the elements of V by

π (i) =





2, i = 1;

4, i = 2;

3, i = 3;

1, i = 4.

Here π is one-to-one, and π (i) = j is interpreted as “the j th element of the permuted list is the
i th element of the original list.” You could visualize this as

position i in original list position j in permuted list
1 → 2
2 → 4
3 → 3
4 → 1

Thus π (V ) = (4,1,3,2). If you look back at f (S), you will see that in fact the first element of
the permuted list, f (S), is the fourth element of the original list, S.

It should not surprise you that the identity function is a “do-nothing” permutation, just as it was
a “do-nothing” symmetry of the triangle in Section 2.2.

Proposition 5.3. Let V be a set of n elements. The function ι : V → V
by ι (x) = x is a permutation on V . In addition, for any α ∈ Sn , ι◦α= α
and α ◦ ι= α.

Proof. You do it! See Exercise 5.13.

Permutations have a convenient property.

Lemma 5.4. The composition of two permutations is a permutation.

Proof. Let V be a set of n elements, and α,β permutations of V . Let γ = α◦β. We claim that γ
is a permutation. To show this, we must show that γ is a one-to-one function whose domain and
range are both V . The definition of α and β imply that the domain and range of γ are both V ;
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it remains to show that γ is one-to-one. Let x, y ∈V and assume that γ (x) = γ (y); substituting
the definition of γ ,

α (β (x)) = α (β (y)) .

Because they are permutations, α and β are one-to-one functions. Since α is one-to-one, we can
simplify the above equation to

β (x) =β (y) ;

and since β is one-to-one, we can simplify the above equation to

x = y.

We assumed that γ (x) = γ (y), and found that this forced x = y. By definition, γ is a one-to-one
function. We already explained why its domain and range are both V , so γ is a permutation.

In Example 5.2, we wrote a permutation as a piecewise function. This is burdensome; we would
like a more efficient way to denote permutations.

Notation 5.5. The tabular notation for a permutation on a list of n elements is a 2× n matrix

α=

�
1 2 · · · n
α1 α2 · · · αn

�

indicating that α (1) = α1, α (2) = α2, . . . , α (n) = αn . Again, α (i) = j indicates that the j th
element of the permuted list is the i th element of the original list.

Example 5.6. Recall V and π from Example 5.2. In tabular notation,

π=

�
1 2 3 4
2 4 3 1

�

because π moves
• the element in the first position to the second;
• the element in the second position to the fourth;
• the element in the third position nowhere; and
• the element in the fourth position to the first.

Then
π (1,2,3,4) = (4,1,3,2) .

Notice that the tabular notation for π looks similar to the table in Example 5.2.
We can also use π to permute different lists, so long as the new lists have four elements:

π (3,2,1,4) = (4,3,1,2) ;

π (2,4,3,1) = (1,2,3,4) ;

π (a, b , c , d ) = (d ,a, c , b ) .

Groups of permutations
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It comes as a pleasant revelation that sets of permutations form groups in a very natural way.
In particular, consider the following set.

Definition 5.7. For n ≥ 2, denote by Sn the set of all permutations of a
list of n elements.

Example 5.8. For n = 1,2,3 we have

S1 =

��
1
1

��

S2 =

��
1 2
1 2

�
,

�
1 2
2 1

��

S3 =

��
1 2 3
1 2 3

�
,

�
1 2 3
2 1 3

�
,

�
1 2 3
3 2 1

�
,

�
1 2 3
1 3 2

�
,

�
1 2 3
2 3 1

�
,

�
1 2 3
3 1 2

��
.

Is there some structure to Sn? By definition, a permutation is a one-to-one function. In Ex-
ample 1.9 on page 40, we found that for any set, the set of functions on that set was a monoid
under the operation of composition of functions. The identity function is one-to-one, and the
composition of one-to-one functions is also one-to-one, so Sn has an identity and is closed under
composition. In addition, Sn inherits the associative property from the larger set of functions.
Already, then, we can conclude that Sn is a monoid. However, one-to-one functions have inverses,
which leads us to ask whether Sn is also a group.

Theorem 5.9. For all n ≥ 2 (Sn ,◦) is a group.

Notation 5.10. Normally we just write Sn , understanding from context that the operation is
composition of functions. It is common to refer to Sn as the symmetric group of n elements.

Proof. Let n ≥ 2. We have to show that Sn satisfies the properties of a group under the operation
of composition of functions. Proposition 5.3 tells us that the identity function acts as an identity
in Sn , and Lemma 5.4 tells us that Sn is closed under composition.

We still have to show that Sn satisfies the inverse and associative properties. Let V be a finite
list with n elements. The fact that Sn ⊆ FV implies that Sn satisfies the associative property.
Let α ∈ Sn . By definition of a permutation, α is one-to-one; since V is finite, α is onto. By
Exercise 0.33 on page 13, α has an inverse function α−1, which satisfies the relationship that, for
every v ∈V ,

α−1 (α (v)) = v and α
�
α−1 (v)

�
= v.

Since ι (v) = v for every v ∈V , we have shown that α−1 ◦α = α ◦α−1 = ι. Again, Exercise 0.33
indicates that α−1 is a one-to-one, onto function on V , so α−1 ∈ Sn ! We chose α as an arbitrary
permutation of n elements, so Sn satisfies the inverse property.

As claimed, Sn satisfies all four properties of a group.

A final question: how large is each Sn? To answer this, we must count the number of permutations
of n elements. A counting argument called the multiplication principle shows that there are

n! = n · (n−1) · (n−2) · · ·3 ·2 ·1
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such permutations. Why? Given any list of n elements,
• we have n positions to move the first element, including its current position;
• we have n− 1 positions to move the second element, since the first element has already

taken one spot;
• we have n−2 positions to move the third element, since the first and second elements have

already take two spots;
• etc.

We have shown the following.

Lemma 5.11. For each n ∈N+, |Sn |= n!

Exercises

Exercise 5.12. For the permutation

α=

�
1 2 3 4 5 6
1 5 2 4 6 3

�
,

(a) Evaluate α (1,2,3,4,5,6).
(b) Evaluate α (1,5,2,4,6,3).
(c) Evaluate α (6,3,5,2,1,4).

Exercise 5.13. Prove Proposition 5.3.

Exercise 5.14. How many elements are there of S4?

Exercise 5.15. Identify at least one normal subgroup of S3, and at least one subgroup that is not
normal.

Exercise 5.16. Find an explicit isomorphism from S2 to Z2.

Exercise 5.17. Do you think S3
∼= Z6, S3

∼= D3, or neither? Why or why not? (Do not provide a
full proof; a short justification will do.)

5.2: Cycle notation

Tabular notation of permutations is rather burdensome; a simpler notation is possible.

Cycles
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Definition 5.18. A cycle is a vector

α= (α1 α2 · · · αn)

that corresponds to the permutation where the entry in position α1 is
moved to position α2; the entry in position α2 is moved to position α3,
. . . and the element in position αn is moved to position α1. If a position
is not listed in α, then the entry in that position is not moved. We call
such positions stationary. For the identity permutation where no entry
is moved, we write

ι= (1) .

The fact that the permutation αmoves the entry in position αn to position α1 is the reason this is
called a cycle; applying it repeatedly cycles the list of elements around, and on the nth application
the list returns to its original order.

Example 5.19. Recall π from Example 5.6. In tabular notation,

π=

�
1 2 3 4
2 4 3 1

�
.

To write it as a cycle, we can start with any position we like. However, the convention is to start
with the smallest position that changes. Since π moves elements out of position 1, we start with

π= (1 ?) .

The second entry in cycle notation tells us where π moves the element whose position is that
of the first entry. The first entry indicates position 1. From the tabular notation, we see that π
moves the element in position 1 to position 2, so

π= (1 2 ?) .

The third entry of cycle notation tells us where π moves the element whose position is that of
the second entry. The second entry indicates position 2. From the tabular notation, we see that
π moves the element in position 2 to position 4, so

π= (1 2 4 ?) .

The fourth entry of cycle notation tells us where π moves the element whose position is that of
the third entry. The third element indicates position 4. From the tabular notation, we see that π
moves the element in position 4 to position 1, so you might feel the temptation to write

π= (1 2 4 1 ?) ,

but there is no need. Since we have now returned to the first element in the cycle, we close it:

π= (1 2 4) .

The cycle (1 2 4), indicates that
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• the element in position 1 of a list moves to position 2;
• the element in position 2 of a list moves to position 4;
• the element in position 4 of a list moves to position 1.

What about the element in position 3? Since it doesn’t appear in the cycle notation, it must be
stationary. This agrees with what we wrote in the piecewise and tabular notations for π.

Not all permutations can be written as one cycle.

Example 5.20. Consider the permutation in tabular notation

α=

�
1 2 3 4
2 1 4 3

�
.

We can easily start the cycle with α = (1 2), and this captures the behavior on the elements in
the first and second positions of a list, but what about the third and fourth positions? We cannot
write (1 2 3 4); that would imply that the element in the second position is moved to the third,
and the element in the fourth position is moved to the fourth.

To solve this difficulty, we develop a simple arithmetic of cycles.

Cycle arithmetic

What operation should we apply to cycles? Cycles represent permutations; permutations are
functions; functions can be composed. Hence, the appropriate operation is composition.

Example 5.21. Consider the cycles

β= (2 3 4) and γ = (1 2 4) .

What is the cycle notation for
β ◦ γ = (2 3 4) ◦ (1 2 4)?

Let’s think about this. Since cycles represent permutations, and permutations are closed under
composition, β ◦ γ must be a permutation. With any luck, it will be a permutation that we can
write as a cycle. What we need to do, then, is determine how the permutation β ◦ γ moves a list
of four elements around. If that permutation can be represented as a cycle, then we’ve answered
the question.

Since an element in the first position is moved, we should be able to write

β ◦ γ = (1 ?) .

Where is this first element moved? Let’s apply the definition of composition: β ◦ γ means, “first
apply γ ; then apply β.” Figure 5.1 gives us the basic idea; we will refer to it throughout the
example. Since γ moves an element in the first position to the second, and β moves an element
in the second position to the third, it must be thatβ◦γ moves an element from the first position
to the third. We see this in the top row of Figure 5.1. We now know that

β ◦ γ = (1 3 ?) .

The next entry should tell us where β ◦ γ moves an element that starts in the third position.
Applying the definition of composition again, we know that γ moves an element from the third
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3 2
β
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β◦γ
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2 4oo 2oo
}}

4 3oo 3oo
}}

1 1oo 4oo
}}

Figure 5.1. Diagram of howβ◦γ modifies a list of four elements, forβ= (2 3 4) and γ = (1 2 4).

position to. . . well, nowhere, actually. So an element in the third position doesn’t move under
γ ; if we then apply β, however, it moves to the fourth position. It must be that β ◦ γ moves an
element from the third position to the fourth. We see this in the third row of Figure 5.1. We now
know that

β ◦ γ = (1 3 4 ?) .

Time to look at elements in the fourth position, then. Since γ moves elements in the fourth
position to the first position (4 is at the end of the cycle, so it moves to the beginning), and β
moves elements in the first position. . . well, nowhere, we conclude that β ◦ γ moves elements
from the fourth position to the first position. This completes the cycle, so we now know that

β ◦ γ = (1 3 4) .

Haven’t we missed something? What about an element that starts in the second position?
Since γ moves elements in the second position to the fourth, and β moves elements from the
fourth position to the second, they undo each other, and the second position is stationary. It is,
therefore, absolutely correct that 2 does not appear in the cycle notation of β ◦ γ , and we see this
in the second row of Figure 5.1.

Another phenomenon occurs when each permutation moves elements that the other does
not.

Example 5.22. Consider the two cycles

β= (1 3) and γ = (2 4) .

There is no way to simplify β ◦ γ into a single cycle, because β operates only on the first and
third elements of a list, and γ operates only on the second and fourth elements of a list. The only
way to write them is as the composition of two cycles,

β ◦ γ = (1 3) ◦ (2 4) .

This motivates the following.
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Definition 5.23. We say that two cycles are disjoint if none of their en-
tries are common.

Disjoint cycles enjoy an important property: their permutations commute under composition.

Lemma 5.24. Let α,β be two disjoint cycles. Then α ◦β=β ◦α.

Proof. Let n ∈N+ be the largest entry in α orβ. Let V = (1,2, . . . , n). Let i ∈V . We consider
the following cases:

Case 1. α (i) 6= i .
Let j = α (i). The definition of cycle notation implies that j appears immediately after i in
the cycle α. The definition of “disjoint” means that, since i and j are entries of α, they cannot
be entries of β. By definition of cycle notation, β (i) = i and β ( j ) = j . Hence

(α ◦β) (i) = α (β (i)) = α (i) = j =β ( j ) =β (α (i)) = (β ◦α) (i) .

Case 2. α (i) = i .
Subcase (a): β (i) = i .
We have (α ◦β) (i) = i = (β ◦α) (i).
Subcase (b): β (i) 6= i .
Let j = β (i). The definition of cycle notation implies that j appears immediately after i
in the cycle β. The definition of “disjoint” means that, since i and j are entries of β, they
cannot be entries of α. By definition of cycle notation, α ( j ) = j . Hence

(α ◦β) (i) = α (β (i)) = α ( j ) = j =β (i) =β (α (i)) = (β ◦α) (i) .

In both cases, we had (α ◦β) (i) = (β ◦α) (i). Since i was arbitrary, α ◦β=β ◦α.

Notation 5.25. Since the composition of two disjoint cycles α ◦β cannot be simplified, we nor-
mally write it without the circle; for example,

(1 2) (3 4) .

By Lemma 5.24, we can also write this as

(3 4) (1 2) .

That said, the usual convention for cycles is to write the smallest entry of a cycle first, and to
write cycles with smaller first entries before cycles with larger first entries. Thus, we prefer

(1 4) (2 3)

to either of
(1 4) (3 2) or (2 3) (1 4) .

The convention for writing a permutation in cycle form is the following:
1. The first entry in each cycle is the cycle’s smallest.
2. We simplify the composition of cycles that are not disjoint, discarding all cycles of length 1.
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3. The remaining cycles will be disjoint. From Lemma 5.24, we know that they commute;
write them so that the first cycle’s first entry is smallest, the second cycle’s first entry is
second-smallest, and so forth.

Example 5.26. We return to Example 5.20, with

α=

�
1 2 3 4
2 1 4 3

�
.

To write this permutation in cycle notation, we begin again with

α= (1 2) . . .?

Since α also moves entries in positions 3 and 4, we need to add a second cycle. We start with the
smallest position whose entry changes position, 3:

α= (1 2) (3 ?) .

Since α moves the element in position 3 to position 4, we write

α= (1 2) (3 4 ?) .

Now α moves the element in position 4 to position 3, so we can close the second cycle:

α= (1 2) (3 4) .

Now α moves no more entries, so the cycle notation is complete.

Permutations as cycles

We have come to the main result of this section.

Theorem 5.27. Every permutation can be written as a composition of
cycles.

The proof is constructive; we build the cycle notation for the permutation.

Proof. Let π be a permutation; denote its domain by V . Without loss of generality, we write
V = (1,2, . . . , n).

Let i1 be the smallest element of V such that π (i1) 6= i1. Recall that the range of π has at
most n elements, so the sequence π (i1), π (π (i1)) = π2 (i1), . . . cannot continue indefinitely;
eventually, we must have πk+1 (i1) = i1 for some k ≤ n. Let

α(1) =
�

i1 π (i1) π (π (i1)) · · · πk (i1)
�

.

Is there is some i2 ∈V that is not stationary with respect to π and not an entry of α(1)? If so,
then generate the cycle α(2) by

�
i2 π (i2) π (π (i2)) · · · πℓ (i2)

�
, where, as before πℓ+1 (i2) = i2.

Repeat this process until every non-stationary element of V corresponds to a cycle, gen-
erating α(3), . . . , α(m) for non-stationary i3 6∈ α(1),α(2), i4 6∈ α(1),α(2),α(3), and so on until
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im 6∈ α(1), . . . ,α(m−1). Since the list is finite, this process will not continue indefinitely, and we
have a finite list of cycles.

The remainder of the proof consists of two claims.
Claim 1: Each of the cycles we created is disjoint from any of the rest.
By way of contradiction, assume that two cycles α(i) and α( j ) are not disjoint. By construc-

tion, the first elements of these cycles are different; let r be the first entry in α( j ) that also appears
in α(i). Let a be the entry that precedes r in α(i), and b the entry that precedes r in α( j ). By
construction, we have α (a) = r = α (b ). Since r is the first entry of each cycle that is the same,
a 6= b . This contradicts the hypothesis that α is a permutation, as permutations are one-to-one.
Hence, α(i) and α( j ) are disjoint.

Claim 2: π= α(1)α(2) · · ·α(m).
Let i ∈V . We consider two cases.
If π (i) = i , then i could not have been used to begin construction of an α( j ). Since π is a

one-to-one function, we cannot have π (k) = i for any k 6= i , either. By construction, i appears
in none of the α( j ).

Assume, then, that π (i) 6= i . By construction, i appears in α( j ) for some j = 1,2, . . . , m. By
definition, α( j ) (i) = π (i), so α(k) (i) = i for k 6= j . By Claim 1, both i and π (i) appear in only
one of the α. By substitution, the expression

�
α(1)α(2) · · ·α(m)

�
(i) simplifies to

�
α(1)α(2) · · ·α(m)

�
(i) = α(1)

�
α(2)

�
· · ·α(m−1)

�
α(m) (i)

���

= α(1)
�
α(2)

�
· · ·α( j−1)

�
α( j ) (i)

���

= α(1)
�
α(2)

�
· · ·α( j−1) (π (i))

��

= π (i) .

We have shown that �
α(1)α(2) · · ·α(m)

�
(i) = π (i) .

Since i is arbitrary, π= α(1) ◦α(2) ◦ · · · ◦α(m). That is, π is a composition of cycles. Since π was
arbitrary, every permutation is a composition of cycles.

Example 5.28. Consider the following permutation written in tabular notation,

π=

�
1 2 3 4 5 6 7 8
7 5 3 2 4 8 1 6

�
.

The proof of Theorem 5.27 constructs the cycles

α(1) = (1 7)

α(2) = (2 5 4)

α(3) = (6 8) .

Notice that α(1), α(2), and α(3) are disjoint. In addition, the only element of V = (1,2, . . . , 8) that
does not appear in an α is 3, because π (3) = 3. Inspection verifies that

π= α(1)α(2)α(3).
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We conclude with some examples of simplifying the composition of permutations.

Example 5.29. Let α = (1 3) (2 4) and β = (1 3 2 4). Notice that α 6= β; check this on V =
(1,2,3,4) if this isn’t clear. In addition, α and β are not disjoint.

1. We compute the cycle notation for γ = α ◦β. We start with the smallest entry moved by
either α or β:

γ =
�

1 ?
�

.

The notation α ◦β means to apply β first, then α. What does β do with the entry in
position 1? It moves it to position 3. Subsequently, α moves the entry in position 3 back
to the entry in position 1. The next entry in the first cycle of γ should thus be 1, but that’s
also the first entry in the cycle, so we close the cycle. So far, we have

γ = (1) . . .?

We aren’t finished, since α and β also move other entries around. The next smallest entry
moved by either α or β is 2, so

γ = (1) (2 ?) .

Now β moves the entry in position 2 to the entry in position 4, and α moves the entry in
position 4 to the entry in position 2. The next entry in the second cycle of γ should thus
be 2, but that’s also the first entry in the second cycle, so we close the cycle. So far, we have

γ = (1) (2) . . .?

Next, β moves the entry in position 3, so

γ = (1) (2) (3 ?) .

Where does β move the entry in position 3? To the entry in position 2. Subsequently, α
moves the entry in position 2 to the entry in position 4. We now have

γ = (1) (2) (3 4 ?) .

You can probably guess that 4, as the largest possible entry, will close the cycle, but to be
safe we’ll check: β moves the entry in position 4 to the entry in position 1, and α moves
the entry in position 1 to the entry in position 3. The next entry of the third cycle will
be 3, but this is also the first entry of the third cycle, so we close the third cycle and

γ = (1) (2) (3 4) .

Finally, we simplify γ by not writing cycles of length 1, so

γ = (3 4) .

Hence
((1 3) (2 4)) ◦ (1 3 2 4) = (3 4) .

2. Now we compute the cycle notation for β ◦α, but with less detail. Again we start with 1,
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which α moves to 3, and β then moves to 2. So we start with

β ◦α= (1 2 ?) .

Next, α moves 2 to 4, and β moves 4 to 1. This closes the first cycle:

β ◦α= (1 2) . . .?

We start the next cycle with position 3: α moves it to position 1, which β moves back to
position 3. This generates a length-one cycle, so there is no need to add anything. Likewise,
the element in position 4 is also stable under β ◦α. Hence we need write no more cycles;

β ◦α= (1 2) .

3. Let’s look also at β ◦ γ where γ = (1 4). We start with 1, which γ moves to 4, and then β
moves to 1. Since β ◦ γ moves 1 to itself, we don’t have to write 1 in the cycle. The next
smallest number that appears is 2: γ doesn’t move it, and β moves 2 to 4. We start with

β ◦ γ = (2 4 ?) .

Next, γ moves 4 to 1, and β moves 1 to 3. This adds another element to the cycle:

β ◦ γ = (2 4 3 ?) .

We already know that 1 won’t appear in the cycle, so you might guess that we should not
close the cycle. To be certain, we consider what β ◦ γ does to 3: γ doesn’t move it, and β
moves 3 to 2. The cycle is now complete:

β ◦ γ = (2 4 3) .

Exercises.

Exercise 5.30. For the permutation

α=

�
1 2 3 4 5 6
1 5 2 4 6 3

�
,

(a) Write α in cycle notation.
(b) Write α as a piecewise function.

Exercise 5.31. For the permutation
α= (1 3 4 2) ,

(a) Evaluate α (1,2,3,4).
(b) Evaluate α (1,4,3,2).
(c) Evaluate α (3,1,4,2).
(d) Write α in tabular notation.
(e) Write α as a piecewise function.
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Exercise 5.32. Let α= (1 2 3 4),β= (1 4 3 2), and γ = (1 3). Compute α ◦β, α ◦γ ,β◦γ ,β◦α,
γ ◦α, γ ◦β, α2, β2, and γ 2. (Here α2 = α ◦α.) What are the inverses of α, β, and γ ?

Exercise 5.33. Compute the order of

α=

�
1 2 3 4
3 1 4 2

�
.

Exercise 5.34. Show that all the elements of S3 can be written as compositions of of the cycles
α= (1 2 3) and β= (2 3).

Exercise 5.35. For α and β as defined in Exercise 5.34, show that β ◦α = α2 ◦β. (Notice that
α,β ∈ Sn for all n > 2, so as a consequence of this exercise Sn is not abelian for n > 2.)

Exercise 5.36. Write the Cayley table for S3.

Exercise 5.37. Show that D3
∼= S3 by showing that the function f : D3 → S3 by f

�
ρaϕb

�
=

αaβb is an isomorphism.

Exercise 5.38. List the elements of S4 using cycle notation.

Exercise 5.39. Compute the cyclic subgroup of S4 generated by α = (1 3 4 2). Compare your
answer to that of Exercise 5.33.

Exercise 5.40. Let α= (α1 α2 · · · αm) ∈ Sn . (Note m ≤ n.) Show that we can write α−1 as

β=
�
α1 αm αm−1 · · · α2

�
.

For example, if α= (2 3 5 6), α−1 = (2 6 5 3).

5.3: Dihedral groups

In Section 2.2 we studied the symmetries of a triangle; we presented the group as the products
of matrices ρ and ϕ, derived from the symmetries of rotation and reflection about the y-axis.
Figure 5.2 on the next page, a copy of Figure 2.4 on page 68, shows how ρ and ϕ correspond
to the symmetries of an equilateral triangle centered at the origin. In Exercises 5.34–5.37 you
showed that D3 and S3 are isomorphic.

From symmetries to permutations

We now turn to the symmetries of a regular n-sided polygon.

Definition 5.41. The dihedral set Dn is the set of symmetries of a regu-
lar polygon with n sides.

We have two goals in introducing the dihedral group: first, to give you another concrete and
interesting group; and second, to serve as a bridge to Section 5.4. The next example starts starts
us in that directions.
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Figure 5.2. Rotation and reflection of an equilateral triangle centered at the origin

Example 5.42. Another way to represent the elements of D3 is to consider how they re-arrange
the vertices of the triangle. We can represent the vertices of a triangle as the list V = (1,2,3).
Application of ρ to the triangle moves

• vertex 1 to vertex 2;

• vertex 2 to vertex 3; and

• vertex 3 to vertex 1.

This is equivalent to the permutation (1 2 3). Application of ϕ to the triangle moves

• vertex 1 to itself—that is, vertex 1 does not move;

• vertex 2 to vertex 3; and

• vertex 3 to vertex 2.

This is equivalent to the permutation (2 3).

In the context of the symmetries of the triangle, it looks as if ρ and ϕ correspond to (1 2 3)
and (2 3), respectively. Recall that ρ and ϕ generate all the symmetries of a triangle; likewise,
these two cycles generate all the permutations of a list of three elements! (See Example 5.8 and
Exercise 2.45 on page 74.)

We can do this with D4 and S4 as well.

Example 5.43. Using the tabular notation for permutations, we identify some elements of D4,
the set of symmetries of a square. As with the triangle, we can represent the vertices of a square as
the list V = (1,2,3,4). The identity symmetry ι, which moves the vertices back onto themselves,
is thus the cycle (1). We also have a 90◦ rotation which moves vertex 1 to vertex 2, vertex 2 to
vertex 3, and so forth. As a permutation, we can write that as

ρ=

�
1 2 3 4
2 3 4 1

�
=
�

1 2 3 4
�

.

The other rotations are clearly powers of ρ. We can visualize three kinds of flips: one across the
y-axis,

ϕ =

�
1 2 3 4
2 1 4 3

�
=
�

1 2
��

3 4
�

;
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Figure 5.5. To preserve distance bewteen vertices, a permutation of a regular polygon must move
vertex i and its neighbors in such a way that they remain neighbors.

Proposition 5.45. All the symmetries of a regular n-sided polygon can be
generated by a composition of a power of the rotation ρ of angle 2π/n
and a power of the flip ϕ across the y-axis. In addition, ϕ2 = ρn = ι (the
identity symmetry) and ϕρ= ρn−1ϕ.

However, that would be a colossal waste of time. Instead, we prove the theorem by turning
symmetries of the polygon into permutations.

Dn and Sn

Our strategy is as follows. For arbitrary n ∈N+, we consider a list (1,2, . . . , n) of vertices
of the n-sided polygon, imagine how they can move without violating the rules of symmetry,
and then count how many possible permutations that gives us. We then show that this set of
permutations satsifies the requirements of a group.

Proof of Theorem 5.44. Let n ∈ N+ and assume n ≥ 3. Let V = (1,2, . . . , n) be a list of the
vertices of the n-sided polygon, in order. Thus, the distance from vertex i − 1 to vertex i is
precisely the distance from vertex i to vertex i + 1.

What must be true after we apply any symmetry? While vertices i −1, i , and i + 1 may have
moved, the distances between them may not change. Thus, we can rearrange them in the order
i − 1, i , and i + 1, but in different positions, or in the order i + 1, i , i − 1, in either the same
or different positions. That limits our options. To count the number of possible symmetries,
then, we start by counting the number of positions where we can move vertex 1: there are n
such positions, one for each vertex. As we just observed, the vertex that follows vertex 1 must
be vertex 2 or vertex n — if we are to preserve the distances between vertices, we have no other
choice! (See Figure 5.5.) That gives us only two choices for the vertex that follows vertex 1!
We can in fact create symmetries corresponding to these choices — simply count up or down, as
appropriate. By the counting principle, Dn has 2n elements. But is it a group?

The associative property follows from the fact that permutations are functions, and compo-
sition of functions is associative. The identity symmetry, which moves the vertices onto them-
selves, corresonds to the identity element ι ∈ Dn . The inverse property holds because (1) any
permutation has an inverse permutation, and (2) Exercise 5.40 shows that this inverse permu-
tation reverses the order of entries, so that the requirement that vertex i − 1 precede or follow
vertex i is preserved.
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It remains to show closure. Let α,β ∈ Dn , and let i ∈ V . Now, if β (i) = j , then the
preservation of distance between vertices implies that β (i + 1) either precedes j or succeeds it;
that is, β (i + 1) = j ±1. If α ( j ) = k, then the preservation of distance between vertices implies
that α ( j ±1) either precedes k or succeeds it; that is, α ( j ±1) = k±1. By substitution,

(α ◦β) (i) = α (β (i)) = α ( j ) = k

and
(α ◦β) (i + 1) = α (β (i + 1)) = α ( j ±1) = k±1.

We see that α ◦β preserves the distance between the vertices, as vertex i +1 after the transforma-
tion either succeeds or precedes vertex i . Since i was arbitrary in V , this is true for all the vertices
of the n-sided polygon. Thus, α ◦β ∈ Dn , and Dn is closed.

We have shown that Dn has 2n elements, and that it satisfies the four properties of a group.

The basic argument we followed above gives us the following result, as well.

Corollary 5.46. For any n ≥ 3, Dn is isomorphic to a subgroup of Sn . If
n = 3, then D3

∼= S3 itself.

Proof. You already proved that D3
∼= S3 in Exercise 5.37.

What we have seen is that some problems, such as the symmetries of a regular polygon, fall nat-
urally into a group-theoretical context if you can formulate the activity as a set of permutations.
The next section shows that this is no accident.

Exercises.

Exercise 5.47. Write all eight elements of D4 in cycle notation.

Exercise 5.48. Construct the composition table of D4. Compare this result to that of Exer-
cise 2.84.

Exercise 5.49. Show that the symmetries of any n-sided polygon can be described as a power of
ρ and ϕ, where ϕ is a flip about the y-axis and ρ is a rotation of 2π/n radians.

Exercise 5.50. Show that Dn is solvable for all n ≥ 3.

5.4: Cayley’s Theorem

The mathematician Arthur Cayley discovered a lovely fact about the permutation groups. Its
effective consequence is that the theory of finite groups is equivalent to the study of groups of
permutations.

Theorem 5.51 (Cayley’s Theorem). Every group of order n is isomor-
phic to a subgroup of Sn .
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Before we give the proof, we give an example that illustrates how the proof of the theorem works.

Example 5.52. Consider the Klein 4-group; this group has four elements, so Cayley’s Theorem
tells us that it must be isomorphic to a subgroup of S4. We will build the isomorphism by looking
at the Cayley table for the Klein 4-group:

× e a b ab
e e a b ab
a a e ab b
b b ab e a

ab ab b a e

To find a permutation appropriate to each element, we’ll do the following. First, we label
each element with a certain number:

e¡ 1,

a¡ 2,

b¡ 3,

ab¡ 4.

We will use this along with tabular notation to determine the isomorphism. Define a map f from
the Klein 4-group to S4 by

f (x) =

�
1 2 3 4

ℓ (x · e) ℓ (x · a) ℓ (x · b ) ℓ (x · ab )

�
, (13)

where ℓ (y) is the label that corresponds to y.

This notation can make things hard to read. Why? Well, f maps an element g of the Klein
4-group to a permutation f (x) = σ of S4. Suppose σ = (1 2) (3 4). Any permutation of S4
is a one-to-one function on a list of 4 elements, say (1,2,3,4). By definition, σ (2) = 1. Since
σ = f (x), we can likewise write, ( f (x)) (2) = 1. This double-evaluation is hard to look at; is it
saying “ f (x) times 2” or “ f (x) of 2”? In fact, it says the latter. To avoid confusion, we adopt the
following notation to emphasize that f (x) is a permutation, and thus a function:

f (x) = fx .

It’s much easier now to look at fx (2) and understand that we want fx (2) = 1.

Let’s compute fa :

fa =

�
1 2 3 4

ℓ (a · e) ℓ (a · a) ℓ (a · b ) ℓ (a · ab )

�
.

The first entry has the value ℓ (a · e) = ℓ (a) = 2, telling us that

fa =

�
1 2 3 4
2 ℓ (a · a) ℓ (a · b ) ℓ (a · ab )

�
.
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The next entry has the value ℓ (a · a) = ℓ
�
a2
�
= ℓ (e) = 1, telling us that

fa =

�
1 2 3 4
2 1 ℓ (a · b ) ℓ (a · ab )

�
.

The third entry has the value ℓ (a · b ) = ℓ (ab ) = 4, telling us that

fa =

�
1 2 3 4
2 1 4 ℓ (a · ab )

�
.

The final entry has the value ℓ (a · ab ) = ℓ
�
a2b
�
= ℓ (b ) = 3, telling us that

fa =

�
1 2 3 4
2 1 4 3

�
=
�

1 2
��

3 4
�

.

So applying the formula in equation (13) definitely gives us a permutation.
Look closely. We could have filled out the bottom row of the permutation by looking above

at the Klein 4-group’s Cayley table, locating the row for the multiples of a (the second row of the
multiplication table), and filling in the labels for the entries in that row! After all,

the row corresponding to a is precisely
the row of products a · y for all elements y of the group!

Doing this or applying equation (13) to the other elements of the Klein 4-group tells us that

fe =

�
1 2 3 4
1 2 3 4

�
= (1)

fb =

�
1 2 3 4
3 4 1 2

�
=
�

1 3
��

2 4
�

fab =

�
1 2 3 4
4 3 2 1

�
=
�

1 4
��

2 3
�

.

The result is a subset of S4; or, in cycle notation,

W = { fe , fa , fb , fab }
= {(1) , (1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3)} .

Verifying that W is a group, and therefore a subgroup of S4, is straightforward; you will do
so in the homework. In fact, it is a consequence of the fact that f is a homomorphism. Strictly
speaking, f is really an isomorphism. Inspection shows that f is one-to-one and onto; the hard
part is the homomorphism property. We will use a little cleverness for this. Let x, y in the Klein
4-group.
• Recall that fx , fy , and fxy are permutations, and by definition one-to-one, onto functions

on a list of four elements.
• Notice that ℓ is also a one-to-one function, and it has an inverse. Just as ℓ (z) is the label of

z, ℓ−1 (m) is the element labeled by the number m. For instance, ℓ−1 (b ) = 3.
• Since fx is a permutation of a list of four elements, we can look at fx (m) as the position

where fx moves the element in the mth position.
• By definition, fx moves m to ℓ (z) where z is the product of x and the element in the mth
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position. Written differently, z = x ·ℓ−1 (m), so

fx (m) = ℓ
�

xℓ−1 (m)
�

. (14)

Similar statements hold for fy and fxy .

• Applying these facts, we observe that

�
fx ◦ fy

�
(m) = fx

�
fy (m)

�
(def. of comp.)

= fx

�
ℓ
�

y ·ℓ−1 (m)
��

(def. of fy )

= ℓ
�

x ·ℓ−1
�
ℓ
�

y ·ℓ−1 (m)
���

(def. of fx )

= ℓ
�

x ·
�

y ·ℓ−1 (m)
��

(ℓ−1,ℓ inverses)

= ℓ
�

xy ·ℓ−1 (m)
�

(assoc. prop.)

= fxy (m) . (def. of fxy )

• Since m was arbitrary in {1,2,3,4}, fxy and fx ◦ fy are identical functions.

• Since fx fy = fx ◦ fy , we have fxy = fx fy .

• Since x, y were arbitrary in the Klein 4-group, this holds for the entire group.

We conclude that f is a homomorphism; since it is one-to-one and onto, f is an isomorphism.

You should read through Example 5.52 carefully two or three times, and make sure you under-
stand it, since in the homework you will construct a similar isomorphism for a different group,
and also because we do the same thing now in the proof of Cayley’s Theorem.

Proof of Cayley’s Theorem. Let G be a finite group of n elements. Label the elements in any
order G = {g1, g2, . . . , gn} and for any x ∈G denote ℓ (x) = i such that x = gi . Define a relation

f : G→ Sn by f (g ) =

�
1 2 · · · n

ℓ (g · g1) ℓ (g · g2) · · · ℓ (g · gn)

�
.

By definition, this assigns to each g ∈ G the permutation whose second row of the tabular no-
tation contains, in order, the labels for each entry in the row of the Cayley table corresponding
to g . By this fact, we know that f is one-to-one and onto (see also Theorem 2.13 on page 63).
The proof that f is a homomorphism is identical to the proof for Example 5.52: nothing in that
argument required x, y, or z to be elements of the Klein 4-group; the proof was for a general
group! Hence f is an isomorphism, and G ∼= f (G)< Sn .

What’s so remarkable about this result? One way of looking at it is the following: since
every finite group is isomorphic to a subgroup of a group of permutations, everything you need to
know about finite groups can be learned from studying the groups of permutations! A more flippant
summary is that the theory of finite groups is all about studying how to rearrange lists.

In theory, I could go back and rewrite these notes, introducing the reader first to lists, then
to permutations, then to S2, to S3, to the subgroups of S4 that correspond to the cyclic group of
order 4 and the Klein 4-group, and so forth, making no reference to these other groups, nor to
the dihedral group, nor to any other finite group that we have studied. But it is more natural
to think in terms other than permutations (geometry for Dn is helpful); and it can be tedious to
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work only with permutations. While Cayley’s Theorem has its uses, it does not suggest that we
should always consider groups of permutations in place of the more natural representations.

Exercises.

Exercise 5.53. In Example 5.52 we found W , a subgroup of S4 that is isomorphic to the Klein
4-group. It turns out that W maps to a subgroup V of D4, as well. Draw the geometric represen-
tations for each element of V , using a square and writing labels in the appropriate places, as we
did in Figures 2.4 on page 68 and 5.3.

Exercise 5.54. Apply Cayley’s Theorem to find a subgroup of S4 that is isomorphic to Z4. Write
the permutations in both tabular and cycle notations.

Exercise 5.55. The subgroup of S4 that you identified in Exercise 5.54 maps to a subgroup of D4,
as well. Draw the geometric representations for each element of this subgroup, using square with
labeled vertices, and arcs to show where the vertices move.

Exercise 5.56. Since S3 has six elements, we know it is isomorphic to a subgroup of S6. In fact, it
can be isomorphic to more than one subgroup; Cayley’s Theorem tells us only that it is isomor-
phic to at least one. Identify a subgroup A of S6 such that S3

∼= A, yet A is not the image of the
isomorphism used in the proof of Cayley’s Theorem.

5.5: Alternating groups

A special kind of group of permutations, with very important implications for later topics,
are the alternating groups. To define them, we need to study permutations a little more closely, in
particular the cycle notation.

Transpositions

Definition 5.57. Let n ∈N+. An n-cycle is a permutation that can be
written as one cycle with n entries. A transposition is a 2-cycle.

Example 5.58. The permutation (1 2 3) ∈ S3 is a 3-cycle. The permutation (2 3) ∈ S3 is a transpo-
sition. The permutation (1 3) (2 4) ∈ S4 cannot be written as only one n-cycle for any n ∈N+:
it is the composition of two disjoint transpositions.

Remark 5.59. Any transposition is its own inverse. Why? Consider any transposition (i j ); it
swaps the i th and j th elements of a list. Now consider the product (i j ) (i j ). The rightmost
(i j ) swaps these two, and the leftmost (i j ) swaps them back, restoring the list to its original
arrangement. Hence (i j ) (i j ) = (1).

Thanks to 1-cycles, any permutation can be written with many different numbers of cycles: for
example,

(1 2 3) = (1 2 3) (1) = (1 2 3) (1) (3) = (1 2 3) (1) (3) (1) = · · · .
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A neat trick allows us to write every permutation as a composition of transpositions.

Example 5.60. Verify that

• (1 2 3) = (1 3) (1 2);

• (1 4 8 2 3) = (1 3) (1 2) (1 8) (1 4); and

• (1) = (1 2) (1 2).

Did you see the relationship between the n-cycle and the corresponding transpositions?

Lemma 5.61. Any permutation can be written as a composition of trans-
positions.

Proof. You do it! See Exercise 5.72.

Remark 5.62. Given an expression of σ as a product of transpositions, say σ = τ1 · · ·τn , it is clear
from Remark 5.59 that we can write σ−1 = τn · · ·τ1, as an application of the associative property
yields

(τ1 · · ·τn) (τn · · ·τ1) =
�
τ1 · · ·τn−1

�
(τnτn)

�
τn−1 · · ·τ1

�

=
�
τ1 · · ·τn−1

��
1
��
τn−1 · · ·τ1

�

...

= (1) .

At this point it is worth looking at Example 5.60 and the discussion before it. Can we write�
1 2 3

�
with many different numbers of transpositions? Yes:

(1 2 3) = (1 3) (1 2)

= (1 3) (1 2) (2 3) (2 3)

= (1 3) (1 2) (1 3) (1 3)

= · · · .

Notice something special about the representation of (1 2 3). No matter how you try, you only
seem to be able to write it as an even number of transpositions. By contrast, consider

(2 3) = (2 3) (2 3) (2 3)

= (2 3) (1 2) (1 3) (1 3) (1 2) = · · · .

No matter how you try, you only seem to be able to write it as an odd number of transpositions.

Is this always the case?

Even and odd permutations
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Theorem 5.63. Let α ∈ Sn .
• If α can be written as the composition of an even number of trans-

positions, then it cannot be written as the composition of an odd
number of transpositions.
• If α can be written as the composition of an odd number of trans-

positions, then it cannot be written as the composition of an even
number of transpositions.

Proof. Suppose that α ∈ Sn . Consider the polynomials

g =
∏

1≤i< j≤n

�
xi − x j

�
and gα =

∏

1≤i< j≤n

�
xα(i)− xα( j )

�
.

Since the value of gα depends on the permutation α, and permutations are one-to-one functions,
gα is invariant with respect to the representation of α; that is, it won’t change regardless of how
we write α in terms of transpositions.

But what, precisely, is gα? Sometimes g = gα; for example, if α=
�

1 3 2
�

then

g = (x1− x2) (x1− x3) (x2− x3)

and

gα = (x3− x1) (x3− x2) (x1− x2) = [(−1) (x1− x3)] [(−1) (x2− x3)] (x1− x2) = g . (15)

Is it always the case that gα = g ? Not necessarily: if α =
�

1 2
�

then g = x1− x2 and gα =
x2− x1 6= g . In this case , gα =−g .

Since we cannot guarantee gα = g , can we write gα in terms of g ? Try the following. We
know from Lemma 5.61 that α is a composition of transpositions, so let’s think about what
happens when we compute gτ for any transposition τ =

�
i j

�
. Without loss of generality, we

may assume that i < j . Let k be another positive integer.

• We know that xi − x j is a factor of g . After applying τ, x j − xi is a factor of gτ . This factor

of g has changed in gτ , since x j − xi =−
�

xi − x j

�
.

• If i < j < k, then xi − xk and x j − xk are factors of g . After applying τ, xi − xk and x j − xk

are factors of gτ . These factors of g have not changed in gτ .
• If k < i < j , then xk− xi and xk− x j are factors of g . After applying τ, xk− x j and xk− xi

are factors of gτ .These factors of g have not changed in gτ .
• If i < k < j , then xi − xk and xk− x j are factors of g . After applying τ, x j − xk and xk− xi

are factors of gτ . These factors of g have changed in gτ , but the changes cancel each other
out, since

�
x j − xk

�
(xk − xi ) =

�
−
�

xk − x j

��
[− (xi − xk)] = (xi − xk)

�
xk − x j

�
.

To summarize: xi − x j is the only factor that changes sign and does not pair with another factor
that changes sign. Thus, gτ =−g .

Excellent! We have characterized the relationship between gα and g whenever α is a transpo-
sition! Return to the general case, where α is an arbitrary permutation. From Lemma 5.61, α is
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a composition of transpositions. Choose transpositions τ1, τ2, . . . , τm such that α= τ1τ2 · · ·τm .
Using substitution and the observation we just made,

gα = gτ1···τm
=−gτ2···τm

= (−1)2 gτ3···τm
= · · ·= (−1)m g .

In short,
gα = (−1)m g . (16)

Recall that gα depends only on α, and not on its representation. Assume α can be written as an
even number of transpositions; say, α = τ1 · · ·τ2m . Formula (16) tells us that gα = (−1)2m g =
g . If we could also write α as an odd number of transpositions, say, α = µ1 · · ·µ2m+1, then

gα = (−1)2k+1 g . Substitution gives us (−1)2m g = (−1)2k+1 g ; simplification yields g =−g , a
contradiction. Hence, α cannot be written as an odd number of transpositions.

A similar argument shows that if α can be written as an odd number of transpositions, then
it cannot be written as an even number of transpositions. Since α ∈ Sn was arbitrary, the claim
holds.

Lemma 5.61 tells us that any permutation can be written as a composition of transpositions, and
Theorem 5.63 tells us that for any given permutation, this number is always either an even or odd
number of transpositions. This relationship merits a definition.

Definition 5.64. If a permutation can be written with an even number
of permutations, then we say that the permutation is even. Otherwise,
we say that the permutation is odd.

Example 5.65. The permutation ρ= (1 2 3) ∈ S3 is even, since as we saw earlier ρ= (1 3) (1 2).
So is the permutation ι= (1) = (1 2) (1 2).

The permutation ϕ = (2 3) is odd.

At this point, we are ready to define a new group.

The alternating group

Definition 5.66. Let n ∈N+ and n ≥ 2. Let An = {α ∈ Sn : α is even}.
We call An the set of alternating permutations.

Remark 5.67. Although A3 is not the same as “A3” in Example 3.57 on page 110, the two are
isomorphic, because D3

∼= S3. For this reason, we need not worry about the difference in con-
struction.

Theorem 5.68. For all n ≥ 2, An < Sn .

Proof. Let n ≥ 2, and let x, y ∈ An . By the definition of An , we can write x = σ1 · · ·σ2m and
y = τ1 · · ·τ2n , where m, n ∈Z and each σi or τ j is a transposition. From Remark 5.62,

y−1 = τ2n · · ·τ1,
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so
xy−1 = (σ1 · · ·σ2m) (τ2n · · ·τ1) .

Counting the transpositions, we find that xy−1 can be written as a product of 2m + 2n =
2 (m + n) transpositions; in other words, xy−1 ∈ An . By the Subgroup Theorem, An < Sn .
Thus, An is a group.

How large is An , relative to Sn?

Theorem 5.69. For any n ≥ 2, there are half as many even permutations
as there are permutations. That is, |An |= |Sn |/2.

Proof. We show that there are two cosets of An < Sn , then apply Lagrange’s Theorem from
page 106.

Let X ∈ Sn/An . Let α ∈ Sn such that X = αAn . If α is an even permutation, then Lemma 3.29
on page 103 implies that X = An . Otherwise, α is odd. Let β be any other odd permutation.
Write out the odd number of transpositions of α−1, followed by the odd number of transpositions
of β, to see that α−1β is an even permutation. Hence, α−1β ∈ An , and by Lemma 3.29, αAn =
βAn .

We have shown that any coset of An is either An itself or αAn for some odd permutation α.
Thus, there are only two cosets of An in Sn : An itself, and the coset of odd permutations. By
Lagrange’s Theorem,

|Sn |
|An |

= |Sn/An |= 2,

and a little algebra rewrites this equation as |An |= |Sn |/2.

Corollary 5.70. For any n ≥ 2, An ⊳ Sn .

Proof. You do it! See Exercise 5.76.

There are a number of exciting facts regarding An that have to wait until later; in particular, An has
a pivotal effect on whether one can solve polynomial equations by radicals (such as the quadratic
formula). In comparison, the facts presented here are relatively dull.

I say that only in comparison, though. The facts presented here are quite striking in their
own right: An is half the size of Sn , and it is a normal subgroup of Sn . If I call these facts “rather
dull”, that tells you just how interesting this group can get!

Exercises.

Exercise 5.71. List the elements of A2, A3, and A4 in cycle notation.

Exercise 5.72. Show that any permutation can be written as a product of transpositions.

Exercise 5.73. Show that the inverse of any transposition is a transposition.
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Exercise 5.74. Recall the polynomials g and gα defined in the proof of Theorem 5.63. Compute
gα for the permutations (1 3) (2 4) and (1 3 2 4). Use the value of gα to determine which of the
two permutations is odd, and which is even?

Exercise 5.75. Recall the polynomials g and gα defined in the proof of Theorem 5.63. The sign
function sgn (α) is defined to satisfy the property,

g = sgn (α) · gα.

Another way of saying this is that

sgn (α) =

(
1, α ∈An ;

−1, α 6∈An .

Show that for any two cycles α,β,

(−1)sgn(αβ) = (−1)sgn(α) (−1)sgn(β) .

Exercise 5.76. Show that for any n ≥ 2, An ⊳ Sn .

5.6: The 15-puzzle

The 15-puzzle is similar to a toy you probably played with as a child. It looks like a 4× 4
square, with all the squares numbered, except one. The numbering starts in the upper left and
proceeds consecutively until the lower right; the only squares that aren’t in order are the last two,
which are swapped:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

The challenge is to find a way to rearrange the squares so that they are in order, like so:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

The only permissible moves are those where one “slides” a square left, right, above, or below the
empty square. Given the starting position above, the following first moves are permissible:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

or

1 2 3 4
5 6 7 8
9 10 11
13 15 14 12

.

The following moves are not:



6. The 15-puzzle 176

1 2 3 4
5 6 7 8
9 10 12
13 15 14 11

or

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

.

We will use groups of permutations to show that that the challenge is impossible.
How? Since the problem is one of rearranging a list of elements, it is a problem of permuta-

tions. Every permissible move consists of transpositions τ = (x y) in S16 where:
• x < y;
• one of x or y is the position of the empty square in the current list; and
• legal moves imply that either
◦ y = x + 1 and x 6∈ 4Z; or
◦ y = x + 4.

Example 5.77. The legal moves illustrated above correspond to the transpositions
• (15 16), because square 14 was in position 15, and the empty space was in position 16:

notice that 16 = 15 + 1; and
• (12 16), because square 12 was in position 12, and the empty space was in position 16:

notice that 16 = 12 + 4.
The illegal moves illustrated above correspond to the transpositions
• (11 16), because square 11 was in position 11, and the empty space was in position 16:

notice that 16 = 11 + 5; and
• (13 14), because in the original configuration, neither 13 nor 14 contains the empty square.

Likewise (12 13) would be an illegal move in any configuration, because it crosses rows: even
though y = 13 = 12 + 1 = x + 1, x = 12 ∈ 4Z.

How can we use this to show that it is impossible to solve 15-puzzle? We show this in two steps.
The first shows that if there is a solution, it must belong to a particular group.

Lemma 5.78. If there is a solution to the 15-puzzle, it is a permutation
σ ∈A16, where A16 is the alternating group.

Proof. Any permissible move corresponds to a transposition τ as described above. Any solution
contains the empty square in the lower right hand corner. As a consequence,

• if (x y) is a move left, then the empty square must eventually return to the rightmost row,
so there must eventually be a corresponding move

�
x ′ y ′

�
where

�
x ′
�

= [x ] in Z4 and�
y ′
�

= [y ] in Z4; and,
• if (x y) is a move up, the empty square must eventually return to the bottom row, so there

must eventually be a corresponding move
�

x ′ y ′
�

of the second type.

Thus, moves come in pairs. The upshot is that any solution to the 15-puzzle must be a per-
mutation σ defined by an even number of transpositions. By Theorem 5.63 on page 172 and
Definitions 5.64 and 5.66, σ ∈A16.

We can now show that there is no solution to the 15-puzzle.

Theorem 5.79. The 15-puzzle has no solution.
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Proof. By way of contradiction, assume that it has a solution σ . By Lemma 5.78 on the previous
page, σ ∈ A16. Because A16 is a subgroup of S16, and hence a group in its own right, σ−1 ∈ A16.
Notice σ−1σ = ι, the permutation which corresponds to the configuration of the solution.

Now σ−1 is a permutation corresponding to the moves that change the arrangement

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

into the arrangement

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

which corresponds to (14 15). Regardless of the transpositions used, the representation must
simplify to σ−1 = (14 15). This shows that σ 6∈ A16, which contradicts the assumption that we
have a contradiction.

As a historical note, the 15-puzzle was developed in 1878 by an American puzzlemaker, who
promised a $1,000 reward to the first person to solve it. Most probably, the puzzlemaker knew
that no one would ever solve it: if we account for inflation, the reward would correspond to
$22,265 in 2008 dollars.15

The textbook [Lau03] contains a more general discussions of solving puzzles of this sort using
algebra.

Exercises

Exercise 5.80. Determine which of these configurations, if any, is solvable by the same rules as
the 15-puzzle:

1 2 3 4
5 6 7 8
9 10 12 11
13 14 15

,

1 2 3 4
5 10 6 8
13 9 7 11
14 15 12

,

3 6 4 7
1 2 12 8
5 15 10 14
9 13 11

.

15According to the website ❤tt♣✿✴✴✇✇✇✳♠❡❛s✉r✐♥❣✇♦rt❤✳❝♦♠✴♣♣♦✇❡r✉s✴r❡s✉❧t✳♣❤♣.



Chapter 6:
Number theory

The theory of groups was originally developed to answer questions about the roots of poly-
nomials. From such beginnings, it has grown to many applications that seem at first completely
unrelated to this topic. Some of the most widely-used applications in recent decades are in num-
ber theory, the study of properties of the integers.

This chapter introduces several of these applications. Section 6.1 fills some background with
two of the most important tools in computational algebra and number theory. The first is a fun-
damental definition; the second is a fundamental algorithm. Both recur throughout the chapter,
and later in the notes. Section 6.2 moves us to our first application of group theory, the Chinese
Remainder Theorem, used thousands of years ago for the task of counting the number of soldiers
who survived a battle. We will use it to explain the card trick described on page 1.

The rest of the chapter moves us toward Section 6.6, the RSA cryptographic scheme, a major
component of internet communication and commerce. In Section 3.5 you learned of additive
clockwork groups; in Section 6.4 you will learn of multiplicative clockwork groups. These al-
lows us to describe in Section 6.5 the theoretical foundation of RSA, Euler’s number and Euler’s
Theorem.

6.1: The Greatest Common Divisor

Until now, we’ve focused on division with remainder, extending its notion even to cosets of
subgroups. Many problems care about divisibility; that is, division with remainder 0.

Common divisors

Recall that we say the integer a divides the integer b when we can find another integer x such
that ax = b .

Definition 6.1. Let m, n ∈ Z, not both zero. We say that d ∈ Z is a
common divisor of m and n if d | m and d | n. We say that d ∈N is a
greatest common divisor of m and n if d is a common divisor and any
other common divisor d ′ satisfies d ′ < d .

Example 6.2. Common divisors of 36 and −210 are 1, 2, 3, and 6. The greatest common divisor
is 6.

In grade school, you learned how to compute the greatest common divisor of two integers. For
example, given the integers 36 and 210, you can find their greatest common divisor, 6. Computing
greatest common divisors—not only of integers, but of other objects as well — is an important
problem in mathematics, with a large number of important applications. Arguably, it is one of
the most important problems in mathematics, and it has an ancient pedigree.

But, do greatest common divisors always exist?

Theorem 6.3. Let m, n ∈Z, not both zero. There exists a unique great-
est common divisor of m, n.
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Algorithm 1. The Euclidean algorithm

1: inputs
2: m, n ∈Z

3: outputs
4: gcd (m, n)
5: do
6: Let s = max (m, n)
7: Let t = min (m, n)
8: repeat while t 6= 0
9: Let q , r ∈Z be the result of dividing s by t

10: Let s = t
11: Let t = r
12: return s

Proof. Let D be the set of common divisors of m, n that are also in N+. Since 1 divides both
m and n, we know that D 6= ;. We also know that any d ∈ D must satisfy d ≤ min (m, n);
otherwise, the remainder from the Division Algorithm would be nonzero for at least one of
m, n. Hence, D is finite. Let d be the largest element of d . By definition of D , d is a common
divisor; we claim that it is also the only greatest common divisor. After all, the integers are a
linear ordering, so every other common divisor d ′ of m and n is either

• negative, so that by definition of subtraction, d − d ′ ∈N+, or (by definition of <) d ′ < d ;
or,
• in D , so that (by definition of d ) d ′ ≤ d , and d 6= d ′ implies d ′ < d .

How can we compute the greatest common divisor? One way is to make a list of all common
divisors, and find the largest. That would require a list of all possible divisors of each integer. In
practice, this takes a Very Long TimeTM, so we need a different method. One such method was
described by the ancient Greek mathematician, Euclid.

The Euclidean Algorithm

Theorem 6.4 (The Euclidean Algorithm). Let m, n ∈ Z. We can com-
pute the greatest common divisor of m, n in the following way:

1. Let s = max (m, n) and t = min (m, n).
2. Repeat the following steps until t = 0:

(a) Let q be the quotient and r the remainder after dividing s
by t .

(b) Assign s the current value of t .
(c) Assign t the current value of r .

The final value of s is gcd (m, n).

It is common to write algorithms in a form called pseudocode. You can see this done in Algo-
rithm 1.
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Before proving that the Euclidean algorithm gives us a correct answer, let’s do an example.

Example 6.5. We compute gcd (36,210). At the outset, let s = 210 and t = 36. Subsequently:

1. Dividing 210 by 36 gives q = 5 and r = 30. Let s = 36 and t = 30.
2. Dividing 36 by 30 gives q = 1 and r = 6. Let s = 30 and t = 6.
3. Dividing 30 by 6 gives q = 5 and r = 0. Let s = 6 and t = 0.

Now that t = 0, we stop, and conclude that gcd (36,210) = s = 6. This agrees with Example 6.2.

To prove that the Euclidean algorithm generates a correct answer, we will number each re-
mainder that we compute; so, the first remainder is r1, the second, r2, and so forth. We will then
show that the remainders give us a chain of equalities,

gcd (m, n) = gcd (m, r1) = gcd (r1, r2) = · · ·= gcd
�

rk−1, 0
�

,

where ri is the remainder from division of the previous two integers in the chain, and rk−1 is the
final non-zero remainder from division.

Lemma 6.6. Let s , t ∈ Z. Let q and r be the quotient and remainder,
respectively, of division of s by t , as per the Division Theorem from
page 13. Then gcd (s , t ) = gcd (t , r ).

Example 6.7. We can verify Lemma 6.6 using the numbers from Example 6.5. We know that
gcd (36,210) = 6. The remainder from division of 36 by 210 is r = 36. The lemma claims that
gcd (36,210) = gcd (36,30); it should be clear to you that gcd (36,30) = 6.

The example also shows that the lemma doesn’t care whether m < n or vice versa. We turn to
the proof.

Proof of Lemma 6.6. Let d = gcd (s , t ). First we show that d is a divisor of r . From Defini-
tion 0.35 on page 15, there exist a, b ∈Z such that s = ad and t = b d . By hypothesis, s = q t + r
and 0≤ r < |t |. Substitution gives us ad = q (b d )+ r ; rewriting the equation, we have

r = (a− q b ) d .

By definition of divisibility, d | r .
Since d is a common divisor of s , t , and r , it is a common divisor of t and r . We claim that

d = gcd (t , r ). Let d ′ = gcd (t , r ); since d is also a common divisor of t and r , the definition
of greatest common divisor implies that d ≤ d ′. Since d ′ is a common divisor of t and r , Defini-
tion 0.35 again implies that there exist x, y ∈Z such that t = d ′x and r = d ′y. Substituting into
the equation s = q t + r , we have s = q

�
d ′x
�
+ d ′y; rewriting the equation, we have

s = (q x + y) d ′.

So d ′ | s . We already knew that d ′ | t , so d ′ is a common divisor of s and t .
Recall that d = gcd (s , t ); since d ′ is also a common divisor of t and r , the definition of

greatest common divisor implies that d ′ ≤ d . Earlier, we showed that d ≤ d ′. Hence d ≤ d ′ ≤ d ,
which implies that d = d ′.

Substitution gives the desired conclusion: gcd (s , t ) = gcd (t , r ).
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We can finally prove that the Euclidean algorithm gives us a correct answer. This requires two
stages, necessary for any algorithm.

1. Correctness. If the algorithm terminates, we have to guarantee that it terminates with the
correct answer.

2. Termination. What if the algorithm doesn’t terminate? If you look at the Euclidean algo-
rithm, you see that one of its instructions asks us to repeat some steps “while t 6= 0.” What
if t never attains the value of zero? It’s conceivable that its values remain positive at all
times, or jump over zero from positive to negative values. That would mean that we never
receive any answer from the algorithm, let alone a correct one.

We will identify both stages of the proof clearly. In addition, we will refer back to the the Division
Theorem as well as the well-ordering property of the integers from Section 10; you may wish to
review those.

Proof of the Euclidean Algorithm. We start with termination. The only repetition in the algo-
rithm occurs in line 8. The first time we compute line 9, we compute the quotient q and remain-
der r of division of s by t . By the Division Theorem,

0≤ r < |t | . (17)

Denote this value of r by r1. In the next lines we set s to t , then t to r1 = r . Thanks to equation
(17), the size of tnew = r is smaller than that of snew = told. (We measure “size” using absolute
value.) If t 6= 0, then we return to line 9 and divide s by t , again obtaining a new remainder r .
Denote this value of r by r2; by the Division Theorem, r2 = r < t , so

0≤ r2 < r1.

Proceeding in this fashion, we generate a strictly decreasing sequence of elements,

r1 > r2 > r3 > · · · .

By Exercise 0.31, this sequence is finite. In other words, the algorithm terminates.

We now show that the algorithm terminates with the correct answer. If line 9 of the algorithm
repeated a total of k times, then rk = 0. Apply Lemma 6.6 repeatedly to the remainders to obtain
the chain of equalities

rk−1 = gcd
�
0, rk−1

�
= gcd

�
rk , rk−1

�
(definition of gcd, substitution)

= gcd
�

rk−1, rk−2

�
(Lemma 6.6)

= gcd
�

rk−2, rk−3

�
(Lemma 6.6)

...

= gcd (r2, r1) (Lemma 6.6)

= gcd (r1, s) (substitution)

= gcd (t , s) (substitution)

= gcd (m, n) . (substitution)

The Euclidean Algorithm terminates with the correct answer.
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Bezout’s identity

A fundamental fact of number theory is that the greatest common divisor of two integers can
be expressed as a simple expression of those integers.

Theorem 6.8 (Bezout’s Lemma, or, the Extended Euclidean Algorithm).
Let m, n ∈ Z. There exist a, b ∈ Z such that am + b n = gcd (m, n).
Both a and b can be found by reverse-substituting the chain of equations
obtained by the repeated division in the Euclidean algorithm.

The expression, am + b n = gcd (m, n), is important enough to be known by the name, Bezout’s
identity. It can be used to prove a lot of properties of greatest common divisors.

Example 6.9. Recall from Example 6.5 the computation of gcd (210,36). The divisions gave us a
series of equations:

210 = 5 ·36 + 30 (18)

36 = 1 ·30 + 6 (19)

30 = 5 ·6 + 0.

We concluded from the Euclidean Algorithm that gcd (210,36) = 6. The Extended Euclidean
Algorithm gives us a way to find a, b ∈Z such that 6 = 210a + 36b . Start by rewriting equation
(19):

36−1 ·30 = 6. (20)

This looks a little like what we want, but we need 210 instead of 30. Equation (18) allows us to
rewrite 30 in terms of 210 and 36:

30 = 210−5 ·36. (21)

Substituting this result into equation (20), we have

36−1 · (210−5 ·36) = 6 =⇒ 6 ·36 +(−1) ·210 = 6.

We have found integers m = 6 and n =−1 such that for a = 36 and b = 210, gcd (a, b ) = 6.

The method we applied in Example (6.9) is what we use both to prove correctness of the
algorithm, and to find a and b in general.

Proof of the Extended Euclidean Algorithm. Look back at the proof of the Euclidean algorithm
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to see that it computes a chain of k quotients {qi} and remainders {ri} such that

m = q1n + r1

n = q2 r1 + r2

r1 = q3 r2 + r3
...

rk−3 = qk−1 rk−2 + rk−1 (22)

rk−2 = qk rk−1 + rk (23)

rk−1 = qk+1 rk + 0

and rk = gcd (m, n) .

Rewrite equation (23) as
rk−2 = qk rk−1 + gcd (m, n) .

Solving for gcd (m, n), we have

rk−2− qk rk−1 = gcd (m, n) . (24)

Solve for rk−1 in equation (22) to obtain

rk−3− qk−1 rk−2 = rk−1.

Substitute this into equation (24) to obtain

rk−2− qk

�
rk−3− qk−1 rk−2

�
= gcd (m, n)�

qk−1 + 1
�

rk−2− qk rk−3 = gcd (m, n) .

Proceeding in this fashion, we exhaust the list of equations, concluding by rewriting the first
equation in the form am + b n = gcd (m, n) for some integers a, b .

Pseudocode appears in Algorithm 2. One can also derive a method of computing both
gcd (m, n) and the representation am + b n = gcd (m, n) simultaneously, which is to say, without
having to reverse the process. We will not consider that here.

Exercises.

Exercise 6.10. Compute the greatest common divisor of 100 and 140 by (a) listing all divisors,
then identifying the largest; and (b) the Euclidean Algorithm.

Exercise 6.11. Compute the greatest common divisor of m = 4343 and n = 4429 by the Eu-
clidean Algorithm. Use the Extended Euclidean Algorithm to find a, b ∈Z that satisfy Bezout’s
identity.

Exercise 6.12. Show that any common divisor of any two integers divides the integers’ greatest
common divisor.
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Algorithm 2. Extended Euclidean Algorithm

1: inputs
2: m, n ∈N such that m > n
3: outputs
4: gcd (m, n) and a, b ∈Z such that gcd (m, n) = am + b n
5: do
6: if n = 0
7: Let d = m, a = 1, b = 0
8: else
9: Let r0 = m and r1 = n

10: Let k = 1
11: repeat while rk 6= 0
12: Increment k by 1
13: Let qk , rk be the quotient and remainder from division of rk−2 by rk−1
14: Let d = rk−1 and p = rk−3− qk−1 rk−2 (do not simplify p)
15: Decrement k by 2
16: repeat while k ≥ 2
17: Substitute rk = rk−2− qk rk−1 into p
18: Decrement k by 1
19: Let a be the coefficient of r0 in p, and b be the coefficient of r1 in p
20: return d ,a, b

Exercise 6.13. In Lemma 6.6 we showed that gcd (m, n) = gcd (m, r ) where r is the remain-
der after division of m by n. Prove the following more general statement: for all m, n, q ∈ Z

gcd (m, n) = gcd (n, m− qn).

Exercise 6.14. Bezout’s Identity (Theorem 6.8) states that for any m, n ∈Z, we can find a, b ∈Z

such that am + b n = gcd (m, n).
(a) Show that the existence of a, b , d ∈ Z such that am + b n = d does not imply d =

gcd (m, n).
(b) However, not only does the converse of Bezout’s Identity hold, we can specify the rela-

tionship more carefully. Fill in each blank of Figure 6.1 with the appropriate justification
or statement.

6.2: The Chinese Remainder Theorem

In this section we explain how the card trick on page 1 works. The result is based on an old
Chinese observation.16 Recall from Section 3.5 that for any m 6= 0 there exists a group Zm of m
elements, under the operation of adding, then taking remainder after division by m. Remember
that we often write [x ] for the elements of Zm if we want to emphasize that its elements are
cosets.

16I asked Dr. Ding what the Chinese call this theorem. He looked it up in one of his books, and told me that they
call it Sun Tzu’s Theorem. Unfortunately, this is not the same Sun Tzu who wrote The Art of War.
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Let m, n ∈ Z, S = {am + b n : a, b ∈Z}, and M = S ∩N. Since M is a subset of N, the well-
ordering property of Z implies that it has a smallest element; call it d .
Claim: d = gcd (m, n).
Proof:

1. We first claim that gcd (m, n) divides d .
(a) By _____, we can find a, b ∈Z such that d = am + b n.
(b) By _____, gcd (m, n) divides m and n.
(c) By _____, there exist x, y ∈Z such that m = x gcd (m, n) and n = y gcd (m, n).
(d) By susbtitution, _____.
(e) Collect the common term to obtain _____.
(f) By _____, gcd (m, n) divides d .

2. A similar argument shows that d divides gcd (m, n).
3. By _____, d ≤ gcd (m, n) and gcd (m, n)≤ d .
4. By _____, d = gcd (m, n).

Figure 6.1. Material for Exercise 6.14

The simple Chinese Remainder Theorem

Theorem 6.15 (The Chinese Remainder Theorem, simple version). Let
m, n ∈Z such that gcd (m, n) = 1. Let α,β ∈Z. There exists a solution
x ∈Z to the system of linear congruences

(
[x ] = [α] in Zm ;

[x ] = [β] in Zn ;

and [x ] is unique in ZN where N = mn.

Before giving a proof, let’s look at an example.

Example 6.16 (The card trick). In the card trick, we took twelve cards and arranged them
• once in groups of three; and
• once in groups of four.

Each time, the player identified the column in which the mystery card lay. Laying out the cards
in rows of three and four corresponds to division by three and four, so that α and β are in
fact the remainders from division by three and by four. This corresponds to a system of linear
congruences, (

[x ] = [α] in Z3

[x ] = [β] in Z4

,

where x is the location of the mystery card. The simple version of the Chinese Remainder
Theorem guarantees a solution for x, which is unique in Z12. Since there are only twelve cards,
the solution is unique in the game: as long as the dealer can compute x, s/he can identify the card
infallibly.

“Well, and good,” you think, “but knowing only the existence of a solution seems rather
pointless. I also need to know how to compute x, so that I can pinpoint the location of the card.”
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It turns out that Bezout’s identity,

am + b n = gcd (m, n) ,

is the key to unlocking the Chinese Remainder Theorem. Before doing so, we need an important
lemma about numbers whose gcd is 1.

Lemma 6.17. Let d , m, n ∈Z. If m | nd and gcd (m, n) = 1, then m | d .

Proof. Assume that m | nd and gcd (m, n) = 1. By definition of divisibility, there exists q ∈
Z such that q m = nd . Use the Extended Euclidean Algorithm to choose a, b ∈ Z such that
am + b n = gcd (m, n) = 1. Multiplying both sides of this equation by d , we have

(am + b n) d = 1 · d
amd + b (nd ) = d

ad m + b (q m) = d

(ad + b q) m = d .

Hence m | d .

Now we prove the Chinese Remainder Theorem. You should study this proof carefully, not only
to understand the theorem better, but because the proof tells you how to solve the system.

Proof of the Chinese Remainder Theorem, simple version. Recall that the system is

(
[x ] = [α] in Zm

[x ] = [β] in Zn

.

We have to prove two things: first, that a solution x exists; second, that [x ] is unique in ZN .
Existence: Because gcd (m, n) = 1, the Extended Euclidean Algorithm tells us that there exist

a, b ∈ Z such that am + b n = 1. Rewriting this equation two different ways, we have b n =
1+(−a) m and am = 1+(−b ) n. In terms of cosets of subgroups of Z, these two equations tell
us that b n ∈ 1 + mZ and am ∈ 1 + nZ. In the bracket notation, [b n]m = [1]m and [am]n =
[1]n . By Lemmas 3.80 and 3.83 on page 118, [α]m = α [1]m = α [b n]m = [αb n]m and likewise
[β]n = [βam]n . Apply similar reasoning to see that [αb n]n = [0]n and [βam]m = [0]m in Zm .
Hence, (

[αb n +βam]m = [α]m

[αb n +βam]n = [β]n

.

If we let x = αb n +βam, then the equations above show that x is a solution to the system.
Uniqueness: Suppose that there exist [x ] , [y ] ∈ ZN that both satisfy the system. Since [x ] =

[α] = [y ] in Zm , [x− y ] = [0], and by Lemma 3.86 on page 120, m | (x− y). A similar argument
shows that n | (x− y). By definition of divisibility, there exists q ∈Z such that mq = x− y. By
substitution, n | mq . By Lemma 6.17, n | q . By definition of divisibility, there exists q ′ ∈Z such
that q = nq ′. By substitution,

x− y = mq = mnq ′ = N q ′.
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Algorithm 3. Solution to Chinese Remainder Theorem, simple version

1: inputs
2: m, n ∈Z such that gcd (m, n) = 1
3: α,β ∈Z

4: outputs
5: x ∈Z satisfying the Chinese Remainder Theorem
6: do
7: Use the Extended Euclidean Algorithm to find a, b ∈Z such that am + b n = 1
8: return [αb n +βam]N

Hence N | (x− y), and again by Lemma 3.86 [x ]N = [y ]N , which means that the solution x is
unique in ZN , as desired.

Pseudocode to solve the Chinese Remainder Theorem appears as Algorithm 3.

Example 6.18. The algorithm of Corollary 3 finally explains the method of the card trick. We
have m = 3, n = 4, and N = 12. Suppose that the player indicates that his card is in the first
column when they are grouped by threes, and in the third column when they are grouped by
fours; then α= 1 and β= 3.

Using the Extended Euclidean Algorithm, we find that a =−1 and b = 1 satisfy am + b n =
1; hence am =−3 and b n = 4. We can therefore find the mystery card by computing

x = 1 ·4 + 3 · (−3) =−5.

Its canonical representation in Z12 is

[x ] = [−5 + 12] = [7] ,

which implies that the player chose the 7th card. In fact, [7] = [1] in Z3, and [7] = [3] in Z4,
which agrees with the information given.

The Chinese Remainder Theorem can be generalized to larger systems with more than two
equations under certain circumstances.

A generalized Chinese Remainder Theorem

What if you have more than just two ways to arrange the groups? You might like to arrange
the cards into rows of 3, 4, 5, and 7. What about other groupings? What constraints do there
have to be on the groupings, and how would we solve the new problem?
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Theorem 6.19 (Chinese Remainder Theorem on Z). Let
m1, m2, . . . , mn ∈ Z and assume that gcd

�
mi , m j

�
= 1 for all

1 ≤ i < j ≤ n. Let α1,α2, . . .αn ∈ Z. There exists a solution
x ∈Z to the system of linear congruences





[x ] = [α1] in Zm1
;

[x ] = [α2] in Zm2
;

...

[x ] = [αn ] in Zmn
;

and [x ] is unique in ZN where N = m1m2 · · ·mn .

Before we can prove this version of the Chinese Remainder Theorem, we need to make an obser-
vation of m1, m2, . . . , mn .

Lemma 6.20. Let m1, m2, . . . , mn ∈ Z such that gcd
�

mi , m j

�
= 1 for

all 1 ≤ i < j ≤ n. For each i = 1,2, . . . , n define Ni = N /mi where
N = m1m2 · · ·mn ; that is, Ni is the product of all the m’s except mi .
Then gcd (mi ,Ni ) = 1.

Proof. We show that gcd (m1,N1) = 1; for i = 2, . . . , n the proof is similar.

Use the Extended Euclidean Algorithm to choose a, b ∈Z such that am1 + b m2 = 1. Use it
again to choose c , d ∈Z such that c m1 + d m3 = 1. Then

1 = (am1 + b m2) (c m1 + d m3)

= (ac m1 + ad m3 + b c m2) m1 +(b d ) (m2m3) .

Let x = gcd (m1, m2m3); since x divides both m1 and m2m3, it divides each term of the right
hand side above. That right hand side equals 1, so x also divides 1. The only divisors of 1 are ±1,
so x = 1. We have shown that gcd (m1, m2m3) = 1.

Rewrite the equation above as 1 = a′m1 + b ′m2m3; notice that a′, b ′ ∈Z. Use the Extended
Euclidean Algorithm to choose e , f ∈Z such that e m1 + f m4 = 1. Then

1 =
�
a′m1 + b ′m2m3

�
(e m1 + f m4)

=
�
a′e m1 + a′ f m4 + b ′e m2me

�
m1 +

�
b ′ f
�
(m2m3m4) .

An argument similar to the one above shows that gcd (m1, m2m3m4) = 1.

Repeating this process with each mi , we obtain gcd (m1, m2m3 · · ·mn) = 1. Since N1 =
m2m3 · · ·mn , we have gcd (m1,N1) = 1.

We can now prove the Chinese Remainder Theorem on Z.

Proof of the Chinese Remainder Theorem on Z. Existence: Write Ni = N /mi for i = 1,2, . . . , n.
By Lemma 6.20, gcd (mi ,Ni ) = 1. Use the Extended Euclidean Algorithm to compute appropri-
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ate a’s and b ’s satisfying

a1m1 + b1N1 = 1

a2m2 + b2N2 = 1
...

an mn + bnNn = 1.

Put x = α1b1N1 + α2b2N2 + · · ·+ αn bnNn . Now, b1N1 = 1 + (−a1) m1, so [b1N1] = [1] in
Zm1

, so [α1b1N1] = [α1] in Zm1
. Moreover, for any i = 2,3, . . . , n, inspection of Ni verifies that

m1 |Ni , implying that [αi bi Ni ]m1
= [0]m1

(Lemma 3.86). Hence

[x ] = [α1b1N1 +α2b2N2 + · · ·+αn bnNn ]

= [α1]+ [0]+ · · ·+[0]

in Zm1
, as desired. A similar argument shows that [x ] = [αi ] in Zmi

for i = 2,3, . . . , n.
Uniqueness: As in the previous case, let [x ] , [y ] be two solutions to the system in ZN . Then

[x− y ] = [0] in Zmi
for i = 1,2, . . . , n, implying that mi | (x− y) for i = 1,2, . . . , n.

Since m1 | (x− y), the definition of divisibility implies that there exists q1 ∈ Z such that
x− y = m1q1.

Since m2 | (x− y), substitution implies m2 | m1q1, and Lemma 6.17 implies that m2 | q1.
The definition of divisibility implies that there exists q2 ∈ Z such that q1 = m2q2. Substitution
implies that x− y = m1m2q2.

Since m3 | (x− y), substitution implies m3 | m1m2q2. By Lemma 6.20, gcd (m1m2, m3) = 1,
and Lemma 6.17 implies that m3 | q2. The definition of divisibility implies that there exists q3 ∈Z

such that q2 = m3q3. Substitution implies that x− y = m1m2m3q3.
Continuing in this fashion, we show that x − y = m1m2 · · ·mnqn for some qn ∈ Z. By

substition, x− y = N qn , so [x− y ] = [0] in ZN , so [x ] = [y ] in Zn . That is, the solution to the
system is unique in ZN .

The algorithm to solve such systems is similar to that given for the simple version, in that it
can be obtained from the proof of existence of a solution.

Exercises

Exercise 6.21. Solve the system of linear congruences

(
[x ] = [2] in Z4

[x ] = [3] in Z9

.

Express your answer so that 0≤ x < 36.

Exercise 6.22. Solve the system of linear congruences





[x ] = [2] in Z5

[x ] = [3] in Z6

[x ] = [4] in Z7

.
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Exercise 6.23. Solve the system of linear congruences





[x ] = [33] in Z16

[x ] = [−4] in Z33

[x ] = [17] in Z504

.

This problem is a little tougher than the previous, since gcd (16,504) 6= 1 and gcd (33,504) 6= 1.
Since you can’t use either of the Chinese Remainder Theorems presented here, you’ll have to
generalize their approaches to get a method for this one.

Exercise 6.24. Give directions for a similar card trick on all 52 cards, where the cards are grouped
first by 4’s, then by 13’s. Do you think this would be a practical card trick?

Exercise 6.25. Is it possible to modify the card trick to work with only ten cards instead of 12? If
so, how; if not, why not?

Exercise 6.26. Is it possible to modify the card trick to work with only eight cards instead of 12?
If so, how; if not, why not?

6.3: The Fundamental Theorem of Arithmetic

In this section, we address a fundamental result of number theory with algebraic implications.

Definition 6.27. Let n ∈ N+\{1}. We say that n is irreducible if the
only integers that divide n are ±1 and ±n.

You may read this and think, “Oh, he’s talking about prime numbers.” Yes and no. We’ll say
more about that in a moment.

Example 6.28. The integer 36 is not irreducible, because 36 = 6× 6. The integer 7 is irreducible,
because the only integers that divide 7 are ±1 and ±7.

One useful aspect to irreducible integers is that, aside from ±1, any integer is divisible by at
least one irreducible integer.

Theorem 6.29. Let n ∈ Z\{±1}. There exists at least one irreducible
integer p such that p | n.

Proof. Case 1: If n = 0, then 2 is a divisor of n, and we are done.
Case 2: Assume that n ∈N+\{1}. If n is not irreducible, then by definition n = a1b1 such

that a1, b1 ∈ Z and a1, b1 6= ±1. Without loss of generality, we may assume that a1, b1 ∈ N+

(otherwise both a, b are negative and we can replace them with their opposites). Observe further
that a1 < n (this is a consequence of Exercise 0.26 on page 12). If a1 is irreducible, then we are
done; otherwise, we can write a1 = a2b2 where a2, b2 ∈N+ and a2 < a1.
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Let a0 = n. As long as ai is not irreducible, we can find ai+1, bi+1 ∈ N+ such that ai =
ai+1bi+1. By Exercise 0.26, ai > ai+1 for each i . Proceeding in this fashion, we generate a strictly
decreasing sequence of elements,

a0 > a1 > a2 > · · · .
By Exercise 0.31, this sequence must be finite. Let am be the final element in the sequence. We
claim that am is irreducible; after all, if it were not irreducible, then we could extend the sequence
further, and we cannot. By substitution,

n = a1b1 = a2 (b2b1) = · · ·= am

�
bm−1 · · · b1

�
.

That is, am is an irreducible integer that divides n.
Case 3: Assume that n ∈ Z\ (N∪{−1}). Let m = −n. Since m ∈N+\{1}, Case 2 implies

that there exists an irreducible integer p such that p | m. By definition, m = q p for some q ∈Z.
By substitution and properties of arithmetic, n =− (q p) = (−q) p, so p | n.

Let’s turn now to the term you might have expected for the definition given above: a prime
number. For reasons that you will learn later, we actually associate a different notion with this
term.

Definition 6.30. Let p ∈N+\{1}. We say that p is prime if for any two
integers a, b

p | ab =⇒ p | a or p | b .

Example 6.31. Let a = 68 and b = 25. It is easy to recognize that 10 divides ab = 1700. However,
10 divides neither a nor b , so 10 is not a prime number.

It is also easy to recognize that 17 divides ab = 1700. Unlike 10, 17 divides one of a or b ; in
fact, it divides a. Were we to look at every possible product ab divisible by 17, we would find
that 17 always divides one of the factors a or b . Thus, 17 is prime.

If the next-to-last sentence in the example, bothers you, good. I’ve claimed something about every
product divisible by 17, but haven’t explained why that is true. That’s cheating! If I’m going to
claim that 17 is prime, I need a better explanation than, “look at every possible product ab .”
After all, there are an infinite number of products possible, and we can’t do that in finite time.
We need a finite criterion.

To this end, let’s return to the notion of an irreducible number. Previously, you were prob-
ably taught that a prime number was what we have here called irreducible. I’ve now given a
definition that seems different.

Could it be that the definitions are distinctions without a difference? Indeed, they are equiva-
lent!

Theorem 6.32. An integer is prime if and only if it is irreducible.

Proof. This proof has two parts. You will show in Exercise 6.34 that if an integer is prime, then
it is irreducible. Here, we show the converse.

Let n ∈ N+\{1} and assume that n is irreducible. To show that n is prime, we must take
arbitrary a, b ∈Z and show that if n | ab , then n | a or n | b . Therefore, let a, b ∈Z and assume
that n | ab . If n | a, then we would be done, so assume that n ∤ a. We must show that n | b .
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By definition, the common factors of n and a are a subset of the factors of n. Since n is
irreducible, its factors are ±1 and ±n. By hypothesis, n ∤ a, so ±n cannot be common factors of
n and a. Thus, the only common factors of n and a are ±1, which means that gcd (n,a) = 1. By
Lemma 6.17, n | b .

We assumed that if n is irreducible and divides ab , then n must divide one of a or b . By
definition, n is prime.

If the two definitions are equivalent, why would we give a different definition? It turns out
that the concepts are equivalent for the integers, but not for other sets; you will see this later in
Sections 8.3 and 10.1.

The following theorem is a cornerstone of Number Theory.

Theorem 6.33 (The Fundamental Theorem of Arithmetic). Let n ∈
N+\{1}. We can factor n into irreducibles; that is, we can write

n = p
α1

1
p
α2

2
· · · pαr

r

where p1, p2, . . . , pr are irreducible and α1,α2, . . . ,αr ∈N. The represen-
tation is unique if we order p1 < p2 < . . .< pn .

Since prime integers are irreducible and vice versa, you can replace “irreducible” by “prime” and
obtain the expression of this theorem found more commonly in number theory textboks. We
use “irreducible” here to lay the groundwork for Definition 10.16 on page 286.

Proof. The proof has two parts: a proof of existence and a proof of uniqueness.
Existence: We proceed by induction on positive integers.
Inductive base: If n = 2, then n is irreducible, and we are finished.
Inductive hypothesis: Assume that the integers 2, 3, . . . , n− 1 have a factorization into irre-

ducibles.
Inductive step: If n is irreducible, then we are finished. Otherwise, n is not irreducible. By

Lemma 6.29, there exists an irreducible integer p1 such that p1 | n. By definition, there exists
q ∈ N+ such that n = q p1. Since p1 6= 1, Exercise 0.44 tells us that q < n. By the inductive
hypothesis, q has a factorization into irreducibles; say

q = p
α1

1
p
α2

2
· · · pαr

r
.

Thus n = q p = p
α1+1
1

p
α2

2
· · · pαr

r ; that is, n factors into irreducibles.
Uniqueness: Here we use the fact that irreducible numbers are also prime (Lemma 6.32). As-

sume that p1 < p2 < · · ·< pr and we can factor n as

n = p
α1

1
p
α2

2
· · · pαr

r
= p

β1

1
p
β2

2
· · · pβr

r
.

Without loss of generality, we may assume that α1 ≤β1. It follows that

p
α2

2
p
α3

3
· · · pαr

r
= p

β1−α1

1
p
β2

2
p
β3

3
· · · pβr

r
.

This equation implies that p
β1−α1

1
divides the expression on the left hand side of the equation.

Since p1 is irreducible, hence prime, β1−α1 6= 0 implies that p1 divides one of p2, p3, . . . , pr .
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Claim: If p is irreducible, then
p

p is not rational.
Proof:

1. Assume that p is irreducible.
2. By way of contradiction, assume that

p
p is rational.

3. By _____, there exist a, b ∈N such that
p

p = a/b .
4. Without loss of generality, we may assume that gcd (a, b ) = 1.

(After all, we could otherwise rewrite
p

p = (a/d )/ (b /d ), where d = gcd (a, b ).)
5. By _____, p = a2/b 2.
6. By _____, p b 2 = a2.
7. By _____, p | a2.
8. By _____, p is prime.
9. By _____, p | a.

10. By _____, a = pq for some q ∈Z.
11. By _____ and _____, p b 2 = (pq)2 = p2q2.
12. By _____, b 2 = pq2.
13. By _____, p | b 2.
14. By _____, p | b .
15. This contradicts step _____. Our assumption that

p
p is rational must have been wrong.

Hence,
p

p is irrational.

Figure 6.2. Material for Exercise 6.36

This contradicts the irreducibility of p2, p3, . . . , pr . Hence β1−α1 = 0. A similar argument
shows thatβi = αi for all i = 1,2, . . . , r ; hence the representation of n as a product of irreducible
integers is unique.

Exercises.

Exercise 6.34. Show that any prime integer p is irreducible.

Exercise 6.35. Show that there are infinitely many irreducible integers.

Exercise 6.36. Fill in each blank of Figure 6.2 with the justification.

Exercise 6.37. Let n ∈N+\{1}. Modify the proof in Figure 6.2 to show that if p is irreducible,
then n
p

p is irrational.

Exercise 6.38. Let n ∈N+\{1}. Modify the proof in Figure 6.2 to show that if there exists an
irreducible integer p such that p | n but p2 ∤ n, then

p
n is irrational.

6.4: Multiplicative clockwork groups

Throughout this section, n ∈N+\{1}, unless otherwise stated.

Multiplication in Zn
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Recall that Zn is an additive group, but not multiplicative. In this section we find a subset of
Zn that we can turn into a multiplicative group, where multiplication is “intuitive”:

[2]5 · [3]5 = [2 ·3]5 = [6]5 = [1]5 .

Remember, though: cosets can have various representations, and different representations may
lead to different results. We have to ask ourselves, is this operation well-defined?

Lemma 6.39. The proposed multiplication of elements of Zn as

[a] [b ] = [ab ]

is well-defined.

This lemma requires no special constraints on n, so it applies even if n ∈Z is arbitrary.

Proof. Let x, y ∈ Zn . Suppose they have representations x = [a] = [c ] and y = [b ] = [d ]. By
definition of the operation,

xy = [a] [b ] = [ab ] and xy = [c ] [d ] = [cd ] .

We need to show that [ab ] = [cd ]. The best tool for this is Lemma 3.86 on page 120, which tells
us that if we can show that ab − cd ∈ nZ, then we’re done.

How can we accomplish this? By assumption, [a] = [c ]; this notation means that a + nZ =
c + nZ. Lemma 3.86 tells us that a− c ∈ nZ. By definition, a− c = nt for some t ∈Z. Similarly,
b − d = nu for some u ∈ Z. We can build ab using these differences by multiplying b (a− c),
but this actually equals ac − b c . We can cancel b c using these differences by adding c (b − d ),
and that will give us precisely what we need:

ab − cd = b (a− c)+ c (b − d )

= b (nt )+ c (nu)

= n (b t + c u) ,

so ab − c b ∈ nZ. Lemma 3.86 again tells us that [ab ] = [c b ] as desired, so the proposed multi-
plication of elements in Zn is well-defined.

Example 6.40. Recall that Z5 = Z/ 〈5〉. The elements of Z5 are cosets; since Z is an additive
group, we were able to define easily an addition on Z5 that turns it into an additive group in its
own right.

Can we also turn it into a multiplicative group? We need to identify an identity, and inverses.
Certainly [0] won’t have a multiplicative inverse, but what about Z5\{[0]}? This generates a
multiplication table that satisfies the properties of an abelian (but non-additive) group:

× 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

That is a group! We’ll call it Z∗
5
.
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In fact, Z∗
5
∼= Z4; they are both the cyclic group of four elements. In Z∗

5
, however, the

nominal operation is multiplication, whereas in Z4 the nominal operation is addition.

You might think that this trick of dropping zero and building a multiplication table always
works, but it doesn’t.

Example 6.41. Recall that Z4 = Z/ 〈4〉 = {[0] , [1] , [2] , [3]}. Consider the set Z4\{[0]} =
{[1] , [2] , [3]}. The multiplication table for this set is not closed because

[2] · [2] = [4] = [0] 6∈Z4\{[0]} .

If you are tempted to think that we made a mistake by excluding zero, think twice: zero has no
inverse. So, we must exclude zero; our mistake seems to have been that we must also exclude 2.
This finally works out:

× 1 3
1 1 3
3 3 1

That is a group! We’ll call it Z∗
4
.

In fact, Z∗
4
∼= Z2; they are both the cyclic group of two elements. In Z∗

4
, however, the

operation is multiplication, whereas in Z2, the operation is addition.

You can determine for yourself that Z2\{[0]} = {[1]} and Z3\{[0]} = {[1] , [2]} are also
multiplicative groups. In this case, as in Z∗

5
, we need remove only 0. For Z6, however, we have

to remove nearly all the elements! We only get a group from Z6\{[0] , [2] , [3] , [4]}= {[1] , [5]}.

Zero divisors

Why do we need to remove more elements of Zn for some values of n than others? Aside
from zero, which clearly has no inverse under the operation specified, the elements we’ve had to
remove are those whose multiplication would re-introduce zero.

That’s strange: didn’t we once learn that the product of two nonzero numbers is nonzero?
Yet here we have non-zero elements whose product is zero! True, but this is a different set than
the one where you learned the zero product property. Here is an instance where Zn superficially
behaves very differently from the integers. This phenomenon is so important that it has a special
name.

Definition 6.42. We say that nonzero elements x, y ∈Zn are zero divi-
sors if xy = [0].

In other words, zero divisors are non-zero elements of Zn that violate the zero product property.
Can we find a criterion to detect this?

Lemma 6.43. Let x ∈Zn be nonzero. The following are equivalent:
(A) x is a zero divisor.
(B) For any representation [a] of x, a and n have a common divisor

besides ±1.

Proof. That (B) implies (A): Let [a] be any representation of x, and assume that a and n share
a common divisor d 6= 1. Use the definition of divisibility to choose t , q ∈ Z\{0} such that
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n = qd and a = t d . Let y = [q ]. Substitution and Lemma 6.39 imply that

xy = [a] [q ] = [aq ] = [(t d ) q ] = t [qd ] = t [n] = [0] .

Since d 6= 1, −n < q < n, so [0] 6= [q ] = y. By definition, x is a zero divisor.
That (A) implies (B): Assume that x is a zero divisor. By definition, we can find nonzero y ∈Zn

such that xy = [0]. Choose a, b ∈Z such that x = [a] and y = [b ]. Since xy = [0], Lemma 3.86
implies that n | (ab −0), so we can find k ∈ Z such that ab = kn. Let p0 be any irreducible
number that divides n. Then p0 also divides kn. Since kn = ab , we see that p0 | ab . Since
p0 is irreducible, hence prime, it must divide one of a or b . If it divides a, then a and n have a
common divisor p0 that is not±1, and we are done; otherwise, it divides b . Use the definition of
divisibility to find n1, b1 ∈Z such that n = n1 p0 and a = b1 p0; it follows that ab1 = kn1. Again,
let p2 be any irreducible number that divides n2; the same logic implies that p2 divides ab2; being
prime, p2 must divide a or b2.

As long as we can find prime divisors of the ni that divide bi but not a, we repeat this process
to find triplets (n2, b2, p2) , (n3, b3, p3) , . . . satisfying for all i the properties

• abi = kni ;
• bi−1 = pi bi and ni−1 = pi ni ; and so, by Exercise 0.44,
•
��ni−1

��> |ni |.
The sequence |n|, |n1|, |n2|, . . . is a decreasing sequence of elements of N; by Exercise (0.31), it is
finite, and so has a least element, call it |nr |. Observe that

b = p1b1 = p1 (p2b2) = · · ·= p1 (p2 (· · · (pr br ))) (25)

and

n = p1n1 = p1 (p2n2) = · · ·= p1 (p2 (· · · (pr nr ))) .

Case 1. If nr = ±1, then n = p1 p2 · · · pr . By substitution into equation 25, b = nbr . By
the definition of divisibility, n | b . By the definition of Zn , y = [b ] = [0]. This contradicts the
hypothesis.

Case 2. If nr 6= {±1}, then Theorem 6.29 tells us that nr has an irreducible divisor pr+1.
Since pr+1 | knr , it must also divide abr . If pr+1 | br , then we can construct nr+1 and br+1 that
satisfy the properties above for i = r + 1. As before,

��nr+1

��< |nr |, which contradicts the choice
of nr . Hence pr+1 ∤ br ; since irreducible integers are prime, pr+1 | a.

Hence n and a share a common divisor that is not ±1.

Meet Z∗
n

We can now make a multiplicative group out of the set of elements of Zn that do not violate
the zero product rule.

Definition 6.44. Define the set Z∗
n

to be the set of nonzero elements of
Zn that are not zero divisors. In set builder notation,

Z∗
n

:= {x ∈Zn\{0} : ∀y ∈Zn\{0} xy 6= 0} .
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By Lemma (6.43), we could also say that Z∗
n

is the set of positive numbers less than n whose only
common factors with n are ±1. This is the usual definition of Z∗

n
in number theory.

We claim that Z∗
n

is a group under multiplication. Keep in mind that, while it is a subset of
Zn , it is not a subgroup, as the operations are different.

Theorem 6.45. Z∗
n

is an abelian group under its multiplication.

Proof. We showed in Lemma 6.39 that the operation is well-defined. We check each requirement
of a group:

(closed) Let x, y ∈Z∗
n
; find a, b ∈Z such that x = [a] and y = [b ]. By definition of Z∗

n
, x and

y are not zero divisors. Assume to the contrary that xy 6∈Z∗
n
; since the operation is

well-defined, either xy = [0] or xy is a zero divisor — either way, gcd (ab , n) 6= 1. Let
d = gcd (ab , n), and p an irreducible integer that divides d (Theorem 6.29). Since n
divides ab and p divides n, p also divides ab . Since irreducible integers are prime,
and p | ab , the definition of prime forces p | a or p | b . Without loss of generality,
p | a.
We have just shown that a and n have a common divisor, namely, p. Lemma 6.43
implies that x = [a] is a zero divisor, but this contradicts the choice of x ∈ Z∗

n
. The

assumption that xy 6∈Z∗
n

must have been wrong; thus, xy ∈Z∗
n
. Since x and y were

arbitrary elements of Z∗
n
, we conclude that Z∗

n
is closed.

(associative) Let x, y, z ∈ Z∗
n
; find a, b , c ∈ Z such that x = [a], y = [b ], and z = [c ]. By

substitution and arithmetic in both Z∗
n

and Z,

x (y z) = [a] [b c ] = [a (b c)] = [(ab ) c ] = [ab ] [c ] = (xy) z.

(identity) We claim that [1] is the identity. Since gcd (1, n) = 1, Lemma 6.43 tells us that
[1] ∈Z∗

n
. Let x ∈Z∗

n
; choose a ∈Z such that x = [a]. By substitution and arithmetic

in both Z∗
n

and Zn ,
x · [1] = [a ·1] = [a] = x.

A similar argument shows that [1] · x = x.
(inverse) Let x ∈ Z∗

n
. By definition of Z∗

n
, x 6= 0 and x is not a zero divisor in Zn . Choose

m ∈ Z such that x = [m]. From Lemma 6.43, m and n have no common divisors
except ±1; hence gcd (m, n) = 1. Bezout’s Identity tells us that there exist a, b ∈ Z

such that am + b n = 1. By arithmetic in both Z∗
n

and Z, as well as Lemma 3.86, we
deduce that

am−1 = n (−b )

∴ am−1 ∈ nZ

∴ [am] = [1]

∴ [a] [m] = [1] .

Let y = [a]; by substitution, the last equation becomes

y x = [1] .
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But is a ∈ Z∗
n
? In fact it is, and the justification is none other than the same Bezout

Identity we used above! We had am + b n = 1. I hope you agree that we can’t find
a positive integer smaller than 1. You will also agree that 1 is the smallest positive
integer d for which we can find w, z ∈Z such that aw + nz = d , if we can find such
w, z ∈Z. In fact, we can: the Bezout Identity above provides a solution, where d = 1,
w = m, and z = b . Guess what: Exercise (6.14)(b) tells us that gcd (a, n) = 1! By
definition, then, y = [a] ∈Z∗

n
, and x has an inverse in Z∗

n
.

(commutative) Let x, y ∈Z∗
n
; find a, b ∈Z such that x = [a] and y = [b ]. Use the definition of

multiplication in Z∗
n

and the commutative property of integer multiplication to see

xy = [ab ] = [ba] = y x.

By removing elements that share non-trivial common divisors with n, we have managed to elim-
inate those elements that do not satisfy the zero-product rule, and would break closure by trying
to re-introduce zero in the multiplication table. We have thereby created a clockwork group for
multiplication, Z∗

n
.

Example 6.46. Consider Z∗
10

. To find its elements, collect the elements of Z10 that are not
zero divisors. Lemma 6.43 tells us that these are the elements whose representations [a] satisfy
gcd (a, n) 6= 1. Thus

Z∗
10

= {[1] , [3] , [7] , [9]} .
Theorem 6.45 tells us that Z∗

10
is a group. Since it has four elements, it must be isomorphic to

either the Klein 4-group, or to Z4. Which is it? In this case, it’s probably easiest to decide the
question with a glance at its multiplication table:

× 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Notice that 3−1 6= 3. In the Klein 4-group, every element is its own inverse, so Z∗
10

cannot be
isomorphic to the Klein 4-group. Instead, it must be isomorphic to Z4.

Exercises.

Exercise 6.47. List the elements of Z∗
7

using their canonical representations, and construct its
multiplication table. Use the table to identify the inverse of each element.

Exercise 6.48. List the elements of Z∗
15

using their canonical representations, and construct its
multiplication table. Use the table to identify the inverse of each element.

6.5: Euler’s Theorem
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In Section 6.4 we defined the group Z∗
n

for all n ∈N+ where n > 1. This group satisfies an
important property called Euler’s Theorem, a result about Euler’s ϕ-function.

Euler’s Theorem

Definition 6.49. Euler’s ϕ-function is ϕ (n) =
���Z∗n

���.

In other words, Euler’s ϕ-function counts the number of positive integers smaller than n that
share no common factors with it.

Theorem 6.50 (Euler’s Theorem). For all x ∈Z∗
n
, xϕ(n) = 1.

Proofs of Euler’s Theorem based only on Number Theory are not very easy. They’re not partic-
ularly difficult, either; they just aren’t easy. See for example the proof on pages 18–19 of [Lau03].

On the other hand, a proof of Euler’s Theorem using group theory is short and straightfor-
ward.

Proof. Let x ∈Z∗
n
. By Exercise 3.48, x|Z∗n| = 1. By substitution, xϕ(n) = 1.

Corollary 6.51. For all x ∈Z∗
n
, x−1 = xϕ(n)−1.

Proof. You do it! See Exercise 6.60.

Corollary 6.51 says that we can compute x−1 for any x ∈
���Z∗n

��� “relatively easily;” all we need to

know is ϕ (n).

Computing ϕ (n)

The natural followup question is, what is ϕ (n)? For an irreducible integer p, this is easy: the
only common factors between p and any positive integer less than p are ±1; there are p − 1 of
these, so ϕ (p) = p−1.

For reducible integers, it is not so easy. Checking a few examples, no clear pattern emerges:
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15���Z∗n
��� 1 2 2 4 2 6 4 6 4 10 4 12 6 8

Computing ϕ (n) turns out to be quite hard. It is a major research topic in number theory, and its
difficulty makes the RSA algorithm secure (see Section 6.6). One approach, of course, is to factor
n and compute all the positive integers that do not share any common factors. For example,

28 = 22 ·7,

so to compute ϕ (28), we could look at all the positive integers smaller than 28 that do not have 2
or 7 as factors. However, this requires us to know first that 2 and 7 are factors of 28, and no one
knows a very efficient way to do this.

Another way would be to compute ϕ (m) for each factor m of n, then recombine them. But,
how? Lemma 6.52 gives us a first step.
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Lemma 6.52. Let a, b , n ∈ N+. If n = ab and gcd (a, b ) = 1, then
ϕ (n) = ϕ (a)ϕ (b ).

Example 6.53. In the table above, we have ϕ (15) = 8. Notice that this satisfies

ϕ (15) = ϕ (5×3) = ϕ (5)ϕ (3) = 4×2 = 8.

Proof. Assume n = ab . Recall from Exercise 2.26 on page 65 that Z∗
a
×Z∗

b
is a group; the size

of this group is
���Z∗a
���×
���Z∗

b

��� = ϕ (a)ϕ (b ). We claim that Z∗
n
∼= Z∗

a
×Z∗

b
. If true, this would

prove the lemma, since

ϕ (n) =
���Z∗n

���=
���Z∗a×Z∗

b

���=
���Z∗a
���×
���Z∗b

���= ϕ (a)ϕ (b ) .

To show that they are indeed isomorphic, let f : Z∗
n
→Z∗

a
×Z∗

b
by f

�
[x ]n

�
=
�
[x ]a , [x ]b

�
.

First we show that f is a homomorphism: Let y, z ∈Z∗
n
; then

f
�
[y ]n [z ]n

�
= f

�
[y z ]n

�
(arithm. in Z∗

n
)

=
�
[y z ]a , [y z ]b

�
(def. of f )

=
�
[y ]a [z ]a , [y ]b [z ]b

�
(arithm. in Z∗

a
,Z∗

b
)

=
�
[y ]a , [y ]b

��
[z ]a , [z ]b

�
(arithm. in Z∗

a
×Z∗

b
)

= f
�
[y ]n

�
f
�
[z ]n

�
. (def. of f )

It remains to show that f is one-to-one and onto. It is both surprising and delightful that the
Chinese Remainder Theorem will do most of the work for us. To show that f is onto, let�
[y ]a , [z ]b

� ∈ Z∗
a
×Z∗

b
. We need to find x ∈ Z such that f

�
[x ]n

�
=
�
[y ]a , [z ]b

�
. Consider the

system of linear congruences

[x ] = [y ] in Za ;

[x ] = [z ] in Zb .

The Chinese Remainder Theorem tells us not only that such x exists in Zn , but that x is unique
in Zn .

We are not quite done; we have shown that a solution [x ] exists in Zn , but what we really
need is that [x ] ∈ Z∗

n
. To see that [x ] ∈ Z∗

n
indeed, let d be any common divisor of x and n.

By way of contradiction, assume d 6= ±1; by Theorem 6.29, we can find an irreducible divisor
r of d ; by Exercise 0.46 on page 18, r | n and r | x. Recall that n = ab , so r | ab . Since r is
irreducible, hence prime, r | a or r | b . Without loss of generality, we may assume that r | a.
Recall that [x ]a = [y ]a ; Lemma 3.86 on page 120 tells us that a | (x− y). Let w ∈ Z such that
wa = x − y. Rewrite this equation as x −wa = y. Recall that r | x and r | a; we can factor r
from the left-hand side of x−wa = y to see that r | y.

What have we done? We showed that if x and n have a common factor besides±1, then y and
a also have a common, irreducible factor r . The definition of irreducible implies that r 6= 1.

Do you see the contradiction? We originally chose [y ] ∈ Z∗
a
. By definition, [y ] cannot be

a zero divisor in Za , so by Lemma 6.43, gcd (y,a) = 1. But the definition of greatest common
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divisor means that
gcd (y,a)≥ r > 1 = gcd (y,a) ,

a contradiction! Our assumption that d 6= 1 must have been false; we conclude that the only
common divisors of x and n are ±1. Hence, x ∈Z∗

n
.

Fast exponentiation

Corollary 6.51 gives us an “easy” way to compute the inverse of any x ∈ Z∗
n
. However, it

can take a long time to compute xϕ(n), so let’s take a moment to explain how we can compute
canonical forms of exponents in this group more quickly. We will take two steps towards a fast
exponentiation in Z∗

n
.

Lemma 6.54. For any n ∈N+, [xa ] = [x ]a in Z∗
n
.

Proof. You do it! See Exercise 6.62 on the following page.

Example 6.55. In Z∗
15

we can determine easily that
�

420
�

= [4]20 =
�
[4]2
�10

= [16]10 = [1]10 =

[1]. Notice that this is a lot faster than computing 420 = 1099511627776 and dividing to find the
canonical form.

Do you see what we did? The trick is to break the exponent down into “manageable” powers.
How exactly can we do that?

Theorem 6.56 (Fast Exponentiation). Let a ∈ N and x ∈ Z. We can
compute xa in the following way:

1. Let b be the largest integer such that 2b ≤ a.
2. Let q0, q1, . . . , qb be the bits of the binary representation of a.
3. Let y = 1, z = x and i = 0.
4. Repeat the following until i > b :

(a) If qi 6= 0 then replace y with the product of y and z.
(b) Replace z with z2.
(c) Replace i with i + 1.

This ends with xa = y.

Theorem 6.56 effectively computes the binary representation of a and uses this to square x re-
peatedly, multiplying the result only by those powers that matter for the representation. Its
algorithm is especially effective on computers, whose mathematics is based on binary arithmetic.
Combining it with Lemma 6.54 gives an added bonus in Z∗

n
, which is what we care about most.

Example 6.57. Since 10 = 23 + 21, we can compute
�

410
�

7
following the algorithm of Theo-

rem 6.56:
1. We have q3 = 1, q2 = 0, q1 = 1, q0 = 0.
2. Let y = 1, z = 4 and i = 0.
3. When i = 0:

(a) We do not change y because q0 = 0.
(b) Put z = 42 = 16 = 2. (We’re in Z∗

7
, remember.)
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(c) Put i = 1.
4. When i = 1:

(a) Put y = 1 ·2 = 2.
(b) Put z = 22 = 4.
(c) Put i = 2.

5. When i = 2:
(a) We do not change y because q2 = 0.
(b) Put z = 42 = 16 = 2.
(c) Put i = 3.

6. When i = 3:
(a) Put y = 2 ·2 = 4.
(b) Put z = 42 = 2.
(c) Put i = 4.

We conclude that
�

410
�

7
= [4]7. Hand computation the long way, or a half-decent calculator,

will verify this.

Proof of Fast Exponentiation.
Termination: Termination is due to the fact that b is a finite number, and the algorithm assigns

to i the values 0,1, . . . , b + 1 in succession, stopping when i > b .
Correctness: First, the theorem claims that qb , . . . , q0 are the bits of the binary representation

of xa , but do we actually know that the binary representation of xa has b +1 bits? By hypothesis,
b is the largest integer such that 2b ≤ a; if we need one more bit, then the definition of binary
representation means that 2b+1 ≤ xa , which contradicts the choice of b . Thus, qb , . . . , q0 are in-
deed the bits of the binary representation of xa . By definition, qi ∈ {0,1} for each i = 0,1, . . . , b .

The algorithm multiplies z = x2i
to y only if qi 6= 0, so that the algorithm computes

xqb 2b +qb−12b−1+···+q121+q020
,

which is precisely the binary representation of xa .

Exercises.

Exercise 6.58. Compute 328 in Z using fast exponentiation. Show each step.

Exercise 6.59. Compute 2428 in Z∗
7

using fast exponentiation. Show each step.

Exercise 6.60. Prove that for all x ∈Z∗
n
, xϕ(n)−1 = x−1.

Exercise 6.61. Prove that for all x ∈N+, if x and n have no common divisors, then n |
�

xϕ(n)−1
�

.

Exercise 6.62. Prove that for any n ∈N+, [xa ] = [x ]a in Z∗
n
.

6.6: RSA Encryption
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From the viewpoint of practical applications, some of the most important results of group
theory and number theory enable security in internet commerce. We described this problem on
page 1: when you buy something online, you submit some private information, at least a credit
card or bank account number, and usually more. There is no guarantee that, as this information
passes through the internet, it will pass only through servers run by disinterested persons. It is
quite possible for the information to pass through a computer run by at least one ill-intentioned
hacker, and possibly even organized crime. You probably don’t want criminals looking at your
credit card number.

Given the inherent insecurity of the internet, the solution is to disguise private information
so that snoopers cannot understand it. A common method in use today is the RSA encryption
algorithm.17 First we describe the algorithms for encryption and decryption; afterwards we ex-
plain the ideas behind each stage, illustrating with an example; finally we prove that it succesfully
encrypts and decrypts messages.

Description and example

Theorem 6.63 (RSA algorithm). Let M be a list of positive integers. Let
p, q be two irreducible integers such that:
• gcd (p, q) = 1; and
• (p−1) (q−1)>max{m : m ∈M}.

Let N = pq , and let e ∈Z∗
ϕ(N )

, where ϕ is the Euler phi-function. If we

apply the following algorithm to M :
1. Let e ∈Z∗

ϕ(N )
.

2. Let C be a list of positive integers found by computing the canon-
ical representation of [me ]N for each m ∈M .

and subsequently apply the following algorithm to C :
1. Let d = e−1 ∈Z∗

ϕ(N )
.

2. Let D be a list of positive integers found by computing the canon-

ical representation of
�

c d
�

N
for each c ∈C .

then D = M .

Example 6.64. Consider the text message
ALGEBRA RULZ.

We convert the letters to integers in the fashion that you might expect: A=1, B=2, . . . , Z=26.
We also assign 0 to the space. This allows us to encode the message as,

M = (1,12,7,5,2,18,1,0,18,21,12,26) .

Let p = 5 and q = 11; then N = 55. Let e = 3. Is e ∈Z∗
ϕ(N )

? We know that

gcd (3,ϕ (N )) = gcd (3,ϕ (5) ·ϕ (11)) = gcd (3,4×10)

= gcd (3,40) = 1;

17RSA stands for Rivest (of MIT), Shamir (of the Weizmann Institute in Israel), and Adleman (of USC).



6. RSA Encryption 204

Definition 6.44 and Lemma 6.43 show that, yes, e ∈Z∗
ϕ(n)

.

Encrypt by computing me for each m ∈M :

C =
�

13, 123, 73, 53, 23, 183, 13, 03, 183, 213, 123, 263
�

= (1,23,13,15,8,2,1,0,2,21,23,31) .

A snooper who intercepts C and tries to read it as a plain message would have several problems
trying to read it. First, it contains 31, a number that does not fall in the range 0 and 26. If he gave
that number the symbol _, he would see

AWMOHBA BUW_

which is not an obvious encryption of ALGEBRA RULZ.

The inverse of 3 ∈Z∗
ϕ(N )

is d = 27. (We could compute this using Corollary 6.51, but it’s not

hard to see that 3×27 = 81 and [81]40 = [1]40.) Decrypt by computing c d for each c ∈C :

D =
�

127, 2327, 1327, 1527, 827, 227, 127, 027, 227, 2127, 2327, 3127
�

= (1,12,7,5,2,18,1,0,18,21,12,26) .

Trying to read this as a plain message, we have

ALGEBRA RULZ.

Doesn’t it?

Encrypting messages letter-by-letter is absolutely unacceptable for security. For a stronger ap-
proach, letters should be grouped together and converted to integers. For example, the first four
letters of the secret message above are

ALGE

and we can convert this to a number using any of several methods; for example

ALGE → 1×263 + 12×262 + 7×26 + 5 = 25,785.

In order to encrypt this, we would need larger values for p and q . This is too burdensome to
compute by hand, so you want a computer to help. We give an example in the exercises.

RSA is an example of a public-key cryptosystem. That means that person A broadcasts to the
world, “Anyone who wants to send me a secret message can use the RSA algorithm with values
N = . . . and e = . . ..” So a snooper knows the method, the modulus, N , and the encryption key,
e !

If the snooper knows the method, N , and e , how can RSA be safe? To decrypt, the snooper
needs to compute d = e−1 ∈Z∗

ϕ(N )
. Corollary 6.51 tells us that computing d is merely a matter

of computing eϕ(N )−1, which is easy if you know ϕ (N ). The snooper also knows that N = pq ,
where p and q are prime. So, decryption should be a simple matter of factoring N = pq and
applying Lemma 6.52 to obtain ϕ (N ) = (p−1) (q−1). Right?

Well, yes and no. Typical implementations choose very large numbers for p and q , many
digits long, and there is no known method of factoring a large integer “quickly” — even when you
know that it factors as the product of two primes! To make things worse, there is a careful science
to choosing p and q in such a way that makes it hard to determine their values from N and e .

As it is too time-consuming to perform even easy examples by hand, a computer algebra
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system becomes necessary to work with examples. At the end of this section, after the exercises,
we list programs that will help you perform these computations in the Sage and Maple computer
algebra systems. The programs are:
• s❝r❛♠❜❧❡, which accepts as input a plaintext message like “ALGEBRA RULZ” and turns

it into a list of integers;
• ❞❡s❝r❛♠❜❧❡, which accepts as input a list of integers and turns it into plaintext;
• ❡♥❴❞❡❴❝r②♣t, which encrypts or decrypts a message, depending on whether you feed it the

encryption or decryption exponent.
Examples of usage:
• in Sage:
◦ to determine the list of integers M , type ▼ ❂ s❝r❛♠❜❧❡✭✧❆▲●❊❇❘❆ ❘❯▲❩✧✮

◦ to encrypt M , type
❈ ❂ ❡♥❴❞❡❴❝r②♣t✭▼✱✸✱✺✺✮

◦ to decrypt C , type
❡♥❴❞❡❴❝r②♣t✭❈✱✷✼✱✺✺✮

• in Maple:
◦ to determine the list of integers M , type ▼ ✿❂ s❝r❛♠❜❧❡✭✧❆▲●❊❇❘❆ ❘❯▲❩✧✮❀

◦ to encrypt M , type
❈ ✿❂ ❡♥❴❞❡❴❝r②♣t✭▼✱✸✱✺✺✮❀

◦ to decrypt C , type
❡♥❴❞❡❴❝r②♣t✭❈✱✷✼✱✺✺✮❀

Now, why does the RSA algorithm work?

Theory

Before reading the proof, let’s reexamine the theorem.

Theorem (RSA algorithm). Let M be a list of positive integers. Let p, q
be two irreducible integers such that:
• gcd (p, q) = 1; and
• (p−1) (q−1)>max{m : m ∈M}.

Let N = pq , and let e ∈Z∗
ϕ(N )

, where ϕ is the Euler phi-function. If we

apply the following algorithm to M :
1. Let e ∈Z∗

ϕ(N )
.

2. Let C be a list of positive integers found by computing the canon-
ical representation of [me ]N for each m ∈M .

and subsequently apply the following algorithm to C :
1. Let d = e−1 ∈Z∗

ϕ(N )
.

2. Let D be a list of positive integers found by computing the canon-

ical representation of
�

c d
�

N
for each c ∈C .

then D = M .

Proof of the RSA algorithm. Let i ∈ {1,2, . . . , |C |}. Let c ∈C . By definition of C , c = me ∈Z∗
N

for some m ∈M . We need to show that c d = (me)d = m.
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Since [e ] ∈ Z∗
ϕ(N )

, which is a group under multiplication, we know that it has an inverse

element, [d ]. That is, [d e ] = [d ] [e ] = [1]. By Lemma 3.86, ϕ (N ) | (1− d e), so we can find
b ∈Z such that b ·ϕ (N ) = 1− d e , or d e = 1− bϕ (N ).

We claim that [m]d e = [m] ∈ZN . To do this, we will show two subclaims about the behavior
of the exponentiation in Z p and Zq .

Claim 1. [m]d e = [m] ∈Z p .

If p | m, then [m] = [0] ∈Z p . Without loss of generality, d , e ∈N+, so

[m]d e = [0]d e = [0] = [m] ∈Z p .

Otherwise, p ∤ m. Recall that p is irreducible, so gcd (m, p) = 1. By Euler’s Theorem,

[m]ϕ(p) = [1] ∈Z∗
p
.

Recall that ϕ (N ) = ϕ (p)ϕ (q); thus,

[m]ϕ(N ) = [m]ϕ(p)ϕ(q) =
�
[m]ϕ(p)

�ϕ(q)
= [1] .

Thus, in Z∗
p
,

[m]d e = [m]1−bϕ(N ) = [m] · [m]−bϕ(N )

= [m]
�
[m]ϕ(N )

�−b
= [m] · [1]−b = [m] .

As p is irreducible, Any element of Z p is either zero or in Z∗
p
. We have considered both cases;

hence,
[m]d e = [m] ∈Z p .

Claim 2. [m]1−bϕ(N ) = [m] ∈Zq .

The argument is similar to that of the first claim.
Since [m]d e = [m] in both Z p and Zq , properties of the quotient groups Z p and Zq tell us

that
�

md e −m
�

= [0] in both Z p and Zq as well. In other words, both p and q divide md e −m.

You will show in Exercise 6.67 that this implies that N divides md e −m.
From the fact that N divides md e −m, we have [m]ed

N
= [m]N . Thus, computing (me)d in

Zϕ(N ) gives us m.

Exercises.

Exercise 6.65. The phrase

[574,1,144,1060,1490,0,32,1001,574,243,533]

is the encryption of a message using the RSA algorithm with the numbers N = 1535 and e = 5.
You will decrypt this message.
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(a) Factor N .
(b) Compute ϕ (N ).
(c) Find the appropriate decryption exponent.
(d) Decrypt the message.

Exercise 6.66. In this exercise, we encrypt a phrase using more than one letter in a number.
(a) Rewrite the phrase GOLDEN EAGLES as a list M of three positive integers, each of which

combines four consecutive letters of the phrase.
(b) Find two prime numbers whose product is larger than the largest number you would get

from four letters.
(c) Use those two prime numbers to compute an appropriate N and e to encrypt M using RSA.
(d) Find an appropriate d that will decrypt M using RSA.
(e) Decrypt the message to verify that you did this correctly.

Exercise 6.67. Let m, p, q ∈Z and suppose that gcd (p, q) = 1.
(a) Show that if p | m and q | m, then pq | m.
(b) Explain why this completes the proof of the RSA algorithm; that is, since p and q both

divide md e −m, then so does N .
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Sage programs

The following programs can be used in Sage to help make the amount of computation in-
volved in the exercises less burdensome:

❞❡❢ s❝r❛♠❜❧❡✭s✮✿

r❡s✉❧t ❂ ❬❪

❢♦r ❡❛❝❤ ✐♥ s✿

✐❢ ♦r❞✭❡❛❝❤✮ ❃❂ ♦r❞✭✧❆✧✮ ❭

❛♥❞ ♦r❞✭❡❛❝❤✮ ❁❂ ♦r❞✭✧❩✧✮✿

r❡s✉❧t✳❛♣♣❡♥❞✭♦r❞✭❡❛❝❤✮✲♦r❞✭✧❆✧✮✰✶✮

❡❧s❡✿

r❡s✉❧t✳❛♣♣❡♥❞✭✵✮

r❡t✉r♥ r❡s✉❧t

❞❡❢ ❞❡s❝r❛♠❜❧❡✭▼✮✿

r❡s✉❧t ❂ ✧✧

❢♦r ❡❛❝❤ ✐♥ ▼✿

✐❢ ❡❛❝❤ ❂❂ ✵✿

r❡s✉❧t ❂ r❡s✉❧t ✰ ✧ ✧

❡❧s❡✿

r❡s✉❧t ❂ r❡s✉❧t ✰ ❝❤r✭❡❛❝❤✰♦r❞✭✧❆✧✮ ✲ ✶✮

r❡t✉r♥ r❡s✉❧t

❞❡❢ ❡♥❴❞❡❴❝r②♣t✭▼✱♣✱◆✮✿

r❡s✉❧t ❂ ❬❪

❢♦r ❡❛❝❤ ✐♥ ▼✿

r❡s✉❧t✳❛♣♣❡♥❞✭✭❡❛❝❤❫♣✮✳♠♦❞✭◆✮✮

r❡t✉r♥ r❡s✉❧t
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Maple programs

The following programs can be used in Maple to help make the amount of computation
involved in the exercises less burdensome:

s❝r❛♠❜❧❡ ✿❂ ♣r♦❝✭s✮

❧♦❝❛❧ r❡s✉❧t✱ ❡❛❝❤✱ ♦r❞❀

♦r❞ ✿❂ ❙tr✐♥❣❚♦♦❧s❬❖r❞❪❀

r❡s✉❧t ✿❂ ❬❪❀

❢♦r ❡❛❝❤ ✐♥ s ❞♦

✐❢ ♦r❞✭❡❛❝❤✮ ❃❂ ♦r❞✭✧❆✧✮

❛♥❞ ♦r❞✭❡❛❝❤✮ ❁❂ ♦r❞✭✧❩✧✮ t❤❡♥

r❡s✉❧t ✿❂ ❬♦♣✭r❡s✉❧t✮✱

♦r❞✭❡❛❝❤✮ ✲ ♦r❞✭✧❆✧✮ ✰ ✶❪❀

❡❧s❡

r❡s✉❧t ✿❂ ❬♦♣✭r❡s✉❧t✮✱ ✵❪❀

❡♥❞ ✐❢❀

❡♥❞ ❞♦❀

r❡t✉r♥ r❡s✉❧t❀

❡♥❞ ♣r♦❝✿

❞❡s❝r❛♠❜❧❡ ✿❂ ♣r♦❝✭▼✮

❧♦❝❛❧ r❡s✉❧t✱ ❡❛❝❤✱ ❝❤❛r✱ ♦r❞❀

❝❤❛r ✿❂ ❙tr✐♥❣❚♦♦❧s❬❈❤❛r❪❀

♦r❞ ✿❂ ❙tr✐♥❣❚♦♦❧s❬❖r❞❪❀

r❡s✉❧t ✿❂ ✧✧❀

❢♦r ❡❛❝❤ ✐♥ ▼ ❞♦

✐❢ ❡❛❝❤ ❂ ✵ t❤❡♥
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❡❧s❡
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❡♥❞ ✐❢❀

❡♥❞ ❞♦❀

r❡t✉r♥ r❡s✉❧t❀

❡♥❞ ♣r♦❝✿
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❧♦❝❛❧ r❡s✉❧t✱ ❡❛❝❤❀

r❡s✉❧t ✿❂ ❬❪❀

❢♦r ❡❛❝❤ ✐♥ ▼ ❞♦

r❡s✉❧t ✿❂ ❬♦♣✭r❡s✉❧t✮✱ ✭❡❛❝❤❫♣✮ ♠♦❞ ◆❪❀
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r❡t✉r♥ r❡s✉❧t❀

❡♥❞ ♣r♦❝✿
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Chapter 7:
Rings

While monoids are defined by one operation, groups are arguably defined by two: addition
and subtraction, for example, or multiplication and division. The second operation is so closely
tied to the first that we consider groups to have only one operation, for which (unlike monoids)
every element has an inverse.

Of course, a set can be closed under more than one operation; for example, Z is closed under
both addition and multiplication. As with subtraction, it is possible to define the multiplication
of integers in terms of addition, just as we did with groups. However, this is not possible for
all sets where an addition and a multiplication are both defined. Think of the multiplication of
polynomials; how would you define (x + 1) (x−1) as repeated addition of x−1, a total of x + 1
times? Does that even make sense? This motivates the study of a structure that incorporates
common properties of two operations, which are related as loosely as possible.

Section 7.1 of this chapter introduces us to this structure, called a ring. A ring has two opera-
tions, “addition” and “multiplication”. As you should expect from your experience with groups,
what we call “addition” and “multiplication” may look nothing at all like the usual addition and
multiplication of numbers. In fact, while the multiplication of integers has a natural definition
from addition, multiplication in a ring may have absolutely nothing to do with addition, with
one exception: the distributive property must still hold.

The rest of the chapter examines special kinds of rings. In Section 7.2 we introduce special
kinds of rings that model useful properties of Z and Q. In Section 7.3 we introduce rings of
polynomials. The Euclidean algorithm, which proved so important in chapter 6, serves as the
model for a special kind of ring described in Section 7.4.

A concept related to monoids is useful for definitions related to rings.

Definition 7.1. Let S be a set, and ◦ an operation. We say that (S,◦) is
a semigroup if its operation is closed and associative, although it might
not have an identity element.

Notice that
• a monoid is a semigroup,
• a semigroup is almost a monoid, but lacks an identity, and
• the “absorbing subsets” of Section 1.4 are “subsemigroups” of monoids.

A “semigroup” is “half a group”, in that it satisfies half of the properties of a group. We will take
this up further in Chapter 8.

7.1: A structure for addition and multiplication

What sort of properties do we associate with both addition and multiplication? We typically
associate the properties of addition with an abelian group, and the properties of multiplication
with a monoid, although it really depends on the set. The most basic properties of multiplication
are encapsulated by the notion of a semigroup, so we’ll start from there, and add more as needed.
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Definition 7.2. Let R be a set with at least one element, and + and × two
binary operations on that set. We say that (R,+,×) is a ring if it satisfies
the following properties:
(R1) (R,+) is an abelian group.
(R2) (R,×) is a semigroup.
(R4) R satisfies the distributive property of addition over multiplica-

tion: that is,
for all a, b , c ∈ R, a (b + c) = ab + ac and (a + b ) c = ac + b c .

Notation 7.3. As with groups, we usually refer simply to the ring as R, rather than (R,+,×).
Since (R,+) is an abelian group, the ring has an additive identity, 0. We sometimes write 0R to
emphasize that it is the additive identity of R.

Notice the following:
• While addition is commutative on account of (R1), multiplication need not be.
• There is no requirement that a multiplicative identity exists.
• There is no requirement that multiplicative inverses exist.
• There is no guarantee (yet) that the additive identity interacts with multiplication according

to properties you have seen before. In particular, there is no guarantee that
◦ the zero-product rule holds; or even that
◦ 0R · a = 0R for any a ∈ R.

Example 7.4. Let R = Rm×m for some positive integer m. It turns out that R is a ring under
the usual addition and multiplication of matrices. After all, Example 1.8 shows that the matrices
satisfy the properties of a monoid under multiplication, and Example 2.4 shows that they are a
group under addition, though most of the work was done in Section 0.3. The only part missing
is distribution, and while that isn’t hard, it is somewhat tedious, so we defer to your background
in linear algebra.

However, we do want to point out something that should make you at least a little uncom-
fortable. Let

A =

�
1 0
0 0

�
and B =

�
0 0
0 1

�
.

Routine computation shows that

AB =

�
0 0
0 0

�
,

or in other words, AB = 0. This is true even though A,B 6= 0! Hence
We can never assume in any ring R the zero product property that

∀a, b ∈ R ab = 0 =⇒ a = 0 or b = 0.

Example 7.4 shouldn’t surprise you that much; first, you’ve seen it in linear algebra, and second,
you met zero divisors in Section 6.4. In fact, we will later say that A and B are zero divisors.

Likewise, the sets Z, Q, R, C, with which you are long familiar, are also rings. We omit the
details, but you should think about them a little bit, and ask your instructor if some part of it
isn’t clear. You will study other example rings in the exercises. For now, we prove a familiar
property of the additive identity.
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Proposition 7.5. For all r ∈ R,

r ·0R = 0R · r = 0R.

If you see that and ask, “Isn’t that obvious?” then you really need to read the proof. While you
read it, ask yourself, “What properties of a ring make this statement true?” The answer to that
question will indicate your hidden assumptions. Try to prove the proposition without those
properties, and you will see why it is not in fact obvious.

Proof. Let r ∈ R. Since (R,+) is an abelian group, we know that 0R + 0R = 0R. By substi-
tution, r (0R + 0R) = r · 0R. By distribution, r · 0R + r · 0R = r · 0R. Since (R,+) is an abelian
group, r ·0R has an additive inverse; call it s . Applying the properties of a ring, we have

s +(r ·0R + r ·0R) = s + r ·0R (substitution)

(s + r ·0R)+ r ·0R = s + r ·0R (associative)

0R + r ·0R = 0R (additive inverse)

r ·0R = 0R. (additive identity)

A similar argument shows that 0R · r = 0R.

We now turn our attention to two properties that, while pleasant, are not necessary for a ring.

Definition 7.6. Let R be a ring. If R has a multiplicative identity 1R such
that

r ·1R = 1R · r = r ∀r ∈ R,

we say that R is a ring with unity. (Another name for the multiplicative
identity is unity.)

If R is a ring and the multiplicative operation is commutative, so that

r s = s r ∀r ∈ R,

then we say that R is a commutative ring.

A ring with unity is
• an abelian group under multiplication, and
• a (possibly commutative) monoid under addition.

Example 7.7. The set of matrices Rm×m is a ring with unity, where Im is the multiplicative
identity. However, it is not a commutative ring.

You will show in Exercise 7.13 that 2Z is a ring. It is a commutative ring, but not a ring with
unity.

For a commutative ring with unity, consider Z.

Remark 7.8. While non-commutative rings are interesting, this course focuses on commutative
rings.

Unless we state otherwise,
all rings we study in this course are commutative.
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As with groups, we can characterize all rings with only two elements.

Example 7.9. Let R be a ring with only two elements. There are two possible structures for R.
Why? Since (R,+) is an abelian group, by Example 2.9 on page 60 the addition table of R has

the form
+ 0R a
0R 0R a
a a 0R

.

By Proposition 7.5, we know that the multiplication table must have the form
× 0R a
0R 0R 0R

a 0R ?
where a · a is undetermined. Nothing in the properties of a ring tell us whether a · a = 0R or
a · a = a; in fact, rings exist with both properties:
• if R = Z2 (see Exercise 7.14 to see that this is a ring), then a = [1] and a · a = a; but
• if

R =

��
0 0
0 0

�
, a =

�
0 1
0 0

��
( (Z2)

2×2 ,

then a · a = 0 6= a.

Just as groups have subgroups, rings have subrings:

Definition 7.10. Let R be a ring, and S a nonempty subset of R. If S is
also a ring under the same operations as R, then S is a subring of R.

Example 7.11. Recall from Exercise 7.13 that 2Z is a ring; since 2Z(Z, it is a subring of Z.

To show that a subset of a ring is a subring, do we have to show all four ring properties? No: as
with subgroups, we can simplify the characterization to two properties:

Theorem 7.12 (The Subring Theorem). Let R be a ring and S be a
nonempty subset of R. The following are equivalent:
(A) S is a subring of R.
(B) S is closed under subtraction and multiplication. That is, for all

a, b ∈ S
(S1) a− b ∈ S, and
(S2) ab ∈ S.

Proof. That (A) implies (B) is clear, so assume (B). From (B) we know that for any a, b ∈ S we
have (S1) and (S2). As (S1) is essentially the Subgroup Theorem, S is an additive subgroup of the
additive group R. On the other hand, (S2) only tells us that S satisfies property (R2) of a ring,
but any elements of S are elements of R, so the associative and distributive properties follow from
inheritance. Thus S is a ring in its own right, which makes it a subring of R.

Exercises

Exercise 7.13.
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(a) Show that 2Z is a ring under the usual addition and multiplication of integers.
(b) Show that for any n ∈ Z, nZ is a ring under the usual addition and multiplication of

integers.

Exercise 7.14. Recall the definition of multiplication for Zn from Section 6.4: for [a] , [b ] ∈Zn ,
[a] [b ] = [ab ].
(a) Show that Z2 is a ring under the addition and multiplication of cosets define in Section 3.5.
(b) Show that for any n ∈N+ where n > 1, Zn is a ring under the addition and multiplication

of cosets defined in Section 3.5.
(c) Show that there exist a, b , n such that [a]n [bn ] = [0]n but [a]n , [b ]n 6= [0]n .

Exercise 7.15. Let R be a ring.
(a) Show that for all r , s ∈ R, (−r ) s = r (−s) =− (r s).
(b) Suppose that R has unity. Show that −r =−1R · r for all r ∈ R.

Exercise 7.16. Let R be a ring with unity. Show that 1R = 0R if and only if R has only one
element.

Exercise 7.17. Consider the two possible ring structures from Example 7.9. Show that if a ring
R has only two elements, one of which is unity, then it can have only one of the structures.

Exercise 7.18. Let R = {T , F } with the additive operation ⊕ (Boolean xor) where

F ⊕ F = F

F ⊕T = T

T ⊕ F = T

T ⊕T = F

and a multiplicative operation ∧ (Boolean and) where

F ∧ F = F

F ∧T = F

T ∧ F = F

T ∧T = T .

(see also Exercises 2.20 and 2.21 on page 64). Is (R,⊕,∧) a ring? If it is a ring, then
(a) what is the zero element?
(b) does it have a unity element? if so, what is it?
(c) is it commutative?

Exercise 7.19. Let R and S be rings, with R⊆ S and α ∈ S. The extension of R by α is

R [α] = {rnα
n + · · ·+ r1α+ r0 : n ∈N, r0, r1, . . . , rn ∈ R} .

(a) Show that R [α] is also a ring.
(b) Suppose R = Z, S = C, and α=

p
−5.
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(i) Explain why every element of R [α] can be written in the form a + bα.
(ii) Show that 6 can be factored two distinct ways in R [α]: one is the ordinary factoriza-

tion in R = Z, while the other exploits the difference of squares with α=
p
−5.

Exercise 7.20. In Exercise 7.14, you showed that Zn is a ring. A nonzero element r of a ring R is
idempotent if we can find n ∈N+ such that r n = 0R.
(a) Identify the idempotent elements, if there are any, of Zn for n = 2,3,4,5,6. If not, state

that.
(b) Do you think there is a relationship between n and the idempotent elements of Zn? If so,

state it.

7.2: Integral Domains and Fields

In this section, R is always a commutative ring with unity.
Example 7.4 illustrates an important point: not all rings satisfy properties that we might like

to take for granted. Not only does the ring of matrices illustrate that the zero product property is
not satisfied for all rings, it also demonstrates that multiplicative inverses do not necessarily exist
in all rings. Both multiplicative inverses and the zero product property are very useful; we use
them routinely to solve equations! Rings with these properties deserve special attention.

Two convenient kinds of rings

We first classify rings that satisfy the zero product property.

Definition 7.21. If the elements of R satisfy the zero product property,
then we call R an integral domain.

We use the word “integral” here because R is like the ring of integers, Z. We do not mean that
you can compute the integrals of calculus.

Whenever R is not an integral domain, we can find two elements of R that do not satisfy the
zero product property; that is, we can find nonzero a, b ∈ R such that ab = 0R. Recall that we
used a special term for this phenomenon in the group Z∗

n
, zero divisors (Section 6.4). The ideas

are identical, so the term is appropriate, and we will call a and b zero divisors in a ring, as well.

Example 7.22. As you might expect, Z, Q, R, and C are integral domains.
In Exercise 7.14, you showed that Zn was a ring under clockwork addition and multiplication.

However, it need not be an integral domain. For example, in Z6 we have [2] · [3] = [6] = [0],
making [2] and [3] zero divisors. On the other hand, it isn’t hard to see that Z2, Z3, and Z5 are
integral domains, if only via an exhaustive check. What about Z4?

Next, we turn to multiplicative inverses.

Definition 7.23. If every non-zero element of R has a multiplicative in-
verse, then we call R a field.

Example 7.24. The rings Q, R, and C are fields, while Z is not.
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What about Zn and Z∗
n
? Chew on that a while; we will consider this question later. For now, we

need to notice an important relationship between fields and integral domains.

Theorem 7.25. Every field is an integral domain.

Proof. Let F be a field. We claim that F is an integral domain: that is, the elements of F satisfy
the zero product property. Let a, b ∈ F and assume that ab = 0. We need to show that a = 0 or
b = 0. If a = 0, we’re done, so assume that a 6= 0. Since F is a field, a has a multiplicative inverse.
Multiply both sides of ab = 0 on the left by a−1 and apply Proposition 7.5 to obtain

b = 1 · b =
�

a−1a
�

b = a−1 (ab ) = a−1 ·0 = 0.

Hence b = 0.
We had assumed that ab = 0 and a 6= 0. By concluding that b = 0, the fact that a and b are

arbitrary show that F is an integral domain. Since F is an arbitrary field, every field is an integral
domain.

Not every integral domain is a field, however. The most straightforward example is Z.

The field of fractions

Definition 7.26. Let R be an arbitrary ring. The set of fractions over a
ring R is

Frac (R) :=

¨
p

q
: p, q ∈ R and q 6= 0

«
,

with addition and multiplication defined in the usual way for “fractions”,
and equality defined by

a

b
=

p

q
⇐⇒ aq = b p.

The set of fractions should remind you of Q, with reason. You might, therefore, conclude that
Frac (R) is a field, just as Q is, but this is not always true: Frac (R) is not a field unless R is an
integral domain. Indeed, addition and subtraction might not even be defined in Frac (R) unless R
is an integral domain. See Exercises 7.33 and 7.34.

Theorem 7.27. If R is an integral domain, then Frac (R) is a ring.

To prove Theorem 7.27, we need two useful properties of fractions that you should be able to
prove yourself.

Proposition 7.28. Let R be a ring, a, b , r ∈ R. If b r 6= 0, then
inFrac (R)

•
a

b
=

a r

b r
, and

•
0R

a
=

0R

b
.
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Proof. You do it! See Exercise 7.33.

Watch for these properties in what follows.

Proof of Theorem 7.27. Assume that R is an integral domain. First we show that Frac (R) is an
additive group. Let f , g , h ∈ R; choose a, b , p, q , r , s ∈ Frac (R) such that f = a/b , g = p/q ,
and h = r /s . First we show that Frac (R) is an abelian group.

closure: This is fairly routine, using common denominators. Since R is a domain and b , q 6=
0, we know that b q 6= 0. Thus,

f + g =
a

b
+

p

q
(substitution)

=
aq

b q
+

b p

b q
(Proposition 7.28)

=
aq + b p

b q
(definition of addition in Frac (R) )

∈ Frac (R) .

Why did we need R do be an integral domain? If not, then it is possible that b q = 0,
and if so, f + g 6∈ Frac (R)!

associative: This is the hardest one; watch for Proposition 7.28 to show up in many places. As
before, since R is a domain and b , q , s 6= 0, we know that b q , (b q) s , b (q s), and q s
are all non-zero. Thus,

( f + g )+ h =
aq + b p

b q
+

r

s

=
(aq + b p) s

(b q) s
+

(b q) r

(b q) s

=
((aq) s +(b p) s)+ (b q) r

(b q) s

=
a (q s)+ (b (p s)+ b (q r ))

b (q s)

=
a (q s)

b (q s)
+

b (p s)+ b (q r )

b (q s)

=
a

b
+

p s + q r

q s

=
a

b
+

�
p

q
+

r

s

�

= f +(g + h.)

identity: We claim that the additive identity of Frac (R) is 0R/1R. This is easy to see, since

f +
0R

1R

=
a

b
+

0R · b
1R · b

=
a

b
+

0R

b
=

a

b
= f .
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additive inverse: For each f = p/q , we claim that (−p)/q is the additive inverse. This is easy
to see, but a little tedious. It is straightforward enough that,

f +
−p

q
=

p

q
+
−p

q
=

(p +(−p))

q
=

0R

q
.

Don’t conclude too quickly that we are done! We have to show that f +(−p)/q =
0Frac(R), which is 0R/1R. By Proposition 7.28, 0R/1R = 0R/qR, so we did in fact
compute the identity.

commutative: Using the fact that R is commutative, we have

f + g =
a

b
+

c

d
=

ad

b d
+

b c

b d

=
ad + b c

b d
=

c b + da

d b

=
c b

d b
+

da

d b
=

c

d
+

a

b

= g + f .

Next we have to show that Frac (R) satisfies the requirements of a ring.

closure: Using closure in R and the fact that R is an integral domain, this is straightforward:
f g = (a p)/ (b q) ∈ Frac (R).

associative: Using the associative property of R, this is straightforward:

( f g ) h =

�
a p

b q

�
r

s
=

(a p) r

(b q) s
=

a (p r )

b (q s)

=
a

b

(p r )

q s
= f (g h) .
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distributive: We rely on the distributive property of R:

f (g + h) =
a

b

�
p

q
+

r

s

�
=

a

b

�
p s + q r

q s

�

=
a (p s + q r )

b (q s)
=

a (p s)+ a (q r )

b (q s)

=
a (p s)

b (q s)
+

a (q r )

b (q s)
=

a p

b q
+

a r

b s

= f g + f h.

Finally, we show that Frac (R) is a field. We have to show that it is commutative, that it has a
multiplicative identity, and that every non-zero element has a multiplicative inverse.

commutative: We claim that the multiplication of Frac (R) is commutative. This follows from
the fact that R, as an integral domain, has a commutative multiplication, so

f g =
a

b
·

p

q
=

a p

b q
=

pa

q b

=
p

q
·

a

b
= g f .

multiplicative identity: We claim that
1R
1R

is a multiplicative identity for Frac (R). In fact,

f ·
1R

1R

=
a

b
·
1R

1R

=
a ·1R

b ·1R

=
a

b
= f .

multiplicative inverse: Let f ∈ Frac (R) be a non-zero element. Let a, b ∈ R such that f = a/b
and a 6= 0. Let g = b /a; then

f g =
a

b
·

b

a
=

ab

ab
.

By Proposition 7.28
ab

ab
=

1R

1R

,

which we just showed to be the identity of Frac (R).

Definition 7.29. For any integral domain R, we call Frac (R) the field of
fractions of R.

Exercises.
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Exercise 7.30. Explain why nZ is always an integral domain. Is it also a field?

Exercise 7.31. Show that Zn is an integral domain if and only if n is irreducible. Is it also a field
in these cases?

Exercise 7.32. You might think from Exercise 7.31 that we can turn Zn into a field, or at least an
integral domain, in the same way that we turned Zn into a multiplicative group: that is, working
with Z∗

n
. Explain that this doesn’t work in general, because Z∗

n
isn’t even a ring.

Exercise 7.33. Show that if R is an integral domain, then the set of fractions has the following
properties for any nonzero a, b , c ∈ R:

ac

b c
=

ca

c b
=

a

b
,

0R

a
=

0R

1
= 0Frac(R),

and
a

a
=

1R

1R

= 1Frac(R).

Exercise 7.34. To see concretely why Frac (R) is not a field if R is not a domain, consider R =
Z4. Find nonzero b , q ∈ R such that b q = 0, using them to find f , g ∈ Frac (R) such that
f g 6∈ Frac (R).

7.3: Polynomial rings

When the average man on the street thinks of “algebra”, he typically thinks not of “monoids”,
“groups”, or “rings”, but of “polynomials”. Polynomials are certainly the focus of high school
algebra, and they are also a major focus of higher algebra. The last few chapters of these notes
are dedicated to the classical applications of the structural theory to important problems about
polynomials.

While one can talk of a monoid or group of polynomials under addition, it is more natural to
talk about a ring of polynomials under addition and multiplication. Polynomials helped motivate
the distinction between the “two operations” of groups, which we decided was really two sides
of one coin, and the “two operations” of rings, which really can be quite different operations.
Polynomials provide great examples for the remaining topics. Thus, it is time to start considering
this fundamental notion.

Some of the following may seem pedantic and needlessly detailed, and there’s some truth to
that, but it is important to fix these terms now to avoid confusion later. The difference between
a “monomial” and a “term” is of special note; some authors reverse the notions.

As usual, R is a ring.

Fundamental notions

Definition 7.35. An indeterminate over R is a symbol that represents
an unknown value of R. A constant of R is a symbol that represents a
fixed value of R. An variable over R is an indeterminate whose value is
not fixed.
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Notice that a constant can be indeterminate, as in the usual use of letters like a, b , and c , or quite
explicitly determined, as in 1R, 0R, and so forth. Variables are always indeterminate. The main
difference is that a constant is fixed, while a variable is not.

Definition 7.36. A monomial over R is a finite product of variables over
R.

The use of “monomial” here is meant to be both consistent with its definition in Section 17, and
with our needs for future work. Typically, though, we refer simply to “a monomial” rather than
“a monomial over R”.

By referring to “variables”, the definition of a monomial explicitly excludes constants. Even
though a2 looks like a monomial, if a is a constant, we do not consider it a monomial; from our
point of view, it is a constant.

Definition 7.37. The total degree of a monomial is the number of fac-
tors in the product. We say that two monomials are like monomials if
they have the same variables, and corresponding variables have the same
exponents.

A term of R is a constant, or the product of a monomial over R and
a constant of R. The constant in a term is called the coefficient of the
term. Two terms are like terms if their monomials are like monomials.

Now we define polynomials.

Definition 7.38. A polynomial over R is a finite sum of terms of R. We
can write a generic polynomial f as f = a1t1 + a2t2 + · · ·+ am tm where
each ai ∈ R and each ti is a monomial.

We call the set of monomials of f with non-zero coefficient its sup-
port. If we denote the support of f by T f , then we can write f as

f =
∑

i=1,...,#T f

ai ti =
∑

t∈T f

at t .

We call R the ground ring of each polynomial.
We say that two polynomials f and g are equal if T f = Tg and the

coefficients of corresponding monomials are equal.

Notation 7.39. We adopt a convention that T f is the support of a polynomial f .
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Definition 7.40. R [x ] is the set of univariate polynomials in the vari-
able x over R. That is, f ∈ R [x ] if and only if there exist m ∈ N and
am ,am−1, . . . ,a1 ∈ R such that

f (x) = am x m + am−1x m−1 + · · ·+ a1x + a0.

The set R [x, y ] is the set of bivariate polynomials in the variables x
and y whose coefficients are in R.

For n ≥ 2, the set R [x1, x2, . . . , xn ] is the set of multivariate polyno-
mials in the variables x1, x2, . . . , xn whose coefficients are in R.

The degree of a univariate polynomial f , written deg f , is the largest
of the total degrees of the monomials of f . We write lm ( f ) for the
monomial of f with that degree, and lc ( f ) for its coefficient. Unless we
say otherwise, the degree of a multivariate polynomial is undefined.

Example 7.41. Definition 7.40 tells us that Z6 [x, y ] is the set of bivariate polynomials in x and y
whose coefficients are in Z6. For example,

f (x, y) = 5x3 + 2x ∈Z6 [x, y ]

and
g (x, y) = x2y2−2x3 + 4 ∈Z6 [x, y ] .

The ground ring for both f and g is Z6. Observe that f can be considered a univariate polyno-
mial, in which case deg f = 3.

We also consider constants to be polynomials of degree 0; thus 4 ∈ Z6 [x, y ] and even 0 ∈
Z6 [x, y ].

It is natural to think of a constant as a polynomial, where (using the notation of the preceding
definition) t1 = 1 and ai ∈ R. This leads to some unexpected, but interesting and important
consequences.

Definition 7.42. Let f ∈ R [x1, . . . , xn ]. We say that f is a vanishing
polynomial if for all r1, . . . , rn ∈ R, f (r1, . . . , rn) = 0. We will see that
this can happen even if f 6= 0R.

We say that f is a constant polynomial if T f = {1} or T f = ;; in

other words, all the non-constant terms have coefficient zero.

The definition of vanishing and constant polynomials implies that 0R satisfies both. However,
the definition of equality means that vanishing polynomials need not be zero polynomials!

Example 7.43. Let f (x) = x2 + x ∈Z2 [x ]. Since T f 6= ;, f 6= 0R. However,

f (0) = 02 + 0 and

f (1) = 12 + 1 = 0 (in Z2!).

Here f is a vanishing polynomial even though it is not zero.
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Properties of polynomials

We can now turn our attention to the properties of R [x ] and R [x1, . . . , xn ]. First up is a
question raised by Example 7.43: when must a vanishing polynomial be the constant polynomial
0?

Proposition 7.44. If R is a non-zero integral domain, then the following
are equivalent.
(A) 0 is the only vanishing polynomial in R [x1, . . . , xn ].
(B) R has infinitely many elements.

As is often the case, we can’t answer that question immediately. Before proving Proposition 7.44,
we need the following, extraordinary theorem.

Theorem 7.45 (The Factor Theorem). If R is a non-zero integral domain,
f ∈ R [x ], and a ∈ R, then f (a) = 0 if and only if x− a divides f (x).

To prove Theorem 7.45, we need to make precise our notions of addition and multiplication of
polynomials.

Definition 7.46. To add two polynomials f , g ∈ R [x1, . . . , xn ], let T =
T f ∪Tg . Choose at , bt ∈ R such that

f =
∑

t∈T
at and g =

∑

t∈T
bt t .

We add the polynomials by adding like terms; that is,

f + g =
∑

t∈T
(at + bt ) t .

To multiply f and g , compute the sum of all products of terms in the
first polynomial with terms in the second; that is,

f g =
∑

t∈T

∑

u∈T
(at bu) (t u) .

We use u in the second summand to distinguishes the terms of g from those of f . Notice that
f g is really the distribution of g to the terms of f , followed by the distribution of each term of
f to the terms of g .

Proof of the Factor Theorem. If x− a divides f (x), then there exists q ∈ R [x ] such that f (x) =
(x− a) · q (x). By substitution, f (a) = (a− a) · q (a) = 0R · q (a) = 0R.

Conversely, assume f (a) = 0. You will show in Exercise 7.49 that we can write f (x) =
q (x) · (x− a)+ r for some r ∈ R. Thus

0 = f (a) = q (a) · (a− a)+ r = r ,

and substitution yields f (x) = q (x) · (x− a). In other words, x − a divides f (x), as claimed.
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We now turn our attention to proving Proposition 7.44.

Proof of Lemma 7.44. Assume that R is a non-zero integral domain.
(A)⇒ (B): We proceed by the contrapositive. Assume that R has finitely many elements. We

can enumerate them all as r1, r2, . . . , rm . Let

f (x1, . . . , xn) = (x1− r1) (x1− r2) · · · (x1− rm) .

Let b1, . . . , bn ∈ R. By assumption, R is finite, so b1 = ri for some i ∈ {1,2, . . . , m}. Notice that f
is not only multivariate, it is also univariate: f ∈ R [x1]. By the Factor Theorem, f = 0. We have
shown that ¬(B) implies ¬(A); thus, (A) implies (B).

(A)⇐ (B): Assume that R has infinitely many elements. Let f be any vanishing polynomial.
We proceed by induction on n, the number of variables in R [x1, . . . , xn ].

Inductive base: Suppose n = 1. By the Factor Theorem, x− a divides f for every a ∈ R. By
definition of polynomial multiplication, each distinct factor of f adds 1 to the degree of f ; for
example, if f = (x−0) (x−1), then deg f = 2. However, the definition of a polynomial implies
that f has finite degree. Hence, if f 6= 0, then it can be factored as only finitely many polynomials
of the form x− a. If so, then choose a1, a2, . . . , an such that

f = (x− a1) (x− a2) · · · (x− an) .

Since R has infinitely many elements, we can find b ∈ R such that b 6= a1, . . . ,an . That means
b − ai 6= 0 for each i = 1, . . . , n. As R is an integral domain,

f (b ) = (b − a1) (b − a2) · · · (b − an) 6= 0.

This contradicts the choice of f as a vanishing polynomial. Hence, f = 0.
Inductive hypothesis: Assume for all i satisfying 1 ≤ i < n, if f ∈ R [x1, . . . , xi ] is a zero

polynomial, then f is the constant polynomial 0.
Inductive step: Let n > 1, and f ∈ R [x1, . . . , xn ] be a vanishing polynomial. Let an ∈ R, and

substitute xn = an into f . Denote the resulting polynomial as g . The substitution means that
xn 6∈ Tg . Hence, g ∈ R

�
x1, . . . , xn−1

�
.

It turns out that g is also a vanishing polynomial in R
�

x1, . . . , xn−1

�
. Why? By way of

contradiction, assume that it is not. Then there exist a1, . . . ,an−1 ∈ R such that f
�
a1, . . . ,an−1

� 6=
0. However, the definition of g implies that

f (a1, . . . ,an) = g
�
a1, . . . ,an−1

� 6= 0.

This contradicts the choice of f as a vanishing polynomial. The assumption was wrong; g must
be a vanishing polynomial in R

�
x1, . . . , xn−1

�
, after all. We can now apply the inductive hypoth-

esis, and infer that g is the constant polynomial 0.
We chose an arbitrarily, so this argument holds for any an ∈ R. Thus, any of the terms of f

containing any of the variables x1, . . . , xn−1 has a coefficient of zero. The only non-zero terms are
those whose only variables are xn , so f ∈ R [xn ]. This time, the inductive base implies that f is
zero.

We come to the main purpose of this section.
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Theorem 7.47. The univariate and multivariate polynomial rings over a
ring R are themselves rings.

Proof. Let n ∈N+ and R a ring. We claim that R [x1, . . . , xn ] is a ring. To consider the require-
ments of a ring, let f , g , h ∈ R [x1, . . . , xn ], and let T = T f ∪ Tg ∪ Th . For each t ∈ T, choose
at , bt , ct ∈ R such that

f =
∑

t∈T
at t , g =

∑

t∈T
bt t , h =

∑

t∈T
ct t .

(Naturally, if t ∈ T\T f , then at = 0; if t ∈ T\Tg , then bt = 0, and if t ∈ T\Th , then ct = 0.)
Although we do not write it, all the sums below are indexed over t ∈ T.

(R1) First we show that R [x1, . . . , xn ] is an abelian group.

(closure) By the definition of polynomial addition,

( f + g ) (x) =
∑

(at + bt ) t .

Since R is closed under addition, we conclude that f + g ∈ R [x1, . . . , xn ].
(associative) We rely on the associativity of R:

f +(g + h) =
∑

at t +
�∑

bt t +
∑

ct t
�

=
∑

at t +
∑

(bt + ct ) t

=
∑

[at +(bt + ct )] t

=
∑

[(at + bt )+ ct ] t

=
∑

(at + bt ) t +
∑

t∈T

ct t

=
�∑

at t +
∑

bt t
�
+
∑

ct t

= ( f + g )+ h.

(identity) We claim that the constant polynomial 0 is the identity. Recall that 0 is a
polynomial whose coefficients are all 0. We have

f + 0 =
∑

at t + 0

=
∑

at t +
∑

0 · t
=
∑

(at + 0) t

= f .

(inverse) Let p =
∑

(−at ) t . We claim that p is the additive inverse of f . In fact,

p + f =
∑

(−at ) t +
∑

at t

=
∑

(−at + at ) t

=
∑

0 · t
= 0.
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(commutative) By the definition of polynomial addition, g + f =
∑

(bt + at ) t . Since
R is commutative under addition, addition of coefficients is commutative, so

f + g =
∑

at t +
∑

bt t

=
∑

(at + bt ) t

=
∑

(bt + at ) t

=
∑

bt t +
∑

at t

= g + f .

(R2) Next, we show that R [x1, . . . , xn ] is a semigroup.

(closed) Applying the definition of polynomial multiplication, we have

f g =
∑

t∈T


∑

u∈T

(at bu) (t u)


 .

Since R is closed under multiplication, each (at bu) (t u) is a term. Thus f g is a
sum of sums of terms, or a sum of terms. In other words, f g ∈ R [x1, . . . , xn ].

(associative) We start by applying the product f g , then multiplying the result to h:

( f g ) h =


∑

t∈T


∑

u∈T

(at bu) (t u)




 ·
∑

v∈T

cv v

=
∑

t∈T


∑

u∈T


∑

v∈T

[(at bu) cv ] [(t u) v ]




 .

Now apply the associative property of multiplication in R:

( f g ) h =
∑

t∈T


∑

u∈T


∑

v∈T

[at (bu cv)] [t (uv)]




 .

(Notice the associative property of R applies to terms over R, as well, inasmuch
as those terms represent undetermined elements of R.) Now unapply the prod-
uct:

( f g ) h =
∑

t∈T


∑

u∈T


∑

v∈T

[at (bu cv)] [t (uv)]






=
∑

t∈T

at t ·

∑

u∈T


∑

v∈T

(bu cv) (uv)






= f (g h) .
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(R3) To show the distributive property, first apply addition, then multiplication:

f (g + h) =
∑

t∈T

at t ·
 ∑

u∈T

bu u +
∑

u∈T

cu u

!

=
∑

t∈T

at t ·
∑

u∈T

(bu + cu) u

=
∑

t∈T


∑

u∈T

[at (bu + cu)] (t u)


 .

Now apply the distributive property in the ring, and unapply the addition and multipli-
cation:

f (g + h) =
∑

t∈T


∑

u∈T

(at bu + at cu) (t u)




=
∑

t∈T


∑

u∈T

[(at bu) (t u)+ (at cu) (t u)]




=
∑

t∈T


∑

u∈T

(at bu) (t u)+
∑

u∈T

(at cu) (t u)




=
∑

t∈T


∑

u∈T

(at bu) (t u)


+

∑

t∈T


∑

u∈T

(at cu) (t u)




= f g + f h.

(commutative) Since we are working in commutative rings, we must also show that that R [x1, . . . , xn ]
is commutative. This follows from the commutativity of R:

f g =

 ∑

t∈T

at t

! ∑

u∈T

bu u

!

=
∑

t∈T

∑

u∈T

(at bu) (t u)

=
∑

u∈T

∑

t∈T

(buat ) (u t )

= g f .

(We can swap the sums because of the commutative and associative properties of addi-
tion.)

Exercises.

Exercise 7.48. Let f (x) = x and g (x) = x + 1 in Z2 [x ].
(a) Show that f and g are not vanishing polynomials.
(b) Compute the polynomial p = f g .
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Let R be an integral domain, f ∈ R [x ], and a ∈ R.
Claim: There exist q ∈ R [x ] and r ∈ R such that f (x) = q (x) · (x− a)+ r .
Proof:

1. Without loss of generality, we may assume that deg f = n.
2. By _____, choose a1, . . . , an such that f =

∑n
k=1

ak xk . We proceed by induction on n.
3. For the inductive base, assume that n = 0. Then q (x) =_____ and r =_____.
4. For the inductive hypothesis, assume that for all i ∈ N satisfying 0 ≤ i < n, there exist

q ∈ R [x ] and r ∈ R such that f (x) = q (x) · (x− a)+ r .
5. For the inductive step,

(a) Let p (x) = an xn−1, and g (x) = f (x)− p (x) · (x− a).
(b) Notice that deg g <_____.
(c) By _____, there exist p ′ ∈ R [x ] and r ∈ R such that g (x) = p ′ (x) · (x− a)+ r .
(d) Let q = p + p ′. By _____, q ∈ R [x ].
(e) By _____ and _____, f (x) = q (x) · (x− a)+ r .

6. We have shown that, for arbitrary n, we can find q ∈ R [x ] and r ∈ R such that f (x) =
q (x) · (x− a)+ r . The claim holds.

Figure 7.1. Material for Exercise 7.49

(c) Show that p (x) is a vanishing polynomial.
(d) Explain why this does not contradict Proposition 7.44.

Exercise 7.49. Fill in each blank of Figure 7.1 with the justification.

Exercise 7.50. Pick at random a degree 5 polynomial f in Z [x ]. Then pick at random some
a ∈Z.
(a) Find q ∈Z [x ] and r ∈Z such that f (x) = q (x) · (x− a)+ r .
(b) Explain why you cannot pick a nonzero integer b at random and expect willy-nilly to find

q ∈Z [x ] and r ∈Z such that f (x) = q (x) · (b x− a)+ r .
(c) Explain why you can pick a nonzero integer b at random and expect willy-nilly to find

q ∈Z [x ] and r , s ∈Z such that s · f (x) = q (x) · (b x− a)+ r . (Neat, huh?)
(d) If the requirements of (b) were changed to finding q ∈Q [x ] and r ∈Q, would you then be

able to carry out (b)? Why or why not?

Exercise 7.51. Let R = Z3 [x ] and f (x) = x3 + 2x + 1 ∈ R.
(a) Explain how we can infer that f does not factor in R without performing a brute force

search of factorizations.
(b) If we divide g ∈ R by f , how many possible remainders can we obtain?

Exercise 7.52. Let R be an integral domain.
(a) Show that R [x ] is also an integral domain.
(b) How does this not contradict Exercise 7.48? After all, Z2 is a field, and thus an integral

domain!

Exercise 7.53. Let R be a ring, and f , g ∈ R [x ]. Show that deg ( f + g )≤max (deg f , deg g ).
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Exercise 7.54. Let R be a ring and define

R (x) = Frac (R [x ]) ;

for example,

Z (x) = Frac (Z [x ]) =

¨
p

q
: p, q ∈Z [x ]

«
.

Is R (x) a ring? is it a field?

Exercise 7.55. Let R = Q
�p

2
�

, an extension of Q by
p

2. (See Exercise 7.19.)
(a) Find g ∈Q [x ] such that g factors with coefficients in R, but not with coefficients in Q.
(b) Let S = Q

�p
2 +
p

3
�

and T = R
�p

3
�

. Show that S = T .

(c) Is Z
�p

2 +
p

3
�

= Z
�p

2
��p

3
�

?

Exercise 7.56. Let p ∈Z be irreducible, and R = Z p [x ]. Show that ϕ : R→ R by ϕ ( f ) = f p is
a group automorphism. This is called the Frobenius automorphism.

7.4: Euclidean domains

In this section we consider an important similarity between the ring of integers and the ring
of polynomials. This similarity will motivate us to define a new kind of ring. We will then show
that all rings of this type allow us to perform important operations that we find both useful and
necessary. What is the similarity? The ability to divide with remainder.

Division of polynomials

Theorem 7.57 (The Division Theorem for polynomials). Let F be a field,
and consider the polynomial ring F [x ]. Let f , g ∈ F [x ] with f 6= 0.
There exist unique q , r ∈ F [x ] satisfying (D1) and (D2) where
(D1) g = q f + r ;
(D2) r = 0 or deg r < deg f .
We call g the dividend, f the divisor, q the quotient, and r the remain-
der.

Proof. The proof is essentially the procedure of long division of polynomials.
If g = 0, let r = q = 0. Then g = q f + r and r = 0.
If deg g < deg f , let r = g and q = 0. Then g = q f + r and deg r < deg f .
Otherwise, deg g ≥ deg f . Let deg f = m and n = deg g − deg f . We proceed by induction

on n.
For the inductive base n = 0, notice that deg g = deg f = m. Let am , . . . ,a1, bm , . . . , b1 ∈ R

such that

g = am x m + am−1x m−1 + · · ·+ a1x + a0

f = bm xm + bm−1x m−1 + · · ·+ b1x + b0.
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Let q =
am

bm
and r = g − q f . Since F is a field and bm 6= 0, we can safely conclude that q ∈ F [x ]

as a constant polynomial. Arithmetic shows that g = q f + r , but can we guarantee that r = 0
or deg r < deg f ? Apply substitution, distribution, and polynomial addition to obtain

r = g − q f

=
�

am x m + am−1x m−1 + · · ·+ a1x + a0

�

−
am

bm

�
bm x m + bm−1x m−1 + · · ·+ b1x + b0

�

=

�
am−

am

bm

· bm

�
x m +

�
am−1−

am

bm

· bm−1

�
x m−1 + · · ·+

�
a0−

am

bm

· b0

�

= 0x m +

�
am−1−

am

bm

· bm−1

�
x m−1 + · · ·+

�
a0−

am

bm

· b0

�
.

Since the coefficient of x m is zero, we see that if r 6= 0, then deg r < deg f .

For the inductive hypothesis, assume that for all i < n there exist q , r ∈ R [x ] such that g =
q f + r and r = 0 or deg r < deg f .

For the inductive step, let ℓ= deg g . Let am , . . . ,a0, bℓ, . . . , b0 ∈ R such that

f = am x m + · · ·+ a0

g = bℓxℓ+ · · ·+ b0.

Let p =
bℓ
am
· xn and r = g − p f . Once again, since F is a field and am 6= 0, we can safely conclude

that p ∈ F [x ]. Apply substitution and distribution to obtain

g ′ = g − p f

= g −
bℓ

am

· xn (am x m + · · ·+ a0)

= g −
�

bℓx m+n +
bℓam−1

am

· x m−1+n + · · ·+
bℓa0

am

· xn

�
.

Recall that n = deg g −deg f = ℓ−m, so ℓ = m + n > n. Apply substitution and polynomial
addition to obtain

g ′ = g − p f =
�

bℓxℓ+ · · ·+ b0

�

−
�

bℓxℓ+
bℓam−1

am

· xℓ−1 + · · ·+
bℓa0

am

· xn

�

= 0xℓ+

�
bℓ−1−

bℓam−1

am

�
xℓ−1

+ · · ·+
�

bn−
bℓa0

am

�
xn + bn−1xn−1 · · ·+ b0.

Since F is a field and am 6= 0, we can safely conclude that g ′ ∈ F [x ]. Observe that deg g ′ <
ℓ = deg g , so deg g ′−deg f < n. Apply the inductive hypothesis to find p ′, r ∈ R [x ] such that
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g ′ = p ′ f + r and r = 0 or deg r < deg f . Then

g = p f + g ′ = p f +
�

p ′ f + r
�

=
�

p + p ′
�

f + r .

Let q = p + p ′. By closure, q ∈ R [x ], and we have shown the existence of a quotient and
remainder.

For uniqueness, assume that there exist q1, q2, r1, r2 ∈ R [x ] such that g = q1 f + r1 = q2 f + r2
and deg r1, deg r2 < deg f . Then

q1 f + r1 = q2 f + r2

0 = (q2− q1) f +(r2− r1) . (26)

If q2− q1 6= 0, then no term of (q2− q1) lm ( f ) has degree smaller than deg f . Since every term
of r2− r1 has degree smaller than deg f , there are no like terms between the two. Thus, there
can be no cancellation between (q2− q1) lm ( f ) and r2− r1, and for similar reasons there can
be no cancellation between (q2− q1) lm ( f ) and lower-degree terms of (q2− q1) f . However,
the left hand side of equation 26 is the zero polynomials, so coefficients of (q2− q1) lm ( f ) are
all 0 on the left hand side. They must likewise be all zero on the right hand side. That implies
(q2− q1) lm ( f ) is equal to the constant polynomial 0. We are working in an integral domain
(Exercise 7.52), and lm ( f ) 6= 0, so it mus tbe that q2− q1 = 0. In other words, q1 = q2.

Once we have q2− q1 = 0, substitution into (26) implies that 0 = r2− r1. Immediately we
have r1 = r2. We have shown that q and r are unique.

Notice that the theorem does not apply if R = Z, and Exercise 7.50 explains why. That’s a shame.

Euclidean domains

Recall from Section 6.1 that the Euclidean algorithm for integers is basically repeated division.
You can infer, more or less correctly, that a similar algorithm works for polynomials.

Why stop there? We have a notion of divisibility in rings, and we just found that the Division
Theorem for integers can be generalized to any polynomial ring whose ground ring is a field.
Can we generalize the Division Theorem beyond a ring polynomials over a field? We can, but it
requires us to generalize the notion of a remainder, as well.

Definition 7.58. Let R be an integral domain and v a function mapping
the nonzero elements of R to N+. We say that R is a Euclidean Do-
main with respect to the valuation function v if it satisfies (E1) and (E2)
where
(E1) v (r )≤ v (r s) for all nonzero r , s ∈ R.
(E2) For all nonzero f ∈ R and for all g ∈ R, there exist q , r ∈ R

such that
• g = q f + r , and
• r = 0 or v (r )< v ( f ).

Example 7.59. By the Division Theorem, Z is a Euclidean domain with the valuation function
v (r ) = |r |.
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Theorem 7.60. Let F be a field. Then F [x ] is a Euclidean domain with
the valuation function v (r ) = deg r .

Proof. You do it! See Exercise 7.69.

Example 7.61. On the other hand, Z [x ] is not a Euclidean domain if the valuation function is
v (r ) = deg r . If f = 2 and g = x, we cannot find q , r ∈ Z [x ] such that g = q f + r and
deg r < deg f . The best we can do is x = 0 ·2 + x, but deg x > deg2.

Since we can perform division with remainder in Euclidean rings, we can perform the Euclidean
algorithm. The result turns out to have properties similar to the greatest common divisor of two
integers. One difference is that we have to relax our expectation of uniqueness.

Definition 7.62. Let R be a ring. If a, b , r ∈ R satisfy a r = b or ra = b ,
then a divides b , a is a divisor of b , and b is divisible by a.

Now suppose that R is a Euclidean domain with respect to v, and let
a, b ∈ R. If there exists d ∈ R such that d | a and d | b , then we call d a
common divisor of a and b . If in addition all other common divisors d ′

of a and b divide d , then d is a greatest common divisor of a and b .

Notice that the definition refers to “a” greatest common divisor, not “the” greatest common
divisor. There can be many greatest common divisors!

Example 7.63. Consider x2− 1, x2 + 2x + 1 ∈ Q [x ]. By Theorem 7.60, Q [x ] is a Euclidean
domain with respect to the valuation function v (p) = deg p. Both of the given polynomials
factor:

x2−1 = (x + 1) (x−1) and x2 + 2x + 1 = (x + 1)2 ,

so we see that x + 1 is a divisor of both. In fact, it is a greatest common divisor, since no polyno-
mial of degree two divides both x2−1 and x2 + 2x + 1.

However, x +1 is not the only greatest common divisor. Another greatest common divisor is
2x + 2. It may not be obvious that 2x + 2 divides both x2−1 and x2 + 2x + 1, but it does:

x2−1 = (2x + 2)

�
x

2
−

1

2

�

and

x2 + 2x + 1 = (2x + 2)

�
x

2
+

1

2

�
.

Notice that 2x + 2 divides x + 1 and vice-versa; also that deg (2x + 2) = deg (x + 1).
Likewise, x+1

3
is also a greatest common divisor of x2−1 and x2 + 2x + 1.

If we restrict ourselves to this new definition, there exists more than one greatest common di-
visor even in Z. For example, for a = 8 and b = 12, both 4 and −4 are greatest common divisors!
This happens because each divides the other, emphasizing that in a generic Euclidean domain, the
notion of a “greatest” common divisor is relative to divisibility, not to other orderings.

That said, all greatest common divisors have something in common.
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Proposition 7.64. Let R be a Euclidean domain with respect to v, and
a, b ∈ R. Suppose that d is a greatest common divisor of a and b . If d ′

is a common divisor of a and b , then v
�

d ′
� ≤ v (d ). If d ′ is another

greatest common divisor of a and b , then v (d ) = v
�

d ′
�
.

Proof. Since d is a greatest common divisor of a and b , and d ′ is a common divisor, the defi-
nition of a greatest common divisor tells us that d divides d ′. Thus there exists q ∈ R such that
qd ′ = d . From property (E1) of a Euclidean domain,

v
�

d ′
�≤ v

�
qd ′
�
= v (d ) .

On the other hand, if d ′ is also a greatest common divisor of a and b , an argument similar to
the one above shows that

v (d )≤ v
�

d ′
�≤ v (d ) .

Hence v (d ) = v
�

d ′
�
.

Finally we come to the point of a Euclidean domain: we can use the Euclidean algorithm to com-
pute a gcd of any two elements! Essentially we transcribe the Euclidean Algorithm for integers
(Theorem 6.4 on page 179 of Section 6.1).

Theorem 7.65 (The Euclidean Algorithm for Euclidean domains). Let
R be a Euclidean domain with valuation v and m, n ∈ R\{0}. One can
compute a greatest common divisor of m, n in the following way:

1. Let s = m and t = n.
2. Repeat the following steps until t = 0:

(a) Let q be the quotient and r the remainder after dividing s
by t .

(b) Assign s the current value of t .
(c) Assign t the current value of r .

The final value of s is a greatest common divisor of m and n.

Proof. You do it! See Exercise 7.70.

Just as we could adapt the Euclidean Algorithm for integers to the Extended Euclidean Algorithm
in order to compute a, b ∈Z such that Bezout’s Identity holds,

am + b n = gcd (m, n) ,

we can do the same in Euclidean domains. You will need this for Exercise 7.70.

Exercises.

Exercise 7.66. Let f = 2x2 + 1 and g = x3−1.
(a) Show that 1 is a greatest common divisor of f and g in Q [x ], and find a, b ∈ Q [x ] such

that 1 = a f + b g .
(b) Recall that Z5 is a field. Show that 1 is a greatest common divisor of f and g in Z5 [x ], and

find a, b ∈Z5 [x ] such that 1 = a f + b g .
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(c) Recall that Z [x ] is not a Euclidean domain. Explain why the result of part (a) cannot be
used to show that 1 is a greatest common divisor of f and g in Z [x ]. What would you get
if you used the Euclidean algorithm on f and g in Z [x ]?

Exercise 7.67. Let f = x4 + 9x3 + 27x2 + 31x + 12 and g = x4 + 13x3 + 62x2 + 128x + 96.
(a) Compute a greatest common divisor of f and g in Q [x ].
(b) Recall that Z31 is a field. Compute a greatest common divisor of f and g in Z31 [x ].
(c) Recall that Z3 is a field. Compute a greatest common divisor of f and g in Z3 [x ].
(d) Even though Z [x ] is not a Euclidean domain, it still has greatest common divisors. What’s

more, we can compute the greatest common divisors using the Euclidean algorithm! How?
(e) You can even compute the greatest common divisors without using the Euclidean algo-

rithm, but by examining the answers to parts (b) and (c) slowly. How?

Exercise 7.68. Show that every field is a Euclidean domain.

Exercise 7.69. Prove Theorem 7.60.

Exercise 7.70. Prove Theorem 7.65, the Euclidean Algorithm for Euclidean domains.

Exercise 7.71. A famous Euclidean domain is the ring of Gaussian integers

Z [i ] = {a + b i : a, b ∈Z}

where i2 =−1. Let v : Z [i ]→Z by

v (a + b i) = a2 + b 2.

(a) Show that a + b i is “orthogonal” to i (a + b i), in the sense that the slope of the line seg-
ment connecting 0 and a + b i in the complex plane is orthogonal to the slope of the line
segment connecting 0 and i (a + b i).

(b) Assuming the facts given about v, divide:
(i) 11 by 3;
(ii) 11 by 3i ;
(iii) 2 + 3i by 1 + 2i .

(c) Show that v is, in fact, a valuation function suitable for a Euclidean domain.
(d) Describe a method for dividing Gaussian integers. (Again, it helps to think of them as

vectors in the plane.)


