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Reference sheet for notation
[r ] the element r + nZ of Zn
〈g 〉 the group (or ideal) generated by g
A3 the alternating group on three elements
A/G for G a group, A is a normal subgroup of G
A/R for R a ring, A is an ideal of R
C the complex numbers {a + b i : a, b ∈C and i =

p
−1}

[G,G] commutator subgroup of a group G
[x, y ] for x and y in a group G, the commutator of x and y
Conja(H ) the group of conjugations of H by a
conjg (x) the automorphism of conjugation by g
D3 the symmetries of a triangle
d | n d divides n
deg f the degree of the polynomial f
Dn the dihedral group of symmetries of a regular polygon with n sides
Dn (R) the set of all diagonal matrices whose values along the diagonal is constant
dZ the set of integer multiples of d
f (G) for f a homomorphism and G a group (or ring), the image of G
Frac (R) the set of fractions of a commutative ring R
G/A the set of left cosets of A
G\A the set of right cosets of A
gA the left coset of A with g
G ∼= H G is isomorphic to H
GLm (R) the general linear group of invertible matrices
∏n

i=1 Gi the ordered n-tuples of G1, G2, . . . , Gn
G×H the ordered pairs of elements of G and H
g z for G a group and g , z ∈G, the conjugation of g by z, or z g z−1

H <G for G a group, H is a subgroup of G
ker f the kernel of the homomorphism f
lcm(t , u) the least common multiple of the monomials t and u
lm(p) the leading monomial of the polynomial p
lv (p) the leading variable of a linear polynomial p
M the set of monomials in one variable
Mn the set of monomials in n variables
N+ the positive integers
NG(H ) the normalizer of a subgroup H of G
N the natural or counting numbers {0,1,2,3 . . .}
Ωn the nth roots of unity; that is, all roots of the polynomial xn−1
ord (x) the order of x
P∞ the point at infinity on an elliptic curve
Q8 the group of quaternions
Q the rational numbers { a

b : a, b ∈Z and b 6= 0}
R/A for R a ring and A an ideal subring of R, R/A is the quotient ring of R with

respect to A



〈r1, r2, . . . , rm〉 the ideal generated by r1, r2, . . . , rm
R the real numbers, those that measure any length along a line
Rm×m m×m matrices with real coefficients
R[x ] polynomials in one variable with real coefficients
R[x1, x2, . . . , xn ] polynomials in n variables with real coefficients
R[x1, x2, . . . , xn ] the ring of polynomials whose coefficients are in the ground ring R
Sn the group of all permutations of a list of n elements
S×T the Cartesian product of the sets S and T
tts (p) the trailing terms of p
Z(G) centralizer of a group G
Z∗n the set of elements of Zn that are not zero divisors
Z/nZ quotient group (resp. ring) of Z modulo the subgroup (resp. ideal) nZ

Z the integers {. . . ,−1,0,1,2, . . .}
Z
�p
−5
�

the ring of integers, adjoin
p
−5

Zn the quotient group Z/nZ
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• Lyx [Lyx ] (and therefore LATEX [Lam86, Grä04] (and therefore TEX [Knu84])), along with

the packages
◦ cc-beamer [Pip07],
◦ hyperref [RO08],
◦ AMS-LATEX[Soc02],
◦ mathdesign [Pic06],
◦ thmtools, and
◦ algorithms (modified slightly from the version released 2006/06/02) [Bri]; and

• Inkscape [Bah08].
I’ve likely forgotten some other non-trivial resources that I used. Let me know if another citation
belongs here.

My wife forebore a number of late nights at the office (or at home) as I worked on these.
Ad maiorem Dei gloriam.

1In one egregious example, I connected too many dots regarding the origin of the Chinese Remainder Theorem.



Preface
This is not a textbook.
Okay, you ask, what is it, then?
These are notes I use when teaching class.
But it looks like a textbook.
Fine. So sue me. — no, wait. Let me try to explain. A two-semester sequence on modern

algebra ought to introduce students to the fundamental aspects of groups and rings. That’s already
a bite more than most can chew, and I have difficulty covering even the stuff I think is necessary.
Unfortunately, most every algebra text I’ve encountered expend far too much effort in the first
50–100 pages with material that is not algebra. The usual culprit is number theory, but it is by no
means the sole offender. Who has that kind of time?

Then there’s the whole argument about whether to start with groups, rings, semigroups,
or monoids. Desiring a mix of simplicity and utility, I decided to write out some notes that would
get me into groups as soon as possible. Voilà.

You still haven’t explained why it looks like a textbook.
That’s because I wanted to organize, edit, rearrange, modify, and extend my notes easily.

I also wanted them in digital form, so that (a) I could read them,2 and (b) I’d be less likely to lose
them. I used a software program called Lyx, which builds on LATEX; see the Acknowledgments.

What if I’d prefer an actual textbook?
See the syllabus.

Overview

These notes have two major parts: in one, we focus on an algebraic structure called a
group; in the other, we focus on a special kind of group, a ring. In the first semester, therefore,
we want to cover Chapters 2–5. Since a rigorous approach requires some sort of introduction, we
review some basics of the integers and the natural numbers – but only to solidify the foundation
of what students have already learned; we do not delve into number theory proper.

Some of these ideas fit well with monomials, which I study “on occasion”. In algebra, a
boring discussion of integers and monomials naturally turns into a fascinating story of the basics
of monoids, which actually makes for a gentle introduction to groups. I yielded to temptation and
threw that in. That should makes life easier later on, anyway; a brief glance at monoids, focusing
on commutative monoids without requiring commutativity, allows us to introduce prized ideas
that will be developed in much more depth with groups, only in a context with which students
are far more familiar. Repetitio mater studiorum, and all that.3 We restrict ourselves to the easier
notions, since the point is to get to groups, and quickly.

Ideally, we’d also cover Chapter 6, but one of the inexorable laws of life is that the older
one gets, the faster time passes. Tempus fugit, and all that.4 The corollary for a professor is that a

2You think you have problems reading my handwriting? I have to live with it!
3University students would do well to remember another Latin proverb, Vinum memoriæmors. I won’t provide
a translation here; look it up, you chumps! Once upon a time, a proper education included familiarity with the
wisdom of our ancestors; these days, you can get away with Googling it. Oddly, recent studies suggest that the Latin
phrase should be updated: Google memoriæmors.
4Latin is not a prerequisite of this course, but it should be. Google it!



semester grows shorter with each passing year, which implies that we cover less every year. I have
no idea why.

In the second semester, we definitely cover Chapters 6 through 8, along with at least one of
Chapter 9 or 10. Chapter 11 is not a part of either course, but I included it for students (graduate
or undergraduate) who want to pursue a research project, and need an introduction that builds
on what came before. As of this writing, some of those chapters still need major debugging, so
don’t take anything you read there too seriously.

Not much of the material can be omitted. Within each chapter, many examples are used
and reused; this applies to exercises, as well. Textbooks often avoid this, in order to give instruc-
tors more flexibility; I don’t care about other instructors’ points of view, so I don’t mind putting
into the exercises problems that I return to later in the notes. We try to concentrate on a few
important examples, re-examining them in the light of each new topic. One consequence is that
rings cannot be taught independently from groups using these notes.

To give you a heads-up, the following material will probably be omitted.
• I really like the idea of placing elliptic curves (Section 2.5) early in the class. Previous edi-

tions of these notes had them in the section immediately after the introduction of groups! It
gives students an immediate insight into how powerful abstraction can be. Unfortunately,
I haven’t yet been able to get going fast enough to get them done.
• Groups of automorphisms (Section 4.4) are generally considered optional.
• I have not in the past taught solvable groups (Section 3.6), but hope to do so eventually.
• I have sometimes not made it past alternating groups (Section 5.5). Considering that I used

to be able to make it to the RSA algorithm (Section 6.6), that does not mean we won’t get
there, especially since I’ve simplified the beginning. That was before I added the stuff on
monoids, though. . .
• The discussion of the 15-puzzle is simplified from other places I’ve found it, nonstandard,

and definitely optional.

viii



Three interesting problems
We’d like to motivate this study of algebra with three problems that we hope you will

find interesting. Although we eventually solve them in this text, it might surprise you that in
this class, we’re interested not in the solutions, but in why the solutions work. I could in fact tell
you how to to solve them right here, and we’d be done soon enough; on to vacation! But then
you wouldn’t have learned what makes this course so beautiful and important. It would be like
walking through a museum with me as your tour guide. I can summarize the purpose of each
displayed article, but you can’t learn enough in a few moments to appreciate it in the same way
as someone with a foundational background in that field. The purpose of this course is to give
you at least a foundational background in algebra.

Still, let’s take a preliminary stroll through the museum, and consider three exhibits.

A card trick.

Take twelve cards. Ask a friend to choose one, to look at it without showing it to you,
then to shuffle them thoroughly. Arrange the cards on a table face up, in rows of three. Ask your
friend what column the card is in; call that number α.

Now collect the cards, making sure they remain in the same order as they were when you
dealt them. Arrange them on a a table face up again, in rows of four. It is essential that you
maintain the same order; the first card you placed on the table in rows of three must be the first
card you place on the table in rows of four; likewise the last card must remain last. The only
difference is where it lies on the table. Ask your friend again what column the card is in; call that
number β.

In your head, compute x = 4α− 3β. If x does not lie between 1 and 12 inclusive, add or
subtract 12 until it is. Starting with the first card, and following the order in which you laid the
cards on the table, count to the xth card. This will be the card your friend chose.

Mastering this trick takes only a little practice. Understanding it requires quite a lot of
background! We get to it in Chapter 6.

Internet commerce.

Let’s go shopping!!! This being the modern age of excessive convenience, let’s go shopping on-
line!!! Before the online compnay sends you your product, however, they’ll want payment. This
requires you to submit some sensitive information, namely, your credit card number. Once you
submit that number, it will bounce happily around a few computers on its way to the company’s
server. Some of those computers might be in foreign countries. (It’s quite possible. Don’t ask.)
Any one of those machines could have a snooper. How can you communicate the information
in securely?

The solution is public-key cryptography. The bank’s computer tells your computer how to
send it a message. It supplies a special number used to encrypt the message, called an encryption
key. Since the bank broadcasts this in the clear over the internet, anyone in the world can see it.
What’s more, anyone in the world can look up the method used to decrypt the message.

You might wonder, How on earth is this secure?!? Public-key cryptography works because
there’s the decryption key remains with the company, hopefully secret. Secret? Whew! . . . or so



you think. A snooper could reverse-engineer this key using a “simple” mathematical procedure
that you learned in grade school: factoring an integer into primes, like, say, 21 = 3 ·7.

How on earth is this secure?!? Although the procedure is “simple”, the size of the integers
in use now is about 40 digits. Believe it or not, even a 40 digit integer takes even a computer far
too long to factor! So your internet commerce is completely safe. For now.

Factorization.

How can we factor polynomials like p (x) = x6 + 7x5 + 19x4 + 27x3 + 26x2 + 20x + 8?
There are a number of ways to do it, but the most efficient ways involve modular arithmetic. We
discuss the theory of modular arithmetic later in the course, but for now the general principle
will do: pretend that the only numbers we can use are those on a clock that runs from 1 to 51. As
with the twelve-hour clock, when we hit the integer 52, we reset to 1; when we hit the integer 53,
we reset to 2; and in general for any number that does not lie between 1 and 51, we divide by 51
and take the remainder. For example,

20 ·3+ 8 = 68  17.

How does this help us factor? When looking for factors of the polynomial p, we can
simplify multiplication by working in this modular arithmetic. This makes it easy for us to
reject many possible factorizations before we start. In addition, the set {1,2, . . . , 51} has many
interesting properties under modular arithmetic that we can exploit further.

Conclusion.

Abstract algebra is a theoretical course: we wonder more about why things are true than
about how we can do things. Algebraists can at times be concerned more with elegance and beauty
than applicability and efficiency. You may be tempted on many occasions to ask yourself the
point of all this abstraction and theory. Who needs this stuff?

Keep the examples above in mind; they show that algebra is not only useful, but necessary.
Its applications have been profound and broad. Eventually you will see how algebra addresses the
problems above; for now, you can only start to imagine.

The class “begins” here. Wipe your mind clean: unless it says otherwise here or in the
following pages, everything you’ve learned until now is suspect, and cannot be used to explain
anything. You should adopt the Cartesian philosophy of doubt.5

5Named after the mathematician and philosopher René Descartes, who inaugurated modern philosophy and claimed
to have spent a moment wondering whether he even existed. Cogito, ergo sum and all that.
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Part I

Monoids



Chapter 1:
From integers to monoids

Until now, your study of mathematics focused on several sets:
• numbers, of which you have seen

◦ the natural numbers N = {0,1,2,3, . . .}, with which we can easily associate
? the positive integers N+ = {1,2,3, . . .};
? the integers Z = {. . . ,−1,0,1,2, . . .};6 and
? the rational numbers7

Q =
§ a

b
: a, b ∈Z and b 6= 0

ª

;

◦ the real numbers R;
◦ the complex numbers

C =
¦

a + b i : a, b ∈R and i =
p
−1
©

,

which add a second, “imaginary”, dimension to the reals;
• polynomials, of which you have seen

◦ monomials in one variable, M = {xa : a ∈N}=
�

1, x, x2, x3, . . .
	

;
◦ monomials in n variables,

Mn =
¦

xa1
1 xa2

2 · · · x
an
n : a1, . . . ,an ∈N

©

;

◦ polynomials in one variable R [x ];
◦ polynomials in more than one variable R [x, y ], R [x, y, z ], R [x1, x2, . . . , xn ];

• square matrices Rm×m .
Each set is useful for certain problems. Natural numbers are useful for problems related to dis-
crete objects we count: apples, people, planks of flooring.8 Real numbers are useful for problems
related to continuous objects that we measure: the amount of water in a cup, the energy in a
particle, the length of the hypotenuse of a right triangle. Monomials and polynomials allow us
to create expressions which describe more than one value simultaneously.

Each set is important, and will be used at some point in this course. In this chapter, we
focus on two fundamental structures of algebra: the integers and the monomials. They share a
number of important parallels that lay a foundation for later study. Before we investigate them
in detail, let’s turn to some general tools of mathematics that you should have seen before now.9

Definition 1.1. Let S and T be two sets. The Cartesian product of S
and T is the set

S×T = {(s , t ) : s ∈ S, t ∈ T } .

6The integers are denoted by Z from the German word Zählen.
7The Pythagoreans believed that the rational numbers were the only possible numbers.
8Yes, I was working on my house when I wrote that. How did you guess?
9In particular, you should have seen these in MAT 340, Discrete Mathematics.
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Example 1.2. You already know R×R as the set of all ordered pairs whose entries are real
numbers; geometrically, it forms the x-y plane.

Definition 1.3. A relation on the sets S and T is any subset of S×T .
An equivalence relation on S is a subset R of S × S that satisfies the
properties
reflexive: for all a ∈ S, (a,a) ∈ R;
symmetric: for all a, b ∈ S, if (a, b ) ∈ R then (b ,a) ∈ R; and
transitive: for all a, b , c ∈ S, if (a, b ) ∈ R and (b , c) ∈ R then (a, c) ∈

R.

Notation 1.4. We usually write aRb instead of (a, b ) ∈ R. For example, in a moment we will
discuss the relation ⊆, and we always write a ⊆ b instead of “(a, b ) ∈⊆”.

Example 1.5. Let S = {1, cat,a} and T = {−2,mouse}. Then

S×T = {(1,−2) , (1,mouse) , (cat,−2) ,
(cat,mouse) , (a,−2) , (a,mouse)}

and the subset
{(1,mouse) , (1,−2) , (a,−2)}

is a relation on S and T .

One of the most fundamental relations is among sets.10

Definition 1.6. Let A and B be sets. We say that A is a subset of B , and
write A⊆ B , if every element of A is also an element of B . If A is a subset
of B but not equal to B , we say that A is a proper subset of B , and write
A( B .

Notation 1.7. Notice that both N⊆Z and N(Z are true.

Another important relation is defined by an operation.

Definition 1.8. Let S and T be sets. An binary operation from S to T
is a function f : S× S→ T . If S = T , we say that f is a binary operation
on S. A binary operation f on S is closed if f (a, b ) is defined for all
a, b ∈ S.

Example 1.9. Addition of the natural numbers is a map + : N×N→N; the sentence, 2+3 = 5
can be thought of as +(2,3) = 5. Hence addition is a binary operation on N. Addition is defined
for all natural numbers, so it is closed.

Subtraction of natural numbers can be viewed as a map as well: − : N×N→ Z. How-
ever, while subtraction is a binary operation, it is not closed, since it is not “on N”: the range

10The notation for subsets has suffered from variety. Some authors use ⊂ to indicate a subset; others use the same to
indicate a proper subset. To avoid confusion, we eschew this symbol altogether.
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(Z) is not the same as the domain (N). This is the reason we need the integers: they “close”
subtraction of natural numbers.

Likewise, the rational numbers “close” division for the integers. In advanced calculus you
learn that the real numbers “close” limits for the rationals, and in complex analysis (or advanced
algebra) you learn that complex numbers “close” algebra for the reals.

1.1: Some facts about the integers

In each set described above, you can perform arithmetic: add, subtract, multiply, and (in
most cases) divide. Let’s start off stating what of these operations mean.

Addition of positive integers is defined in the usual way: for all a, b ∈N+, a + b is the
total number of objects obtained from a union between a set of a objects and a set of b objects,
with all the objects distinct. We assert without proof that such an addition is always defined, and
that it satisfies the following properties:
• a + b = b + a for all a, b ∈N+ (the commutative property).
• a +(b + c) = (a + b )+ c for all a, b , c ∈N+ (the associative property).
• 0 is an object such that a + 0 = a for all a ∈N+ (the additive identity).
• For any a ∈N+, we define its additive inverse, −a, with the property that a +(−a) = 0.
• To add with negative integers, let a, b ∈N+ and consider a +(−b ):

◦ If a = b , then substitution implies that a +(−b ) = b +(−b ) = 0.
◦ Otherwise, let A be any set with a objects.

? If I can remove a set with b objects from A, and have at least one object left
over, let c ∈N+ such that a = b + c ; then we define a +(−b ) = c .

? If I cannot remove a set with b objects from A, then let c ∈N+ be the number
of objects I would need to add to A so that I could remove at least b objects.
This satisfies the equation a + c = b ; we then define a +(−b ) =−c .

We also define multiplication in the usual way. Let a ∈N+ and b ∈Z.
• 0 · b = 0 and b ·0 = 0;11

• a · b is the result of adding a list of a copies of b ;
• (−a) · b =− (a · b ).

Notation 1.10. For convenience, we usually write a− b instead of a +(−b ).

Notice that we say nothing about the “ordering” of these numbers; that is, we do not “know” yet
whether 1 comes before 2 or vice versa. A natural ordering is implied by the question of whether
we can “take elements away”; we will see this shortly in Definition 1.11, but this requires some
preliminaries.

It is possible to construct Z and show that it satisfies the properties above using a smaller
number of assumptions, but that is beyond the scope of this course.12 Instead, we will assume
that Z exists with its arithmetic operations as you know them. We will not assume the ordering
relations on Z.

11We show in Chapter 7 that this property is a consequence of properties already considered!
12For a taste: the number 0 is defined to represent the empty set ;; the number 1 is defined to represent the set {;,{;}};
the number 2 is defined to represent the set {;,{;,{;}}}, and so forth. The arithmetic operations are subsequently
defined in appropriate ways, leading to negative numbers, etc.
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Definition 1.11. We define the following relations on Z. For any two
elements a, b ∈Z, we say that:
• a ≤ b if b − a ∈N;
• the negation of a ≤ b is a > b—that is, a > b if b − a 6∈N;
• a < b if b − a ∈N+;
• the negation of a < b is a ≥ b ; that is, a ≥ b if b − a 6∈N+.

So 3< 5 because 5−3 ∈N+. Notice how the negations work: the negation of < is not >.

Remark 1.12. You should not assume certain “natural” properties of these orderings. For exam-
ple, it is true that if a ≤ b , then either a < b or a = b . But why? You can reason to it from the
definitions given here, so you should do so.

More importantly, you cannot yet assume that if a ≤ b , then a + c ≤ b + c . You can
reason to this property from the definitions, and you will do so in the exercises.

The relations ≤ and ⊆ have something in common: just as N⊆Z and N(Z are simul-
taneously true, both 3 ≤ 5 and 3 < 5 are simultaneously true. However, there is one important
difference between the two relations. Given two distinct integers (such as 3 and 5) you have al-
ways been able to order them using ≤. You cannot always order any two distinct sets using ⊆.
For example, {a, b} and {c , d} cannot be ordered.

This seemingly unremarkable observation leads to an important question: can you always
order any two integers? Relations satisfying this property merit a special status.

Definition 1.13. Let S be any set. A linear ordering on S is a relation∼
where for any a, b ∈ S one of the following holds:

a ∼ b , a = b , or b ∼ a.

The subset relation is not a linear ordering, since
{a, b} 6⊆ {c , d}, {a, b} 66= {c , d}, and {c , d} 6⊆ {a, b}.

However, we can show that the orderings of Z are linear.

Theorem 1.14. The relations <, >, ≤, and ≥ are linear orderings of Z.

Before giving our proof, we must point out that it relies on some unspoken assumptions: in par-
ticular, the arithmetic on Z that we described before. Try to identify where these assumptions are
used, because when you write your own proofs, you have to ask yourself constantly: Where am I
using unspoken assumptions? In such places, either the assertion must be something accepted by
the audience (me!), or you have to cite a reference your audience accepts, or you have to prove it
explicitly. It’s beyond the scope of this course to explain the holes in this proof, but you should
at least try to find them.

Proof. We show that < is linear; the rest are proved similarly.
Let a, b ∈ Z. Subtraction is closed for Z, so b − a ∈ Z. By definition, Z = N+ ∪{0}∪

{−1,−2, . . .}. By the principle of the excluded middle, b −a must be in one of those three subsets
of Z.13

13In logic, the principle of the excluded middle claims, “If we know that the statement A or B is true, then if A is false,
B must be true.” There are logicians who do not assume it, including a field of mathematics and computer science
called “fuzzy logic”. This principle is another unspoken assumption of algebra. In general, you do not have to cite
the principle of the excluded middle, but you ought to be aware of it.
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• If b − a ∈N+, then a < b .
• If b − a = 0, then a = b .
• Otherwise, b − a ∈ {−1,−2, . . .}. By the properties of arithmetic, − (b − a) ∈N+. Again

by the properties of arithmetic, a− b ∈N+. So b < a.

We have shown that a < b , a = b , or b < a. Since a and b were arbitrary in Z, < is a linear
ordering.

It should be easy to see that the orderings and their linear property apply to all subsets of Z, in
particular N+ and N.14 Likewise, we can generalize these orderings to the sets Q and R in the
way that you are accustomed, and you will do so for Q in the exercises. That said, this relation
behaves differently in N than it does in Z.

Definition 1.15. Let S be a set and ≺ a linear ordering on S. We say that
≺ is a well-ordering if

Every nonempty subset T of S has a smallest element a;
that is, there exists a ∈ T such that for all b ∈ T , a ≺ b or a = b .

Example 1.16. The relation< is not a well-ordering of Z, because Z itself has no smallest element
under the ordering.

Why not? Proceed by way of contradiction. Assume that Z has a smallest element, and
call it a. Certainly a−1 ∈Z also, but

(a−1)− a =−1 6∈N+,

so a 6< a− 1. Likewise a 6= a− 1. This contradicts the definition of a smallest element, so Z is
not well-ordered by <.

We now assume, without proof, the following principle.
The relations < and ≤ are well-orderings of N.

That is, any subset of N, ordered by these orderings, has a smallest element. This may sound
obvious, but it is very important, and what is remarkable is that no one can prove it.15 It is an
assumption about the natural numbers. This is why we state it as a principle (or axiom, if you
prefer). In the future, if we talk about the well-ordering of N, we mean the well-ordering <.

A consequence of the well-ordering property is the principle of:

Theorem 1.17 (Mathematical Induction). Let P be a subset of N+. If P
satisfies (IB) and (IS) where
(IB) 1 ∈ P ;
(IS) for every i ∈ P , we know that i + 1 is also in P ;
then P = N+.

14If you don’t think it’s easy, good. Whenever an author writes that something is “easy”, he’s being a little lazy,
which exposes the possibility of an error. So it might not be so easy after all, because it could be false. Saying that
something is “easy” is a way of weaseling out of a proof and intimidating the reader out of doubting it. So whenever
you read something like, “It should be easy to see that. . . ” stop and ask yourself why it’s true.
15You might try to prove the well-ordering of N using induction. But you can’t, because it is equivalent to induction.
Whenever you have one, you get the other.
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Proof. Let S = N+\P . We will prove the contrapositive, so assume that P 6= N+. Thus S 6= ;.
Note that S ⊆N+. By the well-ordering principle, S has a smallest element; call it n.

• If n = 1, then 1 ∈ S, so 1 6∈ P . Thus P does not satisfy (IB).
• If n 6= 1, then n > 1 by the properties of arithmetic. Since n is the smallest element of S

and n− 1 < n, we deduce that n− 1 6∈ S. Thus n− 1 ∈ P . Let i = n− 1; then i ∈ P and
i + 1 = n 6∈ P . Thus P does not satisfy (IS).

We have shown that if P 6= N+, then P fails to satisfy at least one of (IB) or (IS). This is the
contrapositive of the theorem.

Induction is an enormously useful tool, and we will make use of it from time to time. You may
have seen induction stated differently, and that’s okay. There are several kinds of induction which
are all equivalent. We use the form given here for convenience.

Before moving to algebra, we need one more property of the integers.

Theorem 1.18 (The Division Theorem for Integers). Let n, d ∈ Z with
d 6= 0. There exist unique q , r ∈Z satisfying (D1) and (D2) where
(D1) n = qd + r ;
(D2) 0≤ r < |d |.

Proof. We consider two cases: 0 < d , and d < 0. First we consider 0 < d . We must show two
things: first, that q and r exist; second, that r is unique.

Existence of q and r : First we show the existence of q and r that satisfy (D1). Let S =
{n− qd : q ∈Z} and M = S∩N. Exercise 1.28 shows that M is non-empty. By the well-ordering
of N, M has a smallest element; call it r . By definition of S, there exists q ∈Z such that n−qd =
r . Properties of arithmetic imply that n = qd + r .

Does r satisfy (D2)? By way of contradiction, assume that it does not; then |d | ≤ r . We
had assumed that 0< d , so Exercise 1.24 implies that 0≤ r −d < r . Rewrite property (D1) using
properties of arithmetic:

n = qd + r
= qd + d +(r − d )
= (q + 1) d +(r − d ) .

Hence r − d = n− (q + 1) d . This form of r − d shows that r − d ∈ S. Recall 0 ≤ r − d ; by
definition, r − d ∈N, so r − d ∈ M . This contradicts the choice of r as the smallest element of
M .

Hence n = qd + r and 0≤ r < d ; q and r satisfy (D1) and (D2).
Uniqueness of q and r : Suppose that there exist q ′, r ′ ∈ Z such that n = q ′d + r ′ and

0 ≤ r ′ < d . By definition of S, r ′ = n− q ′d ∈ S; by assumption, r ′ ∈N, so r ′ ∈ S ∩N = M .
Since r is minimal in M , we know that 0≤ r ≤ r ′ < d . By substitution,

r ′− r =
�

n− q ′d
�

− (n− qd )
=
�

q− q ′
�

d .
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Moreover, r ≤ r ′ implies that r ′− r ∈ N, so by substitution
�

q− q ′
�

d ∈ N. Similarly, 0 ≤
r ≤ r ′ implies that 0 ≤ r ′− r ≤ r ′. Thus 0 ≤

�

q− q ′
�

d ≤ r ′. From properties of arithmetic,
0 ≤ q − q ′. If 0 6= q − q ′, then 1 ≤ q − q ′, so d ≤

�

q− q ′
�

d , so d ≤
�

q− q ′
�

d ≤ r ′ < d , a
contradiction. Hence q− q ′ = 0, and by substitution, r − r ′ = 0.

We have shown that if 0< d , then there exist unique q , r ∈Z satisfying (D1) and (D2). We
still have to show that this is true for d < 0. In this case, 0< |d |, so we can find unique q , r ∈Z

such that n = q |d |+ r and 0 ≤ r < |d |. By properties of arithmetic, q |d | = q (−d ) = (−q) d ,
so n = (−q) d + r .

Definition 1.19 (terms associated with division). Let n, d ∈ Z and sup-
pose that q , r ∈Z satisfy the Division Theorem. We call n the dividend,
d the divisor, q the quotient, and r the remainder.

Moreover, if r = 0, then n = qd . In this case, we say that d
divides n, and write d | n. We also say that n is divisible by d . If on the
other hand r 6= 0, then d does not divide n, and we write d - n.

Exercises.

Exercise 1.20. Show that we can order any subset of Z linearly by <.

Exercise 1.21. Identify the quotient and remainder when dividing:
(a) 10 by −5;
(b) −5 by 10;
(c) −10 by −4.

Exercise 1.22. Let a ∈Z. Show that:
(a) a ≤ a + 1;
(b) if a ∈N, then 0≤ a; and
(c) if a ∈N+, then 1≤ a.

Exercise 1.23. Let a, b ∈Z.
(a) Prove that if a ≤ b , then a = b or a < b .
(b) Prove that if both a ≤ b and b ≤ a, then a = b .

Exercise 1.24. Let a, b ∈N and assume that 0< a < b . Let d = b − a. Show that d < b .

Exercise 1.25. Let a, b , c ∈Z and assume that a ≤ b . Prove that
(a) a + c ≤ b + c ;
(b) if a, c ∈N+, a ≤ ac ; and
(c) if c ∈N+, then ac ≤ b c .

Exercise 1.26. Prove that if a ∈Z, b ∈N+, and a | b , then a ≤ b .

Note: You may henceforth assume this for all the inequalities given in Definition 1.11.

Exercise 1.27. Let S ⊆N. We know from the well-ordering property that S has a smallest ele-
ment. Prove that this smallest element is unique.
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Exercise 1.28. Let n, d ∈Z, where d ∈N+. Define M = {n− qd : q ∈Z}. Prove that M ∩N 6=
;.

Exercise 1.29. Show that > is not a well-ordering of N.

Exercise 1.30. Show that the ordering < of Z generalizes “naturally” to an ordering < of Q that
is also a linear ordering.

Exercise 1.31. Show that divisibility is transitive for the integers; that is, if a, b , c ∈Z, a | b , and
b | c , then a | c .

Exercise 1.32. Let S be a well-ordered set. Show that every strictly decreasing sequence of ele-
ments of S is finite.

1.2: Integers, monomials, and monoids

By “monomials”, we mean
M = {xa : a ∈N}

or

Mn =

(

m
∏

i=1

�

xai1
1 xai2

2 · · · x
ai n
n

�

: m,ai j ∈N

)

.

Notice that we consider only those products with nonnegative exponents, and do not allow co-
efficients in monomials. The definition of Mn indicates that any of its elements is a “product of
products”.

Example 1.33. The following are monomials:

x2, 1 = x0 = x0
1 x0

2 · · · x
0
n , x2y3xy4.

The following, however, are not monomials:

x−1 =
1

x
,
p

x = x
1
2 ,

3
p

x2 = x
2
3 .

We are interested in similarities between N and M. Why? Suppose that we can identify
a structure common to the two sets. If we make the obvious properties of this structure precise,
we can determine non-obvious properties that must be true about N, M, and any other set that
adheres to the structure.

If we can prove a fact about a structure,
then we don’t have to re-prove that fact for all its elements.

This saves time and increases understanding.
Admittedly, it’s harder at first to think about general structures rather than concrete objects, but
time, effort, and determination bring agility.

To begin with, what operation(s) should we normally associate with M? We normally
associate addition and multiplication with the natural numbers, but the monomials are not closed
under addition. After all, x2 + x4 is a polynomial, not a monomial. On the other hand, x2 · x4 is a



2. Integers, monomials, and monoids 12

monomial, and in fact xa x b ∈M for any choice of a, b ∈N. In fact, this is true about monomials
in any number of variables.

Lemma 1.34. Let n ∈N+. Both M and Mn are closed under multipli-
cation.

Proof. We show this is true for M, and leave Mn to the exercises. Let t , u ∈M. By definition,
there exist a, b ∈N such that t = xa and u = x b . By definition of monomial multiplication and
by closure of addition in N, we see that

t u = xa+b ∈M.

Thanks to this lemma, we henceforth associate the monomials with the operation of multiplica-
tion.

Next, is multiplication commutative or associative? That depends on what the variables
represent!

Example 1.35. Suppose that x1 and x2 represent matrices. There exist abundant examples where
x1x2 6= x2x1.

So multiplication of monomials should not in general be considered commutative. This
is, in fact, why we defined Mn as a product of products, rather than combining the factors into
one product in the form xa1

1 xa2
2 · · · x

an
n .

On the other hand, they are associative, and this is easy to show.

Lemma 1.36. Let n ∈ N+. Multiplication in M satifies the commuta-
tive property. Multiplication in both M and Mn satisfies the associative
property.

Proof. Again, we show this to be true for M, and leave the proof for Mn to the exercises. Let
t , u, v ∈M. By definition, there exist a, b , c ∈ N such that t = xa , u = x b , and v = x c . By
definition of monomial multiplication and by the commutative property of addition in M, we
see that

t u = xa+b = x b+a = u t .

By definition of monomial multiplication and by the associative property of addition in N, we
see that

t (uv) = xa
�

x b x c
�

= xa x b+c

= xa+(b+c) = x(a+b )+c

= xa+b x c = (t u) v.

You might ask yourself, Do I have to show every step? That depends on what the reader needs
to understand the proof. In the equation above, it is essential to show that the commutative and
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associative properties of multiplication in M depend strictly on the commutative and associative
properties of addition in N. Thus, the steps

xa+b = x b+a and xa+(b+c) = x(a+b )+c ,

with the parentheses as indicated, are absolutely crucial, and cannot be omitted from a good
proof.16

Another property the natural numbers have is that of an identity: both additive and mul-
tiplicative. Since we associate only multiplication with the monomials, we should check whether
they have a multiplicative identity. Of course, you know this one:

Lemma 1.37. Both M and Mn have 1 = x0 = x0
1 x0

2 · · · x
0
n as a multiplica-

tive identity.

We won’t bother proving this one, but leave it to the exercises.
There are quite a few other properties that the integers and the monomials share, but the

three properties we have mentioned here are already quite interesting, and as such are precisely
the ones we want to highlight. This motivates the following definition.

Definition 1.38. Let M be a set, and ◦ an operation on M . We say that
the pair (M ,◦) is a monoid if it satisfies the following properties:
(closure) for any x, y ∈M , we have x ◦ y ∈M ;
(associativity) for any x, y, z ∈M , we have (x ◦ y)◦ z = x ◦ (y ◦ z); and
(identity) there exists an identity element e ∈M such that for any

x ∈M , we have e ◦ x = x ◦ e = x.
We may also say that M is a monoid under ◦.

So far, then, we know the following:

Theorem 1.39. N is a monoid under addition and multiplication, while
, M and Mn are monoids under multiplication.

Proof. For N, this is part of its definition. For M and Mn , see Lemmas 1.34, 1.36, and 1.37.

Generally, we don’t write the operation in conjunction with the set; we write the set alone,
leaving it to the reader to infer the operation. In some cases, this might lead to ambiguity; after
all, both (N,+) and (N,×) are monoids, so which should we prefer? We will prefer (N,+) as
the usual monoid associated with N. Thus, we can write that N, M, and Mn are examples of
monoids: the first under addition, the others under multiplication.

What other mathematical objects are examples of monoids?

Example 1.40. You should have seen in linear algebra that the set of square matrices Rm×m

satisfies properties that make it a monoid under both addition and multiplication. That said,
your professor almost certainly didn’t call it a monoid at the time.

16Of course, a professional mathematician would not even prove these things in a paper, because they are well-known
and easy. On the other hand, a good professional mathematician would feel compelled to include in a proof steps
that include novel and/or difficult information.
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Here’s a more interesting example.

Example 1.41. Let S be a set, and let FS be the set of all functions mapping S to itself, with the
proviso that for any f ∈ FS , f (s) is defined for every s ∈ S. We can show that FS is a monoid
under composition of functions, since
• for any f , g ∈ FS , we also have f ◦ g ∈ FS , where f ◦ g is the function h such that for any

s ∈ S,
h (s) = ( f ◦ g ) (s) = f (g (s))

(notice how important it was that g (s) have a defined value regardless of the value of s );
• for any f , g , h ∈ FS , we have ( f ◦ g ) ◦ h = f ◦ (g ◦ h), since for any s ∈ S,

(( f ◦ g ) ◦ h) (s) = ( f ◦ g ) (h (s)) = f (g (h (s)))

and
( f ◦ (g ◦ h)) (s) = f ((g ◦ h) (s)) = f (g (h (s))) ;

• if we denote the identity function by ι ∈ FS , so that ι (s) = s for all s ∈ S, then for any
f ∈ FS , we have ι◦ f = f ◦ ι= f , since for any s ∈ S,

(ι◦ f ) (s) = ι ( f (s)) = f (s)

and
( f ◦ ι) (s) = f (ι (s)) = f (s)

(we can say that ι ( f (s)) = f (s) because f (s) ∈ S).

Although monoids are useful, they are a bit too general for our purposes. Not all the
properties we found for N will hold for all monoids. For example, the Division Theorem doesn’t
actually make sense in the context of a monoid; it requires two operations: multiplication (by
the quotient) and addition (of the remainder). So, we will need a more specialized structure to
talk about the Division Theorem in a general context, and we will actually meet one later! (in
Section 7.4.)

Here is one useful property that we can prove already. A natural question to ask about
monoids is whether the identity of a monoid is unique. It isn’t hard to show that it is. We can
also show a little more.

Theorem 1.42. Suppose that M is a monoid, and there exist e , i ∈M such
that e x = x and xi = x for all x ∈M . Then e = i and in fact the identity
of a monoid is unique.

“Unique” in mathematics means exactly one. To prove uniqueness of an object x, you consider a
generic object y that shares all the properties of x, then reason to show that x = y. This is not a
contradiction, because we didn’t assume that x 6= y in the first place; we simply wondered about
a generic y. We did the same thing with the Division Theorem (Theorem 1.18 on page 9).

Proof. Suppose that e is a left identity, and i is a right identity. Since i is a right identity, we
know that

e = e i .
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Since e is a left identity, we know that
e i = i .

By substitution,
e = i .

We chose an arbitrary left identity of M and an arbitrary right identity of M , and showed that
they were in fact the same element. Hence left identities are also right identities. This implies in
turn that there is only one identity: any identity is both a left identity and a right identity, so the
argument above shows that any two identities are in fact identical.

Exercises.

Exercise 1.43. Is N a monoid under:
(a) subtraction?
(b) multiplication?
(c) division?
Be sure to explain your answer.

Exercise 1.44. Is Z a monoid under:
(a) addition?
(b) subtraction?
(c) multiplication?
(d) division?
Be sure to explain your answer.

Exercise 1.45. Consider the set B = {F ,T } with the operation ∨ where

F ∨ F = F
F ∨T = T
T ∨ F = T
T ∨T = T .

This operation is called Boolean or.
Is (B ,∨) a monoid? If so, explain how it justifies each property.

Exercise 1.46. Consider the set B = {F ,T } with the operation ⊕ where

F ⊕ F = F
F ⊕T = T
T ⊕ F = T
T ⊕T = F .

This operation is called Boolean exclusive or, or xor for short.
Is (B ,⊕) a monoid? If so, explain how it justifies each property.
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Exercise 1.47. Show that multiplication in Mn is both closed and associative.

Exercise 1.48.
(a) Show that N [x ], the ring of polynomials in one variable with integer coefficients, is a

monoid under addition.
(b) Show that N [x ] is also a monoid if the operation is multiplication.
(c) Explain why we can replace N by Z and the argument would remain valid. (Hint: think

about the structure of these sets.)

Definition 1.49. For any set S, let P (S) denote the set of all subsets of
S. We call this the power set of S.

Exercise 1.50. (a) Suppose S = {a, b}. Compute P (S), and show that it is a monoid under ∪
(union).

(b) Let S be any set. Show that P (S) is a monoid under ∪ (union).

Exercise 1.51. This problem uses the power set P (S) from Exercise 1.50.
(a) Suppose S = {a, b}. Compute P (S), and show that it is a monoid under ∩ (intersection).
(b) Show that P (S) is a monoid under ∩ (intersection).

Definition 1.52. We define lcm, the least common multiple of two in-
tegers, as

lcm (a, b ) = min







n ∈N :
n ≥max (|a| , |b |) ,
a | n, and b | n







.

Exercise 1.53. Show that (N, lcm) is a monoid. Note that the operation here looks unusual:
instead of something like x ◦ y, you’re looking at lcm (x, y).

Exercise 1.54. Recall the usual ordering < on M: xa < x b if a < b . Show that this is a well-
ordering.

Note: While we can define a well-ordering on Mn , it is a much more complicated propo-
sition, which we take up in Section 10.2.

Exercise 1.55. In Exercise 1.31, you showed that divisibility is transitive in the integers.
(a) Show that divisibility is transitive in any monoid; that is, if M is a monoid, a, b , c ∈ M ,

a | b , and b | c , then a | c .
(b) In fact, you don’t need all the properties of a monoid for divisibility to be transitive! Which

properties do you need?

1.3: Direct Products and Isomorphism
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We’ve shown that several important sets share the monoid structure. In particular, (N,+)
and (M,×) are very similar. Is there some way of arguing that they are in fact identical as
monoids? We ordinarily call this property isomorphism.

Let S and T be any two sets. A mapping f : S→ T is a function if for every input x ∈ S
the output f (x) has precisely one value in T . In high school algebra, you learned that this means
that f passes the “vertical line test.” The reader might suspect at this point—one could hardly
blame you—that we are going to generalize the notion of function to something more general,
just as we generalized Z, M, etc. to monoids. To the contrary; we will specialize the notion of a
function in a way that tells us important information about a monoid.

Suppose M and N are monoids. We want a function that preserves the behavior of the
operation between the domain, M , and the range, N . What does that mean? Let x, y, z ∈ M and
a, b , c ∈ N . Suppose that f (x) = a, f (y) = b , f (z) = c , and xy = z. If we are to preserve the
operation’s behavior:
• since xy = z,
• we want ab = c , or f (x) f (y) = f (z).

Substituting z for xy suggests that we want the property

f (x) f (y) = f (xy) .

Of course, we also want to preserve the identity.

Definition 1.56. Let (M ,×) and (N ,+) be monoids. We say that M is
isomorphic to N , and write M ∼= N , if there exists a one-to-one and onto
function f : M −→N such that
• f (1M ) = 1N ; ( f preserves the identity)

and
• f (xy) = f (x)+ f (y) for every x, y ∈M . ( f preserves the

operation)
We call f an isomorphism. (A function that is one-to-one and onto is
often called a bijection.)

You may not remember the definitions of one-to-one and onto, or you may not understand how
to prove them, so we provide them here as a reference.

Definition 1.57. Let f : S→U be a mapping of sets.
• We say that f is one-to-one if for every a, b ∈ S where f (a) =

f (b ), we have a = b .
• We say that f is onto if for every x ∈ U , there exists a ∈ S such

that f (a) = x.

Another way of saying that a function f : S → U is onto is to say that f (S) = U ; that is, the
image of S is all of U , or that every element of U corresponds via f to some element of S.

We used (M ,×) and (N ,+) in the definition partly to suggest our goal of showing that
M and N are isomorphic, but also because they could stand for any monoids. You will see in
due course that not all monoids are isomorphic, but first let’s show what we wanted to see.



3. Direct Products and Isomorphism 18

Example 1.58. We claim that (M,×) is isomorphic to (N,+). To see why, let f : M −→N by

f (xa) = a.

First we show that f is a bijection.
To see that it is one-to-one, let t , u ∈M, and assume that f (t ) = f (u). By definition

of M, t = xa and u = x b for a, b ∈N. By definition of f , f (xa) = f
�

x b
�

; by substitution,
a = b . In this case, xa = x b , so t = u. We assumed that f (t ) = f (u) for arbitrary t , u ∈M,
and showed that t = u; that proves f is one-to-one.

To see that it is onto, let a ∈N. We need to find t ∈M such that f (t ) = a. Which t
should we choose? The “natural” choice seems to be t = xa ; that would guarantee f (t ) = a.
Since xa ∈M, we can in fact make this choice! We took an arbitrary element a ∈N, and showed
that f maps some element of M to a; that proves f is onto.

So f is a bijection. Is it also an isomorphism? First we check that f preserves the opera-
tion. Let t , u ∈M.17 By definition of M, t = xa and u = x b for a, b ∈N. We now manipulate
f (t u) using definitions and substitutions to show that the operation is preserved:

f (t u) = f
�

xa x b
�

= f
�

xa+b
�

= a + b

= f (xa)+ f
�

x b
�

= f (t )+ f (u) .

Does f also preserve the identity? We usually write the identity of M = M as the symbol 1, but
recall that this is a convenient stand-in for x0. On the other hand, the identity (under addition)
of N = N is the number 0. We use this fact to verify that f presernves the identity:

f (1M ) = f (1) = f
�

x0
�

= 0 = 1N .

(We don’t usually write 1M and 1N , but I’m doing it here to show explicitly how this relates to
the definition.)

We have shown that there exists a bijection f : M −→N that preserves the operation and
the identity. We conclude that M ∼= N.

On the other hand, is (N,+) ∼= (N,×)? The sets are the same, but the operations is
different. Let’s see what happens.

Example 1.59. In fact, (N,+) 6∼= (N,×). To show this, we proceed by contradiction. Suppose
there does exist an isomorphism f between the two monoids. What would have to be true about
f ?

We know that f preserves the identity; that is, f (0) = 1. After all, 0 is the identity of
(N,+), while 1 is the identity of (N,×). We also know that f preserves the operation, so for
any x, y ∈N, we would have to have f (x + y) = f (x) f (y). Let’s see if that’s actually possible.

17The definition uses the variables x and y, but those are just letters that stand for arbitrary elements of M . Here
M = M and we can likewise choose any two letters we want to stand in place of x and y. It would be a very bad idea
to use x when talking about an arbitrary element of M, because there is an element of M called x. So we choose t
and u instead.
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Let a ∈N such that f (1) = a; after all, f has to map 1 to something! Then

f (2) = f (1+ 1) = f (1)× f (1) = a2 and

f (3) = f (1+(1+ 1)) = f (1)× f (1+ 1) = a3, so that
f (n) = · · ·= f (1)n for any n ∈N.

So f sends every integer in (N,+)to a power of a.

Think about what this implies. For f to be a bijection, it would have to be onto, so every
element of (N,×) would have to be an integer power of a. This is false! After all, 2 is not an
integer power of 3, and 3 is not an integer power of 2.

The claim was correct: (N,+) 6∼= (N,×).

You will show in the exercises that ∼= is an equivalence relation; thus, we can also conclude
that (N,×) 6∼= (N,+).

Let’s look again at monomials. It might have occurred to you that we can view any
element of Mn as a list of n elements of M. (Pat yourself on the back if so.) If not, here’s
an example:

x6
1 x3

2 looks an awful lot like
�

x6, x3
�

.

We can do this with other sets, as well; creating new sets via lists of elements of old sets is very
useful.

Definition 1.60. Let r ∈ N+ and S1, S2, . . . , Sr be sets. The Cartesian
product of S1, . . . , Sr is the set of all lists of r elements where the i th
entry is an element of Si ; that is,

S1×· · ·× Sr = {(s1, s2, . . . , sn) : si ∈ Si} .

Example 1.61. We already mentioned a Cartesian product of two sets in the introduction to this
chapter. Another example would be N×M; elements of N×M include

�

2, x3� and
�

0, x5�. In
general, N×M is the set of all ordered pairs where the first entry is a natural number, and the
second is a monomial.

If we can preserve the structure of the underlying sets in a Cartesian product, we call it a direct
product.
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Definition 1.62. Let r ∈ N+ and M1, M2, . . . , Mr be monoids. The di-
rect product of M1, . . . , Mr is the pair

(M1×· · ·×Mr ,⊗)

where M1×· · ·×Mr is the usual Cartesian product, and⊗ is the “natural”
operation on M1×· · ·×Mr .

What do we mean by the “natural” operation on M1× · · ·×Mr ?
Let x, y ∈M1×· · ·×Mr ; by definition, we can write

x = (x1, . . . , xr ) and y = (y1, . . . , yr )

where each xi and each yi is an element of Mi . Then

x⊗ y = (x1y1, x2y2, . . . , xr yr )

where each product xi yi is performed according to the operation that
makes the corresponding Mi a monoid.

Example 1.63. Recall that N×M is a Cartesian product; if we consider the monoids (N,×) and
(M,×), we can show that the direct product is a monoid, much like N and M! To see why, we
check each of the properties.

(closure) Let t , u ∈ N×M. By definition, we can write t = (a, xα) and u =
�

b , xβ
�

for
appropriate a,α, b ,β ∈N. Then

t u = (a, xα)⊗
�

b , xβ
�

=
def of ⊗

�

ab , xαxβ
�

=
�

ab , xα+β
�

∈N×M.

We took two arbitrary elements of N×M, multiplied them according to the new
operation, and obtained another element of N×M; the operation is therefore closed.

(associativity) Let t , u, v ∈N×M. By definition, we can write t = (a, xα), u =
�

b , xβ
�

, and
v = (c , xγ ) for appropriate a,α, b ,β, c ,γ ∈N. Then

t (uv) = (a, xα)⊗
��

b , xβ
�

⊗ (c , xγ )
�

= (a, xα)⊗
�

b c , xβxγ
�

=
�

a (b c) , xα
�

xβxγ
��

.

To show that this equals (t u) v, we have to rely on the associative properties of N and
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M:

t (uv) =
�

(ab ) c ,
�

xαxβ
�

xγ
�

=
�

ab , xαxβ
�

⊗ (c , xγ )

=
�

(a, xα)⊗
�

b , xβ
��

⊗ (c , xγ )

= (t u) v.

We took three elements of N×M, and showed that the operation was associative for
them. Since the elements were arbitrary, the operation is associative.

(identity) We claim that the identity of N×M is (1,1) =
�

1, x0�. To see why, let t ∈N×M.
By definition, we can write t = (a, xα) for appropriate a,α ∈N. Then

(1,1)⊗ t =
subst.

(1,1)⊗ (a, xα)

=
def of ⊗

(1× a, 1× xα)

=
mult in N,M

(a, xα) = t

and similarly t ⊗ (1,1) = t . We took an arbitrary element of N×M, and showed that
(1,1) acted as an identity under the operation ⊗ with that element. Since the element
was arbitrary, (1,1) must be the identity for N×M.

Interestingly, if we had used (N,+) instead of (N,×) in the previous example, we still would
have obtained a direct product! Indeed, the direct product of monoids is always a monoid!

Theorem 1.64. The direct product of monoids M1, . . . , Mr is itself a
monoid. Its identity element is (e1, e2, . . . , er ), where each ei denotes the
identity of the corresponding monoid Mi .

Proof. You do it! See Exercise 1.71.

We finally turn our attention the question of whether Mn and Mn are the same.
Admittedly, the two are not identical: Mn is the set of products of powers of n distinct

variables, whereas Mn is a set of lists of powers of one variable. In addition, if the variables are
not commutative (remember that this can occur), then Mn and Mn are not at all similar. Think
about (xy)4 = xy xy xy xy; if the variables are commutative, we can combine them into x4y4,
which looks likes (4,4). If the variables are not commutative, however, it is not at all clear how
we could get (xy)4 to correspond to an element of N×N.

That leads to the following result.

Theorem 1.65. The variables of Mn are commutative if and only if then
Mn
∼= Mn .

Proof. Assume the variables of Mn are commutative. Let f : Mn −→Mn by

f
�

xa1
1 xa2

2 · · · x
an
n

�

= (xa1 , xa2 , . . . , xan ) .
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The fact that we cannot combine ai and a j if i 6= j shows that f is one-to-one, and any element
�

x b1 , . . . , x bn
�

of Mn has a preimage x b1
1 · · · x

bn
n in Mn ; thus f is a bijection.

Is it also an isomorphism? To see that it is, let t , u ∈Mn . By definition, we can write
t = xa1

1 · · · x
an
n and u = x b1

1 · · · x
bn
n for appropriate a1, b1 . . . ,an , bn ∈N. Then

f (t u) = f
�
�

xa1
1 · · · x

an
n

�
�

x b1
1 · · · x

bn
n

��

(substitution)

= f
�

xa1+b1
1 · · · xan+bn

n

�

(commutative)

=
�

xa1+b1 , . . . , xan+bn
�

(definition of f )

= (xa1 , . . . , xan )⊗
�

x b1 , . . . , x bn
�

(def. of operation)

= f (t )⊗ f (u) . (definition of f )

Hence f is an isomorphism, and we conclude that Mn
∼= Mn .

Conversely, suppose Mn
∼= Mn . By Exercise 1.68, Mn

∼= Mn . By definition, there exists
a bijection f : Mn −→Mn satisfying Definition 1.56. Let t , u ∈Mn ; by definition, we can find

ai , b j ∈N such that t = xa1
1 · · · x

an
n and u = x b1

1 · · · x
bn
n . Since f preserves the operation, f (t u) =

f (t )⊗ f (u). Now, f (t ) and f (u) are elements of Mn , which is commutative by Exercise 1.67
(with the Si = M here). Hence f (t )⊗ f (u) = f (u)⊗ f (t ), so that f (t u) = f (u)⊗ f (t ).
Using the fact that f preserves the operation again, only in reverse, we see that f (t u) = f (u t ).
Recall that f , as a bijection, is one-to-one! Thus t u = u t , and Mn is commutative.

Notation 1.66. Although we used ⊗ in this section to denote the operation in a direct product,
this is not standard; I was trying to emphasize that the product is different for the direct product
than for the monoids that created it. In general, the product x⊗ y is written simply as xy. Thus,
the last line of the proof above would have f (t ) f (u) instead of f (t )⊗ f (u).

Exercises.

Exercise 1.67. Suppose M1, M2, . . . , and Mn are commutative monoids. Show that the direct
product M1×M2×· · ·×Mn is also a commutative monoid.

Exercise 1.68. Show that isomorphism is an equivalence relation.

Exercise 1.69. Show that Mn ∼= Nn . What does this imply about Mn and Nn?

Exercise 1.70. Show that the “Boolean or” and “Boolean xor” monoids from Exercises 1.45
and 1.46 are not isomorphic.

Exercise 1.71. Prove Theorem 1.64.

Exercise 1.72. Let Tn
S denote the set of terms in n variables whose coefficients are elements of

the set S. For example, 2xy ∈T2
Z

and πx3 ∈T1
R

.
(a) Show that if S is a monoid, then so is Tn

S .
(b) Show that if S is a monoid, then Tn

S
∼= S×Mn .
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Groups



Chapter 2:
Groups

In Chapter 1 we described monoids. In this chapter, we study a group, which is a kind of
monoid; the property that distinguishes groups from other monoids is essential to a large num-
ber of mathematical phenomena. We describe a special class of groups called the cyclic groups
(Section 2.3) and then look at two example groups related to problems in geometry. The first,
D3, describes symmetries of a triangle using groups (Section 2.2). The second, elliptic curves, has
received attention in many areas in recent decades (Section 2.5).

2.1: Groups

A group is a monoid where each element has an inverse element. Stated precisely:

Definition 2.1. Let G be a set, and ◦ a binary operation on G. We say
that the pair (G,◦) is a group if it satisfies the following properties.
(closure) for any x, y ∈G, we have x ◦ y ∈G;
(associativity) for any x, y, z ∈G, we have (x ◦ y) ◦ z = x ◦ (y ◦ z);
(identity) there exists an identity element e ∈ G; that is, for any x ∈

G, we have x ◦ e = e ◦ x = x; and
(inverses) each element of the group has an inverse; that is for any x ∈

G we can find y ∈G such that x ◦ y = y ◦ x = e .
We may also say that G is a group under ◦. We say that (G,◦) is an
abelian group if it also satisfies
(commutativity) the operation is commutative; that is, xy = y x for all

x, y ∈G.

Notation 2.2. If the operation is addition, we may refer to the group as an additive group or a
group under addition. We also write −x instead of x−1, and x +(−y) or even x− y instead of
x + y−1, keeping with custom. Additive groups are normally abelian.

If the operation is multiplication, we may refer to the group as a multiplicative group
or a group under multiplication. The operation is usually understood from context, so we
typically write G rather than (G,+) or (G,×) or (G,◦). We will write (G,+) when we want
to emphasize that the operation is addition.

Example 2.3. Certainly Z is an additive group; in fact, it is abelian. Why?
• Adding two integers gives another integer.
• Addition of integers is associative.
• The additive identity is the number 0.
• Every integer has an additive inverse.
• Addition of integers is commutative.

The same holds true for many of the sets we identified in Chapter 1, using the ordinary definition
of addition in that set.

However, while N is a monoid under addition, it is not a group. Why not? The problem is
with inverses. We know that every natural number has an additive inverse; after all, 2+(−2) = 0.
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Nevertheless, the inverse property is not satisfied because −2 6∈ N! It’s not enough to have an
inverse in some set; the inverse be in the same set! For this reason, N is not a group.

Example 2.4. Let n ∈ N+. The set of invertible n× n matrices is a multiplicative group. We
leave much of the proof to the exercises, but this fact is a consequence of properties you learn in
linear algebra.

Definition 2.5. We call the set of invertible n× n matrices the general
linear group of degree n, and write GLn (R) for this set.

Mathematicians of the 20th century invested substantial effort in an attempt to classify all finite,
simple groups. (You will learn later what makes a group “simple”.) Replicating that achievement
is far, far beyond the scope of these notes, but we can take a few steps in this area.

Definition 2.6. Let S be any set. We write |S | to indicate the number
of elements in S, and say that |S | is the size of S. If there is an infinite
number of elements in S, then we write |S |=∞. We also write |S |<∞
to indicate that |S | is finite, if we don’t want to state a precise number.

For any group G, the order of G is the size of G. A group has
finite order if |G|<∞ and infinite order if |G|=∞.

Here are three examples of finite groups; in fact, they are all of order 2.

Example 2.7. The sets

{1,−1} ,
��

1 0
0 1

�

,
�

−1 0
0 1

��

,

and
��

1 0
0 1

�

,
�

1 0
0 −1

��

are all groups under multiplication:
• In the first group, the identity is 1, and −1 is its own inverse; closure is obvious, and you

know from arithmetic that the associative property holds.
• In the second and third groups, the identity is the identity matrix; closure is easy to verify,

and you know from linear algebra that the associative property holds.

I will now make an extraordinary claim:
Claim 1. For all intents and purposes, there is only one group of order two.

This claim may seem preposterous on its face; after all, the example above has three com-
pletely different groups of order two. In fact, the claim is quite vague, because we’re using vague
language. After all, what is meant by the phrase, “for all intents and purposes”? Basically, we
meant that:
• group theory cannot distinguish between the groups as groups; or,
• their multiplication table (or addition table, or whatever-operation table) has the same

structure; or, more precisely,
• the groups are isomorphic.

By “isomorphic”, we mean both “isomorphic when viewed as monoids” and “isomorphic when
viewed as groups.” We won’t actually spend time with group isomorphisms until we get to Chap-
ter 4, but Chapter 1 gave you a rough idea of what that meant: the groups are identical as groups.
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We will prove the claim above in a “brute force” manner, by looking at the table generated
by the operation of the group. Now, “the table generated by the operation of the group” is an
ungainly phrase, and quite a mouthful. Since the name of the table depends on the operation
(multiplication table, addition table, etc.), we have a convenient phrase that describes all of them.

Definition 2.8. The table defining the operation of a monoid is called a
Cayley table. (Comparable to an addition or multiplication table.)

Since groups are monoids, we can call their table a Cayley table, too.
Back to our claim. We want to build a Cayley table for a “generic” group of order two.

We will show that there is only one possible way to construct such a table. As a consequence,
regardless of the set and its operation, every group of order 2 behaves exactly the same way. It
does not matter one whit what the elements of G are, or the fancy name we use for the operation,
or the convoluted procedure we use to simplify computations in the group. If there are only two
elements, and it’s a group, then it always works the same. Why?

Example 2.9. Let G be an arbitrary group of order two. By definition, it has an identity, so write
G = {e ,a} where e represents the known identity, and a the other element.

We did not say that e represents the only identity. For all we know, a might also be an
identity; is that possible? In fact, it is not possible; why? Remember that a group is a monoid. We
showed in Proposition 2.12 that the identity of a monoid is unique; thus, the identity of a group
is unique; thus, there can be only one identity, e .

Now we build the addition table. We have to assign a ◦ a = e . Why?
• To satisfy the identity property, we must have e ◦ e = e , e ◦ a = a, and a ◦ e = a.
• To satisfy the inverse property, a must have an additive inverse. We know the inverse can’t

be e , since a ◦ e = a; so the only inverse possible is a itself! That is, a−1 = a. (Read that as,
“the inverse of a is a.”) So a ◦ a−1 = a ◦ a = e .

So the Cayley table of our group looks like:
◦ e a
e e a
a a e

The only assumption we made about G is that it was a group of order two. That means this table
applies to any group of order two, and we have determined the Cayley table of all groups of order
two!

In Definition 2.1 and Example 2.9, the symbol ◦ is a placeholder for any operation. We
assumed nothing about its actual behavior, so it can represent addition, multiplication, or other
operations that we have not yet considered. Behold the power of abstraction!

Notation 2.10. We adopt the following convention:
• If we know only that G is a group under some operation, we write ◦ for the operation and

proceed as if the group were multiplicative, writing xy.
• If we know that G is a group and a symbol is provided for its operation, we usually use

that symbol for the group, but not always. Sometimes we treat the group as if it were
multiplicative, writing xy instead of the symbol provided.
• We reserve the symbol + exclusively for additive groups.
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The following fact looks obvious—but remember, we’re talking about elements of any
group, not merely the sets you have worked with in the past.

Proposition 2.11. Let G be a group and x ∈G. Then
�

x−1�−1
= x. If G

is additive, we write instead that − (−x) = x.

Proposition 2.11 says that the inverse of the inverse of x is x itself; that is, if y is the inverse of x,
then x is the inverse of y.

Proof. You prove it! See Exercise 2.15.

Proposition 2.12. The identity of a group is both two-sided and unique;
that is, every group has exactly one identity. Also, the inverse of an
element is both two-sided and unique; that is, every element has exactly
one inverse element.

Proof. Let G be a group. We already pointed out that, since G is a monoid, and the identity of
a monoid is both two-sided and unique, the identity of G is unique.

We turn to the question of the inverse. First we show that any inverse is two-sided. Let
x ∈G. Let w be a left inverse of x, and y a right inverse of x. Since y is a right inverse,

xy = e .

By the identity property, we know that e x = x. So, substitution and the associative property
give us

(xy) x = e x
x (y x) = x.

Since w is a left inverse, w x = e , so substitution, the associative property, the identity property,
and the inverse property give

w (x (y x)) = w x
(w x) (y x) = w x

e (y x) = e
y x = e .

Hence y is a left inverse of x. We already knew that it was a right inverse of x, so right inverses
are in fact two-sided inverses. A similar argument shows that left inverses are two-sided inverses.

Now we show that inverses are unique. Suppose that y, z ∈G are both inverses of x. Since
y is an inverse of x,

xy = e .

Since z is an inverse of x,
x z = e .

By substitution,
xy = x z.
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Multiply both sides of this equation on the left by y to obtain

y (xy) = y (x z) .

By the associative property,
(y x) y = (y x) z,

and by the inverse property,
e y = e z.

Since e is the identity of G,
y = z.

We chose two arbitrary inverses of x, and showed that they were the same element. Hence the
inverse of x is unique.

In Example 2.9, the structure of a group compelled certain assignments for addition. We can infer
a similar conclusion for any group of finite order.

Theorem 2.13. Let G be a group of finite order, and let a, b ∈ G. Then
a appears exactly once in any row or column of the Cayley table that is
headed by b .

It might surprise you that this is not necessarily true for a monoid; see Exercise 2.22.

Proof. First we show that a cannot appear more than once in any row or column headed by b .
In fact, we show it only for a row; the proof for a column is similar.

The element a appears in a row of the Cayley table headed by b any time there exists
c ∈ G such that b c = a. Let c , d ∈ G such that b c = a and b d = a. (We have not assumed that
c 6= d .) Since a = a, substitution implies that b c = b d . Thus

c =
id.

ec =
inv.

�

b−1b
�

c =
ass.

b−1 (b c)

=
subs.

b−1 (b d ) =
ass.

�

b−1b
�

d =
inv.

ed =
id.

d .

By the transitive property of equality, c = d . This shows that if a appears in one column of the
row headed by b , then that column is unique; a does not appear in a different column.

We still have to show that a appears in at least one row of the addition table headed by b .
This follows from the fact that each row of the Cayley table contains |G| elements. What applies
to a above applies to the other elements, so each element of G can appear at most once. Thus,
if we do not use a, then only n− 1 pairs are defined, which contradicts either the definition of
an operation (b x must be defined for all x ∈G) or closure (that b x ∈G for all x ∈G). Hence a
must appear at least once.
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Definition 2.14. Let G1, . . . , Gn be groups. The direct product of G1,
. . . , Gn is the cartesian product G1×· · ·×Gn together with the operation
⊗ such that for any (g1, . . . , gn) and (h1, . . . , hn) in G1×· · ·×Gn ,

(g1, . . . , gn)⊗ (h1, . . . , hn) = (g1h1, . . . , gn hn) ,

where each product gi hi is performed according to the operation of Gi .
In other words, the direct product of groups generalizes the direct product
of monoids.

You will show in the exercises that the direct product of groups is also a group.

Exercises.

Exercise 2.15. Explain why
�

x−1�−1
= x; or if the operation is addition, why − (−x) = x.

Exercise 2.16. Explain why M is not a group.

Exercise 2.17. Let G be a group, and x, y, z ∈ G. Show that if x z = y z, then x = y; or if the
operation is addition, that if x + z = y + z, then x = y.

Exercise 2.18. Show in detail that R2×2 is an additive group.

Exercise 2.19. Recall the Boolean-or monoid (B ,∨) from Exercise 1.45. Is it a group? If so, is it
abelian? Explain how it justifies each property. If not, explain why not.

Exercise 2.20. Recall the Boolean-xor monoid (B ,⊕) from Exercise 1.46. Is it a group? If so, is it
abelian? Explain how it justifies each property. If not, explain why not.

Exercise 2.21. In Section 1.2, we showed that FS , the set of all functions, is a monoid for any S.
(a) Show that FR, the set of all functions on the real numbers R, is not a group.
(b) Describe a subset of FR that is a group. Another way of looking at this question is: what

restriction would you have to impose on any function f ∈ FS to fix the problem you found
in part (a)?

Exercise 2.22. Indicate a monoid you have studied that does not satisfy Theorem 2.13. That is,
find a monoid M such that (i) M is finite, and (ii) there exist a, b ∈ M such that in the the Cayley
table, a appears at least twice in a row or column headed by b .

Exercise 2.23. Show that the Cartesian product

Z×Z := {(a, b ) : a, b ∈Z}

is a group under the direct product’s notion of addition; that is,

x + y = (a + c , b + d ) .
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Exercise 2.24. Let (G,◦) and (H ,∗) be groups, and define

G×H = {(a, b ) : a ∈G, b ∈H} .

Define an operation † on G×H in the following way. For any x, y ∈ G×H , write x = (a, b )
and y = (c , d ); we say that

x † y = (a ◦ c , b ∗ d ) .

(a) Show that (G×H , †) is a group.
(b) Show that if G and H are both abelian, then so is G×H .

Exercise 2.25. Let n ∈N+. Let G1, G2, . . . , Gn be groups, and consider

n
∏

i=1

Gi = G1×G2×· · ·×Gn

= {(a1,a2, . . . ,an) : ai ∈Gi ∀i = 1,2, . . . , n}

with the operation † where if x = (a1,a2, . . . ,an) and y = (b1, b2, . . . , bn), then

x † y = (a1b1,a2b2, . . . ,an bn) ,

where each product ai bi is performed according to the operation of the group Gi . Show that
∏n

i=1 Gi is a group, and notice that this shows that the direct product of groups is a group, as
claimed above. (We used ⊗ instead of † there, though.)

Exercise 2.26. Let m ∈N+.
(a) Show in detail that Rm×m is a group under addition.
(b) Show by counterexample that Rm×m is not a group under multiplication.

Exercise 2.27. Let m ∈N+. Explain why GLm (R) satisfies the identity and inverse properties
of a group.

Exercise 2.28. Let m ∈N+ and G =GLm (R).
(a) Show that there exist a, b ∈G such that (ab )−1 6= a−1b−1.
(b) Show that for any a, b ∈G, (ab )−1 = b−1a−1.

Exercise 2.29. Let R+ = {x ∈R : x > 0}, and × the ordinary multiplication of real numbers.
Show that R+ is a multiplicative group by explaining why

�

R+,×
�

satisfies the properties of a
group.

Exercise 2.30. Define Q∗ to be the set of non-zero rational numbers; that is,

Q∗ =
§ a

b
: a, b ∈Z where a 6= 0 and b 6= 0

ª

.

Show that Q∗ is a multiplicative group.

Exercise 2.31. Show that every group of order 3 has the same structure.
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Exercise 2.32. Not every group of order 4 has the same structure, because there are two Cayley
tables with different structures. One of these groups is the Klein four-group, where each element
is its own inverse; the other is called a cyclic group of order 4, where not every element is its own
inverse. Determine addition tables for each group.

Exercise 2.33. Let G be a group, and x, y ∈G. Show that xy−1 ∈G.

Exercise 2.34. Suppose that H is an arbitrary group. Explain why we cannot assume that for
every a, b ∈H , (ab )−1 = a−1b−1, but we can assume that (ab )−1 = b−1a−1.

Exercise 2.35. Let ◦ denote the ordinary composition of functions, and consider the following
functions that map any point P = (x, y) ∈R2 to another point in R2:

I (P ) = P ,
F (P ) = (y, x) ,
X (P ) = (−x, y) ,
Y (P ) = (x,−y) .

(a) Let P = (2,3). Label the points P , I (P ), F (P ), X (P ), Y (P ), (F ◦X ) (P ), (X ◦Y ) (P ),
and (F ◦ F ) (P ) on an x-y axis. (Some of these may result in the same point; if so, label the
point twice.)

(b) Show that F ◦ F = X ◦X = Y ◦Y = I .
(c) Show that G = {I , F ,X ,Y } is not a group.
(d) Find the smallest group G such that G ⊂G. While you’re at it, construct the Cayley table

for G.
(e) Is G abelian?

Exercise 2.36. Let i be a number such that i2 =−1, and let Q8 be the set of quaternions, defined
by the matrices

�

±1,±i,±j,±k
	

where

1 =
�

1 0
0 1

�

, i =
�

i 0
0 −i

�

,

j =
�

0 1
−1 0

�

, k =

�

0 i
i 0

�

.

(a) Show that i2 = j2 = k2 =−1.
(b) Show that ij = k, jk = i, and ik =−j.
(c) Use (a) and (b) to build the Cayley table of Q8. (In this case, the Cayley table is the multi-

plication table.)
(c) Show that Q8 is a group under matrix multiplication.
(d) Explain why Q8 is not an abelian group.

Exercise 2.37. Let G be any group. For all x, y ∈ G, define the commutator of x and y to be
x−1y−1xy. We write [x, y ] for the commutator of x and y.
(a) Explain why [x, y ] = e iff x and y commute.
(b) Show that [x, y ]−1 = [y, x ]; that is, the inverse of [x, y ] is [y, x ].
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1

ρ
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32

1

ϕ

π

(b)

Figure 2.1. Rotation and reflection of the triangle

(c) Let z ∈ G. Denote the conjugation of any g ∈ G by z as g z = z g z−1. Show that
[x, y ]z = [x z , y z ].

2.2: The symmetries of a triangle

In this section, we show that the symmetries of an equilateral triangle form a group. We
call this group D3. This group is not abelian. You already know that groups of order 2, 3, and 4
are abelian; in Section 3.3 you will learn why a group of order 5 must also be abelian. Thus, D3
is the smallest non-abelian group.

To describe D3, we start with an equilateral triangle in R2, with its center at the origin. We
want to look at its group of symmetries, where a symmetry of the triangle is a distance-preserving
function on R2 that maps points on the triangle back onto itself.

Example 2.38. Two obvious symmetries of an equilateral triangle are a 120◦ rotation through the
origin, and a flip through the y-axis. See Figure 2.1.

What functions are symmetries of the triangle? To answer this question, we divide it into
two parts.

1. What are the distance-preserving functions that map R2 to itself? Here, distance is mea-
sured by the usual metric,

d =
Æ

(x2− x1)
2 +(y2− y1)

2.

2. Not all of the functions identitifed by question (1) map points on the triangle back onto
the triangle; for example a 45◦ degree rotation does not. Which ones do?

Lemma 2.39 answers the first question.
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Lemma 2.39. Let α : R2→R2. If
• α does not move the origin; that is, α (0,0) = (0,0), and
• the distance between α (P ) and α (R) is the same as the distance

between P and R for every P , R ∈R2,
then α has one of the following two forms:

ρ=
�

cos t − sin t
sin t cos t

�

∃t ∈R

or

ϕ =

�

cos t sin t
sin t −cos t

�

∃t ∈R.

The two values of t may be different.

(You might wonder why we assume that the origin doesn’t move. Basically, this makes life easier.
If it bothers you, try to see if you can prove that the origin must remain in the same place under
the action of a function α that preserves both distance and a figure centered at the origin. Then
see if you can prove it when the figure is not centered at the origin.)

Proof. Assume that α (0,0) = (0,0) and for every P , R ∈ R2 the distance between α (P ) and
α (R) is the same as the distance between P and R. We can determine α precisely merely from
how it acts on two points in the plane!

First, let P = (1,0). Write α (P ) = Q = (q1, q2); this is the point where α moves Q. The
distance between P and the origin is 1. Since α (0,0) = (0,0), the distance between Q and the
origin is

Æ

q2
1 + q2

2 . Because α preserves distance,

1 =
q

q2
1 + q2

2 ,

or
q2

1 + q2
2 = 1.

The only values for Q that satisfy this equation are those points that lie on the circle whose center
is the origin. Any point on this circle can be parametrized as

(cos t , sin t )

where t ∈R represents an angle. Hence, α (P ) = (cos t , sin t ).
Let R = (0,1). Write α (R) = S = (s1, s2). An argument similar to the one above shows

that S also lies on the circle whose center is the origin. Moreover, the distance between P and R
is
p

2, so the distance between Q and S is also
p

2. That is,
Æ

(cos t − s1)
2 +(sin t − s2)

2 =
p

2,

or
(cos t − s1)

2 +(sin t − s2)
2 = 2. (1)
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We can simplify (1) to obtain

−2 (s1 cos t + s2 sin t )+
�

s2
1 + s2

2

�

= 1. (2)

To solve this, recall that the distance from S to the origin must be the same as the distance from
R to the origin, which is 1. Hence

q

s2
1 + s2

2 = 1

s2
1 + s2

2 = 1.

Substituting this into (2), we find that

−2 (s1 cos t + s2 sin t )+ s2
1 + s2

2 = 1

−2 (s1 cos t + s2 sin t )+ 1 = 1
−2 (s1 cos t + s2 sin t ) = 0

s1 cos t =−s2 sin t . (3)

At this point we can see that s1 = sin t and s2 = −cos t would solve the problem; so would
s1 =− sin t and s2 = cos t . Are there any other solutions?

Recall that s2
1 + s2

2 = 1, so s2 = ±
Æ

1− s2
1 . Likewise sin t = ±

p

1− cos2 t . Substituting
into equation (3) and squaring (so as to remove the radicals), we find that

s1 cos t =−
q

1− s2
1 ·
Æ

1− cos2 t

s2
1 cos2 t =

�

1− s2
1

��

1− cos2 t
�

s2
1 cos2 t = 1− cos2 t − s2

1 + s2
1 cos2 t

s2
1 = 1− cos2 t

s2
1 = sin2 t
∴ s1 =± sin t .

Along with equation (3), this implies that s2 = ∓cos t . Thus there are two possible values of s1
and s2.

It can be shown (see Exercise 2.46) that α is a linear transformation on the vector space
R2 with the basis

¦

~P , ~R
©

= {(1,0) , (0,1)}. Linear algebra tells us that we can describe any linear
transformation as a matrix. If s = (sin t ,−cos t ) then

α=
�

cos t sin t
sin t −cos t

�

;

otherwise
α=

�

cos t − sin t
sin t cos t

�

.

The lemma names the first of these forms ϕ and the second ρ.

Before answering the second question, let’s consider an example of what the two basic
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forms of α do to the points in the plane.

Example 2.40. Consider the set of points

S = {(0,2) , (±2,1) , (±1,−2)} ;

these form the vertices of a (non-regular) pentagon in the plane. Let t = π/4; then

ρ=

 p
2

2 −
p

2
2p

2
2

p
2

2

!

and ϕ =

 p
2

2

p
2

2p
2

2 −
p

2
2

!

.

If we apply ρ to every point in the plane, then the points of S move to

ρ (S) = {ρ (0,2) ,ρ (−2,1) ,ρ (2,1) ,ρ (−1,−2) ,ρ (1,−2)}

=

(

�

−
p

2,
p

2
�

,

 

−
p

2−
p

2

2
,−
p

2+

p
2

2

!

,

 

p
2−
p

2

2
,
p

2+

p
2

2

!

,

 

−
p

2

2
+
p

2,−
p

2

2
−
p

2

!

,

 p
2

2
+
p

2,

p
2

2
−
p

2

!)

≈ {(−1.4,1.4) , (−2.1,−0.7) , (0.7,2.1) ,
(0.7,−2.1) , (2.1,−0.7)} .

This is a 45◦ (π/4) counterclockwise rotation in the plane.
If we apply ϕ to every point in the plane, then the points of S move to

ϕ (S) = {ϕ (0,2) ,ϕ (−2,1) ,ϕ (2,1) ,ϕ (−1,−2) ,ϕ (1,−2)}
≈ {(1.4,−1.4) , (−0.7,−2.1) , (2.1,0.7) ,
↓(−2.1,0.7) , (−0.7,2.1)} .

This is shown in Figure 2.2 . The line of reflection for ϕ has slope
�

1− cos π4
�

/ sin π
4 . (You will

show this in Exercise 2.48)

The second questions asks which of the matrices described by Lemma 2.39 also preserve
the triangle.
• The first solution (ρ) corresponds to a rotation of degree t of the plane. To preserve the

triangle, we can only have t = 0, 2π/3, 4π/3 (0◦, 120◦, 240◦). (See Figure 2.1(a).) Let ι
correspond to t = 0, the identity rotation; notice that

ι=
�

cos0 − sin0
sin0 cos0

�

=

�

1 0
0 1

�

,

which is what we would expect for the identity. We can let ρ correspond to a counterclock-
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ρ ϕ

Figure 2.2. Actions of ρ and ϕ on a pentagon, with t = π/4

wise rotation of 120◦, so

ρ=

�

cos 2π
3 − sin 2π

3
sin 2π

3 cos 2π
3

�

=

 

−1
2 −

p
3

2p
3

2 −1
2

!

.

A rotation of 240◦ is the same as rotating 120◦ twice. We can write that as ρ ◦ρ or ρ2;
matrix multiplication gives us

ρ2 =

 

−1
2 −

p
3

2p
3

2 −1
2

! 

−1
2 −

p
3

2p
3

2 −1
2

!

=

 

−1
2

p
3

2

−
p

3
2 −1

2

!

.

• The second solution (ϕ) corresponds to a flip along the line whose slope is

m = (1− cos t )/ sin t .

One way to do this would be to flip across the y-axis (see Figure 2.1(b)). For this we need
the slope to be undefined, so the denominator needs to be zero and the numerator needs to
be non-zero. One possibility for t is t = π (but not t = 0). So

ϕ =

�

cosπ sinπ
sinπ −cosπ

�

=

�

−1 0
0 1

�

.

There are two other flips, but we can actually ignore them, because they are combinations
of ϕ and ρ. (Why? See Exercise 2.45.)

Let D3 =
�

ι,ϕ,ρ,ρ2,ρϕ,ρ2ϕ
	

. In the exercises, you will explain why D3 is a group. To do that,
it is helpful to observe two important properties.
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Corollary 2.41. In D3, ϕρ= ρ2ϕ.

Proof. Compare

ϕρ=
�

−1 0
0 1

�

 

−1
2 −

p
3

2p
3

2 −1
2

!

=

 

1
2

p
3

2p
3

2 −1
2

!

and

ρ2ϕ =

 

−1
2 −

p
3

2p
3

2 −1
2

! 

−1
2 −

p
3

2p
3

2 −1
2

!

�

−1 0
0 1

�

=

 

−1
2

p
3

2

−
p

3
2 −1

2

!

�

−1 0
0 1

�

=

 

1
2

p
3

2p
3

2 −1
2

!

.

Did you notice something interesting about Corollary 2.41? It implies that multiplication in D3
is non-commutative! We have ϕρ = ρ2ϕ, and a little logic (or an explicit computation) shows
that ρ2ϕ 6= ρϕ: thus ϕρ 6= ρϕ.

Corollary 2.42. In D3, ρ3 = ϕ2 = ι.

Proof. You do it! See Exercise 2.43.

Exercises.

Exercise 2.43. Show explicitly (by matrix multiplication) that in D3, ρ3 = ϕ2 = ι.

Exercise 2.44. The multiplication table for D3 has at least this structure:
◦ ι ϕ ρ ρ2 ρϕ ρ2ϕ
ι ι ϕ ρ ρ2 ρϕ ρ2ϕ
ϕ ϕ ρ2ϕ
ρ ρ ρϕ
ρ2 ρ2

ρϕ ρϕ
ρ2ϕ ρ2ϕ

Complete the multiplication table, writing every element in the form ρmϕn , never with ϕ before
ρ. Explain how D3 satisfies the properties of a group. Rather than using matrix multiplication,
use the result of Exercise 2.43.

Exercise 2.45. Two other values of t allow us to define flips. Find these values of t , and explain
why their matrices are equivalent to the matrices ρϕ and ρ2ϕ.
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Exercise 2.46. Show that any function α satisfying the requirements of Theorem 2.39 is a linear
transformation; that is, for all P ,Q ∈R2 and for all a, b ∈R, α (aP + bQ) = aα (P )+ bα (Q).
Use the following steps.
(a) Prove that α (P ) ·α (Q) = P ·Q, where · denotes the usual dot product (or inner product)

on R2.
(b) Show that α (1,0) ·α (0,1) = 0.
(c) Show that α ((a, 0)+ (0, b )) = aα (1,0)+ bα (0,1).
(d) Show that α (aP ) = aα (P ).
(e) Show that α (P +Q) = α (P )+α (Q).

Exercise 2.47. Show that the only point in R2 left stationary by ρ is the origin. That is, if
ρ (P ) = P , then P = (0,0).

Exercise 2.48. Show that the only points in R2 left stationary by ϕ lie along the line whose slope
is (1− cos t )/ sin t .

2.3: Cyclic groups and order

Here we re-introduce the familiar notation of exponents, in a manner consistent with
what you learned of exponents for real numbers. We use this to describe an important class of
groups that are recur frequently, at least indirectly.

Notation 2.49. Let G be a group, and g ∈ G. If we want to perform the operation on g ten
times, we could write

10
∏

i=1

g = g · g · g · g · g · g · g · g · g · g

but this grows tiresome. Instead we will adapt notation from high-school algebra and write

g 10.

We likewise define g−10 to represent

10
∏

i=1

g−1 = g−1 · g−1 · g−1 · g−1 · g−1 · g−1 · g−1 · g−1 · g−1 · g−1.

Indeed, for any n ∈N+ and any g ∈G we adopt the following convention:
• g n means to perform the operation on n copies of g , so g n =

∏n
i=1 g ;

• g−n means to perform the operation on n copies of g−1, so g−n =
∏n

i=1 g−1 =
�

g−1�n ;
• g 0 = e , and if I want to be annoying I can write g 0 =

∏0
i=1 g .

In additive groups we write instead n g =
∑n

i=1 g , (−n) g =
∑n

i=1 (−g ), and 0g = 0.
Notice that this definition assume n is positive.

Definition 2.50. Let G be a group. If there exists g ∈G such that every
element x ∈ G has the form x = g n for some n ∈ Z, then G is a cyclic
group and we write G = 〈g 〉. We call g a generator of G.
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The idea of a cyclic group is that it has the form
¦

. . . , g−2, g−1, e , g 1, g 2, . . .
©

.

If the group is additive, we would of course write

{. . . ,−2g ,−g , 0, g , 2g , . . .} .

Example 2.51. Z is cyclic, since any n ∈Z has the form n · 1. Thus Z = 〈1〉. In addition, n has
the form (−n) · (−1), so Z = 〈−1〉 as well. Both 1 and −1 are generators of Z.

You will show in the exercises that Q is not cyclic.

In Definition 2.50 we referred to g as a generator of G, not as the generator. There could in
fact be more than one generator; we see this in Example 2.51 from the fact that Z = 〈1〉= 〈−1〉.
Here is another example.

Example 2.52. Let

G =











�

1 0
0 1

�

,
�

0 −1
1 0

�

,
�

0 1
−1 0

�

,
�

−1 0
0 −1

�











(GLm (R) .

It turns out that G is a group; both the second and third matrices generate it. For example,

�

0 −1
1 0

�2

=

�

−1 0
0 −1

�

�

0 −1
1 0

�3

=

�

0 1
−1 0

�

�

0 −1
1 0

�4

=

�

1 0
0 1

�

.

An important question arises here. Given a group G and an element g ∈G, define

〈g 〉=
¦

. . . , g−2, g−1, e , g , g 2, . . .
©

.

We know that every cyclic group has the form 〈g 〉 for some g ∈G. Is the converse also true that
〈g 〉 is a group for any g ∈G? As a matter of fact, yes!

Theorem 2.53. For every group G and for every g ∈G, 〈g 〉 is an abelian
group.

To prove Theorem 2.53, we need to make sure we can perform the usual arithmetic on exponents.
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Lemma 2.54. Let G be a group, g ∈ G, and m, n ∈ Z. Each of the
following holds:
(A) g m g−m = e ; that is, g−m = (g m)−1.
(B) (g m)n = g mn .
(C) g m g n = g m+n .

The proof will justify this argument by applying the notation described at the beginning of this
chapter. We have to be careful with this approach, because in the lemma we have m, n ∈Z, but
the notation was given under the assumption that n ∈ N+. To make this work, we’ll have to
consider the cases where m and n are positive or negative separately. We call this a case analysis.

Proof. Each claim follows by case analysis.

(A) If m = 0, then g−m = g 0 = e = e−1 =
�

g 0�−1
= (g m)−1.

Otherwise, m 6= 0. First assume that m ∈N+. By notation, g−m =
∏m

i=1 g−1. Hence

g m g−m =
def.

 

m
∏

i=1

g

! 

m
∏

i=1

g−1

!

=
ass.

 

m−1
∏

i=1

g

!

�

g · g−1
�

 

m−1
∏

i=1

g−1

!

=
id.

 

m−1
∏

i=1

g

!

e

 

m−1
∏

i=1

g−1

!

=
inv.

 

m−1
∏

i=1

g

! 

m−1
∏

i=1

g−1

!

...
= e .

Since the inverse of an element is unique, g−m = (g m)−1.
Now assume that m ∈ Z\N. Since m is negative, we cannot express the product using
m; the notation discussed on page 38 requires a positive exponent. Consider instead bm =
|m| ∈N+. Since the oppositve of a negative number is positive, we can write −m = bm
and − bm = m. Since bm is positive, we can apply the notation to it directly; g−m = g bm =
∏

bm
i=1 g , while g m = g− bm =

∏

bm
i=1 g−1. (To see this in a more concrete example, try it

with an actual number. If m = −5, then bm = |−5| = 5 = − (−5), so g m = g−5 = g− bm

and g−m = g 5 = g bm .) As above, we have

g m g−m =
subs.

g− bm g bm =
not.





bm
∏

i=1

g−1









bm
∏

i=1

g



= e .

Hence g−m = (g m)−1.
(B) If n = 0, then (g m)n = (g m)0 = e because anything to the zero power is e . Assume first

that n ∈N+. By notation, (g m)n =
∏n

i=1 g m . We split this into two subcases.
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(B1) If m ∈N, we have

(g m)n =
not.

n
∏

i=1

 

m
∏

i=1

g

!

=
ass.

mn
∏

i=1

g =
not.

g mn .

(B2) Otherwise, let bm = |m| ∈N+ and we have

(g m)n =
subs.

�

g− bm
�n

=
not.

n
∏

i=1





bm
∏

i=1

g−1





=
ass.

bmn
∏

i=1

g−1 =
not.

�

g−1
�

bmn

=
not.

g− bmn =
subs.

g mn .

What if n is negative? Let bn = −n; by notation, (g m)n = (g m)−bn =
∏

bn
i=1 (g m)−1. By

(A), this becomes
∏

bn
i=1 g−m . By notation, we can rewrite this as

�

g−m�bn . Since bn ∈N+,
we can apply case (B1) or (B2) as appropriate, so

(g m)n =
�

g−m�bn =
(B1) or (B2)

g (−m)bn

=
integers!

g m(−bn) =
subst

g mn .

(C) We consider three cases.

If m = 0 or n = 0, then g 0 = e , so g−0 = g 0 = e .

If m, n have the same sign (that is, m, n ∈ N+ or m, n ∈ Z\N), then write bm = |m|,
bn = |n|, gm = g

bm
m , and gn = g

bn
n . This effects a really nice trick: if m ∈ N+, then

gm = g , whereas if m is negative, gm = g−1. This notational trick allows us to write g m =
∏

bm
i=1 gm and g n =

∏

bn
i=1 gn , where gm = gn and bm and bn are both positive integers. Then

g m g n =
bm
∏

i=1

gm

bn
∏

i=1

gn =
bm
∏

i=1

gm

bn
∏

i=1

gm

=
bm+bn
∏

i=1

gm = (gm) bm+bn = g m+n .

Since g and n were arbitrary, the induction implies that g n g−n = e for all g ∈G, n ∈N+.

Now consider the case where m and n have different signs. In the first case, suppose m is
negative and n ∈N+. As in (A), let bm = |m| ∈N+; then

g m g n =
�

g−1
�−m

g n =





bm
∏

i=1

g−1





 

n
∏

i=1

g

!

.
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If bm ≥ n, we have more copies of g−1 than g , so after cancellation,

g m g n =
bm−n
∏

i=1

g−1 = g−( bm−n) = g m+n .

Otherwise, bm < n, and we have more copies of g than of g−1. After cancellation,

g m g n =
n− bm
∏

i=1

g = g n− bm = g n+m = g m+n .

The remaining case (m ∈N+, n ∈Z\N) is similar, and you will prove it for homework.

These properties of exponent arithmetic allow us to show that 〈g 〉 is a group.

Proof of Theorem 2.53. We show that 〈g 〉 satisfies the properties of an abelian group. Let x, y, z ∈
〈g 〉. By definition of 〈g 〉, there exist a, b , c ∈Z such that x = g a , y = g b , and z = g c .

• By substitution, xy = g a g b . By Lemma 2.54, xy = g a g b = g a+b ∈ 〈g 〉. So 〈g 〉 is closed.
• By substitution, x (y z) = g a

�

g b g c
�

. These are elements of G by inclusion (that is, 〈g 〉 ⊆
G so x, y, z ∈G), so the associative property in G gives us

x (y z) = g a
�

g b g c
�

=
�

g a g b
�

g c = (xy) z.

• By definition, e = g 0 ∈ 〈g 〉.
• By definition, g−a ∈ 〈g 〉, and by Lemma 2.54 x · g−a = g a g−a = e . Hence x−1 = g−a ∈
〈g 〉.
• Using Lemma 2.54 with the fact that Z is commutative under addition,

xy = g a g b = g a+b = g b+a = g b g a = y x.

Given an element and an operation, Theorem 2.53 links them to a group. It makes sense,
therefore, to link an element to the order of the group that it generates.

Definition 2.55. Let G be a group, and g ∈G. We say that the order of
g is ord (g ) = |〈g 〉|. If ord (g ) =∞, we say that g has infinite order.

If the order of a group is finite, then we can write an element in different ways.

Example 2.56. Recall Example 2.52; we can write

�

1 0
0 1

�

=

�

0 −1
1 0

�0

=

�

0 −1
1 0

�4

=

�

0 −1
1 0

�8

= · · · .
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Since multiples of 4 give the identity, let’s take any power of the matrix, and divide it by 4. The
Division Theorem allows us to write any power of the matrix as 4q + r , where 0≤ r < 4. Since
there are only four possible remainders, and multiples of 4 give the identity, positive powers of
this matrix can generate only four possible matrices:

�

0 −1
1 0

�4q

=

�

1 0
0 1

�

,

�

0 −1
1 0

�4q+1

=

�

1 0
0 1

��

0 −1
1 0

�

=

�

0 −1
1 0

�

,

�

0 −1
1 0

�4q+2

=

�

1 0
0 1

��

−1 0
0 −1

�

=

�

−1 0
0 −1

�

,

�

0 −1
1 0

�4q+3

=

�

1 0
0 1

��

0 1
−1 0

�

=

�

0 1
−1 0

�

.

We can do the same with negative powers; the Division Theorem still gives us only four
possible remainders. Let’s write

g =

�

0 −1
1 0

�

.

Thus
〈g 〉=

¦

I2, g , g 2, g 3
©

.

The example suggests that if the order of an element G is n ∈N, then we can write

〈g 〉=
¦

e , g , g 2, . . . , g n−1
©

.

This explains why we call 〈g 〉 a cyclic group: once they reach ord (g ), the powers of g “cycle”.To
prove this in general, we have to show that for a generic cyclic group 〈g 〉 with ord (g ) = n,
• n is the smallest positive power that gives us the identity; that is, g n = e , and
• for any two integers between 0 and n, the powers of g are different; that is, if 0≤ a < b < n,

then g a 6= g b .
Theorem 2.57 accomplishes that, and a bit more as well.

Theorem 2.57. Let G be a group, g ∈G, and ord (g ) = n. Then
(A) for all a, b ∈N such that 0≤ a < b < n, we have g a 6= g b .
In addition, if n <∞, each of the following holds:
(B) g n = e ;
(C) n is the smallest positive integer d such that g d = e ; and
(D) if a, b ∈Z and n | (a− b ), then g a = g b .

Proof. The fundamental assertion of the theorem is (A). The remaining assertions turn out to
be corollaries.

(A) By way of contradiction, suppose that there exist a, b ∈N such that 0 ≤ a < b < n and
g a = g b ; then e = (g a)−1 g b . By Exercise 2.60, we can write

e = g−a g b = g−a+b = g b−a .
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Let S =
�

m ∈N+ : g m = e
	

. By the well-ordering property of N, there exists a smallest
element of S; call it d . Recall that a < b , so b − a ∈N+, so g b−a ∈ S. By the choice of d ,
we know that d ≤ b − a. By Exercise 1.24, d ≤ b − a < b , so 0< d < b < n.
We can now list d distinct elements of 〈g 〉:

g , g 2, g 3, . . . , g d = e . (4)

Since d < n, this list omits n− d elements of 〈g 〉. (If ord (g ) =∞, then it omits infinitely
many elements of 〈g 〉.) Let x be one such element. By definition of 〈g 〉, we can write
x = g c for some c ∈Z. Choose q , r that satisfy the Division Theorem for division of c by
d ; that is,

c = qd + r such that q , d ∈Z and 0≤ r < d .

We have g c = g qd+r . By Lemma 2.54,

g c =
�

g d
�q · g r = eq · g r = e · g r = g r .

Recall that 0 ≤ r < d , so we listed g r above when we listed the powers of g less than d .
Since g r = g c , we have already listed g c . This contradicts the assumption that g c = g r

was not listed. Hence if 0≤ a < b < n, then g a 6= g b .

For the remainder of the proof, we assume that n <∞.

(B) Let S =
�

m ∈N+ : g m = e
	

. Is S non-empty? Since 〈g 〉<∞, there must exist a, b ∈N+

such that a < b and g a = g b . Using the inverse property and substitution, g 0 = e =
g b (g a)−1. By Lemma 2.54, g 0 = g b−a . By definition, b − a ∈ N+. Hence S is non-
empty.

By the well-ordering property of N, there exists a smallest element of S; call it d . Since
〈g 〉 contains n elements, 1< d ≤ n. If d < n, that would contradict assertion (A) of this theorem
(with a = 0 and b = d ). Hence d = n, and g n = e , and we have shown (A).

(C) In (B), S is the set of all positive integers m such that g m = e ; we let the smallest element
be d , and we found that d = n.

(D) Let a, b ∈Z. Assume that n | (a− b ). Let q ∈Z such that nq = a− b . Then

g b = g b · e = g b · eq

= g b ·
�

g d
�q

= g b · g d q

= g b · g a−b = g b+(a−b ) = g a .

We conclude therefore that, at least when they are finite, cyclic groups are aptly named: increasing
powers of g generate new elements until the power reaches n, in which case g n = e and we “cycle
around”.

Exercises.
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Exercise 2.58. Recall from Example 2.52 the matrix

A=

�

0 −1
−1 0

�

.

Express A as a power of the other non-identity matrices of the group.

Exercise 2.59. In Exercise 2.36 you showed that the quaternions form a group under matrix mul-
tiplication. Verify that H = {1,−1, i,−i} is a cyclic group. What elements generate H ?

Exercise 2.60. Complete the proof of Lemma 2.54(C).

Exercise 2.61. Let G be a group, and g ∈ G. Let d , n ∈ Z and assume ord (g ) = d . Show that
g n = e if and only if d | n.

Exercise 2.62. Show that any group of 3 elements is cyclic.

Exercise 2.63. Is the Klein 4-group (Exercise 2.32 on page 30) cyclic? What about the cyclic group
of order 4?

Exercise 2.64. Show that Q8 is not cyclic.

Exercise 2.65. Show that Q is not cyclic.

Exercise 2.66. Use a fact from linear algebra to explain why GLm (R) is not cyclic.

2.4: The roots of unity

One of the major motivations in the development of group theory was to give a structure
that would help study the roots of polynomials. A polynomial, of course, has the form

ax + b , ax2 + b x + c , ax3 + b x2 + c x + d , . . .

A root of a polynomial f (x) is any a such that f (a) = 0. For example, if f (x) = x4−1, then 1,
-1, i , and −i are all roots of f . In fact, they are the only roots of f ! Every root a corresponds to
a factor x− a of f ; that is, f (x) = (x + 1) (x−1) (x + i) (x− i), so we cannot have any other
roots; otherwise f would have to have a degree higher than 4. This fact is usually discussed in
precalculus algebra; if you have not seen it, take it on faith for now; we explain why in some
detail in Section 7.3.

Any root of the polynomial f (x) = xn − 1 is called a root of unity. These are very
important in the study of polynomial roots; we are interested in the fact that the set of roots of
unity forms a group. To see why, we need to describe them first.

Theorem 2.67. Let n ∈N+. The complex number

α= cos
�2π

n

�

+ i sin
�2π

n

�

.

is a root of f (x) = xn−1.
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To prove this, we need a different property of α.

Lemma 2.68. If α is defined as in Theorem 2.67, then

αm = cos
�2πm

n

�

+ i sin
�2πm

n

�

for every m ∈N+.

Proof. We proceed by induction on m. For the inductive base, it is clear by definition of α that
α1 has the desired form. For the inductive hypothesis, assume that αm has the desired form; in the
inductive step, we need to show that

αm+1 = cos

�

2π (m + 1)

n

�

+ i sin

�

2π (m + 1)

n

�

.

To see why this is true, use the trigonometric sum identities cos (A+B) = cosAcosB−sinAsinB
and sin (A+B) = sinAcosB + sinB cosA to rewrite αm+1, like so:

αm+1 = αm ·α

=
ind.
hyp.

�

cos
�2πm

n

�

+ i sin
�2π

n

��

·
�

cos
�2π

n

�

+ i sin
�2π

n

��

= cos
�2πm

n

�

cos
�2π

n

�

+ i sin
�2π

n

�

cos
�2πm

n

�

+ i sin
�2πm

n

�

cos
�2π

n

�

− sin
�2πm

n

�

sin
�2π

n

�

=

�

cos
�2πm

n

�

cos
�2π

n

�

− sin
�2πm

n

�

sin
�2π

n

��

+ i
�

sin
�2π

n

�

cos
�2πm

n

�

+ sin
�2πm

n

�

cos
�2π

n

��

= cos

�

2π (m + 1)

n

�

+ i sin

�

2π (m + 1)

n

�

.

Once we have Lemma 2.68, proving Theorem 2.67 is spectacularly easy.

Proof of Theorem 2.67. Substitution and the lemma give us

αn−1 =
�

cos
�2πn

n

�

+ i sin
�2πn

n

��

−1

= (1+ i ·0)−1 = 0,
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so α is indeed a root of xn−1.

Theorem 2.69. The nth roots of unity are Ωn =
�

1,α,α2, . . . ,αn−1	,
where α is defined as in Theorem 2.67. They form a cyclic group of
order n under multiplication.

Proof. For m ∈N+, we use the fact that the complex numbers are commutative under multi-
plication:

(αm)n−1 = αmn−1 = αnm−1 = (αn)m−1 = 1m−1 = 0.

Hence αm is a root of unity for any m ∈N+; they are distinct for m = 0, . . . , n− 1 because the
real and imaginary parts do not agree (think of a circle, and see Figure ). Since there can be only
n distinct roots, Ωn is a complete list of nth roots of unity.

We only sketch the proof that Ωn is a cyclic group.

(closure) Let x, y ∈Ωn ; you will show in Exercise 2.71 that xy ∈Ωn .
(associativity) The complex numbers are associative under multiplication; since Ωn ( C, the

elements of Ωn are also associative under multiplication.
(identity) The multiplicative identity 1 ∈Ωn since 1n = 1 for all n ∈N+.
(inverses) Let x ∈Ωn ; you will show in Exercise 2.72 that x−1 ∈Ωn .
(cyclic) Theorem 2.67 tells us that α ∈ Ωn ; the remaining elements are powers of α.

Hence Ωn = 〈α〉.

You might be wondering whether α is the only generator of Ωn ; in fact, it is not. We are not
yet ready to give a precise criterion that signals which elements generate Ωn , but they do have a
special name.

Definition 2.70. We call any generator of Ωn a primitive nth root of
unity.

Exercises.

Exercise 2.71. Suppose that a and b are both nth roots of unity. Show that ab is also an nth root
of unity.

Exercise 2.72. Let a be an nth root of unity. Find a number b such that ab = 1, and show that b
is also an nth root of unity.

Exercise 2.73. Suppose β is a root of xn− b . Show that αβ is also a root of xn− b , where α is
an nth root of unity.

Exercise 2.74. Find the primitive square roots of unity, the primitive cube roots of unity, and the
primitive fourth roots of unity.
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Exercise 2.75. Plot the eighth roots of unity on an x-y plane, with the root a+ i b corresponding
to the point (a, b ) on the plane. Do you notice anything geometric about these points? If not,
try plotting the nth roots of unity for other values of n.

2.5: Elliptic Curves

An excellent example of how groups can appear in places that you might not expect is in
elliptic curves. These functions have many applications, partly due to an elegant group structure.

Definition 2.76. Let a, b ∈ R such that −4a3 6= 27b 2. We say that E ⊆
R2 is an elliptic curve if

E =
¦

(x, y) ∈R2 : y2 = x3 + ax + b
©

∪{P∞} ,

where P∞ denotes a point at infinity.

What is meant by a point at infinity? If different branches of a curve extend toward infinity, we
imagine that they meet at a point, called the point at infinity.

There are different ways of visualizing a point at infinity. One is to imagine the real plane
as if it were wrapped onto a sphere. The scale on the axes changes at a rate inversely proportional
to one’s distance from the origin; in this way, no finite number of steps bring one to the point
on the sphere that lies opposite to the origin. On the other hand, this point would be a limit as
x or y approaches ±∞. Think of the line y = x. If you start at the origin, you can travel either
northeast or southwest on the line. Any finite distance in either direction takes you short of the
point opposite the origin, but the limit of both directions meets at the point opposite the origin.
This point is the point at infinity.

Example 2.77. Let
E =

¦

(x, y) ∈R2 : y2 = x3− x
©

∪{P∞} .

Here a =−1 and b = 0. Figure 2.3 gives a diagram of E .

It turns out that E is an additive group. Given P ,Q ∈ E , we can define addition by:
• If P = P∞, then define P +Q = Q.
• If Q = P∞, then define P +Q = P .
• If P ,Q 6= P∞, then:

◦ If P = (p1, p2) and Q = (p1,−p2), then define P +Q = P∞.
◦ If P = Q, then construct the tangent line ` at P . It turns out that ` intersects E at

another point S = (s1, s2) in R2. Define P +Q = (s1,−s2).
◦ Otherwise, construct the line ` determined by P and Q. It turns out that ` intersects

E at another point S = (s1, s2) in R2. Define P +Q = (s1,−s2).
The last two statements require us to ensure that, given two distinct and finite points P ,Q ∈ E ,
a line connecting them intersects E at a third point S. Figure 2.4 shows the addition of P =
�

2,−
p

6
�

and Q = (0,0); the line intersects E at S =
�

−1/2,
p

6/4
�

, so P +Q =
�

−1/2,−
p

6/4
�

.

Exercises
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0 1 2 3

K4

K2

2

4

Figure 2.3. A plot of the elliptic curve y2 = x3− x.

Exercise 2.78. Let E be an arbitrary elliptic curve, defined as the roots of a function f (x, y) =
y2− x3− ax− b . Show that

�

∂ f
∂ x , ∂ f

∂ y

�

6= (0,0) for any point on E .

This shows that E is “smooth”, and that tangent lines exist at each point in R2. (This
includes vertical lines, where ∂ f

∂ x = 0 and ∂ f
∂ y 6= 0.)

Exercise 2.79. Show that E is an additive group under the addition defined above, with
• P∞ as the zero element; and
• for any P = (p1, p2) ∈ E , then −P = (p1,−p2) ∈ E .

Exercise 2.80. Choose different values for a and b to generate another elliptic curve. Graph it,
and illustrate each kind of addition.

Exercise 2.81. Recall from Section 2.5 the elliptic curve E determined by the equation y2 =
x3− x.
(a) Compute the cyclic group generated by (0,0) in E .
(b) Verify that

�p
2+ 1,

p
2+ 2

�

is a point on E .

(c) Compute the cyclic group generated by
�p

2+ 1,
p

2+ 2
�

in E .

Appendix: Basic elliptic curves with Sage

Sage computes elliptic curves of the form

y2 + a1,1xy + a0,1y = x3 + a2,0x2 + a1,0x + a0,0 (5)

using the command
E = EllipticCurve(AA,[a1,1, a2,0, a0,1, a1,0, a0,0]) .18

18Here AA represents the field A of algebraic real numbers, which is a fancy way of referring to all real roots of all
polynomials with rational coefficients.
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P

Q

P+Q
4

K4

4

Figure 2.4. Addition on an elliptic curve

From then on, the symbol E represents the elliptic curve. You can refer to points on E using the
command

P = E(a, b, c)

where

• if c = 0, then you must have both a = 0 and b = 1, in which case P represents P∞; but
• if c = 1, then substituting x = a and y = b must satisfy equation 5.

By this reasoning, you can build the origin using E(0,0,1) and the point at infinity using E(0,1,0).
You can illustrate the addition shown in Figure 2.4 using the following commands.

sage: E = EllipticCurve(AA,[0,0,0,-1,0])
sage: P = E(2,-sqrt(6),1)
sage: Q = E(0,0,1)
sage: P + Q
(-1/2 : -0.6123724356957945? : 1)

This point corresponds to P +Q as shown in Figure 2.4. To see this visually, create the plot using
the following sequence of commands.
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# Create a plot of the curve
sage: plotE = plot(E, -2, 3)
# Create graphical points for P and Q
sage: plotP = point((P[0],P[1]))
sage: plotQ = point((Q[0],Q[1]))
# Create the point R, then a graphical point for R.
sage: R = P+Q
sage: plotR = point((R[0],R[1]))
# Compute the slope of the line from P to Q
# and round it to 5 decimal places.
sage: m = round( (P[1] - Q[1]) / (P[0] - Q[0]) , 5)
# Plot line PQ.
sage: plotPQ = plot(m*x, -2, 3, rgbcolor=(0.7,0.7,0.7))
# Plot the vertical line from where line PQ intersects E
# to the opposite point, R.
sage: lineR = line(((R[0],R[1]),(R[0],-R[1])),

rgbcolor=(0.7,0.7,0.7))
# Display the entire affair.
sage: plotE + plotP + plotQ + plotR + plotPQ



Chapter 3:
Subgroups

A subset of a group is not necessarily a group; for example, {2,4} ⊂Z, but {2,4} doesn’t
satisfy any properties of an additive group unless we change the definition of addition. Some
subsets of groups are instantly groups, and one of the keys to algebra consists in understanding
the relationship between subgroups and groups.

We start this chapter by describing the properties that guarantee that a subset is a “sub-
group” of a group (Section 3.1). We then explore how subgroups create cosets, equivalence classes
within the group that perform a role similar to division of integers (Section 3.2). It turns out that
in finite groups, we can count the number of these equivalence classes quite easily (Section 3.3).

Cosets open the door to a special class of groups called quotient groups, (Sections 3.4), one
of which is a very natural, very useful tool (Section 3.5) that will eventually allow us to devise
some “easy” solutions for problems in Number Theory (Chapter 6).

3.1: Subgroups

Definition 3.1. Let G be a group and H ⊆ G be nonempty. If H is also
a group under the same operation as G, then H is a subgroup of G. If
{e}(H (G then H is a proper subgroup of G.

Notation 3.2. If H is a subgroup of G, then we write H <G.

Example 3.3. Check that the following statements are true by verifying that the properties of a
group are satisfied.
(a) Z is a subgroup of Q.
(b) Let 4Z := {4m : m ∈Z}= {. . . ,−4,0,4,8, . . .}. Then 4Z is a subgroup of Z.
(c) Let d ∈Z and dZ := {d m : m ∈Z}. Then dZ is a subgroup of Z.
(d) 〈i〉 is a subgroup of Q8.

Checking all four properties of a group is cumbersome. It would be convenient to verify that a
set is a subgroup by checking fewer properties. It also makes sense that if a group is abelian, then
its subgroups would be abelian, so we shouldn’t have to check the abelian property. So which
properties must we check to decide whether a subset is a subgroup?

To start with, we can eliminate the associative and abelian properties from consideration.
In fact, the operation remains associative and commutative for any subgroup.

Lemma 3.4. Let G be a group and H ⊆G. Then H satisfies the associa-
tive property of a group. In addition, if G is abelian, then H satisfies the
commutative property of an abelian group. So, we only need to check
the closure, identity, and inverse properties to ensure that G is a group.

Be careful: Lemma 3.4 neither assumes nor concludes that H is a subgroup. The other three prop-
erties may not be satisfied: H may not be closed; it may lack an identity; or some element may
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lack an inverse. The lemma merely states that any subset automatically satisfies two important
properties of a group.

Proof. If H = ; then the lemma is true trivially.
Otherwise H 6= ;. Let a, b , c ∈H . Since H ⊆G, we have a, b , c ∈G. Since the operation

is associative in G, a (b c) = (ab ) c . If G is abelian, then ab = ba.

Lemma 3.4 has reduced the number of requirements for a subgroup from four to three.
Amazingly, we can simplify this further, to only one criterion.

Theorem 3.5 (The Subgroup Theorem). Let H ⊆ G be nonempty. The
following are equivalent:
(A) H <G;
(B) for every x, y ∈H , we have xy−1 ∈H .

Notation 3.6. Observe that if G were an additive group, we would write x− y instead of xy−1.

Proof. By Exercise 2.33 on page 31, (A) implies (B).
Conversely, assume (B). By Lemma 3.4, we need to show only that H satisfies the closure,

identity, and inverse properties. We do this slightly out of order:

identity: Let x ∈H . By (B), e = x · x−1 ∈H .19

inverse: Let x ∈H . Since H satisfies the identity property, e ∈H . By (B), x−1 = e · x−1 ∈H .
closure: Let x, y ∈ H . Since H satisfies the inverse property, y−1 ∈ H . By (B), xy = x ·

�

y−1�−1 ∈H .

Since H satisfies the closure, identity, and inverse properties, H <G.

The Subgroup Theorem makes it much easier to decide whether a subset of a group is a subgroup,
because we need to consider only the one criterion given.

Example 3.7. Let d ∈ Z. We claim that dZ < Z. (Here dZ is the set defined in Example 3.3.)
Why? Let’s use the Subgroup Theorem.

Let x, y ∈ dZ. By definition, x = d m and y = d n for some m, n ∈ Z. Note that
−y =− (d n) = d (−n). Then

x− y = x +(−y) = d m + d (−n)
= d (m +(−n)) = d (m−n) .

Now m−n ∈Z, so x− y = d (m−n) ∈ dZ. By the Subgroup Theorem, dZ<Z.

The following geometric example gives a visual image of what a subgroup “looks” like.

Example 3.8. Let G be the set of points in the x-y plane. Define an addition for elements of G in
the following way. For P1 = (x1, y1) and P2 = (x2, y2), define

P1 + P2 = (x1 + x2, y1 + y2) .

19Notice that here we are replacing the y in (B) with x. This is fine, since nothing in (B) requires x and y to be
distinct.
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H

K

K4 4

K4

4

Figure 3.1. H and K from Example 3.8

You showed in Exercise 2.24 that this makes G a group. (Actually you proved it for G×H where
G and H were groups. Here G = H = R.)

Let H = {x ∈G : x = (a, 0) ∃a ∈R}. We claim that H < G. Why? Use the subgroup
theorem: Let P ,Q ∈ H . By the definition of H , we can write P = (p, 0) and Q = (q , 0) where
p, q ∈R. Then

P −Q = P +(−Q) = (p, 0)+ (−q , 0) = (p− q , 0) .

Membership in H requires the second ordinate to be zero. The second ordinate of P −Q is in
fact zero, so P −Q ∈H . The Subgroup Theorem implies that H <G.

Let K = {x ∈G : x = (a, 1) ∃a ∈R}. We claim that K 6< G. Why not? Again, use the
Subgroup Theorem: Let P ,Q ∈ K . By the definition of K , we can write P = (p, 1) and Q =
(q , 1) where p, q ∈R. Then

P −Q = P +(−Q) = (p, 1)+ (−q ,−1) = (p− q , 0) .

Membership in K requires the second ordinate to be one, but the second ordinate of P −Q is
zero, not one. Since P −Q 6∈K , the Subgroup Theorem tells us that K is not a subgroup of G.

Figure 3.1 gives a visualization of H and K . You will diagram another subgroup of G in
Exercise 3.15.

Examples 3.7 and 3.8 give us examples of how the Subgroup Theorem verifies subgroups
of abelian groups. Two interesting examples of nonabelian subgroups appear in D3.

Example 3.9. Recall D3 from Section 2.2. Both H = {ι,ϕ} and K =
�

ι,ρ,ρ2	 are subgroups of
D3. Why? Certainly H ,K (G, and Theorem 2.53 on page 39 tells us that H and K are groups.

If a group satisfies a given property, a natural question to ask is whether its subgroups also
satisfy this property. Cyclic groups are a good example: is every subgroup of a cyclic group also



1. Subgroups 55

cyclic? The answer relies on the Division Theorem (Theorem 1.18 on page 9).

Theorem 3.10. Subgroups of cyclic groups are also cyclic.

Proof. Let G be a cyclic group, and H <G. From the fact that G is cyclic, choose g ∈G such
that G = 〈g 〉.

First we must find a candidate generator of H . If H = {e}, then H = 〈e〉 =



g 0�, and
we are done. So assume there exists h ∈ H such that h 6= e . By inclusion, every element x ∈ H
can be written in the form x = g i for some i ∈ Z, so h = g n for some n ∈Z. Without loss of
generality, we may assume that n ∈N+; after all, we just showed that we can choose h 6= e , so
n 6= 0, and if n 6∈N, then closure of H implies that h−1 = g−n ∈H , so choose h−1 instead.

A good candidate for the generator would be the smallest positive power of g in H , if
it exists. Let S be the set of positive natural numbers i such that g i ∈ H ; in other words, S =
¦

i ∈N+ : g i ∈H
©

. From the well-ordering of N, there exists a smallest element of S; call it d ,
and assign h = g d .

We claim that H = 〈h〉. Let x ∈H ; then x ∈G. By hypothesis, G is cyclic, so x = g a for
some a ∈Z. By the Division Theorem, we know that there exist unique q , r ∈Z such that

• a = qd + r , and
• 0≤ r < d .

Let y = g r ; by Exercise 2.60, we can rewrite this as

y = g r = g a−qd = g a g−(qd ) = x ·
�

g d
�−q

= x · h−q .

Now, x ∈ H by definition, and h−q ∈ H by closure and the existence of inverses, so by closure
y = x · h−q ∈H as well. We chose d as the smallest positive power of g in H , and we just showed
that g r ∈ H . Recall that 0 ≤ r < d . If 0 < r ; then g r ∈ H , so r ∈ S. But r < d , which
contradicts the choice of d as the smallest element of S. Hence r cannot be positive; instead,
r = 0 and x = g a = g qd = hq ∈ 〈h〉.

Since x was arbitrary in H , every element of H is in 〈h〉; that is, H ⊆ 〈h〉. Since h ∈ H
and H is a group, closure implies that H ⊇ 〈h〉, so H = 〈h〉. In other words, H is cyclic.

We again look to Z for an example.

Example 3.11. Recall from Example 2.51 on page 39 that Z is cyclic; in fact Z = 〈1〉. By Theo-
rem 3.10, dZ is cyclic. In fact, dZ = 〈d 〉. Can you find another generator of dZ?

Exercises.

Exercise 3.12. Recall that Ωn , the nth roots of unity, form a cyclic group of order n under
multiplication.
(a) The elements of Ω4 are listed at the beginning of Section 2.4. Explain why Ω2 <Ω4.
(b) Compute Ω8, and explain why both Ω2 <Ω8 and Ω4 <Ω8.
(b) Explain why, if d | n, then Ωd <Ωn .

Exercise 3.13. Show that even though the Klein 4-group is not cyclic, each of its proper subgroups
is cyclic (see Exercises 2.32 on page 30 and 2.63 on page 45).
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Exercise 3.14.

(a) Let Dn (R) = {aIn : a ∈R} ⊆ Rn×n ; that is, Dn (R) is the set of all diagonal matrices
whose values along the diagonal is constant. Show that Dn (R) < Rn×n . (In case you’ve
forgotten Exercise 2.26, the operation here is addition.)

(b) Let D∗n (R) = {aIn : a ∈R\{0}} ⊆GLn (R); that is, D∗n (R) is the set of all non-zero diag-
onal matrices whose values along the diagonal is constant. Show that D∗n (R) <GLn (R).
(In case you’ve forgotten Definition 2.5, the operation here is multiplication.)

Exercise 3.15. Let G = R2 := R×R, with addition defined as in Exercise 2.24 and Example 3.8.
Let

L = {x ∈G : x = (a,a) ∃a ∈R} .

(a) Describe L geometrically.
(b) Show that L<G.
(c) Suppose ` ⊆ G is any line. Identify as general a criterion as possible that decides whether

` <G. Justify your answer.

Exercise 3.16. Let G be any group and g ∈G. Show that 〈g 〉<G.

Exercise 3.17. Let G be an abelian group. Let H , K be subgroups of G. Let

H +K = {x + y : x ∈H , y ∈K} .

Show that H +K <G.

Exercise 3.18. Let H = {ι,ϕ}<D3.
(a) Find a different subgroup K of D3 with only two elements.
(b) Let H K = {xy : x ∈H , y ∈K}. Show that H K 6<D3.
(c) Why does the result of (b) not contradict the result of Exercise 3.17?

Exercise 3.19. Explain why R cannot be cyclic.

Exercise 3.20. Let G be a group and A1, A2, . . . , Am subgroups of G. Let

B = A1∩A2∩ · · ·∩Am .

Show that B <G.

Exercise 3.21. Let G be a group and H , K two subgroups of G. Let A = H ∪K . Show that A
need not be a subgroup of G.

3.2: Cosets

Recall the Division Theorem (Theorem 1.18 on page 9). Normally, we think of division
of n by d as dividing n into q parts, each containing d elements, with r elements left over. For
example, n = 23 apples divided among d = 6 bags gives q = 3 apples per bag and r = 5 apples
left over.
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Another way to look at division by d is that it divides Z into d sets of integers. Each
integer falls into a set according to its remainder after division. An illustration using n = 4:

Z: . . . -2 -1 0 1 2 3 4 5 6 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

division by 4: . . . 2 3 0 1 2 3 0 1 2 . . .
Here Z is divided into four sets

A = {. . . ,−4,0,4,8, . . .}
B = {. . . ,−3,1,5,9, . . .}
C = {. . . ,−2,2,6,10, . . .}
D = {. . . ,−1,3,7,11, . . .} .

(6)

Observe two important facts:
• the sets A, B , C , and D cover Z; that is,

Z = A∪B ∪C ∪D ;

and
• the sets A, B , C , and D are disjoint; that is,

A∩B = A∩C = A∩D = B ∩C = B ∩D = C ∩D = ;.

We can diagram this:

Z =

A
B
C
D

This phenomenon, where a set is the union of smaller, disjoint sets, is important enough to
highlight with a definition.

Definition 3.22. Suppose that A is a set and B = {Bλ} a family of subsets
of A, called classes. We say that B is a partition of A if
• the classes cover A: that is, A=

⋃

Bλ; and
• distinct classes are disjoint: that is, if B1,B2 ∈ B are distinct (B1 6=

B2), then B1∩B2 = ;.

Example 3.23. Let B = {A,B ,C , D} where A, B , C , and D are defined as in (3.23). Then B is a
partition of Z.

Two aspects of division allow us to use it to partition Z into sets:
• existence of a remainder, which implies that every integer belongs to at least one class, which

in turn implies that the union of the classes covers Z; and
• uniqueness of the remainder, which implies that every integer ends up in only one set, so

that the classes are disjoint.
Using the vocabulary of groups, recall that A= 4Z<Z (page 52). All the elements of B have the
form 1+ x for some x ∈ A. For example, −3 = 1+(−4). Likewise, all the elements of C have
the form 2+ x for some x ∈A, and all the elements of D have the form 3+ x for some x ∈A. So
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if we define
1+A := {1+ x : x ∈A} ,

then

1+A= {. . . , 1+(−4) , 1+ 0,1+ 4,1+ 8, . . .}
= {. . . ,−3,1,5,9, . . .}
= B .

Likewise, we can write A= 0+A and C = 2+A, D = 3+A.
Pursuing this further, you can check that

· · ·=−3+A= 1+A= 5+A= 9+A= · · ·

and so forth. Interestingly, all the sets in the previous line are the same as B ! In addition, B =
1+A, B = 5+A, and 1− 5 = −4 ∈ A. The same holds for C : C = 2+A, C = 10+A, and
2−10 =−8 ∈A. This relationship will prove important at the end of the section.

So the partition by remainders of division by four is related to the subgroup A of multiples
of 4. This will become very important in Chapter 6.

How can we generalize this phenomen to subgroups that don’t necessarily involve num-
bers?

Definition 3.24. Let G be a group and A<G. Let g ∈G. We define the
left coset of A with g as

gA= {ga : a ∈A}

and the right coset of A with g as

Ag = {a g : a ∈A} .

If A is an additive subgroup, we write the coset of A with g as

g +A := {g + a : a ∈A} .

In general, left cosets and right cosets are not equal, partly because the operation might not
commute. If we speak of “cosets” without specifying “left” or “right”, we means “left cosets”.

Example 3.25. Recall the group D3 from Section 2.2 and the subgroup H = {ι,ϕ} from Exam-
ple 3.9. In this case,

ρH = {ρ,ρϕ} and Hρ= {ρ,ϕρ} .

Since ϕρ= ρ2ϕ 6= ρϕ, we see that ρH 6= Hρ.

Sometimes, the left coset and the right coset are equal. This is always true in abelian
groups, as illustrated by Example 3.26.

Example 3.26. Consider the subgroup H = {(a, 0) : a ∈R} of R2 from Exercise 3.15. Let p =
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(3,−1) ∈R2. The coset of H with p is

p +H = {(3,−1)+ q : q ∈H}
= {(3,−1)+ (a, 0) : a ∈R}
= {(3+ a,−1) : a ∈R} .

Sketch some of the points in p + H , and compare them to your sketch of H in Exercise 3.15.
How does the coset compare to the subgroup?

Generalizing this further, every coset of H has the form p +H where p ∈R2. Elements
of R2 are points, so p = (x, y) for some x, y ∈R. The coset of H with p is

p +H = {(x + a, y) : a ∈R} .

Sketch several more cosets. How would you describe the set of all cosets of H in R2?

The group does not have to be abelian in order to have the left and right cosets equal.
When deciding if gA = Ag , we are not deciding whether elements of G commute, but whether
subsets of G are equal. Returning to D3, we can find a subgroup whose left and right cosets are
equal even though the group is not abelian and the operation is not commutative.

Example 3.27. Let K =
�

ι,ρ,ρ2	; certainly K <D3, after all, K = 〈ρ〉. In this case, αK = Kα for
all α ∈D3:

α αK Kα

ι K K
ϕ

�

ϕ,ϕρ,ϕρ2	 �

ϕ,ρϕ,ρ2ϕ
	

ρ K K
ρ2 K K
ρϕ

�

ρϕ, (ρϕ)ρ, (ρϕ)ρ2	 �

ρϕ,ϕ,ρ2ϕ
	

ρ2ϕ
�

ρ2ϕ,
�

ρ2ϕ
�

ρ,
�

ρ2ϕ
�

ρ2	 �

ρ2ϕ,ρϕ,ϕ
	

In each case, the sets ϕK and Kϕ are equal, even though ϕ does not commute with ρ. (You should
verify these computations by hand.)

We can now explain the observation we made previously:

Theorem 3.28. The cosets of a subgroup partition the group.

Proof. Let G be a group, and A<G. We have to show two things:

(CP1) the cosets of A cover G, and
(CP2) distinct cosets of A are disjoint.

We show (CP1) first. Let g ∈ G. The definition of a group tells us that g = g e . Since e ∈ A by
definition of subgroup, g = g e ∈ gA. Since g was arbitrary, every element of G is in some coset
of A. Hence the union of all the cosets is G.

For (CP2), let x, y ∈G. We proceed by showing the contrapositive: if two cosets are not
disjoint, then they are not distinct. Assume that the cosets xA and yA are not disjoint; that is,
(xA)∩ (yA) 6= ;. We want to show that they are not distinct; that is, xA = yA. Since xA and
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yA are sets, we must show that two sets are equal. To do that, we show that xA⊆ yA and then
xA⊇ yA.

To show that xA ⊆ yA, let g ∈ xA. By assumption, (xA)∩ (yA) 6= ;, so choose h ∈
(xA)∩ (yA) as well. By definition of the sets, there exist a1,a2,a3 ∈ A such that g = xa1, and
h = xa2 = ya3. Since xa2 = ya3, the properties of a group imply that x = y

�

a3a−1
2

�

. Thus

g = xa1 =
�

y
�

a3a−1
2

��

a1 = y
��

a3a−1
2

�

a1

�

∈ yA.

Since g was arbitrary in xA, we have shown xA⊆ yA.
A similar argument shows that xA⊇ yA. Thus xA= yA.
We have shown that if xA and yA are not disjoint, then they are not distinct. The con-

trapositive of this statement is precisely (CP2). Having shown (CP2) and (CP1), we have shown
that the cosets of A partition G.

We conclude this section with three facts that allow us to decide when cosets are equal.

Lemma 3.29 (Equality of cosets). Let G be a group and H < G. All of
the following hold:
(CE1) eH = H .
(CE2) For all a ∈G, a ∈H iff aH = H .
(CE3) For all a, b ∈G, aH = b H if and only if a−1b ∈H .

As usual, you should keep in mind that in additive groups these conditions translate to
(CE1) 0+H = H .
(CE2) For all a ∈G, if a ∈H then a +H = H .
(CE3) For all a, b ∈G, a +H = b +H if and only if a− b ∈H .

Proof. We only sketch the proof here. You will fill in the details in Exercise 3.37. Remember
that part of this problem involves proving that two sets are equal, and to prove that, you should
prove that each is a subset of the other.

(CE1) is “obvious” (but fill in the details anyway).
Since (CE2) is an equivalence (“iff”), we have to prove two directions. Let a ∈ G. First,

assume that aH = H ; it is “obvious” that a ∈ H (but fill in the details anyway). Conversely,
assume that a ∈ H ; it is “obvious” that aH ⊆ H . For the other direction, let h ∈ H ; then find an
element x ∈H such that ax = h. It’s not so hard to find x from that equation, but you must also
explain how we know that x ∈ H and how subsequently ax ∈ aH ; otherwise, we don’t know
that h ∈ aH .

Since (CE3) is also an equivalence, we have to prove two directions. Let a, b ∈ G. First,
assume that aH = b H . Let x ∈ aH ; then x = ah for some h ∈ H . Since aH = b H , we know
that x ∈ b H , so x = bbh for some bh ∈ H as well. By substitution, ah = bbh. It is “obvious” from
here that a−1b ∈H (but fill in the details anyway).

Conversely, assume that a−1b ∈ H . We must show that aH = b H , which requires us to
show that aH ⊆ b H and aH ⊇ b H . Since a−1b ∈H , we have

b = a
�

a−1b
�

∈ aH .
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We can thus write b = ah for some h ∈ H . Let y ∈ b H ; then y = bbh for some bh ∈ H , and we
have y = (ah)bh ∈H . Since y was arbitrary in b H , we now have aH ⊇ b H .

Although we could build a similar argument to show that aH ⊆ b H , instead we point
out that aH ⊇ b H implies that aH ∩ b H 6= ;. The cosets are not disjoint, so by Theorem 3.28,
they are not distinct: aH = b H .

Exercises.

Exercise 3.30. Show explicitly why left and right cosets are equal in abelian groups.

Exercise 3.31. In Exercise 3.12, you showed that Ω2 <Ω8. Compute the left and right cosets of
Ω2 in Ω8.

Exercise 3.32. Let {e ,a, b ,a + b} be the Klein 4-group. (See Exercises 2.32 on page 30, 2.63 on
page 45, and 3.13 on page 55.) Compute the cosets of 〈a〉.

Exercise 3.33. In Exercise 3.18 on page 56, you found another subgroup K of order 2 in D3. Does
K satisfy the property αK = Kα for all α ∈D3?

Exercise 3.34. Recall the subgroup L of R2 from Exercise 3.15 on page 56.
(a) Give a geometric interpretation of the coset (3,−1)+ L.
(b) Give an algebraic expression that describes p + L, for arbitrary p ∈R2.
(c) Give a geometric interpretation of the cosets of L in R2.
(d) Use your geometric interpretation of the cosets of L in R2 to explain why the cosets of L

partition R2.

Exercise 3.35. Recall Dn (R) from Exercise 3.14 on page 56. Give a description in set notation
for

�

0 3
0 0

�

+D2 (R) .

List some elements of the coset.

Exercise 3.36. In the proof of Theorem 3.28 on page 59, we stated that “A similar argument
shows that xA⊇ yA.” Give this argument.

Exercise 3.37. Prove Lemma 3.29(A).

Exercise 3.38. It turns out that membership in a coset is an equivalence relation. That is, if we
define a relation ∼ on x, y ∈G by

x ∼ y ⇐⇒ x, y are in the same coset of A<G,

then this relation is reflexive, symmetric, and transitive. Prove this.

3.3: Lagrange’s Theorem
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This section introduces an important result describing the number of cosets a subgroup
can have. This leads to some properties regarding the order of a group and any of its elements.

Notation 3.39. Let G be a group, and A< G. We write G/A for the set of all left cosets of A.
That is,

G/A= {gA : g ∈G} .

We also write A\G for the set of all right cosets of A:

A\G = {Ag : g ∈G} .

Example 3.40. Let G = Z and A= 4Z. We saw in Example 3.23 that

G/A= Z/4Z = {A, 1+A, 2+A, 3+A} .

We actually “waved our hands” in Example 3.23. That means that we did not provide a very
detailed argument, so let’s show the details here. Recall that 4Z is the set of multiples of Z, so
x ∈A iff x is a multiple of 4. What about the remaining elements of Z?

Let x ∈Z; then

x +A= {x + z : z ∈A}= {x + 4n : n ∈Z} .

Use the Division Theorem to write
x = 4q + r

for unique q , r ∈Z, where 0≤ r < 4. Then

x +A= {(4q + r )+ 4n : n ∈Z}= {r + 4 (q + n) : n ∈Z} .

By closure, q + n ∈Z. If we write m in place of 4 (q + n), then m ∈ 4Z. So

x +A= {r + m : m ∈ 4Z}= r + 4Z.

The distinct cosets of A are thus determined by the distinct remainders from division by 4. Since
the remainders from division by 4 are 0, 1, 2, and 3, we conclude that

Z/A= {A, 1+A, 2+A, 3+A}

as claimed above.

Example 3.41. Let G = D3 and K =
�

ι,ρ,ρ2	 as in Example 3.27, then

G/K = D3/ 〈ρ〉= {K ,ϕK} .

Example 3.42. Let H <R2 be as in Example 3.8 on page 53; that is,

H =
¦

(a, 0) ∈R2 : a ∈R
©

.
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Then
R2/H =

¦

r +H : r ∈R2
©

.

It is not possible to list all the elements of G/A, but some examples would be

(1,1)+H , (4,−2)+H .

Speaking geometrically, what do the elements of G/A look like?

It is important to keep in mind that G/A is a set whose elements are also sets. As a result,
showing equality of two elements of G/A requires one to show that two sets are equal.

When G is finite, a simple formula gives us the size of G/A.

Theorem 3.43 (Lagrange’s Theorem). Let G be a group of finite order,
and A<G. Then

|G/A|=
|G|
|A|

.

The notation of cosets is somewhat suggestive of the relationship we illustrated at the begining
of Section 3.2 between cosets and division of the integers. Nevertheless, Lagrange’s Theorem
is not as obvious as the notation might imply: we can’t “divide” the sets G and A. Rather, we
are dividing group G by its subgroup A into cosets, obtaining the set of cosets G/A. Lagrange’s
Theorem states that the number of elements in G/A is the same as the quotient of the order of G
by the order of A. Since G/A is not a number, we are not moving the absolute value bars “inside”
the fraction.

Proof. From Theorem 3.28 we know that the cosets of A partition G. There are |G/A| cosets
of A. Each of them has the same size, |A|. The number of elements of G is thus the product of
the number of elements in each coset and the number of cosets. That is, |G/A| · |A| = |G|. This
implies the theorem.

The next-to-last sentence of the proof contains the statement |G/A| · |A|= |G|. Since |A|
is the order of the group A, and |G/A| is an integer, we conclude that:

Corollary 3.44. The order of a subgroup divides the order of a group.

Example 3.45. Let G be the Klein 4-group (see Exercises 2.32 on page 30, 2.63 on page 45, and 3.13
on page 55). Every subgroup of the Klein 4-group is cyclic, and has order 1, 2, or 4. As predicted
by Corollary 3.44, the orders of the subgroups divide the order of the group.

Likewise, the order of {ι,ϕ} divides the order of D3.
By contrast, the subset H K of D3 that you computed in Exercise 3.18 on page 56 has four

elements. Since 4 - 6, the contrapositive of Lagrange’s Theorem implies that H K cannot be a
subgroup of D3.

From the fact that every element g generates a cyclic subgroup 〈g 〉 < G, Lagrange’s Theorem
also implies an important consequence about the order of any element of any finite group.

Corollary 3.46. In a finite group G, the order of any element divides the
order of a group.
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Proof. You do it! See Exercise 3.48.

Exercises.

Exercise 3.47. Recall from Exercise 3.12 that if d | n, then Ωd < Ωn . How many cosets of Ωd
are there in Ωn?

Exercise 3.48. Prove Corollary 3.46 on the preceding page.

Exercise 3.49. Suppose that a group G has order 8, but is not cyclic. Show that g 4 = e for all
g ∈G.

Exercise 3.50. Suppose that a group has five elements. Will it be cyclic?

Exercise 3.51. Find a sufficient (but not necessary) condition on the order of a group of order at
least two that guarantees that the group is cyclic.

3.4: Quotient Groups

Let A < G. Is there a natural generalization of the operation of G that makes G/A a
group? By a “natural” generalization, we mean something like

(gA) (hA) = (g h)A.

The first order of business it to make sure that the operation even makes sense. The
technical word for this is that the operation is well-defined. What does that mean? A coset can
have different representations. The operation defined above would not be an operation if two
different representations of gA gave us two different answers. Example 3.52 shows how it can go
wrong.

Example 3.52. Recall A = 〈ϕ〉 < D3 from Example 3.41. By the definition of the operation, we
have

(ρA)
�

ρ2A
�

=
�

ρ◦ρ2
�

A= ρ3A= ιA= A.

Another representation of ρA=
�

ρϕ,ρϕ2	 is (ρϕ)A. If the operation were well-defined,
then we should have

((ρϕ)A)
�

ρ2A
�

= (ρA)
�

ρ2A
�

= A.

That is not the case:

((ρϕ)A)
�

ρ2A
�

=
�

(ρϕ)ρ2
�

A=
�

ρ
�

ϕρ2
��

A

= (ρ (ρϕ))A=
�

ρ2ϕ
�

A 6= A.

On the other hand, sometimes the operation is well-defined.

Example 3.53. Recall the subgroup A = 4Z of Z. Let B ,C , D ∈ Z/A, so B = b + 4Z, C =
c + 4Z, and D = d + 4Z for some b , c , d ∈Z.
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The problem is that we could have B = D but B +C 6= D +C . For example, if B =
1+ 4Z and D = 5+ 4Z, B = D . Does it follow that B +C = D +C ?

From Lemma 3.29, we know that B = D iff b − d ∈ A = 4Z. That is, b − d = 4m
for some m ∈ Z. Let x ∈ B + C ; then x = (b + c) + 4n for some n ∈ Z; we have x =
((d + 4m)+ c) + 4n = (d + c) + 4 (m + n) ∈ D +C . Since x was arbitrary in B +C , we
have B +C ⊆D +C . A similar argument shows that B +C ⊇D +C , so B +C = D +C .

So the operation was well-defined here. What made for the difference? When we rewrote

((d + 4m)+ c)+ 4n = (d + c)+ 4 (m + n)

we relied on the fact that addition commutes in an abelian group. Without that fact, we could not
have swapped c and 4m. Can we identify a condition on a subgroup that would guarantee that
the procedure results in an operation? If cosets are to act as a group, does the group have to be
abelian?

The key in Example 3.53 was not really that Z is abelian. Rather, the key was that we
could swap 4m and c in the expression ((d + 4m)+ c)+ 4m. In a general group setting where
A<G, for every c ∈G and for every a ∈ A we would need to find a′ ∈ A to replace ca with a′c .
The abelian property makes it easy to do that, but we don’t need G to be abelian; we need A to
satisfy this property. Let’s emphasize that:

The operation defined above is well-defined
iff

for every c ∈G and for every a ∈A
there exists a′ ∈A such that ca = a′c.

Think about this in terms of sets: for every c ∈ G and for every a ∈ A, there exists a′ ∈ A such
that ca = a′c . Here ca ∈ cA is arbitrary, so cA⊆ Ac . The other direction must also be true, so
cA⊇Ac . In other words,

The operation defined above is well-defined
iff cA= Ac for all c ∈G.

This property merits a definition.

Definition 3.54. Let A<G. If

gA= Ag

for every g ∈G, then A is a normal subgroup of G.

Notation 3.55. We write A/G to indicate that A is a normal subgroup of G.

Although we have outlined the argument above, we should show explicitly that if A is a normal
subgroup, then the operation proposed for G/A is indeed well-defined.
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Lemma 3.56. Let A<G. Then (CO1) implies (CO2).
(CO1) A/G.
(CO2) Let X ,Y ∈ G/A and x, y ∈ G such that X = xA and Y = yA.

The operation · on G/A defined by

X Y = (xy)A

is well-defined for all x, y ∈G.

Proof. Let W ,X ,Y ,Z ∈G/A and choose w, x, y, z ∈G such that W = wA, X = xA, Y = yA,
and Z = zA. To show that the operation is well-defined, we must show that if W = X and
Y = Z , then W Y = X Z regardless of the values of w, x, y, or z. Assume therefore that W = X
and Y = Z . By substitution, wA = xA and yA = zA. By Lemma 3.29(CE3), w−1x ∈ A and
y−1z ∈A.

Since W Y and X Z are sets, showing that they are equal requires us to show that each is
a subset of the other. First we show that W Y ⊆ X Z . To do this, let t ∈W Y = (wy)A. By
definition of a coset, t = (wy)a for some a ∈A. What we will do now is rewrite t by

• using the fact that A is normal to move some element of a left, then right, through the
representation of t ; and
• using the fact that W = X and Y = Z to rewrite products of the form wα̌ as xbα and yα̇ as

zα̈, where α̌,bα, α̇, α̈ ∈A.

How, precisely? By the associative property, t = w (ya). By definition of a coset, ya ∈ yA. By
hypothesis, A is normal, so yA = Ay; thus, ya ∈ Ay. By definition of a coset, there exists ǎ ∈ A
such that ya = ǎy. By substitution, t = w (ǎy). By the associative property, t = (wǎ) y. By
definition of a coset, wǎ ∈ wA. By hypothesis, A is normal, so wA = Aw. Thus wǎ ∈ Aw. By
hypothesis, W = X ; that is, wA = xA. Thus wǎ ∈ xA, and by definition of a coset, wǎ = xâ
for some â ∈ A. By substitution, t = (xâ) y. The associative property again gives us t = x (ây);
since A is normal we can write ây = yȧ for some ȧ ∈A. Hence t = x (yȧ). Now,

yȧ ∈ yA= Y = Z = zA,

so we can write yȧ = zä for some ä ∈A. By substitution and the definition of coset arithmetic,

t = x (zä) = (x z) ä ∈ (x z)A= (xA) (zA) = X Z .

Since t was arbitrary in W Y , we have shown that W Y ⊆X Z . A similar argument shows
that W Y ⊇X Z ; thus W Y = X Z and the operation is well-defined.

An easy generalization of the argument of Example 3.53 shows the following Theorem.

Theorem 3.57. Let G be an abelian group, and H <G. Then H /G.

Proof. You do it! See Exercise 3.66.

As we pointed out before, we don’t need an abelian group to have a normal subgroup.
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Example 3.58. Let
A3 =

¦

ι,ρ,ρ2
©

<D3.

We call A3 the alternating group on three elements. We claim that A3 /D3. Indeed,
σ σA3 A3σ
ι A3 A3
ρ A3 A3
ρ2 A3 A3

ϕ
ϕA3 =

�

ϕ,ϕρ,ϕρ2	

=
�

ϕ,ρ2ϕ,ρϕ
	

= A3ϕ
A3ϕ = ϕA3

ρϕ
�

ρϕ, (ρϕ)ρ, (ρϕ)ρ2	

=
�

ρϕ,ϕ,ρ2ϕ
	

= ϕA3
ϕA3

ρ2ϕ
�

ρ2ϕ,
�

ρ2ϕ
�

ρ,
�

ρ2ϕ
�

ρ2	

=
�

ρ2ϕ,ρϕ,ϕ
	

= ϕA3
ϕA3

(We have left out some details. You should check the computation carefully, using extensively
the fact that ϕρ= ρ2ϕ.)

As we wanted, normal subgroups allow us to turn the set of cosets into a group G/A.

Theorem 3.59. Let G be a group. If A/G, then G/A is a group.

Proof. Assume A/G. By Lemma 3.56, the operation is well-defined, so it remains to show that
G/A satisfies the properties of a group.

(closure) Closure follows from the fact that multiplication of cosets is well-defined when
A/G, as shown in Lemma 3.56: Let X ,Y ∈ G/A, and choose g1, g2 ∈ G such
that X = g1A and Y = g2A. By definition of coset multiplication, X Y =
(g1A) (g2A) = (g1 g2)A∈ G/A. Since X ,Y were arbitrary in G/A, coset mul-
tiplication is closed.

(associativity) The associative property of G/A follows from the associative property of G.
Let X ,Y ,Z ∈ G/A; choose g1, g2, g3 ∈ G such that X = g1A, Y = g2A, and
Z = g3A. Then

(X Y )Z = [(g1A) (g2A)] (g3A) .

By definition of coset multiplication,

(X Y )Z = ((g1 g2)A) (g3A) .

By the definition of coset multiplication,

(X Y )Z = ((g1 g2) g3)A.

(Note the parentheses grouping g1 g2.) Now apply the associative property of G
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and reverse the previous steps to obtain

(X Y )Z = (g1 (g2 g3))A
= (g1A) ((g2 g3)A)
= (g1A) [(g2A) (g3A)]
= X (Y Z) .

Since (X Y )Z = X (Y Z) and X ,Y ,Z were arbitrary in G/A, coset multiplica-
tion is associative.

(identity) We claim that the identity of G/A is A itself. Let X ∈ G/A, and choose g ∈ G
such that X = gA. Since e ∈A, Lemma 3.29 on page 60 implies that A= eA, so

X A= (gA) (eA) = (g e)A= gA= X .

Since X was arbitrary in G/A and X A= X , A is the identity of G/A.
(inverse) Let X ∈ G/A. Choose g ∈ G such that X = gA, and let Y = g−1A. We claim

that Y = X−1. By applying substitution and the operation on cosets,

X Y = (gA)
�

g−1A
�

=
�

g g−1
�

A= eA= A.

Hence X has an inverse in G/A. Since X was arbitrary in G/A, every element
of G/A has an inverse.

We have shown that G/A satisfies the properties of a group.

We need a definition for this new kind of group.

Definition 3.60. Let G be a group, and A/G. Then G/A is the quotient
group of G with respect to A, also called G mod A.

Normally we simply say “the quotient group” rather than “the quotient group of G with respect
to A.” We meet a very interesting and important quotient group in Section 3.5.

Example 3.61. Since A3 is a normal subgroup of D3, D3/A3 is a group. By Lagrange’s Theorem,
it has 6/3 = 2 elements. The composition table is

◦ A3 ϕA3
A3 A3 ϕA3
ϕA3 ϕA3 A3

Exercises.

Exercise 3.62. Show that for any group G, {e}/G and G /G.

Exercise 3.63. Recall from Exercise 3.12 that if d | n, then Ωd <Ωn .
(a) Explain how we know that, in fact, Ωd /Ωn .
(b) Compute the Cayley table of the quotient group Ω8/Ω2. Does it have the same structure

as the Klein 4-group, or as the Cyclic group of order 4?
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Exercise 3.64. Let H = 〈i〉<Q8.
(a) Show that H /Q8 by computing all the cosets of H .
(b) Compute the multiplication table of Q8/H .

Exercise 3.65. Let H = 〈−1〉<Q8.
(a) Show that H /Q8 by computing all the cosets of H .
(b) Compute the multiplication table of Q8/H .
(c) With which well-known group does Q8/H have the same structure?

Exercise 3.66. Let G be an abelian group. Explain why for any H <G we know that H /G.

Exercise 3.67. Let G be a group, g ∈G, and H <G. Define the conjugation of H by g as

g H g−1 = {h g : h ∈H} .

(The notation h g is the definition of conjugation from Exercise 2.37 on page 31; that is, h g =
g h g−1.) Show that H /G if and only if H = g H g−1 for all g ∈G.20

Exercise 3.68. Recall the subgroup L of R2 from Exercises 3.15 on page 56 and 3.34 on page 61.
(a) Explain how we know that L/R2 without checking that p + L = L+ p for any p ∈R2.
(b) Sketch two elements of R2/L and show their addition.

Exercise 3.69. Explain why every subgroup of Dm (R) is normal.

Exercise 3.70. Show that Q8 is not a normal subgroup of GLm (C).

Exercise 3.71. Let G be a group. Define the centralizer of G as

Z (G) = {g ∈G : x g = g x ∀x ∈G} .

Show that Z (G) /G.

Exercise 3.72. Let G be a group, and H <G. Define the normalizer of H as

NG (H ) = {g ∈G : g H = H g} .

Show that H /NG (H ).

Exercise 3.73. Let G be a group, and A< G. Suppose that |G/A| = 2; that is, the subgroup A
partitions G into precisely two left cosets. Show that:
• A/G; and
• G/A is abelian.

Exercise 3.74. Recall from Exercise 2.37 on page 31 the commutator of two elements of a group.
Let [G,G] denote the intersection of all subgroups of G that contain [x, y ] for all x, y ∈G.
(a) Compute [D3, D3].

20Certain texts define a normal subgroup this way; that is, a subgroup H is normal if every conjugate of H is precisely
H . They then prove that in this case, any left coset equals the corresponding right coset.
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(b) Compute [Q8,Q8].
(c) Show that [G,G] /G; that is, [G,G] is a normal subgroup of G. Note: We call [G,G] the

commutator subgroup of G. See Section 3.6.

3.5: “Clockwork” groups

By Theorem 3.57, every subgroup H of Z is normal. Let n ∈Z; since nZ<Z, it follows
that nZ/Z. Thus Z/nZ is a quotient group.

We used nZ in many examples of subgroups. One reason is that you are accustomed to
working with Z, so it should be conceptually easy. Another reason is that the quotient group
Z/nZ has a vast array of applications in number theory and computer science. You will see
some of these in Chapter 6. Because this group is so important, we give it several special names.

Definition 3.75. Let n ∈Z. We call the quotient group Z/nZ

• Z mod nZ, or
• Z mod n, or
• the linear residues modulo n.

Notation 3.76. It is common to write Zn instead of Z/nZ.

Example 3.77. You already saw a bit of Z4 = Z/4Z at the beginning of Section 3.2 and again
in Example 3.53. Recall that Z4 = {4Z, 1+ 4Z, 2+ 4Z, 3+ 4Z}. Addition in this group will
always give us one of those four representations of the cosets:

(2+ 4Z)+ (1+ 4Z) = 3+ 4Z;
(1+ 4Z)+ (3+ 4Z) = 4+ 4Z = 4Z;
(2+ 4Z)+ (3+ 4Z) = 5+ 4Z = 1+ 4Z;

and so forth.
Reasoning similar to that used at the beginning of Section 3.2 would show that

Z31 = Z/31Z = {31Z, 1+ 31Z, . . . , 30+ 31Z} .

We show this explicitly in Theorem 3.81.

Before looking at some properties of Zn , let’s look for an easier way to talk about its elements. It
is burdensome to write a + nZ whenever we want to discuss an element of Zn , so we adopt the
following convention.

Notation 3.78. Let A∈Zn and choose r ∈Z such that A= r + nZ.
• If it is clear from context that A is an element of Zn , then we simply write r instead of

r + nZ.
• If we want to emphasize that A is an element of Zn (perhaps there are a lot of integers

hanging about) then we write [r ]n instead of r + nZ.
• If the value of n is obvious from context, we simply write [r ].

To help you grow accustomed to the notation [r ]n , we use it for the rest of this chapter, even
when n is mind-bogglingly obvious.
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The first property is that, for most values of n, Zn has finitely many elements. To show
that there are finitely many elements of Zn , we rely on the following fact, which is important
enough to highlight as a separate result.

Lemma 3.79. Let n ∈Z\{0} and [a]n ∈Zn . Use the Division Theorem
to choose q , r ∈ Z such that a = qn + r and 0 ≤ r < n. Then [a]n =
[r ]n .

It should not surprise you that the proof of Lemma 3.79relies on the Division Theorem, since we
said that the elements of Zn correspond to the remainders from division by n. It is similar to the
discussion in Example 3.40 on page 62, so you might want to reread that.

Proof. We give two different proofs.
(1) By definition and substitution,

[a]n = a + nZ

= (qn + r )+ nZ

= {(qn + r )+ nd : d ∈Z}
= {r + n (q + d ) : d ∈Z}
= {r + nm : m ∈Z}
= r + nZ

= [r ]n .

(2) Rewrite a = qn + r as a− r = qn. By definition, a− r ∈ nZ. The immensely useful
Lemma 3.29 shows that a + nZ = r + nZ, and the notation implies that [a]n = [r ]n .

Definition 3.80. We call [r ]n in Lemma 3.79 the canonical representa-
tion of [a]n . That is, the canonical representation of an element of Zn is
the representation whose value is between 0 and n−1, inclusive.

Theorem 3.81. Zn is finite for every nonzero n ∈ Z. In fact, if n 6= 0
then Zn has |n| elements corresponding to the remainders from division
by n: 0, 1, 2, . . . , n−1.

Proof. Lemma 3.79 states that every element of such Zn can be represented by [r ]n for some
r ∈Z where 0≤ r < |n|. But there are only |n| possible choices for such a remainder.

Let’s look at how we can perform arithmetic in Zn .

Lemma 3.82. Let d , n ∈Z and [a]n , [b ]n ∈Zn . Then

[a]n + [b ]n = [a + b ]n

and
d [a]n = [da]n .
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For example, [3]7 + [9]7 = [3+ 9]7 = [12]7 = [5]7 and −4 [3]5 = [−4 ·3]5 = [−12]5 = [3]5.

Proof. Applying the definitions of the notation, of coset addition, and of nZ, we see that

[a]n + [b ]n = (a + nZ)+ (b + nZ)

= (a + b )+ nZ

= [a + b ]n .

For d [a]n , we consider two cases. If d is positive, then the expression d [a]n is the sum of d
copies of [a]n , which the Lemma’s first claim (now proved) implies to be

[a]n + [a]n + · · ·+ [a]n
︸ ︷︷ ︸

= [2a]n + [a]n + · · ·+ [a]n
︸ ︷︷ ︸

d times d −2times
= [da]n .

If d is negative, then the expression d [a]n is the sum of |d | copies of − [a]n (this notation is
defined at the beginning of Chapter 2, Section 2.3). Again using the first claim, [a]n + [−a]n =
[a +(−a)]n = [0]n , so − [a]n = [−a]n . By substitution,

d [a]n = |d | (− [an ]) = |d | [−a]n
= [|d | · (−a)]n = [−d · (−a)]n = [da]n .

Lemmas 3.79 and 3.82 imply that each Zn acts as a “clockwork” group. Why?
• To add [a]n and [b ]n , let c = a + b .
• If 0≤ c < n, then you are done. After all, division of c by n gives q = 0 and r = c .
• Otherwise, c < 0 or c ≥ n, so we divide c by n, obtaining q and r where 0 ≤ r < n. The

sum is [r ]n .
We call this “clockwork” because it counts like a clock: if you wait ten hours starting at 5 o’clock,
you arrive not at 15 o’clock, but at 15−12 = 3 o’clock.

It should be clear from Example 2.9 on page 26 as well as Exercise 2.31 on page 30 that Z2
and Z3 have precisely the same structure as the groups of order 2 and 3.

On the other hand, we saw in Exercise 2.32 on page 30 that there are two possible struc-
tures for a group of order 4: the Klein 4-group, and a cyclic group. Which structure does Z4
have?

Example 3.83. Use Lemma 3.82 on the preceding page to observe that



[1]4
�

=
�

[0]4 , [1]4 , [2]4 , [3]4
	

since [2]4 = [1]4 + [1]4, [3]4 = [2]4 + [1]4, and [0]4 = 0 · [1]4 (or [0]4 = [3]4 + [1]4).

The fact that Z4 was cyclic makes one wonder: is Zn always cyclic? Yes!

Theorem 3.84. Zn is cyclic for every n ∈Z.
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Proof. Let n ∈Z. We have

[a]n = [a ·1]n = a [1]n ∈



[1]n
�

.

So Zn ⊆



[1]n
�

. It is clear that Zn ⊇



[1]n
�

, so in fact Zn =



[1]n
�

, and Zn is therefore
cyclic.

We saw in Example 3.83 that not every non-zero element necessarily generates Zn . A natural and
interesting followup question to ask is, which non-zero elements do generate Zn? You need a bit
more background in number theory before you can answer that question, but in the exercises
you will build some more addition tables and use them to formulate a hypothesis.

The following important lemma gives an “easy” test for whether two integers are in the
same coset of Zn .

Lemma 3.85. Let a, b , n ∈Z and assume that n. The following are equiv-
alent.
(A) a + nZ = b + nZ.
(B) [a]n = [b ]n .
(C) n | (a− b ).

Proof. You do it! See Exercise 3.92.

Exercises.

Exercise 3.86. We showed that Zn is finite for n 6= 0. What if n = 0? How many elements would
it have? Illustrate a few additions and subtractions, and indicate whether you think that Z0 is an
interesting or useful group.

Exercise 3.87. We don’t actually talk about Zn for n < 0. Show that this is because Zn = Z|n|.

Exercise 3.88. As discussed in the notes, we know already that Z2 and Z3 are not very interesting,
because their addition tables are predetermined. Since their addition tables should be easy to
determine, go ahead and write out the addition tables for these groups.

Exercise 3.89. Write down the addition table for Z5. Which elements generate Z5?

Exercise 3.90. Write down the addition table for Z6. Which elements generate Z6?

Exercise 3.91. Compare the results of Example 3.83 and Exercises 3.88, 3.89, and 3.90. Formulate
a conjecture as to which elements generate Zn . Do not try to prove your example.

Exercise 3.92. Prove Lemma 3.85.

3.6: “Solvable” groups
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One of the major motivations of group theory was the question of whether a polynomial
can be solved by radicals. For example, if we have a quadratic equation ax2 + b x + c = 0, then

x =
−b ±

p

b 2−4ac

2a
.

(This works unless a 6= 0, in which case we wouldn’t consider the equation quadratic.) Since
the solution contains nothing more than addition, multiplication, and radicals, we say that a
quadratic equation is solvable by radicals.

Similar formulas can be found for cubic and quartic equations. When mathematicians
turned their attention to quintic equations, however, they hit a wall: they weren’t able to use
previous techniques to find a “quintic formula”. Eventually, it was shown that this is because
some quintic equations are not solvable by radicals. The method they used to show this is related
to the following concept.

Definition 3.93. If a group G contains subgroups G0, G1, . . . , Gn such
that
• G0 = {e};
• Gn = G;
• Gi−1 /Gi ; and
• Gi /Gi−1 is abelian,

then G is a solvable group. The chain of subgroups G0, . . . , Gn is called
a normal series.

Example 3.94. Any finite abelian group G is solvable: let G0 = {e} and G1 = G. Subgroups of an
abelian group are always normal, so G0 /G1. In addition, X ,Y ∈G1/G0 implies that X = x {e}
and Y = y {e} for some x, y ∈G1 = G. Since G is abelian,

X Y = (xy) {e}= (y x) {e}= Y X .

Example 3.95. The group D3 is solvable. To see this, let n = 2 and G1 = 〈ρ〉:
• By Exercise 3.62 on page 68, {e} /G1. To see that G1/ {e} is abelian, note that for any

X ,Y ∈ G1/ {e}, we can write X = x {e} and Y = y {e} for some x, y ∈ G1. By definition
of G1, we can write x = ρa and y = ρb for some a, b ∈ Z. We can then fall back on the
commutative property of addition in Z to show that

X Y = (xy) {e}= ρa+b {e}
= ρb+a {e}= (y x) {e}= Y X .

• By Exercise 3.73 on page 69 and the fact that |G1|= 3 and |G2|= 6, we know that G1 /G2.
The same exercise tells us that G2/G1 is abelian.

The following properties of solvable subgroups are very useful in a branch of algebra
called Galois Theory.

Theorem 3.96. Every quotient group of a solvable group is solvable.
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Proof. Let G be a group and A/G. We need to show that G/A is solvable. Since G is solvable,
choose a normal series G0, . . . , Gn . Let

Ai = {gA : g ∈Gi} .

We claim that the chain A0, A1, . . . , An likewise satisfies the definition of a solvable group.
First, we show that Ai−1 /Ai for each i = 1, . . . , n. Let X ∈ Ai ; by definition, X = xA for

some x ∈ Gi . We have to show that X Ai−1 = Ai−1X . Let Y ∈ Ai−1; by definition, Y = yA for
some y ∈ Gi−1. Recall that Gi−1 /Gi , so there exists by ∈ Gi−1 such that xy = by x. Let bY = byA;
since by ∈Gi−1, bY ∈Ai−1. Using substitution and the definition of coset arithmetic, we have

X Y = (xy)A= (by x)A= bY X ∈Ai−1X .

Since Y was arbitrary in Ai−1, X Ai−1 ⊆Ai−1X . A similar argument shows that X Ai−1 ⊇Ai−1X ,
so the two are equal. Since X is an arbitrary coset of Ai−1 in Ai , we conclude that Ai−1 /Ai .

Second, we show that Ai /Ai−1 is abelian. Let X ,Y ∈ Ai /Ai−1. By definition, we can
write X = SAi−1 and Y = T Ai−1 for some S,T ∈ Ai . Again by definition, there exist s , t ∈ Gi
such that S = sA and T = tA. Let U ∈ Ai−1; we can likewise write U = uA for some u ∈Gi−1.
Since Gi /Gi−1 is abelian, (s t )Gi−1 = (t s)Gi−1; thus, (s t ) u = (t s) v for some v ∈ Gi−1. By
definition, vA∈Ai−1. By substitution and the definition of coset arithmetic, we have

X Y = (ST )Ai−1 = ((s t )A)Ai−1

= [(s t )A] (uA) = ((s t ) u)A
= ((t s) v)A= [(t s)A] (vA)
= ((t s)A)Ai−1 = (T S)Ai−1

= Y X .

Since X and Y were arbitrary in the quotient group Ai /Ai−1, we conclude that it is abelian.
We have constructed a normal series in G/A; it follows that G/A is solvable.

The following result is also true:

Theorem 3.97. Every subgroup of a solvable group is solvable.

Proving it, however, is a little more difficult. We need the definition of the commutator from
Exercises 2.37 on page 31 and 3.74 on page 69.

Definition 3.98. Let G be a group. The commutator subgroup G′ of G
is the intersection of all subgroups of G that contain [x, y ] for all x, y ∈
G.

Notice that G′ <G by Exercise 3.20.

Notation 3.99. We wrote G′ as [G,G] in Exercise 3.74.

Lemma 3.100. For any group G, G′ /G. In addition, G/G′ is abelian.
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Proof. You showed that G′ /G in Exercise 3.74 on page 69. To show that G/G′ is abelian, let
X ,Y ∈ G/G′. Write X = xG′ and Y = yG′ for appropriate x, y ∈ G. By definition, X Y =
(xy)G′. Let g ′ ∈G′; by definition, g ′ = [a, b ] for some a, b ∈G. Since G′ is a group, it is closed
under the operation, so [x, y ] [a, b ] ∈ G′. Let z ∈ G′ such that [x, y ] [a, b ] = z. Rewrite this
expression as

�

x−1y−1xy
�

[a, b ] = z =⇒ (xy) [a, b ] = (y x) z.

(Multiply both sides of the equation on the left by y x.) Hence

(xy) g = (xy) [a, b ] = (y x) z ∈ (y x)G′.

Since g ′ was arbitrary, (xy)G′ ⊆ (y x)G′. A similar argument shows that (xy)G′ ⊇ (y x)G′.
Thus

X Y = (xy)G′ = (y x)G′ = Y X ,

and G/G′ is abelian.

Lemma 3.101. If H ⊆G, then H ′ ⊆G′.

Proof. You do it! See Exercise 3.105.

Notation 3.102. Define G(0) = G and G(i) =
�

G(i−1)
�′

; that is, G(i) is the commutator sub-
group of G(i−1).

Lemma 3.103. A group is solvable if and only if G(n) = {e} for some
n ∈N.

Proof. (=⇒) Suppose that G is solvable. Let G0, . . . , Gn be a normal series for G. We claim
that G(n−i) ⊆ Gi . If this claim were true, then G(n−0) ⊆ G0 = {e}, and we would be done. We
proceed by induction on n− i ∈N.

Inductive base: If n− i = 0, then G(n−i) = G = Gn .
Inductive hypothesis: Assume that the assertion holds for n− i .
Inductive step: By definition, G(n−i+1) =

�

G(n−i)
�′

. By the inductive hypothesis, G(n−i) ⊆
Gi ; by Lemma 3.101,

�

G(n−i)
�′ ⊆G′i . Hence

G(n−i+1) ⊆G′i . (7)

Recall from the properties of a normal series that Gi /Gi−1 is abelian; for any x, y ∈Gi , we have

(xy)Gi−1 =
�

xGi−1
��

yGi−1
�

=
�

yGi−1
��

xGi−1
�

= (y x)Gi−1.

By Lemma 3.29 on page 60, (y x)−1 (xy) ∈ Gi−1; in other words, [x, y ] = x−1y−1xy ∈ Gi−1.
Since x and y were arbitrary in Gi , we have G′i ⊆ Gi−1. Along with (7), this implies that
G(n−(i−1)) = G(n−i+1) ⊆Gi−1.

We have shown the claim; thus, G(n) = {e} for some n ∈N.
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(⇐=) Suppose that G(n) = {e} for some n ∈N. We have

{e}= G(n) <G(n−1) < · · ·<G(0) = G.

By Lemma 3.100, the subgroups form a normal series; that is,

{e}= G(n) /G(n−1) / · · ·/G(0) = G

and Gi /Gi−1 is abelian for each i = 1, . . . , n.

We can now prove Theorem 3.97.

Proof of Theorem 3.97. Let H < G. Assume G is solvable; by Lemma 3.103, G(n) = {e}. By
Lemma (3.101), H (i) ⊆ G(i) for all n ∈N, so H (n) ⊆ {e}. By the definition of a group, H (n) ⊇
{e}, so the two are equal. By the same lemma, H is solvable.

Exercises.

Exercise 3.104. Explain why Ωn is solvable for any n ∈N+.

Exercise 3.105. Show that if H ⊆G, then H ′ ⊆G′.

Exercise 3.106. Show that Dn is solvable for all n ≥ 3.

Exercise 3.107. Show that Q8 is solvable.

Exercise 3.108. In the textbook God Created the Integers. . . the theoretical physicist Stephen
Hawking reprints, with commentary, some of the greatest mathematical results in history. One
excerpt is from Evariste Galois’ Memoirs on the solvability of polynomials by radicals. Hawking
sums it up this way.

To be brief, Galois demonstrated that the general polynomial of degree n could be
solved by radicals if and only if every subgroup N of the group of permutations Sn
is a normal subgroup. Then he demonstrated that every subgroup of Sn is normal
for all n ≤ 4 but not for any n > 5.

—p. 105
Unfortunately, Hawking’s explanation is completely wrong, and this exercise leads you towards
an explanation as to why.21 You have not yet studied the groups of permutations Sn , but you will
learn in Section 5.1 that the group S3 is really the same as D3.22 (To be precise, Exercise 5.31 asks
you to show that S3

∼= D3.) So we will look at D3, instead.
(a) Find all six subgroups of D3.

21Perhaps Hawking was trying to simplify what Galois actually showed, and went too far. (I’ve done much worse
in my lifetime.) In fact, Galois showed that a polynomial of degree n could be solved by radicals if and only if a
corresponding group, now called its Galois group, was a solvable group. He then showed that the Galois group of
x5 + 2x + 5 was not a solvable group.
22To resurrect a term we used with monoids, S3 is isomorphic to D3. We will talk about group isomorphisms in the
very next chapter.
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(b) It is known that the general polynomial of degree 3 can be solved by radicals. According
to the quote above, what must be true about all the subgroups of D3?

(c) Why is Hawking’s explanation of Galois’ result “obviously” wrong?



Chapter 4:
Isomorphisms

We have on occasion observed that different groups have the same Cayley table. We have
also talked about different groups having the same structure: regardless of whether a group of
order two is additive or multiplicative, its elements behave in exactly the same fashion. The
groups may look superficially different because of their elements and operations, but the “group
behavior” is identical.

As we saw in Chapter 1, algebraists describe such a relationship between two monoids as
isomorphic. Isomorphism for groups has the same intuitive meaning as isomorphism for monoids:

If two groups G and H have identical group structure,
we say that G and H are isomorphic.23

However, striking differences exist in the details. We want to study isomorphism of groups
in quite a bit of detail, so to define isomorphism precisely, we start by reconsidering another
topic that you studied in the past, functions. There we will also introduce the related notion
of homomorphism.24 This is the focus of Section 4.1. Section 4.2 lists some results that should
help convince you that the existence of an isomorphism does, in fact, show that two groups have
an identical group structure. Section 4.3 describes how we can create new isomorphisms from a
homomorphism’s kernel, a special subgroup defined by a homomorphism. Section 4.4 introduces
a class of isomorphism that is important for later applications, an automorphism.

4.1: Homomorphisms

It turns out that we don’t need quite so much to obtain an isomorphism with groups. It
will take us a little bit to work into it; the key idea is that the operation is preserved. Although
we worked this into the definition of a monoid isomorphism, here we will put it in the spotlight.

Definition 4.1. Let G, H be groups and f : G → H a function. We say
that f is a group homomorphism from G to H if it satisfies the property
that f (x) f (y) = f (xy) for every x, y ∈G.

Notation 4.2. As with monoids, you have to be careful with the fact that different groups have
different operations. Depending on the context, the proper way to describe the homomorphism
property may be
• f (xy) = f (x)+ f (y);
• f (x + y) = f (x) f (y);
• f (x ◦ y) = f (x)� f (y);
• etc.

23The word comes Greek words that mean identical shape.
24The word comes Greek words that mean common shape. Here the shape that remains common is the effect of the
operation on the elements of the group. The function shows that the group operation behaves the same way on
elements of the range as on elements of the domain.



1. Homomorphisms 80

Example 4.3. A trivial example of a homomorphism, but an important one, is the identity func-
tion ι : G→G by ι (g ) = g for all g ∈G. It should be clear that this is a homomorphism, since
for all g , h ∈G we have

ι (g h) = g h = ι (g ) ι (h) .

For a non-trivial homomorphism, let f : Z → 2Z by f (x) = 4x. Then f is a group
homomorphism, since for any x ∈Z we have

f (x)+ f (y) = 4x + 4y = 4 (x + y) = f (x + y) .�

The homomorphism property should remind you of certain special functions and operations
that you have studied in Linear Algebra or Calculus. Recall from Exercise 2.29 that R+, the set
of all positive real numbers, is a multiplicative group.

Example 4.4. Let f : (GLm (R) ,×) →
�

R+,×
�

by f (A) = |detA|. An important fact from
Linear Algebra tells us that for any two square matrices A and B , detA ·detB = det (AB). Thus

f (A) · f (B) = |detA| · |detB |= |detA ·detB |= |det (AB)|= f (AB) ,

implying that f is a homomorphism of groups. �

Let’s look at a clockwork group that we studied in the previous section.

Example 4.5. Let n ∈ Z such that n > 1, and let f : (Z,+) → (Zn ,+) by the assignment
f (x) = [x ]n . We claim that f is a homomorphism. Why? From Lemma 3.82, we know that for
any x, y ∈Zn , f (x + y) = [x + y ]n = [x ]n + [y ]n = f (x)+ f (y). �

Preserving the operation guarantees that a homomorphism tells us an enormous amount
of information about a group. If there is a homomorphism f from G to H , then elements of the
image of G,

f (G) =
�

h ∈H : ∃g ∈G such that f (g ) = h
	

act the same way as their preimages in G.
This does not imply that the group structure is the same. In Example 4.5, for example, f

is a homomorphism from an infinite group to a finite group; even if the group operations behave
in a similar way, the groups themselves are inherently different. If we can show that the groups
have the same “size” in addition to a similar operation, then the groups are, for all intents and
purposes, identical.

How do we decide that two groups have the same size? For finite groups, this is “easy”:
count the elements. We can’t do that for infinite groups, so we need something a little more
general.25

Definition 4.6. Let f : G → H be a homomorphism of groups. If f is
one-to-one and onto, then f is an isomorphism and the groups G and H
are isomorphic. �

25The standard method in set theory of showing that two sets are the same “size” is to show that there exists a one-
to-one, onto function between the sets. For example, one can use this definition to show that Z and Q are the same
size, but Z and R are not. So an isomorphism is a homomorphism that also shows that two sets are the same size.
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Notation 4.7. If the groups G and H are isomorphic, we write G ∼= H .

Example 4.8. Recall the homomorphisms of Example 4.3,

ι : G→G by ι (g ) = g and f : Z→ 2Z by f (x) = 4x.

First we show that ι is an isomorphism. We already know it’s a homomorphism, so we need only
show that it’s one-to-one and onto.
one-to-one: Let g , h ∈ G. Assume that ι (g ) = ι (h). By definition of ι, g = h. Since g and h

were arbitrary in G, ι is one-to-one.
onto: Let g ∈ G. We need to find x ∈ G such that ι (x) = g . Using the definition of ι,

x = g does the job. Since g was arbitrary in G, ι is onto.
Now we show that f is one-to-one, but not onto.
one-to-one: Let a, b ∈ Z. Assume that f (a) = f (b ). By definition of f , 4a = 4b . Then

4 (a− b ) = 0; by the zero product property of the integers, 4 = 0 or a− b = 0.
Since 4 6= 0, we must have a− b = 0, or a = b . We assumed f (a) = f (b ) and
showed that a = b . Since a and b were arbitrary, f is one-to-one.

not onto: There is no element a ∈ Z such that f (a) = 2. If there were, 4a = 2. The only
possible solution to this equation is a = 1/2 6∈Z. �

Example 4.9. Recall the homomorphism of Example 4.4,

f : GLm (R)→R+ by f (A) = |detA| .

We claim that f is onto, but not one-to-one.
That f is not one-to-one: Observe that f maps both of the following two diagonal matrices

to 2, even though the matrices are unequal:

A=













2
1

1
...













and B =

















1
2

1
1

...

















.

(Unmarked entries are zeroes.)
That f is onto: Let x ∈R+; then f (A) = x where A is the diagonal matrix

A=













x
1

1
...













.

(Again, unmarked entries are zeroes.) �

We cannot conclude from these examples that Z 6∼= 2Z and that R+ 6∼= Rm×n . Why not?
In each case, we were considering only one of the (possibly many) homomorphisms. It is quite
possible that a different homomorphism would show that Z ∼= 2Z and that R+ ∼= Rm×n . You
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will show in the exercises that the first assertion is in fact true, while the second is not.
We conclude this chapter with three important properties of homomorphisms. This re-

sult lays the groundwork for important results in later sections, and is generally useful.

Theorem 4.10. Let f : G→ H be a homomorphism of groups. Denote
the identity of G by eG , and the identity of H by eH . Then f
preserves identities: f (eG) = eH ; and
preserves inverses: for every x ∈G, f

�

x−1�= f (x)−1.

Theorem 4.10 applies of course to isomorphisms as well. It might not seem interesting that, if the
operation’s behavior is preserved, the identity is mapped to the identity, and inverses are mapped
to inverses. However, this is not true for monoids, which is why the definition of a monoid
isomorphism required that the identity be preserved (page 17). You should think carefully about
the proof below, and identify precisely why this theorem holds for groups, but not for monoids.

Proof. That f preserves identities: Let x ∈ G, and y = f (x). By the property of homomor-
phisms,

eH y = y = f (x) = f (eG x) = f (eG) f (x) = f (eG) y.

By the transitive property of equality,

eH y = f (eG) y.

Multiply both sides of the equation on the right by y−1 to obtain

eH = f (eG) .

That f preserves inverses: Let x ∈ G. By the property of homomorphisms and by the fact
that f preserves identity,

eH = f (eG) = f
�

x · x−1
�

= f (x) · f
�

x−1
�

.

Thus
eH = f (x) · f

�

x−1
�

.

Pay careful attention to what this equation says! Since the product of f (x) and f
�

x−1� is the
identity, those two elements must be inverses! Hence f

�

x−1� is the inverse of f (x), which we
write as

f
�

x−1
�

= f (x)−1 .

Corollary 4.11. Let f : G → H be a homomorphism of groups. Then
f
�

x−1�−1
= f (x) for every x ∈G.

Proof. You do it! See Exercise 4.25.

It will probably not surprise you that homomorphisms preserve powers of an element.
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Theorem 4.12. Let f : G→ H be a homomorphism of groups. Then f
preserves powers of elements of G. That is, if f (g ) = h, then f (g n) =
f (g )n = hn .

Proof. You do it! See Exercise 4.28.

Naturally, if homomorphisms preserve powers of an element, they must also preserve cyclic
groups.

Corollary 4.13. Let f : G → H be a homomorphism of groups. If
G = 〈g 〉 is a cyclic group, then f (g ) determines f completely. In other
words, the image f (G) is a cyclic group, and f (G) = 〈 f (g )〉.

Proof. We have to show that two sets are equal. Recall that, since G is cyclic, for any x ∈ G
there exists n ∈Z such that x = g n .

First we show that f (G)⊆ 〈 f (g )〉. Let y ∈ f (G) and choose x ∈G such that y = f (x).
Choose n ∈ Z such that x = g n . By substitution and Theorem 4.12, y = f (x) = f (g n) =
f (g )n . Hence y ∈ 〈 f (g )〉. Since y was arbitrary in f (G), f (G)⊆ 〈 f (g )〉.

Now we show that f (G) ⊇ 〈 f (g )〉. Let y ∈ 〈 f (g )〉, and choose n ∈ Z such that y =
f (g )n . By Theorem 4.12, y = f (g n). Since g n ∈G, f (g n) ∈ f (G), so y ∈ f (G). Since y was
arbitrary in 〈 f (g )〉, f (G)⊇ 〈 f (g )〉.

We have shown that f (G) ⊆ 〈 f (g )〉 and f (G) ⊇ 〈 f (g )〉. By equality of sets, f (G) =
〈 f (g )〉.

We need one last definition, related to something you should have seen in linear algebra. It will
prove important in subsequent sections and chapters.

Definition 4.14. Let G and H be groups, and f : G → H a homomor-
phism. Let

Z = {g ∈G : f (g ) = eH } ;

that is, Z is the set of all elements of G that f maps to the identity of H .
We call Z the kernel of f , written ker f .

Theorem 4.15. Let f : G → H be a homomorphism of groups. Then
ker f /G.

Proof. You do it! See Exercise 4.32.

Exercises.

Example 4.16. Suppose f is an isomorphism. What is ker f ?

Exercise 4.17.
(a) Show that f : Z→ 2Z by f (x) = 2x is an isomorphism. Hence Z ∼= 2Z.
(b) Show that Z ∼= nZ for every nonzero integer n.
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Exercise 4.18. Let n ≥ 1 and f : Z−→Zn by f (a) = [a]n .
(a) Show that f is a homomorphism.
(b) Explain why f cannot possibly be an isomorphism.
(c) Determine ker f . (It might help to use a specific value of n first.)
(d) Indicate how we know that Z/ ker f ∼= Zn . (Eventually, we will show that G/ ker f ∼= H

for any homomorphism f : G −→H that is onto.)

Exercise 4.19. Show that Z2 is isomorphic to the group of order two from Example 2.9 on
page 26. Caution! Notice that the first group is usually written using addition, but the second
group is multiplicative. Your proof should observe these distinctions.

Exercise 4.20. Show that Z2 is isomorphic to the Boolean xor group of Exercise 2.20 on page 29.
Caution! Remember to denote the operation in the Boolean xor group correctly.

Exercise 4.21. Show that Zn
∼= Ωn for n ∈N+.

Exercise 4.22. Suppose we try to define f : Q8 −→Ω4 by f (i) = f (j) = f (k) = i , and f (xy) =
f (x) f (y) for all other x,y ∈Q8. Show that f is not a homomorphism.

Exercise 4.23. Show that Z is isomorphic to Z0. (Because of this, people generally don’t pay
attention to Z0.)

Exercise 4.24. Recall the subgroup L of R2 from Exercises 3.15 on page 56, 3.34 on page 61,
and 3.68 on page 69. Show that L ∼= R.

Exercise 4.25. Prove Corollary 4.11.

Exercise 4.26. Let ϕ be a homomorphism from a finite group G to a group H . Recall from
Exercise 4.32 that kerϕ /G. Explain why |kerϕ| · |ϕ (G)| = |G|. (This is sometimes called the
Homomorphism Theorem.)

Exercise 4.27. Let f : G → H be an isomorphism. Isomorphisms are by definition one-to-one
functions, so f has an inverse function f −1. Show that f −1 : H →G is also an isomorphism.

Exercise 4.28. Prove Theorem 4.12.

Exercise 4.29. Let f : G→H be a homomorphism of groups. Assume that G is abelian.
(a) Show that f (G) is abelian.
(b) Is H abelian? Explain why or why not.

Exercise 4.30. Let f : G→H be a homomorphism of groups. Let A<G. Show that f (A)<H .

Exercise 4.31. Let f : G→H be a homomorphism of groups. Let A/G.
(a) Show that f (A) / f (G).
(b) Do you think that f (A) /H ? Justify your answer.

Exercise 4.32. Prove Theorem 4.15.
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Exercise 4.33. Show that if G is a group, then G/ {e} ∼= G and G/G ∼= {e}.

Exercise 4.34. In Chapter 1, the definition of an isomorphism for monoids required that the
function map the identity to the identity (Definition 1.56 on page 17). By contrast, Theorem 4.10
shows that the preservation of the operation guarantees that a group homomorphism maps the
identity to the identity, so we don’t need to require this in the definition of an isomorphism for
groups (Definition 4.6).

The difference between a group and a monoid is the existence of an inverse. Use this to
show that, in a monoid, you can have a function that preserves the operation, but not the identity.
In other words, show that Theorem 4.10 is false for monoids.

4.2: Consequences of isomorphism

Throughout this section, G and H are groups.
The purpose of this section is to show why we use the name isomorphism: if two groups

are isomorphic, then they are indistinguishable as groups. The elements of the sets are different,
and the operation may be defined differently, but as groups the two are identical. Suppose that
two groups G and H are isomorphic. We will show that
• isomorphism is an equivalence relation;
• G is abelian iff H is abelian;
• G is cyclic iff H is cyclic;
• every subgroup A of G corresponds to a unique subgroup A′ of H (in particular, if A is of

order n, so is A′);
• every normal subgroup N of G corresponds to a unique normal subgroup N ′ of H ;
• the quotient group G/N corresponds to a quotient group H /N ′.

All of these depend on the existence of an isomorphism f : G→ H . In particular, uniqueness is
guaranteed only for any one isomorphism; if two different isomorphisms f , f ′ exist between G
and H , then a subgroup A of G may well correspond to two distinct subgroups B and B ′ of H .

The fact that isomorphism is an equivalence relation will prove helpful with the equiva-
lence properties; for example, “G is cyclic iff H is cyclic.” So, we start with that one first.

Theorem 4.35. Isomorphism is an equivalence relation. That is, ∼= satis-
fies the reflexive, symmetric, and transitive properties.

Proof. First we show that ∼= is reflexive. Let G be any group, and let ι be the identity homomor-
phism from Example 4.3. We showed in Example 4.8 that ι is an isomorphism. Since ι : G→G,
G ∼= G. Since G was an arbitrary group, ∼= is reflexive.

Next, we show that ∼= is symmetric. Let G, H be groups and assume that G ∼= H . By
definition, there exists an isomorphism f : G→H . By Exercise 4.27, f −1 is also a isomorphism.
Hence H ∼= G.

Finally, we show that ∼= is transitive. Let G, H ,K be groups and assume that G ∼= H and
H ∼= K . By definition, there exist isomorphisms f : G→ H and g : H → K . Define h : G→ K
by

h (x) = g ( f (x)) .

We claim that h is an isomorphism. We show each requirement in turn:
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That h is a homomorphism, let x, y ∈ G. By definition of h, h (x · y) = g ( f (x · y)).
Applying the fact that g and f are both homomorphisms,

h (x · y) = g ( f (x · y)) = g ( f (x) · f (y)) = g ( f (x)) · g ( f (y)) = h (x) · h (y) .

Thus h is a homomorphism.
That h is one-to-one, let x, y ∈G and assume that h (x) = h (y). By definition of h,

g ( f (x)) = g ( f (y)) .

Now f is an isomorphism, so by definition it is one-to-one, and by definition of one-to-one

g (x) = g (y) .

Similarly g is an isomorphism, so x = y. Since x and y were arbitrary in G, h is one-to-one.
That h is onto, let z ∈ K . We claim that there exists x ∈G such that h (x) = z. Since g is

an isomorphims, it is by definition onto, so there exists y ∈ H such that g (y) = z. Since f is an
isomorphism, there exists x ∈G such that f (x) = y. Putting this together with the definition of
h, we see that

z = g (y) = g ( f (x)) = h (x) .

Since z was arbitrary in K , h is onto.
We have shown that h is a one-to-one, onto homorphism. Thus h is an isomorphism, and

G ∼= K .

Theorem 4.36. Suppose that G ∼= H . Then G is abelian iff H is abelian.

Proof. Let f : G → H be an isomorphism. Assume that G is abelian. We must show that H
is abelian. By Exercise 4.29, f (G) is abelian. Since f is an isomorphism, and therefore onto,
f (G) = H . Hence H is abelian.

Since isomorphism is symmetric, H ∼= G. Along with the above argument, this implies
that if H is abelian, then G is, too.

Hence, G is abelian iff H is abelian.

Theorem 4.37. Suppose G ∼= H . Then G is cyclic iff H is cyclic.

Proof. Let f : G → H be an isomorphism. Assume that G is cyclic. We must show that H is
cyclic; that is, we must show that every element of H is generated by a fixed element of H .

Since G is cyclic, by definition G = 〈g 〉 for some g ∈G. Let h = f (g ); then h ∈ H . We
claim that H = 〈h〉.

Let x ∈H . Since f is an isomorphism, it is onto, so there exists a ∈G such that f (a) = x.
Since G is cyclic, there exists n ∈Z such that a = g n . By Theorem 4.12,

x = f (a) = f (g n) = f (g )n = hn .

Since x was an arbitrary element of H and x is generated by h, all elements of H are generated
by h. Hence H = 〈h〉 is cyclic.
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Since isomorphism is symmetric, H ∼= G. Along with the above argument, this implies
that if H is cyclic, then G is, too.

Hence, G is cyclic iff H is cyclic.

Theorem 4.38. Suppose G ∼= H . Every subgroup A of G is isomorphic
to a subgroup B of H . Moreover, each of the following holds. :
(A) A is of finite order n iff B is of finite order n.
(B) A is normal iff B is normal.

Proof. Let f : G → H be an isomorphism. Let A be a subgroup of G. By Exercise 4.30,
f (A)<H .

First we show that f (A) is a subgroup of H . Let x, y ∈ f (A); by definition, x = f (a)
and y = f (b ) for some a, b ∈ A. Applying properties of homomorphisms (the definition of a
homomorphism, and Theorem 4.10), we see that

xy−1 = f (a) f (b )−1 = f
�

ab−1
�

.

By closure, ab−1 ∈A. So xy−1 ∈ f (A), and the Subgroup Theorem implies that f (A)<H .
Now we claim that f is one-to-one and onto from A to f (A). Onto is immediate from

the definition of f (A). The one-to-one property holds because f is one-to-one in G and A⊆G.
We have shown that f (A)<H and that f is one-to-one and onto from A to f (A). Hence

A∼= f (A).
Claim (A) follows from the fact that f is one-to-one and onto.
For claim (B), assume A/G. We want to show that B /H ; that is, xB = B x for every

x ∈H . So let x ∈H and y ∈ B ; since f is an isomorphism, it is onto, so f (g ) = x and f (a) = y
for some g ∈G and some a ∈A. Then

xy = f (g ) f (a) = f (ga) .

Since A/G, gA= Ag , so there exists a′ ∈A such that ga = a′ g . Let y ′ = f
�

a′
�

. Thus

xy = f
�

a′ g
�

= f
�

a′
�

f (g ) = y ′x.

Notice that y ′ ∈ f (A) = B , so xy = y ′x ∈ B x.
We have shown that for arbitrary x ∈H and arbitrary y ∈ B , there exists y ′ ∈ B such that

xy = y ′x. Hence xB ⊆ B x. A similar argument shows that xB ⊇ B x, so xB = B x. This is the
definition of a normal subgroup, so B /H .

Since isomorphism is symmetric, B ∼= A. Along with the above argument, this implies
that if B /H , then A/G, as well.

Hence, A is normal iff B is normal.

Theorem 4.39. Suppose G ∼= H as groups. Every quotient group of G is
isomorphic to a quotient group of H .

We use Lemma 3.29(CE3) on page 60 on coset equality heavily in this proof; you may want to go
back and review it.
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gA
fA // f (g )B

OO

6=?

��

X

=

OO ;;v
v

v
v

v

##H
H

H
H

H

=
��
bgA

fA
// f (bg )B

Figure 4.1. Mappings whose domains are quotient groups might not be functions: how do we
know that f (g ) = f (bg )? If not, then fA (X ) could have two different values.

Proof. Let f : G→ H be an isomorphism. Consider an arbitrary quotient group of G defined,
by G/A, where A/G. Let B = f (A); by Theorem 4.38 B /H , so H /B is a quotient group. We
want to show that G/A∼= H /B .

Let fA : G/A→H /B by

fA (X ) = f (g )B where X = gA∈G/A.

You might suspect that we only have to show that fA is a one-to-one, onto homomorphism, but
this is not true. We have to show first that fA is well-defined. What does this mean?

Let X be any coset in G/A. It is usually the case that X can have more than one rep-
resentation; that is, we can find g 6= bg where X = gA = bgA. (For example, in D3 we know
that ϕA3 = (ρϕ)A3 even though ϕ 6= ρϕ; see Example 3.58 on page 66.) If f (g ) 6= f (bg ), then
fA (X ) would have more than one possible value, since

fA (X ) = fA (gA) = f (g ) 6= f (bg ) = fA (bgA) = f (X ) .

In other words, fA would not be a function, since at least one element of the domain (X ) would
correspond to at least two elements of the range ( f (g ) and f (bg )). See Figure 4.1. A homomor-
phism must first be a function, so if fA is not even a function, then it is not well-defined.

That fA is well-defined: Let X ∈G/A and consider two representations g1A and g2A of X .
Then

fA (g1A) = f (g1)B and fA (g2A) = f (g2)B .

We must show that the cosets fA (g1)B and fA (g2)B are equal in H /B . By hypothesis, g1A =
g2A. Lemma 3.29(CE3) implies that g−1

2 g1 ∈ A. Recall that f (A) = B ; this implies that
f
�

g−1
2 g1

�

∈ B . The homomorphism property implies that

f (g2)
−1 f (g1) = f

�

g−1
2

�

f (g1) = f
�

g−1
2 g1

�

∈ B .

Lemma 3.29(CE3) again implies that f (g1)B = f (g2)B . In other words,

fA (X ) = f (g1)B = f (g2)B

so there is no ambiguity in the definition of fA as to the image of X in H /B ; the function is
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well-defined.
That fA is a homomorphism: Let X ,Y ∈ G/A and write X = g1A and Y = g2A for

appropriate g1, g2 ∈G. Now

fA (X Y ) = fA ((g1A) · (g2A))
= fA (g1 g2 ·A)
= f (g1 g2)B
= ( f (g1) f (g2)) ·B
= f (g1)A′ · f (g2)B
= fA (g1A) · fA (g2A)
= fA (X ) · fA (Y )

where each equality is justified by (respectively) the definitions of X and Y ; the definition of coset
multiplication in G/A; the definition of fA; the homomorphism property of f ; the definition of
coset multiplication in H /B ; the definition of fA; and the definitions of X and Y . The chain of
equalities shows clearly that fA is a homomorphism.

That fA is one-to-one: Let X ,Y ∈ G/A and assume that fA (X ) = fA (Y ). Let g1, g2 ∈ G
such that X = g1A and Y = g2A. The definition of fA implies that

f (g1)B = fA (X ) = fA (Y ) = f (g2)B ,

so by Lemma 3.29(CE3) f (g2)
−1 f (g1) ∈ B . Recall that B = f (A), so there exists a ∈ A such

that f (a) = f (g2)
−1 f (g1). The homomorphism property implies that

f (a) = f
�

g−1
2

�

f (g1) = f
�

g−1
2 g1

�

.

Recall that f is an isomorphism, hence one-to-one. The definition of one-to-one implies that

g−1
2 g1 = a ∈A.

Applying Lemma 3.29(CE3) again gives us g1A= g2A, and

X = g1A= g2A= Y .

We took arbitrary X ,Y ∈G/A and showed that if fA (X ) = fA (Y ), then X = Y . It follows that
fA is one-to-one.

That fA is onto: You do it! See Exercise 4.40.

Exercises.

Exercise 4.40. Show that the function fA defined in the proof of Theorem 4.39 is onto.

Exercise 4.41. Recall from Exercise 2.59 on page 45 that 〈i〉 is a cyclic group of Q8.
(a) Show that 〈i〉 ∼= Z4 by giving an explicit isomorphism.
(b) Let A be a proper subgroup of 〈i〉. Find the corresponding subgroup of Z4.
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(c) Use the proof of Theorem 4.39 to determine the quotient group of Z4 to which 〈i〉/A is
isomorphic.

Exercise 4.42. Recall from Exercise 4.24 on page 84 that the set

L =
¦

x ∈R2 : x = (a,a) ∃a ∈R
©

defined in Exercise 3.15 on page 56 is isomorphic to R.
(a) Show that Z/R.
(b) Give the precise definition of R/Z.
(c) Explain why we can think of R/Z as the set of classes [a] such that a ∈ [0,1). Choose one

such [a] and describe the elements of this class.
(d) Find the subgroup H of L that corresponds to Z < R. What do this section’s theorems

imply that you can conclude about H and L/H ?
(e) Use the homomorphism fA defined in the proof of Theorem 4.39 to find the images fZ (Z)

and fZ (π+Z).
(f ) Use the answer to (c) to describe L/H intuitively. Choose an element of L/H and describe

the elements of this class.

4.3: The Isomorphism Theorem

In this section, we identify an important relationship between a subgroup A<G that has
a special relationship to a homomorphism, and the image of the quotient group f (G/A). First,
an example.

Example 4.43. Recall A3 =
�

ι,ρ,ρ2	 /D3 from Example 3.58. We saw that D3/A3 has only two
elements, so it must be isomorphic to the group of two elements. First we show this explicitly:
Let µ : D3/A3→Z2 by

µ (X ) =

(

0, X = A3;
1, otherwise.

Is µ a homomorphism? Recall that A3 is the identity element of D3/A3, so for any X ∈D3/A3

µ (X ·A3) = µ (X ) = µ (X )+ 0 = µ (X )+µ (A3) .

This verifies the homomorphism property for all products in the Cayley table of D3/A3 except
(ϕA3) · (ϕA3), which is easy to check:

µ ((ϕA3) · (ϕA3)) = µ (A3) = 0 = 1+ 1 = µ (ϕA3)+µ (ϕA3) .

Hence µ is a homomorphism. The property of isomorphism follows from the facts that
• µ (A3) 6= µ (ϕA3), so µ is one-to-one, and
• both 0 and 1 have preimages, so µ is onto.

Notice further that kerµ= A3.
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Something subtle is at work here. Let f : D3→Z2 by

f (x) =

(

0, x ∈A3;
1, otherwise.

Is f a homomorphism? The elements of A3 are ι, ρ, and ρ2; f maps these elements to zero, and
the other three elements of D3 to 1. Let x, y ∈D3 and consider the various cases:

Case 1. x, y ∈A3.
Since A3 is a group, closure implies that xy ∈A3. Thus

f (xy) = 0 = 0+ 0 = f (x)+ f (y) .

Case 1. x ∈A3 and y 6∈A3.
Since A3 is a group, closure implies that xy 6∈A3. (Otherwise xy = z for some z ∈A3, and

multiplication by the inverse implies that y = x−1z ∈A3, a contradiction.) Thus

f (xy) = 1 = 0+ 1 = f (x)+ f (y) .

Case 1. x 6∈A3 and y ∈A3.
An argument similar to the case above shows that f (xy) = f (x)+ f (y).

Case 1. x, y 6∈A3.
Inspection of the Cayley table of D3 (Exercise 2.44 on page 37) shows that xy ∈A3. Hence

f (xy) = 0 = 1+ 1 = f (x)+ f (y) .

We have shown that f is a homomorphism from D3 to Z2. Again, ker f = A3.
In addition, consider the function η : D3→D3/A3 by

η (x) =

(

A3, x ∈A3;
ϕA3, otherwise.

It is easy to show that this is a homomorphism; we do so presently.
Now comes the important observation: Look at the composition function η ◦µ whose

domain is D3 and whose range is Z2:

(µ◦η) (ι) = µ (η (ι)) = µ (A3) = 0;
(µ◦η) (ρ) = µ (η (ρ)) = µ (A3) = 0;

(µ◦η)
�

ρ2
�

= µ
�

η
�

ρ2
��

= µ (A3) = 0;

(µ◦η) (ϕ) = µ (η (ϕ)) = µ (ϕA3) = 1;
(µ◦η) (ρϕ) = µ (η (ρϕ)) = µ (ϕA3) = 1;

(µ◦η)
�

ρ2ϕ
�

= µ
�

η
�

ρ2ϕ
��

= µ (ϕA3) = 1.

We have

(µ◦η) (x) =

(

0, x ∈A3;
1, otherwise,
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or in other words
µ◦η= f .�

This remarkable correspondence can make it easier to study quotient groups G/A:
• find a group H that is “easy” to work with; and
• find a homomorphism f : G→H such that

◦ f (g ) = eH for all g ∈A, and
◦ f (g ) 6= eH for all g 6∈A.

If we can do this, then H ∼= G/A, and as we saw in Section 4.2 studying G/A is equivalent to
studying H .

The reverse is also true: suppose that a group G and its quotient groups are relatively easy
to study, whereas another group H is difficult. The isomorphism theorem helps us identify a
quotient group G/A that is isomorphic to H , making it easier to study.

We need to formalize this observation in a theorem, but first we have to confirm some-
thing that we claimed earlier:

Lemma 4.44. Let G be a group and A/G. The function η : G → G/A
by

η (g ) = gA

is a homomorphism.

Proof. You do it! See Exercise 4.47.

Definition 4.45. We call the homomorphism η of Lemma 4.44 the nat-
ural homomorphism.

Recall the definition of a kernel (Theorem 4.15 on page 83). We can use this to formalize the
observation of Example 4.43.

Theorem 4.46 (The Isomorphism Theorem). Let G and H be groups,
and A/G. Let η : G → G/A be the natural homomorphism. If there
exists a homomorphism f : G → H such that f is onto and ker f = A,
then G/A ∼= H . Moreover, the isomorphism µ : G/A → H satisfies
f = µ◦η.

We can illustrate Theorem 4.46 by the following diagram:

G
f //

η ""DD
DD

DD
DD

H

G/A
µ

<<yyyyyyyy

The idea is that “the diagram commutes”, or f = µ◦η.

Proof. We are given G, H ,A, and η. Assume that there exists a homomorphism f : G → H
such that ker f = A. Define µ : G/A→H in the following way:

µ (X ) = f (g ) , where X = gA.
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We claim that µ is an isomorphism from G/A to H , and moreover that f = µ◦η.
Since the domain of µ consists of cosets which may have different representations, we

must show first that µ is well-defined. Suppose that X ∈ G/A has two representations X =
gA = g ′A where g , g ′ ∈ G and g 6= g ′. We need to show that µ (gA) = µ

�

g ′A
�

. From
Lemma 3.29(CE3), we know that g−1 g ′ ∈ A, so there exists a ∈ A such that g−1 g ′ = a, so
g ′ = ga. Applying the definition of µ and the homomorphism property,

µ
�

g ′A
�

= f
�

g ′
�

= f (ga) = f (g ) f (a) .

Recall that a ∈A= ker f , so f (a) = eH . Substitution gives

µ
�

g ′A
�

= f (g ) · eH = f (g ) = µ (gA) .

Hence µ
�

g ′A
�

= µ (gA) and µ (X ) is well-defined.
Is µ a homomorphism? Let X ,Y ∈ G/A; we can represent X = gA and Y = g ′A for

some g , g ′ ∈G. Applying the homomorphism property of f , we see that

µ (X Y ) = µ
�

(gA)
�

g ′A
��

= µ
��

g g ′
�

A
�

= f
�

g g ′
�

= f (g ) f
�

g ′
�

= µ (gA)µ
�

g ′A
�

.

Thus µ is a homomorphism.
Is µ one-to-one? Let X ,Y ∈ G/A and assume that µ (X ) = µ (Y ). Represent X = gA

and Y = g ′A for some g , g ′ ∈G; by the homomorphism property of f , we see that

f
�

g−1 g ′
�

= f
�

g−1
�

f
�

g ′
�

= f (g )−1 f
�

g ′
�

= µ (gA)−1µ
�

g ′A
�

= µ (X )−1µ (Y )

= µ (Y )−1µ (Y )

= eH ,

so g−1 g ′ ∈ ker f . It is given that ker f = A, so g−1 g ′ ∈ A. Lemma 3.29(CE3) now tells us that
gA= g ′A, so X = Y . Thus µ is one-to-one.

Is µ onto? Let h ∈ H ; we need to find an element X ∈ G/A such that µ (X ) = h. It is
given that f is onto, so there exists g ∈G such that f (g ) = h. Then

µ (gA) = f (g ) = h,

so µ is onto.
We have shown that µ is an isomorphism; we still have to show that f = µ ◦η, but the

definition of µmakes this trivial: for any g ∈G,

(µ◦η) (g ) = µ (η (g )) = µ (gA) = f (g ) .

Exercises
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Exercise 4.47. Prove Lemma 4.44.

Exercise 4.48. Recall the normal subgroup L of R2 from Exercises 3.15, 3.34, and 3.68 on pages 56,
61, and 69, respectively. In Exercise 4.24 on page 84 you found an explicit isomorphism L ∼= R.
(a) Use the Isomorphism Theorem to find an isomorphism R2/L ∼= R.
(b) Argue from this that R2/R ∼= R.
(c) Describe geometrically how the cosets of R2/L are mapped to elements of R.

Exercise 4.49. Recall the normal subgroup 〈−1〉 of Q8 from Exercises 2.36 on page 31 and 3.65
on page 69.
(a) Use Lagrange’s Theorem to explain why Q8/ 〈−1〉 has order 4.
(b) We know from Exercise 2.32 on page 30 that there are only two groups of order 4, the

Klein 4-group and the cyclic group of order 4, which we can represent by Z4. Use the
Isomorphism Theorem to determine which of these groups is isomorphic to Q8/ 〈−1〉.

4.4: Automorphisms and groups of automorphisms

In this final section of Chapter 4, we use a special kind isomorphism to build a new group.

Definition 4.50. Let G be a group. If f : G → G is an isomorphism,
then we call f an automorphism.a
aThe word comes Greek words that mean self and shape.

An automorphism is an isomorphism whose domain and range are the same set. Thus, to show
that some function f is an automorphism, you must show first that the domain and the range of
f are the same set. Afterwards, you show that f satisfies the homomorphism property, and then
that it is both one-to-one and onto.

Example 4.51.
(a) An easy automorphism for any group G is the identity isomorphism ι (g ) = g :

• its range is by definition G;
• it is a homomorphism because ι

�

g · g ′
�

= g · g ′ = ι (g ) · ι
�

g ′
�

;
• it is one-to-one because ι (g ) = ι

�

g ′
�

implies (by evaluation of the function) that g =
g ′; and

• it is onto because for any g ∈G we have ι (g ) = g .
(b) An automorphism in (Z,+) is f (x) =−x:

• its range is Z because of closure;
• it is a homomorphism because f (x + y) =− (x + y) =−x− y = f (x)+ f (y);
• it is one-to-one because f (x) = f (y) implies that −x =−y, so x = y; and
• it is onto because for any x ∈Z we have f (−x) = x.

(c) An automorphism in D3 is f (x) = ρ2xρ:
• its range is D3 because of closure;
• it is a homomorphism because f (xy) = ρ2 (xy)ρ= ρ2 (x · ι · y)ρ= ρ2 �x ·ρ3 · y

�

ρ=
�

ρ2xρ
�

·
�

ρ2yρ
�

= f (x) · f (y);
• it is one-to-one because f (x) = f (y) implies that ρ2xρ = ρ2yρ, and multiplication

on the left by ρ and on the right by ρ2 gives us x = y; and
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• it is onto because for any y ∈ D3, choose x = ρyρ2 and then f (x) = ρ2 �ρyρ2�ρ =
�

ρ2ρ
�

· y ·
�

ρ2ρ
�

= ι · y · ι= y. �

The automorphism of Example 4.51(c) generalizes to an important automorphism.
Recall now the conjugation of one element of a group by another, introduced in Exer-

cise 2.37 on page 31. By fixing the second element, we can turn this into a function on a group.

Definition 4.52. Let G be a group and a ∈ G. Define the function of
conjugation by a to be conja (x) = a−1xa. �

In Example 4.51(c), we had a = ρ and conja (x) = a−1xa = ρ2xρ.
You have already worked with conjugation in previous exercises, such as showing that

it can provide an alternate definition of a normal subgroup (Exercises 31 and 69). Beyond that,
conjgating a subgroup always produces another subgroup:

Lemma 4.53. Let G be a group, and a ∈ G. Then conja is an automor-
phism. Moreover, for any H <G,

�

conja (h) : h ∈H
	

<G.

Proof. You do it! See Exercise 4.61.

The subgroup
�

conja (h) : h ∈H
	

is important enough to identify by a special name.

Definition 4.54. Suppose H < G, and a ∈ G. We say that
�

conja (h) : h ∈H
	

is the group of conjugations of H by a, and de-
note it by Conja (H ). �

Conjugation of a subgroup H by an arbitrary a ∈ G is not necessarily an automorphism; there
can exist H <G and a ∈G\H such that not have H =

�

conja (h) : h ∈H
	

. (Here G\H indicates
a set difference, not the set of right cosets.) On the other hand, if H is a normal subgroup of G
then we do have H =

�

conja (h) : h ∈H
	

; this property can act as an alternate definition of a
normal subgroup. You will explore this in the exercises.

Now it is time to identify the new group that we promised at the beginning of the section.

Notation 4.55. Write Aut (G) for the set of all automorphisms of G. We typically denote ele-
ments of Aut (G) by Greek letters (α, β, . . . ), rather than Latin letters ( f , g , . . . ).

Example 4.56. We compute Aut (Z4). Let α ∈ Aut (Z4) be arbitrary; what do we know about
α? By definition, its range is Z4, and by Theorem 4.10 on page 82 we know that α (0) = 0. Aside
from that, we consider all the possibilities that preserve the isomorphism properties.

Recall from Theorem 3.84 on page 72 that Z4 is a cyclic group; in fact Z4 = 〈1〉. Corol-
lary 4.13 on page 83 tells us that α (1) will tell us everything we want to know about α. So, what
can α (1) be?

Case 1. Can we have α (1) = 0? If so, then α (n) = 0 for all n ∈Z4. This is not one-to-one, so
we cannot have α (1) = 0.
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Case 2. Can we have α (1) = 1? Certainly α (1) = 1 if α is the identity homomorphism ι, so
we can have α (1) = 1.

Case 3. Can we have α (1) = 2? If so, then the homomorphism property implies that

α (2) = α (1+ 1) = α (1)+α (1) = 4 = 0.

An automorphism must be a homomorphism, but if α (1) = 2 then α is not one-to-one: by
Theorem 4.10 on page 82, α (0) = 0 = α (2)! So we cannot have α (1) = 2.

Case 4. Can we have α (1) = 3? If so, then the homomorphism property implies that

α (2) = α (1+ 1) = α (1)+α (1) = 3+ 3 = 6 = 2; and
α (3) = α (2+ 1) = α (2)+α (1) = 2+ 3 = 5 = 1.

In this case, α is both one-to-one and onto. We were careful to observe the homomorphism
property when determining α, so we know that α is a homomorphism. So we can have
α (1) = 2.

We found only two possible elements of Aut (Z4): the identity automorphism and the automor-
phism determined by α (1) = 3. �

If Aut (Z4) were a group, then the fact that it contains only two elements would imply
that Aut (Z4)

∼= Z2. But is it a group?

Lemma 4.57. For any group G, Aut (G) is a group under the operation
of composition of functions.

Proof. Let G be any group. We show that Aut (G) satisfies each of the group properties from
Definition 2.1.

(closure) Let α,θ ∈Aut (G). We must show that α ◦θ ∈Aut (G) as well:

• the domain and range of α ◦θ are both G because the domain and range
of both α and θ are both G;
• α ◦θ is a homomorphism because for any g , g ′ ∈ G we can apply the ho-

momorphism property that applies to α and θ to obtain

(α ◦θ)
�

g · g ′
�

= α
�

θ
�

g · g ′
��

= α
�

θ (g ) ·θ
�

g ′
��

= α (θ (g )) ·α
�

θ
�

g ′
��

= (α ◦θ) (g ) · (α ◦θ)
�

g ′
�

;

• α ◦θ is one-to-one because (α ◦θ) (g ) = (α ◦θ)
�

g ′
�

implies α (θ (g )) =
α
�

θ
�

g ′
��

; since α is one-to-one we infer that θ (g ) = θ
�

g ′
�

; since θ is
one-to-one we conclude that g = g ′; and
• α ◦θ is onto because for any z ∈G,

◦ α is onto, so there exists y ∈G such that α (y) = z, and
◦ θ is onto, so there exists x ∈G such that θ (x) = y, so
◦ (α ◦θ) (x) = α (θ (x)) = α (y) = z.
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We have shown that α ◦θ satisfies the properties of an automorphism; hence,
α ◦θ ∈Aut (G), and Aut (G) is closed under the composition of functions.

(associativity) The associative property is sastisfied because the operation is composition of
functions, which is associative.

(identity) Denote by ι the identity homomorphism; that is, ι (g ) = g for all g ∈ G. We
showed in Example 4.51(a) that ι is an automorphism, so ι ∈ Aut (G). Let f ∈
Aut (G); we claim that ι ◦ f = f ◦ ι = f . Let x ∈ G and write f (x) = y. We
have

(ι◦ f ) (x) = ι ( f (x)) = ι (y) = y = f (x) ,

and likewise ( f ◦ ι) (x) = f (x). Since x was arbitrary in G, we have ι ◦ f =
f ◦ ι= f .

(inverse) Let α ∈Aut (G). Since α is an automorphism, it is an isomorphism. You showed
in Exercise 4.27 that α−1 is also an isomorphism. The domain and range of α are
both G, so the domain and range of α−1 are also both G. Hence α−1 ∈Aut (G).

Since Aut (G) is a group, we can compute Aut (Aut (G)). In the exercises you will compute
Aut (G) for some other groups.

Exercises.

Exercise 4.58. Show that f (x) = x2 is an automorphism on the group
�

R+,×
�

, but not on the
group (R,+).

Exercise 4.59. We consider G = A3 and H = D3.
(a) List the elements of Conjρ (A3).
(b) List the elements of Conjϕ (A3).
(c) In both (a) and (b), we saw that Conja (A3) = A3 for a = ρ,ϕ. This makes sense, since

A3 /D3. Find a subgroup K of D3 and an element a ∈D3 where .

Exercise 4.60. Let H = 〈i〉<Q8. List the elements of Conjj (H ).

Exercise 4.61. Prove Lemma 4.53 on page 95 in two parts:
(a) Show first that conjg is an automorphism.
(b) Show that

�

conja (h) : h ∈H
	

is a group.

Exercise 4.62. Determine the automorphism group of Z5.

Exercise 4.63. Determine the automorphism group of D3.



Chapter 5:
Groups of permutations

This chapter introduces groups of permutations, a fundamental object of study in group
theory. Section 5.1 introduces you to groups of permutations. Section 5.1 describes a convenient
way to write permutations. Sections 5.3 and 5.5 introduce you to two special classes of groups of
permutation. The main goal of this chapter is to show that groups of permutations are, in some
sense, “all there is” to group theory, which we accomplish in Section 5.4. We conclude with a
great example of an application of symmetry groups in Section 5.6.

5.1: Permutations
Certain applications of mathematics involve the rearrangement of a list of n elements. It

is common to refer to such rearrangements as permutations.

Definition 5.1. A list is a sequence. Let V be any finite list. A permuta-
tion is a one-to-one function whose domain and range are both V . �

We require V to be a list rather than a set because for a permutation, the order of the elements
matters: the lists (a, d , k, r ) 6= (a, k, d , r ) even though {a, d , k, r } = {a, k, d , r }. For the sake of
convenience, we usually write V as a list of natural numbers between 1 and |V |, but it can be any
finite list.

Example 5.2. Let S = (a, d , k, r ). Define a permutation on the elements of S by

f (x) =



















r , x = a;
a, x = d ;
k, x = k;
d , x = r .

Notice that f is one-to-one, and f (S) = (r ,a, k, d ).
We can represent the same permutation on V = (1,2,3,4), a generic list of four elements.

Define a permutation on the elements of V by

π (i) =



















2, i = 1;
4, i = 2;
3, i = 3;
1, i = 4.

Here π is one-to-one, and π (i) = j is interpreted as “the j th element of the permuted list is the
i th element of the original list.” You could visualize this as

position in original list i position in permuted list j
1 → 2
2 → 4
3 → 3
4 → 1
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Thus π (V ) = (4,1,3,2). If you look back at f (S), you will see that in fact the first element of
the permuted list, f (S), is the fourth element of the original list, S. �

Permutations have a convenient property.

Lemma 5.3. The composition of two permutations is a permutation.

Proof. Let V be a set of n elements, and α,β permutations of V . Let γ = α ◦β. We claim that
γ is a permutation. To show this, we must show that γ is a one-to-one function whose domain
and range are both V . From the definition of α and β, it follows that the domain and range of γ
are both V ; it remains to show that γ is one-to-one. Let x, y ∈V and assume that γ (x) = γ (y);
by definition of γ ,

α (β (x)) = α (β (y)) .

Because they are permutations, α and β are one-to-one functions. Since α is one-to-one, we can
simplify the above equation to

β (x) =β (y) ;

and since β is one-to-one, we can simplify the above equation to

x = y.

Hence γ is a one-to-one function. We already explained why its domain and range are both V , so
γ is a permutation.

In Example 5.2, we wrote a permutation as a piecewise function. This is burdensome; we would
like a more efficient way to denote permutations.

Notation 5.4. The tabular notation for a permutation on a list of n elements is a 2×n matrix

α=
�

1 2 · · · n
α1 α2 · · · αn

�

indicating that α (1) = α1, α (2) = α2, . . . , α (n) = αn . Again, α (i) = j indicates that the j th
element of the permuted list is the i th element of the original list.

Example 5.5. Recall V and π from Example 5.2. In tabular notation,

π=

�

1 2 3 4
2 4 3 1

�

because π moves
• the element in the first position to the second;
• the element in the second position to the fourth;
• the element in the third position nowhere; and
• the element in the fourth position to the first.

Then
π (1,2,3,4) = (4,1,3,2) .

Notice that the tabular notation for π looks similar to the table in Example 5.2.
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We can also use π to permute different lists, so long as the new lists have four elements:

π (3,2,1,4) = (4,3,1,2) ;
π (2,4,3,1) = (1,2,3,4) ;
π (a, b , c , d ) = (d ,a, c , b ) .�

Definition 5.6. For n ≥ 2, denote by Sn the set of all permutations of a
list of n elements.

It turns out that Sn is a group for all n ≥ 2.

Example 5.7. For n = 2,3 we have

S2 = {(1) , (1 2)}
S3 = {(1) , (1 2) , (1 3) , (2 3) , (1 2 3) , (1 3 2)} .�

How large is each Sn? To answer this, we must count the number of permutations of n
elements. A counting argument called the multiplication principle shows that there are

n! = n · (n−1) · (n−2) · · ·3 ·2 ·1

such permutations. Why? Given any list of n elements,
• we have n positions to move the first element, including its current position;
• we have n− 1 positions to move the second element, since the first element has already

taken one spot;
• we have n−2 positions to move the third element, since the first and second elements have

already take two spots;
• etc.

Thus |Sn |= n!.
We explained earlier that any permutation is really a one-to-one function; naturally, one

can ask whether the set of all permutations on n elements behaves as a group under the operation
of composition of functions.

Theorem 5.8. For all n ≥ 2 (Sn ,◦) is a group.

Notation 5.9. Normally we just write Sn , understanding from context that the operation is com-
position of functions. It is common to refer to Sn as the symmetric group of n elements.

Proof. Let n ≥ 2. We have to show that Sn satisfies the properties of a group under the operation
of composition of functions:

• For closure, we must show that the composition of two permutations is a permutation.
This is precisely Lemma 5.3 on the previous page.
• The associative property follows from the fact that permutations are functions, and func-

tions are associative.
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• The identity function ι such that ι (x) = x for all x ∈ {1,2, . . . , n} is also the identity of Sn
under composition: for any α ∈ Sn and for any x ∈ {1,2, . . . , n} we have

(ι◦α) (x) = ι (α (x)) = α (x) ;

since x was arbitrary, ι◦α= α. A similar argument shows that α ◦ ι= α.
• Every one-to-one function has an inverse function, so every element of Sn has an inverse

element under composition.

Exercises

Exercise 5.10. How many elements are there of S4?

Exercise 5.11. Write the elements of S3 in tabular notation. Identify at least one normal sub-
group, and at least one subgroup that is not normal.

5.2: Cycle notation

Permutations are frequently used to anyalyze problems that involves lists. Indeed they are
used so frequently that even the tabular notation is considered burdensome; we need a simpler
notation.

Definition 5.12. A cycle is a vector

α= (α1 α2 · · · αn)

that corresponds to the permutation where the entry in position α1 is
moved to position α2; the entry in position α2 is moved to position α3,
. . . and the element in position αn is moved to position α1. If a position is
not listed in α, then the entry in that position is not moved. We call such
positions stationary. For the identity cycle where no entry is moved, we
write

ι= (1) .�

The fact that the permutation α moves the entry in position αn to position α1 is the reason that
this is called a cycle; applying it repeatedly cycles the list of elements around, and on the nth
application the list returns to its original order.

Example 5.13. Recall π from Example 5.5. In tabular notation,

π=

�

1 2 3 4
2 4 3 1

�

.

To write it as a cycle, we can start with any position we like. However, the convention is to start
with the smallest position that changes. Since π moves elements out of position 1, we start with

π= (1 ?) .
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The second entry in cycle notation tells us where π moves the element whose position is that
of the first entry. The first entry indicates position 1. From the tabular notation, we see that π
moves the element in position 1 to position 2, so

π= (1 2 ?) .

The third entry of cycle notation tells us where π moves the element whose position is that of
the second entry. The second entry indicates position 2. From the tabular notation, we see that
π moves the element in position 2 to position 4, so

π= (1 2 4 ?) .

The fourth entry of cycle notation tells us where π moves the element whose position is that of
the third entry. The third element indicates position 4. From the tabular notation, we see that π
moves the element in position 4 to position 1, so you might feel the temptation to write

π= (1 2 4 1 ?) ,

but there is no need. Since we have now returned to the first element in the cycle, we close it:

π= (1 2 4) .

The cycle (1 2 4), indicates that
• the element in position 1 of a list moves to the position 2;
• the element in position 2 of a list moves to position 4;
• the element in position 4 of a list moves to position 1.

What about the element in position 3? Since it doesn’t appear in the cycle notation, it must be
stationary. This agrees with what we wrote in the piecewise and tabular notations for π. �

Not all permutations can be written as one cycle.

Example 5.14. Consider the permutation in tabular notation

α=
�

1 2 3 4
2 1 4 3

�

.

We can easily start the cycle with α= (1 2), and this captures the behavior on the elements in the
first and second positions of a list, but what about the third and fourth? �

To solve this temporary difficulty, we develop a simple arithmetic of cycles. On what
operation shall we develop an arithmetic? Cycles represent permutations; permutations are one-
to-one functions; functions can be composed. Hence the operation is composition.

Example 5.15. Consider the cycles

β= (2 3 4) and γ = (1 2 4) .

What is the cycle notation for
β◦γ = (2 3 4) ◦ (1 2 4)?

We can answer this by considering an example list; let V = (1,2,3,4) and compute (β◦γ ) (V ).
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Since (β◦γ ) (x) =β (γ (x)), first we apply γ :

γ (V ) = (4,1,3,2) ,

followed by β:
β (γ (V )) = (4,2,1,3) .

Thus
• the element in position 1 eventually moved to position 3;
• the element in position 3 eventually moved to position 4;
• the element in position 4 eventually moved to position 1;
• the element in position 2 did not move.

In cycle notation, we write this as
β◦γ = (1 3 4) .�

Another phenomenon occurs when each permutation moves elements that the other does
not.

Example 5.16. Consider the two cycles

β= (1 3) and γ = (2 4) .

There is no way to simplify β ◦ γ into a single cycle, because β operates only on the first and
third elements of a list, and γ operates only on the second and fourth elements of a list. The only
way to write them is as the composition of two cycles,

β◦γ = (1 3) ◦ (2 4) .�

This motivates the following.

Definition 5.17. We say that two cycles are disjoint if none of their en-
tries are common.

Disjoint cycles enjoy an important property.

Lemma 5.18. Let α,β be two disjoint cycles. Then α ◦β=β◦α.

Proof. Let n ∈N+ be the largest entry in α orβ. Let V = (1,2, . . . , n). Let i ∈V . We consider
the following cases:

Case 1. α (i) 6= i .
Let j = α (i). The definition of cycle notation implies that j appears immediately after i in the
cycle α. Recall that α and β are disjoint. Since i and j are entries of α, they cannot be entries of
β. By definition of cycle notation, β (i) = i and β ( j ) = j . Hence

(α ◦β) (i) = α (β (i)) = α (i) = j =β ( j ) =β (α (i)) = (β◦α) (i) .

Case 1. α (i) = i .
Subcase (a): β (i) = i .
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We have (α ◦β) (i) = i = (β◦α) (i).
Subcase (b): β (i) 6= i .

Let j =β (i). We have

(β◦α) (i) =β (α (i)) =β (i) = j .

The definition of cycle notation implies that j appears immediately after i in the cycle β. Recall
that α and β are disjoint. Since j is an entry of β, it cannot be an entry of α. By definition of
cycle notation, α ( j ) = j . Hence

(α ◦β) (i) = α ( j ) = j = (β◦α) (i) .

Proof. In both cases, we had (α ◦β) (i) = (β◦α) (i). Since i was arbitrary, α ◦β=β◦α.

Notation 5.19. Since the composition of two disjoint cycles α ◦β cannot be simplified, we nor-
mally write them consecutively, without the circle that indicates composition, for example

(1 2) (3 4) .

By Lemma 5.18, we can also write this as

(3 4) (1 2) .

That said, the usual convention for cycles is to write the smallest entry of a cycle first, and to
write cycles with smaller first entries before cycles with larger first entries. Thus we prefer

(1 4) (2 3)

to either of
(1 4) (3 2) or (2 3) (1 4) .

The convention for writing a permutation in cycle form is the following:
1. Rotate each cycle sometimes that the first entry is the smallest entry in each cycle.
2. Simplify the permutation by computing the composition of cycles that are not disjoint.

Discard all cycles of length 1.
3. The remaining cycles will be disjoint. From Lemma 5.18, we know that they commute;

write them in order from smallest first entry to largest first entry.

Example 5.20. We return to Example 5.14, with

α=
�

1 2 3 4
2 1 4 3

�

.

To write this permutation in cycle notation, we begin again with

α= (1 2) . . .?

Since α also moves entries in positions 3 and 4, we need to add a second cycle. We start with the



2. Cycle notation 105

smallest position whose entry changes position, 3:

α= (1 2) (3 ?) .

Since α moves the element in position 3 to position 4, we write

α= (1 2) (3 4 ?) .

Now α moves the element in position 4 to position 3, so we can close the second cycle:

α= (1 2) (3 4) .

Now α moves no more entries, so the cycle notation is complete. �

We have come to the main result of this section.

Theorem 5.21. Every permutation can be written as a composition of
cycles.

The proof is constructive.

Proof. Let π be a permutation; denote its domain by V . Without loss of generality, we write
V = (1,2, . . . , n).

Let i1 be the smallest element of V such that π (i1) 6= i1. Recall that the range of π has at
most n elements; since π is one-to-one, eventually πk+1 (i1) = i1 for some k ≤ n. Let α(1) be the
cycle

�

i1 π (i1) π (π (i1)) · · · πk (i1)
�

.

At this point, either every element of V that is not stationary with respect to π appears
in α(1), or it does not. If there is some i2 ∈ V such that i2 is not stationary with respect to π
and i2 6∈ α(1), then generate the cycle α(2) by

�

i2 π (i2) π (π (i2)) · · · π` (i2)
�

where as before
π`+1 (i2) = i2.

Repeat this process until every non-stationary element of V corresponds to a cycle, gen-
erating α(3), . . . , α(m) for non-stationary i3 6∈ α(1),α(2), i4 6∈ α(1),α(2),α(3), and so on until
im 6∈ α(1), . . . ,α(m−1).

The remainder of the proof consists of two claims.
Claim 1: α(i) and α( j ) are disjoint for any i < j .
Suppose to the contrary that there exists an integer r such that r ∈ α(i) and r ∈ α( j ).

By definition, the next entry of both α(i) and α( j ) is π (r ). The subsequent entry of both is
π (π (r )), and so forth. This cycles through both α(i) and α( j ) until we reach πλ (r ) = r for
some λ ∈N. Hence α(i) = α( j ). But this contradicts the choice of the first element of α( j ) as an
element of V that did not appear in α(i).

Claim 2: π= α(1)α(2) · · ·α(m).
Let i ∈V . If π (i) = i , then by definition α( j ) (i) = i for all j = 1,2, . . . , m. Otherwise,

i appears in α( j ) for some j = 1,2, . . . , m. By definition, α( j ) (i) = π (i). By Claim 1, both i and
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π (i) appear in only one of the α. Hence
�

α(1)α(2) · · ·α(m)
�

(i) = α(1)
�

α(2)
�

· · ·α(m−1)
�

α(m) (i)
���

= α(1)
�

α(2)
�

· · ·α( j−1)
�

α( j ) (i)
���

= α(1)
�

α(2)
�

· · ·α( j−1) (π (i))
��

= π (i) .

We have shown that
�

α(1)α(2) · · ·α(m)
�

(i) = π (i) .

Since i is arbitrary, π= α(1) ◦α(2) ◦ · · · ◦α(m). That is, π is a composition of cycles. Since π was
arbitrary, every permutation is a composition of cycles.

Example 5.22. Consider the permutation

π=

�

1 2 3 4 5 6 7 8
7 5 3 2 4 8 1 6

�

.

Using the proof of Theorem 5.21, we define the cycles

α(1) = (1 7)

α(2) = (2 5 4)

α(3) = (6 8) .

Notice that α(1), α(2), and α(3) are disjoint. In addition, the only element of V = (1,2, . . . , 8) that
does not appear in an α is 3, because π (3) = 3. Inspection verifies that

π= α(1)α(2)α(3).�

We conclude with some examples of simplifying the composition of permutations.

Example 5.23. Let α = (1 3) (2 4) and β = (1 3 2 4). Notice that α 6= β; check this on V =
(1,2,3,4) if this isn’t clear. In addition, α and β are not disjoint.

1. We compute the cycle notation for γ = α ◦β. We start with the smallest entry moved by
either α or β:

γ =
�

1 ?
�

.

The notation α ◦β means to apply β first, then α. What does β do with the entry in
position 1? It moves it to position 3. Subsequently, α moves the entry in position 3 back
to the entry in position 1. The next entry in the first cycle of γ should thus be 1, but that’s
also the first entry in the cycle, so we close the cycle. So far, we have

γ = (1) . . .?

We aren’t finished, since α and β also move other entries around. The next smallest entry
moved by either α or β is 2, so

γ = (1) (2 ?) .
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Now β moves the entry in position 2 to the entry in position 4, and α moves the entry in
position 4 to the entry in position 2. The next entry in the second cycle of γ should thus
be 2, but that’s also the first entry in the second cycle, so we close the cycle. So far, we have

γ = (1) (2) . . .?

Next, βmoves the entry in position 3, so

γ = (1) (2) (3 ?) .

Where does β move the entry in position 3? To the entry in position 2. Subsequently, α
moves the entry in position 2 to the entry in position 4. We now have

γ = (1) (2) (3 4 ?) .

You can probably guess that 4, as the largest possible entry, will close the cycle, but to be
safe we’ll check: β moves the entry in position 4 to the entry in position 1, and α moves
the entry in position 1 to the entry in position 3. The next entry of the third cycle will
be 3, but this is also the first entry of the third cycle, so we close the third cycle and

γ = (1) (2) (3 4) .

Finally, we simplify γ by not writing cycles of length 1, so

γ = (3 4) .

Hence
((1 3) (2 4)) ◦ (1 3 2 4) = (3 4) .

2. Now we compute the cycle notation for β ◦α, but with less detail. Again we start with 1,
which α moves to 3, and β then moves to 2. So we start with

β◦α= (1 2 ?) .

Next, α moves 2 to 4, and βmoves 4 to 1. This closes the first cycle:

β◦α= (1 2) . . .?

We start the next cycle with position 3: α moves it to position 1, which β moves back to
position 3. This generates a length-one cycle, so there is no need to add anything. Likewise,
the element in position 4 is also stable under β◦α. Hence we need write no more cycles;

β◦α= (1 2) .

3. Let’s look also at β ◦ γ where γ = (1 4). We start with 1, which γ moves to 4, and then β
moves to 1. Since β ◦ γ moves 1 to itself, we don’t have to write 1 in the cycle. The next
smallest number that appears is 2: γ doesn’t move it, and βmoves 2 to 4. We start with

β◦γ = (2 4 ?) .



2. Cycle notation 108

Next, γ moves 4 to 1, and βmoves 1 to 3. This adds another element to the cycle:

β◦γ = (2 4 3 ?) .

We already know that 1 won’t appear in the cycle, so you might guess that we should not
close the cycle. To be certain, we consider what β ◦ γ does to 3: γ doesn’t move it, and β
moves 3 to 2. The cycle is now complete:

β◦γ = (2 4 3) .�

Exercises.

Exercise 5.24. For the permutation

α=
�

1 2 3 4 5 6
1 5 2 4 6 3

�

,

(a) Evaluate α (1,2,3,4,5,6).
(b) Evaluate α (1,5,2,4,6,3).
(c) Evaluate α (6,3,5,2,1,4).
(d) Write α in cycle notation.
(e) Write α as a piecewise function.

Exercise 5.25. For the permutation
α= (1 3 4 2) ,

(a) Evaluate α (1,2,3,4).
(b) Evaluate α (1,4,3,2).
(c) Evaluate α (3,1,4,2).
(d) Write α in tabular notation.
(e) Write α as a piecewise function.

Exercise 5.26. Let α= (1 2 3 4),β= (1 4 3 2), and γ = (1 3). Compute α◦β, α◦γ ,β◦γ ,β◦α,
γ ◦α, γ ◦β, α2, β2, and γ 2. (Here α2 = α ◦α.) What are the inverses of α, β, and γ ?

Exercise 5.27. For
α=

�

1 2 3 4
3 1 4 2

�

compute α2, α3, . . . until you reach the identity permutation.

Exercise 5.28. Show that all the elements of S3 can be written as compositions of of the cycles
α= (1 2 3) and β= (2 3).

Exercise 5.29. For α and β as defined in Exercise 5.28, show that β ◦α = α2 ◦β. (Notice that
α,β ∈ Sn for all n > 2, so as a consequence of this exercise Sn is not abelian for n > 2.)

Exercise 5.30. Write the Cayley table for S3.
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32

1

ρ

(a)

32

1

ϕ

π

(b)

Figure 5.1. Rotation and reflection of an equilateral triangle centered at the origin

Exercise 5.31. Show that D3
∼= S3 by showing that the function f : D3 → S3 by f

�

ρaϕb
�

=

αaβb is an isomorphism.

Exercise 5.32. List the elements of S4 using cycle notation.

Exercise 5.33. Compute the cyclic subgroup of S4 generated by α = (1 3 4 2). Compare your
answer to that of Exercise 5.27.

Exercise 5.34. Let α= (α1 α2 · · · αm) ∈ Sn . (Note m < n.) Show that we can write α−1 as

β=
�

α1 αm αm−1 · · · α2
�

.

For example, if α= (2 3 5 6), α−1 = (2 6 5 3).

5.3: Dihedral groups

In Section 2.2 we studied the symmetries of a triangle; we represented the group as the
products of matrices ρ and ϕ, derived from the symmetries of rotation and reflection about the y-
axis. Figure 5.1, a copy of Figure 2.1 on page 32, shows how ρ andϕ correspond to the symmetries
of an equilateral triangle centered at the origin. In Exercises 5.28–5.31 you showed that D3 and
S3 are isomorphic.

We can develop matrices to reflect the symmetries of a regular n-sided polygon as well
(the regular n-gon), motivating the definition of the set Dn of symmetries of the n-gon.

Definition 5.35. The dihedral set Dn is the set of symmetries of a regu-
lar polygon with n sides.

Is Dn always a group?

Theorem 5.36. Let n ∈N and n ≥ 3. Then (Dn ,◦) is a group with 2n
elements, called the dihedral group.
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The proof of Theorem 5.36 depends on the following proposition, which we accept without
proof. We could prove it using an argument from matrices as in Section 2.2, but proving it
requires more energy than is appropriate for this section.

Proposition 5.37. All the symmetries of a regular n-sided polygon can be
generated by a composition of a power of the rotation ρ of angle 2π/n
and a power of the flip ϕ across the y-axis. In addition, ϕ2 = ρn = ι (the
identity symmetry) and ϕρ= ρn−1ϕ.

Proof of Theorem 5.36. We must show that properties of a group are satisfied.

• Closure follows from Proposition 5.37.
• The associative property follows from the fact that permutations are functions, and the

associative property applies to functions.
• Certainly there exists an identity element ι ∈ Dn , which corresponds to the identity sym-

metry where no vertex is moved.
• It is obvious that the inverse of a symmetry of the regular n-gon is also a symmetry of the

regular n-gon.

It remains to show that Dn has 2n elements. From the properties of ρ and ϕ in Proposition 5.37,
all other symmetries are combinations of these two, which means that all symmetries are of the
form ρaϕb for some a ∈ {0, . . . , n−1} and b ∈ {0,1}. Since ϕ2 = ρn = ι, a can have n values and
b can have 2 values. Hence there are 2n possible elements altogether.

We have two goals in introducing the dihedral group: first, to give you another concrete and
interesting group; and second, to serve as a bridge to Section 5.4. The next example starts starts
us in that directions.

Example 5.38. Another way to represent the elements of D3 is to consider how they re-arrange
the vertices of the triangle. We can represent the vertices of a triangle as the list V = (1,2,3).
Application of ρ to the triangle moves
• vertex 1 to vertex 2;
• vertex 2 to vertex 3; and
• vertex 3 to vertex 1.

This is equivalent to the permutation (1 2 3).
Application of ϕ to the triangle moves

• vertex 1 to itself—that is, vertex 1 does not move;
• vertex 2 to vertex 3; and
• vertex 3 to vertex 2.

This is equivalent to the permutation (2 3).
In the context of the symmetries of the triangle, it looks as if we can say that ρ= (1 2 3)

and ϕ = (2 3). Recall that ρ and ϕ generate all the symmetries of a triangle; likewise, these two
cycles generate all the permutations of a list of three elements! (See Example 5.7 on page 100 and
Exercise 2.44 on page 37.) �

We can do this with D4 and S4 as well.
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Figure 5.2. Rotation and reflection of a square centered at the origin

Example 5.39. Using the tabular notation for permutations, we identify some elements of D4,
the set of symmetries of a square. Of course we have an identity permutation

ι=
�

1 2 3 4
1 2 3 4

�

and a 90◦ rotation
ρ=

�

1 2 3 4
2 3 4 1

�

.

We can imagine three kinds of flips: one across the y-axis,

ϕ =

�

1 2 3 4
2 1 4 3

�

;

one across the x-axis,

ϑ =

�

1 2 3 4
4 3 2 1

�

;

and one across a diagonal,

ψ=

�

1 2 3 4
1 4 3 2

�

.

See Figure 5.2. We can also imagine other diagonals; but they can be shown to be superfluous,
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Figure 5.3. Rotation and reflection of a square centered at the origin

just as we show shortly that ϑ and ψ are superflulous. There may be other symmetries of the
square, but we’ll stop here for the time being.

Is it possible to write ψ as a composition of ϕ and ρ? It turns out that ψ= ϕ ◦ρ. To show
this, we consider them as permutations of the vertices of the square, as we did with the triangle
above, rather than repeat the agony of computing the matrices of isometries as in Section 2.2.

• Geometrically, ρmoves (1,2,3,4) to (4,1,2,3); subsequentlyϕmoves (4,1,2,3) to (1,4,3,2);
see Figure 5.3.

• We can use the tabular notation for ψ, ϕ, and ρ to show that the composition of the func-
tions is the same. Starting with the list (1,2,3,4) we see from the tabular notation above
that

ψ (1,2,3,4) = (1,4,3,2) .

On the other hand,
ρ (1,2,3,4) = (4,1,2,3) .

Things get a little tricky here; we want to evaluate ϕ ◦ρ, and

(ϕ ◦ρ) (1,2,3,4) = ϕ (ρ (1,2,3,4))
= ϕ (4,1,2,3)
= (1,4,3,2) .

How did we get that last step? Look back at the tabular notation for ϕ: the element in the
first entry is moved to the second. In the next-to-last line above, the element in the first
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entry is 4; it gets moved to the second entry in the last line:

4, 1, 2, 3
↘

?, 4, ?, ?

The tabular notation for ϕ also tells us to move the element in the second entry (1) to the
first. Thus

4, 1, 2, 3
↙↘

1, 4, ?, ?

Likewise, ϕ moves the element in the third entry (2) to the fourth, and vice-versa, giving us

4, 1, 2, 3
↙↘ ↙↘

1, 4, 3, 2

In both cases, we see that ψ= ϕ ◦ρ. A similar argument shows that ϑ = ϕ ◦ρ2, so it looks as if
we need only ϕ and ρ to generate D4. The reflection and the rotation have a property similar to
that in S3:

ϕ ◦ρ= ρ3 ◦ϕ,

so unless there is some symmetry of the square that cannot be described by rotation or reflection
on the y-axis, we can list all the elements of D4 using a composition of some power of ρ after
some power of ϕ. There are four unique 90◦ rotations and two unique reflections on the y-axis,
implying that D4 has at least eight elements:

D4 ⊇
¦

ι,ρ,ρ2,ρ3,ϕ,ρϕ,ρ2ϕ,ρ3ϕ
©

.

Can D4 have other elements? There are in fact |S4|= 4! = 24 possible permutations of the
vertices, but are they all symmetries of a square? Consider the permutation from (1,2,3,4) to
(2,1,3,4): in the basic square, the distance between vertices 1 and 3 is

p
2, but in the configuration

(2,1,3,4) vertices 1 and 3 are adjacent on the square, so the distance between them has diminished
to 1. Meanwhile, vertices 2 and 3 are no longer adjacent, so the distance between them has
increased from 1 to

p
2. Since the distances between points on the square was not preserved, the

permutation described, which we can write in tabular notation as
�

1 2 3 4
2 1 3 4

�

,

is not an element of D4. The same can be shown for the other fifteen permutations of four
elements.

Hence D4 has eight elements, making it smaller than S4, which has 4! = 24. �

Corollary 5.40. For any n ≥ 3 Dn is isomorphic to a subgroup of Sn . If
n = 3, then D3

∼= S3 itself.
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Proof. You already proved that D3
∼= S3 in Exercise 5.31.

Exercises.

Exercise 5.41. Write all eight elements of D4 in cycle notation.

Exercise 5.42. Construct the composition table of D4. Compare this result to that of Exer-
cise 2.36.

Exercise 5.43. Show that the symmetries of any n-gon can be described as a power of ρ and ϕ,
where ϕ is a flip about the y-axis and ρ is a rotation of 2π/n radians.

5.4: Cayley’s Theorem

The mathematician Arthur Cayley discovered a lovely fact about the permutation groups.

Theorem 5.44 (Cayley’s Theorem). Every group of order n is isomor-
phic to a subgroup of Sn .

We’re going to give an example before we give the proof. Hopefully the example will help explain
how the proof of the theorem works.

Example 5.45. Consider the Klein 4-group; this group has four elements, so Cayley’s Theorem
tells us that it must be isomorphic to a subgroup of S4. We will build the isomorphism by looking
at the multiplication table for the Klein 4-group:

× e a b ab
e e a b ab
a a e ab b
b b ab e a

ab ab b a e
To find a permutation appropriate to each element, we’ll do the following. First, we label

each element with a certain number:

e¡ 1,
a¡ 2,
b¡ 3,

ab¡ 4.

We will use this along with tabular notation to determine the isomorphism. Define a map f from
the Klein 4-group to S4 by

f (x) =
�

1 2 3 4
` (x · e) ` (x · a) ` (x · b ) ` (x · ab )

�

, (8)

where ` (y) is the label that corresponds to y.
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Sometimes, the right choice of notation makes things easier to read, and this is one exam-
ple. Again, f maps an element g of the Klein 4-group to a permutation f (x) = σ of S4. Any
permutation of S4 is a one-to-one function on a list of 4 elements, say (1,2,3,4). If σ = (1 2) (3 4),
then σ (2) = 1. Since σ = f (x), we can likewise say that ( f (x)) (2) = 1. This double-evaluation
is hard to look at, so we adopt the following notation to emphasize that f (x) is a function:

f (x) = fx .

It’s much easier now to look at fx (2) = 1.

First let’s compute fa :

fa =
�

1 2 3 4
? ? ? ?

�

.

The first entry has the value ` (a · e) = ` (a) = 2, telling us that

fa =
�

1 2 3 4
2 ? ? ?

�

.

The next entry has the value ` (a · a) = `
�

a2�= ` (e) = 1, telling us that

fa =
�

1 2 3 4
2 1 ? ?

�

.

The third entry has the value ` (a · b ) = ` (ab ) = 4, telling us that

fa =
�

1 2 3 4
2 1 4 ?

�

.

The final entry has the value ` (a · ab ) = `
�

a2b
�

= ` (b ) = 3, telling us that

fa =
�

1 2 3 4
2 1 4 3

�

.

So applying the formula in equation (8) definitely gives us a permutation.

In fact, we could have filled out the bottom row of the permutation by looking above at
the multiplication table for the Klein 4-group, locating the row for the multiples of a (the second
row of the multiplication table), and filling in the labels for the entries in that row! Doing this or
applying equation (8) to the other elements of the Klein 4-group tells us that

fe =

�

1 2 3 4
1 2 3 4

�

fb =

�

1 2 3 4
3 4 1 2

�

fab =

�

1 2 3 4
4 3 2 1

�

.
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We now have a subset of S4; written in cycle notation, it is

W = { fe , fa , fb , fab }
= {(1) , (1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3)} .

Verifying that W is a group, and therefore a subgroup of S4, is straightforward; you will
do so in the homework. What we need to ensure is that f is indeed an isomorphism. Inspection
shows that f is one-to-one and onto; the hard part is the homomorphism property. We will use
a little cleverness for this. Let x, y in the Klein 4-group.
• Recall that fx , fy , and fxy are permutations, and by definition one-to-one, onto functions

on a list of four elements.
• Notice that ` is also a one-to-one function, and it has an inverse.
• Let m ∈ (1,2,3,4). For any z in the Klein 4-group, ` (z) = m if we listed z as the mth

entry of the group. Thus `−1 (m) indicates the element of the Klein four-group that is
labeled by m. For instance, `−1 (b ) = 3.
• Since fx is a permutation of a list of four elements, we can look at fx (m) as the place where

fx moves m.
• By definition, fx moves m to ` (z) where z = x ·`−1 (m); that is,

fx (m) = `
�

x`−1 (m)
�

.

Similar statement holds for how fy and fxy move m.
• Applying these facts, we observe that

�

fx ◦ fy

�

(m) = fx

�

fy (m)
�

= fx

�

`
�

y ·`−1 (m)
��

= `
�

x ·`−1
�

`
�

y ·`−1 (m)
���

= `
�

x ·
�

y ·`−1 (m)
��

= `
�

xy ·`−1 (m)
�

= fxy (m) .

• Since m was arbitrary in {1,2,3,4}, fxy and fx ◦ fy are identical functions.
• Since x, y were arbitrary in the Klein 4-gorup, fxy = fx fy .

We conclude that f is a homomorphism; since it is one-to-one and onto, f is an isomorphism.
�

You should read through Example 5.45 carefully two or three times, and make sure you
understand it, since in the homework you will construct a similar isomorphism for a different
group, and also because we do the same thing now in the proof of Cayley’s Theorem.

Proof of Cayley’s Theorem. Let G be a finite group of n elements. Label the elements in any
order G = {g1, g2, . . . , gn} and for any x ∈G denote ` (x) = i such that x = gi . Define a relation

f : G→ Sn by f (g ) =
�

1 2 · · · n
` (g · g1) ` (g · g2) · · · ` (g · gn)

�

.



5. Alternating groups 117

As we explained in Example 5.45 for the Klein 4-group, this assigns to each g ∈G the permutation
that, in tabular notation, has the labels for each entry in the row corresponding to g of the
Cayley table for G. By this fact we know that f is one-to-one and onto (see also Theorem 2.13
on page 28). The proof that f is a homomorphism is identical to the proof for Example 5.45:
nothing in that argument required x, y, or z to be elements of the Klein 4-group; the proof was
for a general group! Hence f is an isomorphism, and G ∼= f (G)< Sn .

What’s so remarkable about this result? One way of looking at it is the following: since
every finite group is isomorphic to a subgroup of a group of permutations, everything you need to
know about finite groups can be learned from studying the groups of permutations! A more flippant
summary is that the theory of finite groups is all about studying how to rearrange lists.

In theory, I could go back and rewrite these notes, introducing the reader first to lists, then
to permutations, then to S2, to S3, to the subgroups of S4 that correspond to the cyclic group of
order 4 and the Klein 4-group, and so forth, making no reference to these other groups, nor to
the dihedral group, nor to any other finite group that we have studied. But it is more natural
to think in terms other than permutations (geometry for Dn is helpful); and it can be tedious to
work only with permutations. While Cayley’s Theorem has its uses, it does not suggest that we
should always consider groups of permutations in place of the more natural representations.

Exercises.

Exercise 5.46. In Example 5.45 we found W , a subgroup of S4 that is isomorphic to the Klein
4-group. It turns out that W < D4 as well. Draw the geometric representations for each element
of W , using a square and writing labels in the appropriate places, as we did in Figures 2.1 on
page 32 and 5.2.

Exercise 5.47. Apply Cayley’s Theorem to find a subgroup of S4 that is isomorphic to Z4. Write
the permutations in both tabular and cycle notations.

Exercise 5.48. The subgroup of S4 that you identified in Exercise 5.47 is also a subgroup of D4.
Draw the geometric representations for each element of this subgroup, using a square and writing
labels in the appropriate places.

Exercise 5.49. Since S3 has six elements, we know it is isomorphic to a subgroup of S6. In fact, it
can be isomorphic to more than one subgroup; Cayley’s Theorem tells us only that it is isomor-
phic to at least one. Identify one such subgroup without using the isomorphism used in the proof
of Cayley’s Theorem.

5.5: Alternating groups

A special kind of group of permutations, with very important implications for later top-
ics, are the alternating groups. To define them, we need to study permutations a little more closely,
in particular the cycle notation.

Definition 5.50. Let n ∈N+. An n-cycle is a permutation that can be
written as one cycle with n entries. A transposition is a 2-cycle.
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Example 5.51. The permutation (1 2 3) ∈ S3 is a 3-cycle. The permutation (2 3) ∈ S3 is a transpo-
sition. The permutation (1 3) (2 4) ∈ S4 cannot be written as only one n-cycle for any n ∈N+:
it is the composition of two disjoint transpositions, and any cycle must move 1 to 3, so it would
start as (1 3 ?). If we fill in the blank with anything besides 1, we have a different permutation.
So we must close the cycle before noting that 2 moves to 4. �

Remark 5.52. Notice that any transposition is its own inverse. Why? Consider the product
(i j ) (i j ): every element in a list is stationary except the i th and j th elements. The rightmost
(i j ) swaps these two, and the leftmost (i j ) swaps them back. Hence (i j ) (i j ) = (1).

Thanks to 1-cycles, any permutation can be written with many different numbers of cycles: for
example,

(1 2 3) = (1 2 3) (1) = (1 2 3) (1) (3) = (1 2 3) (1) (3) (1) = · · · .

In addition, a neat trick allows us to write every permutation as a composition of transpositions.

Example 5.53. (1 2 3) = (1 3) (1 2). Also

(1 4 8 2 3) = (1 3) (1 2) (1 8) (1 4) .

Also (1) = (1 2) (1 2). �

Lemma 5.54. Any permutation can be written as a composition of trans-
positions.

Proof. You do it! See Exercise 5.65.

Remark 5.55. Given an expression of σ as a product of transpositions, say σ = τ1 · · ·τn , it is
clear from Remark 5.52 that we can write σ−1 = τn · · ·τ1, because

(τ1 · · ·τn) (τn · · ·τ1) =
�

τ1 · · ·τn−1
�

(τnτn)
�

τn−1 · · ·τ1
�

=
�

τ1 · · ·τn−1
��

1
��

τn−1 · · ·τ1
�

...
= (1) .

At this point it is worth looking at Example 5.53 and the discussion before it. Can we write
�

1 2 3
�

with many different numbers of transpositions? Yes:

(1 2 3) = (1 3) (1 2)
= (1 3) (1 2) (2 3) (2 3)
= (1 3) (1 2) (1 3) (1 3)
= · · · .

Notice something special about the representation of (1 2 3). No matter how you write it, it
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always has an even number of transpositions. By contrast, consider

(2 3) = (2 3) (2 3) (2 3)
= (2 3) (1 2) (1 3) (1 3) (1 2) = · · · .

No matter how you write it, you always represent (2 3) with an odd number of transpositions.
Is this always the case?

Theorem 5.56. Let α ∈ Sn .
• If α can be written as the composition of an even number of trans-

positions, then it cannot be written as the composition of an odd
number of transpositions.
• If α can be written as the composition of an odd number of trans-

positions, then it cannot be written as the composition of an even
number of transpositions.

Proof. Suppose that α ∈ Sn . Consider the polynomials

g =
∏

1≤i< j≤n

�

xi − x j

�

and gα :=
∏

1≤i< j≤n

�

xα(i)− xα( j )

�

.

Since the value of gα depends on the permutation α, and permutations are one-to-one functions,
gα is well-defined; that is, it won’t change regardless of how we write α in terms of transpositions.

But what, precisely, is gα? Sometimes g = gα; for example, if α=
�

1 3 2
�

then

g = (x1− x2) (x1− x3) (x2− x3)

and

gα = (x3− x1) (x3− x2) (x1− x2) = [(−1) (x1− x3)] [(−1) (x2− x3)] (x1− x2) = g . (9)

Is it always the case that gα = g ? Not necessarily: if α =
�

1 2
�

then g = x1− x2 and gα =
x2− x1 6= g . On the other hand, gα =−g in this case.

Failing this, can we write gα in terms of g ? Try the following. We know from Lemma 5.54
that α is a composition of transpositions, so let’s think about what happens when we compute
gτ for any transposition τ =

�

i j
�

. Without loss of generality, we may assume that i < j . Let
k be another positive integer.

• We know that xi − x j is a factor of g . After applying τ, x j − xi is a factor of gτ. This factor
of g has changed in gτ, since x j − xi =−

�

xi − x j

�

.
• If i < j < k, then xi − xk and x j − xk are factors of g . After applying τ, xi − xk and x j − xk

are factors of gτ. These factors of g have not changed in gτ.
• If k < i < j , then xk− xi and xk− x j are factors of g . After applying τ, xk− x j and xk− xi

are factors of gτ.These factors of g have not changed in gτ.
• If i < k < j , then xi − xk and xk− x j are factors of g . After applying τ, x j − xk and xk− xi

are factors of gτ. These factors of g have changed in gτ, but the changes cancel each other
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out, since
�

x j − xk

�

(xk − xi ) =
�

−
�

xk − x j

��

[− (xi − xk)] = (xi − xk)
�

xk − x j

�

.

Since xi− x j is the only factor that changes sign and does not pair with another factor that changes
sign, gτ =−g .

Return to gα. Again, α is a composition of transpositions; suppose we can write it as
α= τ1τ2 · · ·τn . Then

gα = gτ1···τn
=−gτ2···τn

= (−1)2 gτ3···τn
= · · ·= (−1)n g .

Since gα is well-defined, and depends only on α, and not on its representation, it must be that

• if α can be written as an even number of transpositions, say α = τ1 · · ·τ2m , then gα =
(−1)2m g = g , so α cannot be written as an odd number of transpositions; and

• if α can be written as an odd number of transpositions, say α = τ1 · · ·τ2m+1, then gα =
(−1)2m+1 g =−g , so α cannot be written as an even number of transpositions.

So Lemma (5.54) tells us that any permutation can be written as a composition of transpositions,
and Theorem 5.56 tells us that for any given permutation, this number is always either an even
or odd number of transpositions. This relationship merits a definition.

Definition 5.57. If a permutation can be written with an even number
of permutations, then we say that the permutation is even. Otherwise,
we say that the permutation is odd.

Example 5.58. The permutation ρ= (1 2 3) ∈ S3 is even, since as we saw earlier ρ= (1 3) (1 2).
So is the permutation ι= (1) = (1 2) (1 2).

The permutation ϕ = (2 3) is odd. �

At this point we are ready to define a new group.

Definition 5.59. Let n ∈N+ and n ≥ 2. Let An = {α ∈ Sn : α is even}.
We call An the set of alternating permutations.

Remark 5.60. Although A3 is not the same as “A3” in Example 3.58 on page 66, the two are
isomorphic because D3

∼= S3.

Theorem 5.61. For all n ≥ 2, An < Sn .

Proof. Let n ≥ 2, and let x, y ∈ An . By the definition of An , we can write x = σ1 · · ·σ2m and
y = τ1 · · ·τ2n , where m, n ∈Z and each σi or τ j is a transposition. From Remark 5.55,

y−1 = τ2n · · ·τ1,

so
xy−1 = (σ1 · · ·σ2m) (τ2n · · ·τ1) .
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Thus xy−1 can be written as a product of 2m + 2n = 2 (m + n) transpositions; in other words,
xy−1 ∈An . By the Subgroup Theorem, An < Sn . Thus An is a group.

How large is An , relative to Sn?

Theorem 5.62. For any n ≥ 2, there are half as many even permutations
as there are permutations. That is, |An |= |Sn |/2.

Proof. We use Lagrange’s Theorem from page 63, and show that there are two cosets of An < Sn .
Let X ∈ Sn/An . Let α ∈ Sn such that X = αAn . If α is an even permutation, then

X = An . Otherwise, α is odd. Let β be any other odd permutation. Write out the odd number
of transpositions of α−1, followed by the odd number of transpositions of β, to see that α−1β is
an even permutation. Hence α−1β ∈An , and by Lemma 3.29 on page 60 αAn =βAn .

We have shown that any coset of An is either An itself or αAn for some odd permutation
α. Thus there are only two cosets of An in Sn : An itself, and the coset of odd permutations. By
Lagrange’s Theorem,

|Sn |
|An |

= |Sn/An |= 2,

and a little algebra rewrites this equation to |An |= |Sn |/2.

Corollary 5.63. For any n ≥ 2, An / Sn .

Proof. You do it! See Exercise 5.68.

There are a number of exciting facts regarding An that have to wait until a later class; in particular,
An has a pivotal effect on whether one can solve polynomial equations by radicals (such as the
quadratic formula). In comparison, the facts presented here are relatively dull.

I say that only in comparison, though. The facts presented here are quite striking in their
own right: An is half the size of Sn , and it is a normal subgroup of Sn . If I call these facts “rather
dull”, that tells you just how interesting group theory can get!

Exercises.

Exercise 5.64. List the elements of A2, A3, and A4 in cycle notation.

Exercise 5.65. Show that any permutation can be written as a product of transpositions.

Exercise 5.66. Show that the inverse of any transposition is a transposition.

Exercise 5.67. Show that the function swp α defined in Theorem 5.56 satisfies the property that
for any two cycles α,β we have (−1)swp (αβ) = (−1)swp α (−1)swpβ.

Exercise 5.68. Show that for any n ≥ 2, An / Sn .

5.6: The 15-puzzle
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The 15-puzzle is similar to a toy you probably played with as a child. It looks like a 4×4
square, with all the squares numbered except one. The numbering starts in the upper left and
proceeds consecutively until the lower right; the only squares that aren’t in order are the last two,
which are swapped:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

The challenge is to find a way to rearrange the squares so that they are in order, like so:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

The only permissible moves are those where one “slides” a square left, right, above, or below the
empty square. Given the starting position above, the following moves are permissible:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

or

1 2 3 4
5 6 7 8
9 10 11
13 15 14 12

but the following moves are not permissible:
1 2 3 4
5 6 7 8
9 10 12
13 15 14 11

or

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

.

We will use groups of permutations to show that that the challenge is impossible.
How can we do this? Since the problem is one of rearranging a list of elements, it is a

problem of permutations. Every permissible move consists of transpositions τ in S16 where:
• τ =

�

x y
�

where
◦ x < y;
◦ one of x or y is the position of the empty square in the current list; and
◦ legal moves imply that either

? y = x + 1 and x 6∈ 4Z; or
? y = x + 4.

Example 5.69. The legal moves illustrated above correspond to the transpositions
•
�

15 16
�

, because square 14 was in position 15, and the empty space was in position 16:
notice that 16 = 15+ 1; and
•
�

12 16
�

, because square 12 was in position 12, and the empty space was in position 16:
notice that 16 = 12+ 4 and since [12] = [0] in Z4, [16] = [0] in Z4.

The illegal moves illustrated above correspond to the transpositions
•
�

11 16
�

, because square 11 was in position 11, and the empty space was in position 16:
notice that 16 = 11+ 5; and
•
�

13 14
�

, because in the original configuration, neither 13 nor 14 contains the empty
square.

Likewise
�

12 13
�

would be an illegal move in any configuration, because it crosses rows: even
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though y = 13 = 12+ 1 = x + 1, x = 12 ∈ 4Z. �

How can we use this to show that it is impossible to solve 15-puzzle? Answering this requires
several steps. The first shows that if there is a solution, it must belong to a particular group.

Lemma 5.70. If there is a solution to the 15-puzzle, it is a permutation
σ ∈A16, where A16 is the alternating group.

Proof. Any permissible move corresponds to a transposition τ as described above. Now any so-
lution contains the empty square in the lower right hand corner. As a consequence, we must have
the following: For any move

�

x y
�

, there must eventually be a corresponding move
�

x ′ y ′
�

where
�

x ′
�

= [x ] in Z4 and
�

y ′
�

= [y ] in Z4. If not:

• for above-below moves, the empty square could never return to the bottom row; and
• for left-right moves, the empty square could never return to the rightmost row unless we

had some
�

x y
�

where [x ] = [0] and [y ] 6= [0], a contradiction.

Thus moves come in pairs, and the solution is a permutation σ consisting of an even number of
transpositions. By Theorem 5.56 on page 119 and Definitions 5.57 and 5.59, σ ∈A16.

We can now show that there is no solution to the 15-puzzle.

Theorem 5.71. The 15-puzzle has no solution.

Proof. By way of contradiction, assume that it has a solution σ . Then σ ∈ A16. Because A16
is a subgroup of S16, and hence a group in its own right, σ−1 ∈ A16. Notice σ−1σ = ι, the
permutation which corresponds to the configuration of the solution.

Now σ−1 is a permutation corresponding to the moves that change the arrangement

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

into the arrangement

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

which corresponds to
�

14 15
�

. So regardless of the transpositions used in the representation of
σ−1 , the composition must simplify to σ−1 =

�

14 15
�

6∈A16, a contradiction.

As a historical note, the 15-puzzle was developed in 1878 by an American puzzlemaker, who
promised a $1,000 reward to the first person to solve it. Most probably, the puzzlemaker knew
that no one would ever solve it: if we account for inflation, the reward would correspond to
$22,265 in 2008 dollars.26

26According to the website http://www.measuringworth.com/ppowerus/result.php.
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The textbook [Lau03] contains a more general discussions of solving puzzles of this sort
using algebra.

Exercises

Exercise 5.72. Determine which of these configurations, if any, is solvable by the same rules as
the 15-puzzle:

1 2 3 4
5 6 7 8
9 10 12 11
13 14 15

,

1 2 3 4
5 10 6 8
13 9 7 11
14 15 12

,

3 6 4 7
1 2 12 8
5 15 10 14
9 13 11

.



Chapter 6:
Number theory

The theory of groups was originally developed by mathematicians who were trying to
answer questions about the roots of polynomials. From such beginnings it has grown to many
applications that would seem completely unrelated to this topic. Some of the most widely-used
applications in recent decades are in number theory, the study of properties of the integers.

This chapter introduces several of these applications of group theory to number theory.
Section 6.1 fills some background with two of the most important tools in computational algebra
and number theory. The first is a fundamental definition; the second is a fundamental algorithm.
Both recur throughout the chapter, and later in the notes. Section 6.2 moves us to our first
application of group theory, the Chinese Remainder Theorem, used thousands of years ago for the
task of counting the number of soldiers who survived a battle. We will use it to explain the card
trick described on page 1.

The rest of the chapter moves us toward Section 6.6, the RSA cryptographic scheme,
a major component of internet communication and commerce. In Section 3.5 you learned of
additive clockwork groups; in Section 6.4 you will learn of multiplicative clockwork groups.
These allows us to describe in Section 6.5 the theoretical foundation of RSA, Euler’s number and
Euler’s Theorem.

6.1: The Euclidean Algorithm

Until now, we’ve focused on division mostly when it made sense as an inverse operation
(the Division Theorem being a notable exception). Many problems in number theory concern
themselves with the integers as a monoid under multiplication, and division is important when it
is possible. Recall that we say the integer a divides the integer b when we can find another integer
x such that ax = b .

Definition 6.1. Let m, n ∈ Z. We say that d ∈ Z is a common divisor
of m and n if d | m and d | n.

Example 6.2. Common divisors of 36 and 210 are 1, 2, 3, and 6.

In grade school, you learned how to compute the greatest common divisor of two integers. For
example, given the integers 36 and 210, you should be able to determine that the greatest common
divisor is 6. Computing greatest common divisors—not only of integers, but of other objects as
well—turns out to be one of the most interesting problems in mathematics, with a large number
of important applications.

But do they always exist?

Theorem 6.3. Let m, n ∈ Z. There exists a unique greatest common
divisor of m, n.

Proof. Let D be the set of common divisors of m, n that are also in N+. We know that D 6=
; because 1 divides any integer. We also know that any d ∈ D must satisfy d ≤ min (m, n);
otherwise, the remainder from the Division Algorithm would be nonzero for at least one of
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Algorithm 1. The Euclidean algorithm
1: inputs
2: m, n ∈Z

3: outputs
4: gcd (m, n)
5: do
6: Let s = max (m, n)
7: Let t = min (m, n)
8: Let k = 1
9: repeat while t 6= 0

10: Let q , rk ∈Z be the result of dividing s by t
11: Let s = t
12: Let t = rk
13: Increment k
14: return s

m, n. Hence D is finite, and since any two integers can be compared, we can pick a maximal
element of D , which is the greatest common divisor.

How can we compute the greatest common divisor? One way is to make a list of all common
divisors, and find the largest. To do that, we need to list all possible divisors of each integer,
and identify the largest integer that appears in both lists. In practice, this takes a Very Long
TimeTM, so we need a different method. One such method was described by the ancient Greek
mathematician, Euclid.

Theorem 6.4 (The Euclidean Algorithm). Let m, n ∈ Z. We can com-
pute the greatest common divisor of m, n in the following way:

1. Let s = max (m, n) and t = min (m, n).
2. Repeat the following steps until t = 0:

(a) Let q be the quotient and r the remainder after dividing s
by t .

(b) Assign s the current value of t .
(c) Assign t the current value of r .

The final value of s is gcd (m, n).

It is common to write algorithms in a form called pseudocode. You can see this done in Algo-
rithm 1.

Before proving that the Euclidean algorithm gives us a correct answer, let’s do an example.

Example 6.5. We compute gcd (36,210). At the outset, we let s = 210 and t = 36. Subse-
quently:

1. Dividing 210 by 36 gives q = 5 and r = 30. Let s = 36 and t = 30.
2. Dividing 36 by 30 gives q = 1 and r = 6. Let s = 30 and t = 6.
3. Dividing 30 by 6 gives q = 5 and r = 0. Let s = 6 and t = 0.

Now that t = 0, we stop, and conclude that gcd (36,210) = s = 6. This agrees with Example 6.2
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To prove that the Euclidean algorithm generates a correct answer, we will argue that it
computes gcd (m, n) by arguing that

gcd (m, n) = gcd (m, r1) = gcd (r1, r2) = · · ·= gcd
�

rk−1, 0
�

where ri is the remainder from division of the previous two integers in the chain, and rk−1 is the
final non-zero remainder from division.

Lemma 6.6. Let s , t ∈ Z. Let q and r be the quotient and remainder,
respectively, of division of s by t , as per the Division Theorem from
page 9. Then gcd (s , t ) = gcd (t , r ).

Example 6.7. We can verify this using the numbers from Example 6.5. We know that gcd (36,210) =
6. The remainder from division of 36 by 210 is r = 36. The lemma claims that gcd (36,210) =
gcd (36,30); it should be clear to you that gcd (36,30) = 6.

The example also shows that the lemma doesn’t care whether m < n or vice versa. We turn to
the proof.

Proof. Let d = gcd (s , t ). First we show that d is a divisor of r . From Definition 1.19 on
page 10, there exist a, b ∈ Z such that s = ad and t = b d . From the Division Theorem, we
know that s = q t + r . Substitution gives us ad = q (b d )+ r ; rewriting the equation, we have

r = (a− q b ) d .

Hence d | r .
Since d is a common divisor of s , t , and r , it is a common divisor of t and r . Now we

show that d = gcd (t , r ). Let d ′ = gcd (t , r ); since d is also a common divisor of t and r , the
definition of greatest common divisor implies that d ≤ d ′. Since d ′ is a common divisor of t
and r , Definition 1.19 again implies that there exist x, y ∈ Z such that t = d ′x and r = d ′y.
Substituting into the equation s = q t + r , we have s = q

�

d ′x
�

+ d ′y; rewriting the equation, we
have

s = (q x + y) d ′.

So d ′ | s . We already knew that d ′ | t , so d ′ is a common divisor of s and t .
Recall that d = gcd (s , t ); since d ′ is also a common divisor of t and r , the definition of

greatest common divisor implies that d ′ ≤ d . Earlier, we showed that d ≤ d ′. Hence d ≤ d ′ ≤ d ,
which implies that d = d ′.

Substitution gives the desired conclusion: gcd (s , t ) = gcd (t , r ).

We can finally prove that the Euclidean algorithm gives us a correct answer. This requires
two stages, necessary for any algorithm.

1. Correctness. If the algorithm terminates, we have to guarantee that it terminates with the
correct answer.

2. Termination. What if the algorithm doesn’t terminate? If you look at the Euclidean algo-
rithm, you see that one of its instructions asks us to repeat some steps “while t 6= 0.” What
if t never attains the value of zero? It’s conceivable that its values remain positive at all
times, or jump over zero from positive to negative values. That would mean that we never
receive any answer from the algorithm, let alone a correct one.
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We will identify both stages of the proof clearly. In addition, we will refer back to the the Division
Theorem as well as the well-ordering property of the integers from Section 1.1; you may wish to
review those.

Proof of the Euclidean Algorithm. First we show that the algorithm terminates. The only rep-
etition in the algorithm occurs in line 9. The first time we compute line 10, we compute the
quotient q and remainder r of division of s by t . By the Division Theorem,

0≤ r < t . (10)

Denote this value of r by r1. In the next lines we set s to t , then t to r1 = r . Thanks to equation
(10), the value of tnew = r is smaller than snew = told. If t 6= 0, then we return to line 10 and
divide s by t , again obtaining a new remainder r . Denote this value of r by r2; by the Division
Theorem r2 = r < t , so

0≤ r2 < r1.

Let R = {r1, r2, . . .} be the set of remainders generated by the algorithm. Notice that R ( N.
The well-ordering property of the natural numbers implies that R has a smallest element ri ; this
implies in turn that after i repetitions, the repetition must end; otherwise, we would generate
ri+1 < ri , contradicting the choice of ri as the smallest element of R. Since the repetition end,
the algorithm terminates.

Now we show that the algorithm terminates with the correct answer. If line 10 of the
algorithm repeated k times, then rk = 0. Apply Lemma 6.6 repeatedly to the remainders to
obtain the chain of equalities

gcd
�

rk−1, rk−2
�

= gcd
�

rk−2, rk−3
�

= gcd
�

rk−3, rk−4
�

...
= gcd (r2, r1)

= gcd (r1, s)
= gcd (t , s)
= gcd (m, n) .

What is gcd
�

rk−1, rk−2
�

? Since rk = 0, rk−2 = q rk−1+0, so rk−1 | rk−2, making rk−1 a common
divisor of rk−1 and rk−2. No integer larger than rk−1 divides rk−1, so the greatest common divisor
of rk−1 and rk−2 must be rk−1. Following the chain of equalities, we conclude that gcd (m, n) =
rk−1: the Euclidean Algorithm terminates with the correct answer.

Exercises.

Exercise 6.8. Compute the greatest common divisor of 100 and 140 by (a) listing all divisors, then
identifying the largest; and (b) the Euclidean Algorithm.

Exercise 6.9. Compute the greatest common divisor of 4343 and 4429 by the Euclidean Algo-
rithm.
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Exercise 6.10. In Lemma 6.6 we showed that gcd (m, n) = gcd (m, r ) where r is the remain-
der after division of m by n. Prove the following more general statement: for all m, n, q ∈ Z

gcd (m, n) = gcd (n, m− qn).

6.2: The Chinese Remainder Theorem

In this section we explain how the card trick on page 1 works. The result is based on an
old Chinese observation.27 Recall from Section 3.5 that for any m 6= 0 there exists a group Zm of
m elements, under the operation of adding, then taking remainder after division by m. We often
write [x ] for the elements of Zm if we want to emphasize that its elements are cosets.

Theorem 6.11 (The Chinese Remainder Theorem, simple version). Let
m, n ∈Z such that gcd (m, n) = 1. Let α,β ∈Z. There exists a solution
x ∈Z to the system of linear congruences

(

[x ] = [α] in Zm ;
[x ] = [β] in Zn ;

and [x ] is unique in ZN where N = mn.

Before giving a proof, let’s look at an example.

Example 6.12 (The card trick). In the card trick, we took twelve cards and arranged them
• once in groups of three; and
• once in groups of four.

Each time, the player identified the column in which the mystery card lay. giving the remainders
α from division by three and β from division by four. This corresponds to a system of linear
congruences,

(

[x ] = [α] in Z3;
[x ] = [β] in Z4;

where x is the location of the mystery card. The simple version of the Chinese Remainder
Theorem guarantees a solution for x, which is unique in Z12. Since there are only twelve cards,
the solution is unique in the game: as long as the dealer can compute x, s/he can identify the card
infallibly.

“Well, and good,” you think, “but knowing only the existence of a solution seems rather
pointless. I also need to know how to compute x, so that I can pinpoint the location of the card.”
It turns out that the proof of the Chinese Remainder Theorem will provide us with this method.
However, the proof requires us to revisit our friend, the Euclidean Algorithm.

Theorem 6.13 (The Extended Euclidean Algorithm). Let m, n ∈ Z.
There exist a, b ∈ Z such that am + b n = gcd (m, n). Both a and b
can be found by reverse-substituting the chain of equations obtained by
the repeated division in the Euclidean algorithm.

27I asked Dr. Ding what the Chinese call this theorem. He looked it up in one of his books, and told me that they
call it Sun Tzu’s Theorem. But this is not the same Sun Tzu who wrote The Art of War.
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Example 6.14. Recall from Example 6.5 the computation of gcd (210,36). The divisions gave us
a series of equations:

210 = 5 ·36+ 30 (11)
36 = 1 ·30+ 6 (12)
30 = 5 ·6+ 0.

We concluded from the Euclidean Algorithm that gcd (210,36) = 6. The Extended Euclidean
Algorithm gives us a way to find a, b ∈Z such that 6 = 210a + 36b . Start by rewriting equation
(12):

36−1 ·30 = 6. (13)

This looks a little like what we want, but we need 210 instead of 30. Equation (11) allows us to
rewrite 30 in terms of 210 and 36:

30 = 210−5 ·36. (14)

Substituting this result into equation (13), we have

36−1 · (210−5 ·36) = 6 =⇒ 6 ·36+(−1) ·210 = 6.

We have found integers m = 6 and n =−1 such that for a = 36 and b = 210, gcd (a, b ) = 6.

The method we applied in Example (6.14) is what we use both to prove correctness of the algo-
rithm, and to find a and b in general.

Proof of the Extended Euclidean Algorithm. Look back at the proof of the Euclidean algorithm
to see that it computes a chain of k quotients {qi} and remainders {ri} such that

m = q1n + r1

n = q2 r1 + r2

r1 = q3 r2 + r3
...

rk−3 = qk−1 rk−2 + rk−1 (15)
rk−2 = qk rk−1 + rk (16)
rk−1 = qk+1 rk + 0
and rk = gcd (m, n) .

Rewrite equation 16 as
rk−2 = qk rk−1 + gcd (m, n) .

Solving for gcd (m, n), we have

rk−2− qk rk−1 = gcd (m, n) . (17)

Solve for rk−1 in equation (15) to obtain

rk−3− qk−1 rk−2 = rk−1.



2. The Chinese Remainder Theorem 131

Algorithm 2. Extended Euclidean Algorithm
1: inputs
2: m, n ∈N+ such that m > n
3: outputs
4: gcd (m, n) and a, b ∈Z such that gcd (m, n) = am + b n
5: do
6: Let r0 = m and r1 = n
7: if r1 = 0
8: Let d = r0, a = 1, b = 0
9: else

10: Let i = 1
11: repeat while ri 6= 0
12: Increment i by 1
13: Let qi , ri be the quotient and remainder from division of ri−2 by ri−1
14: Let d = ri−1 and p = ri−2− qi ri−1
15: Decrement i by 1
16: repeat while i ≥ 0
17: Substitute ri = ri−2− qi ri−1 into p
18: Decrement i by 1
19: Let a be the coefficient of r0 in p, and b be the coefficient of r1 in p
20: return d ,a, b

Substitute this into equation (17) to obtain

rk−2− qk
�

rk−3− qk−1 rk−2
�

= gcd (m, n)
�

qk−1 + 1
�

rk−2− qk rk−3 = gcd (m, n) .

Proceeding in this fashion, we exhaust the list of equations, concluding by rewriting the first
equation in the form am + b n = gcd (m, n) for some integers a, b .

Pseudocode appears in Algorithm 2. One can also derive a method of computing both
gcd (m, n) and the representation am+ b n = gcd (m, n) simultaneously, which is to say, without
having to reverse the process. We will not consider that here.

This ability to write gcd (m, n) as a sum of integer multiples of m and n is the key to
unlocking the Chinese Remainder Theorem. Before doing so, we need an important lemma
about numbers whose gcd is 1.

Lemma 6.15. Let d , m, n ∈Z. If m | nd and gcd (m, n) = 1, then m | d .

Proof. Assume that m | nd and gcd (m, n) = 1. By definition of divisibility, there exists q ∈
Z such that q m = nd . Use the Extended Euclidean Algorithm to choose a, b ∈ Z such that
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am + b n = gcd (m, n) = 1. Multiplying both sides of this equation by d , we have

(am + b n) d = 1 · d
amd + b (nd ) = d
ad m + b (q m) = d
(ad + b q)m = d .

Hence m | d .

We finally prove the Chinese Remainder Theorem. You should study this proof carefully, not
only to understand the theorem better, but because the proof tells you how to solve the system.
You will want to recall Lemma 3.82 on page 71, which we use without pointing it out.

Proof of the Chinese Remainder Theorem, simple version. Recall that the system is
(

[x ] = [α] in Zm ; and
[x ] = [β] in Zn .

We have to prove two things: first, that a solution x exists; second, that [x ] is unique in ZN .
Existence: Because gcd (m, n) = 1, the Extended Euclidean Algorithm tells us that there

exist a, b ∈ Z such that am + b n = 1. Rewriting this equation two different ways, we have
b n = 1+ (−a)m and am = 1+ (−b )n. In terms of cosets of subgroups of Z, these two
equations tell us that b n ∈ 1+mZ and am ∈ 1+nZ. In the bracket notation, [b n]m = [1]m and
[am]n = [1]n . By Lemmas 3.79 and 3.82 on page 71, [α]m = α [1]m = α [b n]m = [αb n]m and
likewise [β]n = [βam]n . Apply similar reasoning to see that [αb n]n = [0]n and [βam]m = [0]m
in Zm . Hence,

(

[αb n +βam]m = [α]m ; and
[αb n +βam]n = [β]n .

Thus x = αb n +βam is a solution to the system.
Uniqueness: Suppose that there exist [x ] , [y ] ∈ ZN that both satisfy the system. Since

[x ] = [y ] in Zm , [x− y ] = [0], so m | (x− y). By definition of divisibility, there exists q ∈ Z

such that mq = x − y. Since [x ]n = [y ]n , [x− y ]n = [0]n , and by Lemma 3.85 on page 73,
n | (x− y). By substitution, n | mq . By Lemma 6.15, n | q . By definition of divisibility, there
exists q ′ ∈Z such that q = nq ′. By substitution,

x− y = mq = mnq ′ = N q ′.

Hence N | (x− y), and again by Lemma 3.85 [x ]N = [y ]N , which means that the solution x is
unique in ZN , as desired.

Pseudocode to solve the Chinese Remainder Theorem appears as Algorithm 3 on the
following page.

Example 6.16. The algorithm of Corollary 3 finally explains the method of the card trick. We
have m = 3, n = 4, and N = 12. Suppose that the player indicates that his card is in the first
column when they are grouped by threes, and in the third column when they are grouped by
fours; then α= 1 and β= 3.
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Algorithm 3. Solution to Chinese Remainder Theorem, simple version
1: inputs
2: m, n ∈Z such that gcd (m, n) = 1
3: α,β ∈Z

4: outputs
5: x ∈Z satisfying the Chinese Remainder Theorem
6: do
7: Use the Extended Euclidean Algorithm to find a, b ∈Z such that am + b n = 1
8: return [αb n +βam]N

Using the Extended Euclidean Algorithm, we find that a = −1 and b = 1 satisfy am +
b n = 1; hence am =−3 and b n = 4. We can therefore find the mystery card by computing

x = 1 ·4+ 3 · (−3) =−5;

by adding 12, we obtain another representation for [x ] in Z12:

[x ] = [−5+ 12] = [7] ,

which implies that the player chose the 7th card. In fact, [7] = [1] in Z3, and [7] = [3] in Z4,
which agrees with the information given. �

The Chinese Remainder Theorem can be generalized to larger systems with more than
two equations under certain circumstances.

Theorem 6.17 (Chinese Remainder Theorem on Z). Let
m1, m2, . . . , mn ∈ Z and assume that gcd

�

mi , m j

�

= 1 for all
1 ≤ i < j ≤ n. Let α1,α2, . . .αn ∈ Z. There exists a solution
x ∈Z to the system of linear congruences



















[x ] = [α1] in Zm1
;

[x ] = [α2] in Zm2
;

...
[x ] = [αn ] in Zmn

;

and [x ] is unique in ZN where N = m1m2 · · ·mn .

Before we can prove this version of the Chinese Remainder Theorem, we need to make an obser-
vation of m1, m2, . . . , mn .

Lemma 6.18. Let m1, m2, . . . , mn ∈ Z such that gcd
�

mi , m j

�

= 1 for
all 1 ≤ i < j ≤ n. For each i = 1,2, . . . , n define Ni = N /mi where
N = m1m2 · · ·mn ; that is, Ni is the product of all the m’s except mi .
Then gcd (mi ,Ni ) = 1.
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Proof. We show that gcd (m1,N1) = 1; for i = 2, . . . , n the proof is similar.
Use the Extended Euclidean Algorithm to choose a, b ∈ Z such that am1 + b m2 = 1.

Use it again to choose c , d ∈Z such that c m1 + d m3 = 1. Then

1 = (am1 + b m2) (c m1 + d m3)

= (ac m1 + ad m3 + b c m2)m1 +(b d ) (m2m3) .

Let x = gcd (m1, m2m3); the previous equation shows that x is also a divisor of 1. However, the
only divisors of 1 are ±1; hence x = 1. We have shown that gcd (m1, m2m3) = 1.

Rewrite the equation above as 1 = a′m1 + b ′m2m3; notice that a′, b ′ ∈ Z. Use the Ex-
tended Euclidean Algorithm to choose e , f ∈Z such that e m1 + f m4 = 1. Then

1 =
�

a′m1 + b ′m2m3
�

(e m1 + f m4)

=
�

a′e m1 + a′ f m4 + b ′e m2me
�

m1 +
�

b ′ f
�

(m2m3m4) .

An argument similar to the one above shows that gcd (m1, m2m3m4) = 1.
Repeating this process with each mi , we obtain gcd (m1, m2m3 · · ·mn) = 1. Since N1 =

m2m3 · · ·mn , we have gcd (m1,N1) = 1.

We can now prove the Chinese Remainder Theorem on Z.

Proof of the Chinese Remainder Theorem on Z. Existence: Write Ni = N /mi for i = 1,2, . . . , n.
By Lemma 6.18, gcd (mi ,Ni ) = 1. Use the Extended Euclidean Algorithm to compute a1, b1,a2, b2, . . . ,an , bn
such that

a1m1 + b1N1 = 1
a2m2 + b2N2 = 1

...
an mn + bnNn = 1.

Put x = α1b1N1 +α2b2N2 + · · ·+αn bnNn . Now b1N1 = 1+(−a1)m1 so [b1N1] = [1] in Zm1
,

so [α1b1N1] = [α1] in Zm1
. Moreover, for i = 2,3, . . . , n inspection of Ni verifies that m1 |Ni , so

αi bi Ni = qi m1 for some qi ∈Z, implying that [αi bi Ni ]m1
= [0]m1

. Hence

[x ] = [α1b1N1 +α2b2N2 + · · ·+αn bnNn ]

= [α1] + [0] + · · ·+ [0]

in Zm1
, as desired. A similar argument shows that [x ] = [αi ] in Zmi

for i = 2,3, . . . , n.
Uniqueness: As in the previous case, let [x ] , [y ] be two solutions to the system in ZN .

Then [x− y ] = [0] in Zmi
for i = 1,2, . . . , n, implying that mi | (x− y) for i = 1,2, . . . , n.

Since m1 | (x− y), the definition of divisibility implies that there exists q1 ∈Z such that
x− y = m1q1.

Since m2 | (x− y), substitution implies m2 | m1q1, and Lemma 6.15 implies that m2 | q1.
The definition of divisibility implies that there exists q2 ∈ Z such that q1 = m2q2. Substitution
implies that x− y = m1m2q2.
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Since m3 | (x− y), substitution implies m3 | m1m2q2. By Lemma 6.18, gcd (m1m2, m3) =
1, and Lemma 6.15 implies that m3 | q2. The definition of divisibility implies that there exists
q3 ∈Z such that q2 = m3q3. Substitution implies that x− y = m1m2m3q3.

Continuing in this fashion, we show that x − y = m1m2 · · ·mnqn for some qn ∈ Z. By
substition, x− y = N qn , so [x− y ] = [0] in ZN , so [x ] = [y ] in Zn . That is, the solution to the
system is unique in ZN .

The algorithm to solve such systems is similar to that given for the simple version, in that
it can be obtained from the proof of existence of a solution.

Exercises

Exercise 6.19. Solve the system of linear congruences
(

[x ] = [2] in Z4;
[x ] = [3] in Z9.

Express your answer so that 0≤ x < 36.

Exercise 6.20. Solve the system of linear congruences






[x ] = [2] in Z5;
[x ] = [3] in Z6;
[x ] = [4] in Z7.

Exercise 6.21. Solve the system of linear congruences






[x ] = [33] in Z16;
[x ] = [−4] in Z33;
[x ] = [17] in Z504.

This problem is a little tougher than the previous, since gcd (16,504) 6= 1 and gcd (33,504) 6= 1.

Exercise 6.22. Give directions for a similar card trick on all 52 cards, where the cards are grouped
first by 4’s, then by 13’s. Do you think this would be a practical card trick?

Exercise 6.23. Is it possible to modify the card trick to work with only ten cards instead of 12? If
so, how; if not, why not?

Exercise 6.24. Is it possible to modify the card trick to work with only eight cards instead of 12?
If so, how; if not, why not?

Exercise 6.25. Let m, n ∈ Z. The Extended Euclidean Algorithm (Theorem 6.13) shows that
we can find a, b ∈Z such that am + b n = gcd (m, n). It is not necessarily true that am + b n =
gcd (m, n) for any a, b ∈Z. However, we can show the following. Let S = {am + b n : a, b ∈Z},
and M = S ∩N. Since M is a subset of N, the well-ordering property of Z implies that it has a
smallest element; call it d . Show that d = gcd (m, n).
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6.3: The Fundamental Theorem of Arithmetic

In this section, we address a fundamental result of number theory that has algebraic im-
plications.

Definition 6.26. Let n ∈ N+\{1}. We say that n is irreducible if the
only integers that divide n are ±1 and ±n.

You may read this and think, “Oh, he’s talking about prime numbers.” Yes and no. We’ll have a
lot to say about that, eventually.

Example 6.27. The integer 36 is not irreducible, because 36 = 6×6. The integer 7 is irreducible,
because the only integers that divide 7 are ±1 and ±7.

One useful aspect to irreducible integers is that, aside from ±1, any integer is divisible by
at least one irreducible integer.

Theorem 6.28. Let n ∈ Z\{±1}. There exists at least one irreducible
integer p such that p | n.

Proof. Case 1: If n = 0, then 2 is a divisor of n, and we are done.
Case 2: Assume that n ∈ N+\{1}. If n is not irreducible, then by definition n = a1b1

such that a1, b1 ∈Z and a1, b1 6=±1. Without loss of generality, we may assume that a1, b1 ∈N+

(otherwise both a, b are negative and we can replace them with their opposites). Observe further
that a1 < n (this is a consequence of Exercise 1.25 on page 10). If a1 is irreducible, then we are
done; otherwise, we can write a1 = a2b2 where a2, b2 ∈N+ and a2 < a1.

As long as ai is not irreducible, we can find ai+1, bi+1 ∈N+ such that ai = ai+1bi+1. Let
S = {a1,a2, . . . ,} ⊆N+; by the well-ordering property of N, S has a least element. Notice that
ai > ai+1 for each i , so the least element must be the ai with maximal index i ; call it am . We
claim that am is irreducible; otherwise, we could factor it and add a smaller element to S, as we
did for a1, a2, . . . . Thus

n = a1b1 = a2 (b2b1) = · · ·= am
�

bm−1 · · · b1
�

.

That is, am is an irreducible integer that divides n.
Case 3: Assume that n ∈ Z\ (N∪{−1}). Let m = −n; since m ∈ N+\{1}, we are in

Case 2. There exists an irreducible integer p such that p | m, say m = q p for some q ∈ Z. By
substitution, n =−q p = (−q) p, so p | n.

Let’s turn now to the term you might have expected for the above notion: a prime number. For
reasons that you will discover later, we actually associate a different notion with this term.

Definition 6.29. Let p ∈N+\{1}. We say that p is prime if for any two
integers a, b

p | ab =⇒ p | a or p | b .

Example 6.30. Let a = 68 and b = 25. It is easy to recognize that 10 divides ab = 1700. However,
10 divides neither a nor b , so 10 is not a prime number.
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It is also easy to recognize that 17 divides ab = 1700. Here, 17 must divide one of a or
b ; in fact, 17× 4 = 68 = a. If we were to look at every possible product ab divisible by 17, we
would find that 17 always divides one of the factors a or b . Thus, 17 is prime.

If the next-to-last sentence in the example, bothers you, good. I’ve claimed something about every
product divisible by 17, but haven’t explained why that is true. In other words, I’ve cheated. I’m
not supposed to do that.

Fair enough; if I’m going to claim that 17 is prime, I need a better explanation than my
say-so. I also need a better explanation than, “if we were to look at every possible product,”
because there are an infinite number of possibilities to consider, and we can’t do that in finite
time. I need a finite criterion.

To get this criterion, I’ll return to the notion of an irreducible number. Previously, you
were probably taught that a prime number was what we have here called irreducible. Now, I’ve
given two definitions that seem different.

Could it be that the definitions are distinctions without a difference? In fact, they are
equivalent!

Theorem 6.31. Any integer is irreducible if and only if it is prime.

Proof. There are two parts to this proof. You will show in Exercise 6.33 that if an integer is
prime, then it is irreducible. Here we show the converse.

Let n ∈ N+\{1} and assume that n is irreducible. To show that n is prime, we must
take arbitrary a, b ∈ Z and show that if n | ab , then n | a or n | b . Therefore, let a, b ∈ Z and
assume that n | ab . Without loss of generality, assume that n - a; we must show that n | b . Since
n - a and n is irreducible, the only common factors of n and a are ±1; thus, gcd (n,a) = 1. By
Lemma 6.15, n | b . Hence n is prime.

If the two definitions are equivalent, why would we give a different definition? It turns out
that the concepts are equivalent for the integers, but not for other sets; you will see this later in
Sections 8.3 and 9.1.

The following theorem is a cornerstone of Number Theory.

Theorem 6.32 (The Fundamental Theorem of Arithmetic). Let n ∈
N+\{1}. We can write

n = pα1
1 pα2

2 · · · p
αr
r

where p1, p2, . . . , pr are irreducible and α1,α2, . . . ,αr ∈N. The represen-
tation is unique if we order p1 < p2 < . . .< pn .

Since prime integers are irreducible and vice versa, you can replace “irreducible” by “prime” and
obtain the expression of this theorem found more commonly in number theory textboks. We
use “irreducible” here to lay the groundwork for Definition 9.16 on page 209.

Proof. The proof has two parts: a proof of existence and a proof of uniqueness.
Existence: We proceed by induction on positive integers.
Inductive base: If n = 2, then n is irreducible, and we are finished.
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Inductive hypothesis: Assume that the integers 2, 3, . . . , n− 1 have a factorization into
irreducibles.

Inductive step: If n is irreducible, then we are finished. Otherwise, n is not irreducible.
By Lemma 6.28, there exists an irreducible integer p1 such that p1 | n. By definition, there exists
q ∈ N+ such that n = q p1. Since p1 6= 1, Exercise 1.26 tells us that q < n. By the inductive
hypothesis, q has a factorization into irreducibles; say

q = pα1
1 pα2

2 · · · p
αr
r .

Thus n = q p = pα1+1
1 pα2

2 · · · p
αr
r ; that is, n factors into irreducibles.

Uniqueness: Here we use the fact that irreducible numbers are also prime (Lemma 6.31).
Assume that p1 < p2 < · · ·< pr and we can factor n as

n = pα1
1 pα2

2 · · · p
αr
r = pβ1

1 pβ2
2 · · · p

βr
r .

Without loss of generality, we may assume that α1 ≤β1. It follows that

pα2
2 pα3

3 · · · p
αr
r = pβ1−α1

1 pβ2
2 pβ3

3 · · · p
βr
r .

This equation implies that pβ1−α1
1 divides the expression on the left hand side of the equation.

Since p1 is irreducible, hence prime, β1−α1 6= 0 implies that p1 divides one of p2, p3, . . . , pr .
This contradicts the irreducibility of p2, p3, . . . , pr . Hence β1−α1 = 0. A similar argument
shows thatβi = αi for all i = 1,2, . . . , r ; hence the representation of n as a product of irreducible
integers is unique.

Exercises.

Exercise 6.33. Show that any prime integer p is irreducible.

6.4: Multiplicative clockwork groups

Throughout this section, n ∈N+\{1}.
Recall that Zn is an additive group, but not multiplicative. In this section we find a subset

of Zn that we can turn into a multiplicative group, defining multiplication in an “intuitive” way.
By “intuitive”, we mean that we would like to say

[2] · [3] = [2 ·3] = [6] = [1] .

Before we can address the questions of whether Zn can become a group under this operation, we
have to remember that cosets can have various representations, and different representations may
lead to different results: is this operation well-defined?

Lemma 6.34. The proposed multiplication of elements of Zn as

[a] [b ] = [ab ]

is well-defined.
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Proof. Let x, y ∈Zn and represent x = [a] = [c ] and y = [b ]. Then

xy = [a] [b ] = [ab ] and xy = [c ] [b ] = [c b ] .

We need to show that [ab ] = [c b ]. Since these are sets, we have to show that each is a subset of
the other.

By assumption, [a] = [c ]; this notation means that a + nZ = c + nZ. Lemma 3.29 on
page 60 tells us that a− c ∈ nZ. Hence a− c = nt for some t ∈Z. Now (a− c) b = nu where
u = t b ∈ Z, so ab − c b ∈ nZ. Lemma 3.29 again tells us that [ab ] = [c b ] as desired, so the
proposed multiplication of elements in Zn is well-defined.

Example 6.35. Recall that Z5 = Z/ 〈5〉. The elements of Z5 are cosets; since Z is an additive
group, we were able to define easily an addition on Z5 that turns it into an additive group in its
own right.

Can we also turn it into a multiplicative group? We need to identify an identity, and
inverses. Certainly [0] won’t have a multiplicative inverse, but what about Z5\{[0]}? This gener-
ates a multiplication table that satisfies the properties of an abelian (but non-additive) group:

× 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

That is a group! We’ll call it Z∗5.
In fact, Z∗5

∼= Z4; they are both the cyclic group of four elements. In Z∗5, however, the
nominal operation is multiplication, whereas in Z4 the nominal operation is addition.

You might think that this trick of dropping zero and building a multiplication table always works,
but it doesn’t.

Example 6.36. Recall that Z4 = Z/ 〈4〉 = {[0] , [1] , [2] , [3]}. Consider the set Z4\{[0]} =
{[1] , [2] , [3]}. The multiplication table for this set is not closed because

[2] · [2] = [4] = [0] 6∈Z4\{[0]} .

The next natural question: Is any subset of Z4 a multiplicative group? Try to fix the problem by
removing [2] as well. The multiplication table for Z4\{[0] , [2]}= {[1] , [3]} works out:

× 1 3
1 1 3
3 3 1

That is a group! We’ll call it Z∗4.
In fact, Z∗4

∼= Z2; they are both the cyclic group of two elements. In Z∗4, however, the
operation is multiplication, whereas in Z2, the operation is addition.

You can determine for yourself that Z2\{[0]} = {[1]} and Z3\{[0]} = {[1] , [2]} are also
multiplicative groups. In this case, as in Z∗5, we need remove only 0. For Z6, however, we have
to remove nearly all the elements! We only get a group from Z6\{[0] , [2] , [3] , [4]}= {[1] , [5]}.

Why do we need to remove more numbers from Zn for some values of n than for others?
Aside from zero, which clearly has no inverse under the operation specified, the elements we’ve
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had to remove are invariably those elements whose multiplication tries to re-introduce zero into
the group. That already seems strange: we have non-zero elements that, when multiplied by
other non-zero elements, produce a product of zero. Here is an instance where Zn superficially
behaves very differently from the integers. This is important enough to give a special name.

Definition 6.37. We say that x, y ∈Zn\{0} are zero divisors if xy = [0].

In other words, zero divisors are non-zero elements of Zn that violate the zero-product property
of multiplication.

Can we find a criterion to detect this?

Lemma 6.38. Let x ∈Zn\{0}. The following are equivalent:
(A) x is a zero divisor.
(B) For any representation [a] of x, gcd (a, n) 6= 1.

Proof. That (B) implies (A): Let [a] be any representation of x, and assume that a and n share a
common divisor d 6= 1. Use the definition of divisibility to choose q ∈Z\{0} such that n = qd .
Likewise, choose t such that a = t d . Let y = [q ]. Then xy = [a] [q ]. Lemma 6.34 implies that

[a] [q ] = [aq ] = [t d q ] = t [qd ] = t [n] = [0] .

Since d 6= 1, −n < q < n, so y 6= [0], so x is a zero divisor.
That (B) implies (C): Let y ∈Zn , and suppose that y 6= [0] but xy = [0]. Choose a, b ∈Z

such that x = [a] and y = [b ]. Since xy = [0], Lemma 3.85 implies that n | (ab −0), so we can
find k ∈ Z such that ab = kn. Let p0 be any irreducible number that divides n. Then p0 also
divides kn. Since kn = ab , we see that p0 | ab . Since p0 is irreducible, hence prime, it must
divide one of a or b . If it divides a, then a and n have a common divisor p0 that is not ±1, and
we are done; otherwise, it divides b . Use the definition of divisibility to find n1, b1 ∈Z such that
n = n1 p0 and a = b1 p0; it follows that ab1 = kn1. Again, let p2 be any irreducible number that
divides n2; the same logic implies that p2 divides ab2; being prime, p2 must divide a or b2.

As long as we can find prime divisors of the ni that divide bi but not a, we repeat this
process to find triplets (n2, b2, p2) , (n3, b3, p3) , . . . satisfying for all i the properties

• abi = kni ;
•
�

�ni−1
�

�> |ni |; and
• bi−1 = pi bi and ni−1 = pi ni .

By Exercise 1.26, the sequence |n|, |n1|, |n2|, . . . is a decreasing sequence of elements of N; by
Exercise 1.32, it is finite, and so has a least element, call it |nr |. Observe that

b = p1b1 = p1 (p2b2) = · · ·= p1 (p2 (· · · (pr br ))) (18)

and

n = p1n1 = p1 (p2n2) = · · ·= p1 (p2 (· · · (pr nr ))) .

Case 1. If nr = ±1, then n = p1 p2 · · · pr . By substitution into equation 18, b = nbr . By
the definition of divisibility, n | b . By the definition of Zn , y = [b ] = [0]. This contradicts the
hypothesis.



4. Multiplicative clockwork groups 141

Case 2. If nr ∈ Z\{±1}, Theorem 6.28 tells us that n has an irreducible divisor pr+1.
Since pr+1 | knr , it must also divide abr . If pr+1 | br , then we can construct nr+1 and br+1
as above. Clearly,

�

�nr+1
�

� ∈ S, but
�

�nr+1
�

� < |nr |, which contradicts the choice of nr . Hence
pr+1 - br ; since irreducible integers are prime, pr+1 | a.

Hence n and a share a common divisor that is not ±1.

We can now make a multiplicative group out of the set of elements of Zn that do not violate the
zero product rule.

Definition 6.39. Define the set Z∗n to be the set of elements in Zn that
are neither zero nor zero divisors. That is,

Z∗n := {x ∈Zn\{0} : ∀y ∈Zn\{0} xy 6= 0} .

We claim that Z∗n is a group under multiplication. Note that while it is a subset of Zn , it is not a
subgroup: Zn is not a group under multiplication, and subgroups maintain the operation of the
parent group.

Theorem 6.40. Z∗n is an abelian group under its multiplication.

Proof. We showed in Lemma 6.34 that the operation is well-defined. We check each of the
requirements of a group:

(closure) Let x, y ∈ Z∗n ; represent x = [a] and y = [b ]. By definition of Z∗n , x and y are not
zero divisors. Assume to the contrary that xy 6∈Z∗n ; that would imply either xy = [0]
or xy is a zero divisor. In either case, gcd (ab , n) = d 6= 1. Let p be an irreducible
integer that divides d (Theorem 6.28). Since n divides ab and p divides n, p also
divides ab . Since irreducible integers are prime, and p | ab , the definition of prime
forces p | a or p | b . Without loss of generality, p | a. Now, a and n have a common
divisor. Lemma 6.38 implies that x = [a] is a zero divisor, but this contradicts the
choice of x ∈Z∗n . As a result, xy = [ab ] ∈Z∗n .

(associativity) Let x, y, z ∈Z∗n ; represent x = [a], y = [b ], and z = [c ]. Then

x (y z) = [a] [b c ] = [a (b c)]
= [(ab ) c ] = [ab ] [c ] = (xy) z.

(identity) We claim that [1] is the identity. Notice that [1] ∈ Z∗n , since gcd (1, n) = 1, so
Lemma 6.38. Let x ∈Z∗n ; represent x = [a]. Then

x · [1] = [a ·1] = [a] = x;

a similar argument shows that [1] · x = x.
(inverse) Let x ∈Z∗n . By definition of Z∗n , x 6= 0 and x is not a zero divisor in Zn . Represent

x = [m]. Since x 6= 0, n - m. From Lemma 6.38, m and n have no common divisors
except ±1; hence gcd (m, n) = 1. Using the Extended Euclidean Algorithm, find
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a, b ∈Z such that am + b n = 1. So

am = 1+ n (−b )
∴ am ∈ 1+ nZ

∴ am + nZ = 1+ nZ

∴ [am] = [1]
∴ [a] [m] = [1]

by (respectively) the definition of the coset 1+ nZ, Lemma 3.29 on page 60, the
notation for elements of Zn , and the definition of multiplication in Z∗n given above.
Let y = [a]; by substitution, the last equation becomes

y x = [1] .

But is a ∈ Z∗n? Recall that am + b n = 1; any common divisor of a and n would
divide the left hand side of this equation, so it would also divide the right. But only
±1 divide 1, so gcd (a, n) = 1. So y ∈Z∗n , and x has an inverse in Z∗n .

(commutativity) Let x, y ∈Z∗n ; represent x = [a] and y = [b ]. Then

xy = [ab ] = [ba] = y x.

By removing elements that share non-trivial common divisors with n, we have managed to elim-
inate those elements that do not satisfy the zero-product rule, and would break closure by trying
to re-introduce zero in the multiplication table. We have thereby created a clockwork group for
multiplication, Z∗n .

Example 6.41. We look at Z∗10. To find its elements, we collect the elements of Z10 that are not
zero divisors; by Lemma 6.38, those are the elements whose representations [a] satisfy gcd (a, n) 6=
1. Thus

Z∗10 = {[1] , [3] , [7] , [9]} .

Theorem 6.40 tells us that Z∗10 is a group. Since it has four elements, it must be isomorphic to
either the Klein 4-group, or to Z4. Which is it? In this case, it’s probably easiest to look at the
multiplication table (we omit the brackets since it’s obvious the elements are in Z∗10):

× 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

Notice that 3−1 6= 3. In the Klein 4-group, every element is its own inverse, so Z∗10 cannot
be isomorphic to the Klein 4-group. Instead, it must be isomorphic to Z4.

Exercises.
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Exercise 6.42. List the elements of Z∗7 using their canonical representations, and construct its
multiplication table. Use the table to identify the inverse of each element.

Exercise 6.43. List the elements of Z∗15 using their canonical representations, and construct its
multiplication table. Use the table to identify the inverse of each element.

6.5: Euler’s Theorem

In Section 6.4 we defined the group Z∗n for all n ∈N+ where n > 1. This group satisfies
an important property called Euler’s Theorem, a result about Euler’s ϕ-function.

Definition 6.44. Euler’s ϕ-function is ϕ (n) =
�

�

�Z∗n

�

�

�.

In other words, Euler’s ϕ-function counts the number of positive integers smaller than n that
share no common factors with it.

Theorem 6.45 (Euler’s Theorem). For all x ∈Z∗n , xϕ(n) = 1.

Proofs of Euler’s Theorem based only on Number Theory are not very easy. They aren’t partic-
ularly difficult, either: they just aren’t easy. See for example the proof on pages 18–19 of [Lau03].

On the other hand, a proof of Euler’s Theorem using algebra is trivial.

Proof. Let x ∈ Z∗n . By Corollary 3.46 to Lagrange’s Theorem, ord (x) |
�

�

�Z∗n

�

�

�. By defini-

tion, ϕ (n) =
�

�

�Z∗n

�

�

�, so by substitution, ord (x) | ϕ (n); use the definition of divisibility to write
ϕ (n) = d ·ord (x) for some d ∈Z. Hence

xϕ(n) = xd ·ord(x) =
�

xord(x)
�d

= [1]d = [1] .

Corollary 6.46. For all x ∈Z∗n , x−1 = xϕ(n)−1.

Proof. You do it! See Exercise 6.55.

Corollary 6.46 says that we can compute x−1 for any x ∈
�

�

�Z∗n

�

�

� “relatively easily;” all we need to
know is ϕ (n). The natural followup question is, what is ϕ (n)? For irreducible integers, this is
easy: if p is irreducible, ϕ (p) = p− 1. For reducible integers, it is not so easy. Checking a few
examples, no clear pattern emerges:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
�

�

�Z∗n

�

�

� 1 2 2 4 2 6 4 6 4 10 4 12 6 8
Computing ϕ (n) turns out to be quite hard for arbitrary n ∈N+. This difficulty is what makes
the RSA algorithm secure (see Section 6.6).
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One way to do it would be to factor n and compute all the positive integers that do not
share any common factors. For example,

28 = 22 ·7,

so to compute ϕ (28), we could look at all the positive integers smaller than 28 that do not have 2
or 7 as factors. However, this requires us to know first that 2 and 7 are factors of 28, and no one
knows a very efficient way to do this.

Another way would be to compute ϕ (m) for each factor m of n, then recombine them.
But how?

Lemma 6.47. Let n ∈N+. If n = pq and gcd (p, q) = 1, then ϕ (n) =
ϕ (p)ϕ (q).

Example 6.48. In the table above, we have ϕ (15) = 8. Notice that this satisfies

ϕ (15) = ϕ (5×3) = ϕ (5)ϕ (3) = 4×2 = 8.

Proof. Recall from Exercise 2.25 on page 30 that Z∗p ×Z∗q is a group; the size of this group is
�

�

�Z∗p

�

�

�×
�

�

�Z∗q

�

�

�= ϕ (p)ϕ (q). We show that Z∗n
∼= Z∗p ×Z∗q .

Let f : Z∗n → Z∗p ×Z∗q by f
�

[a]n
�

=
�

[a] p , [a]q
�

. First we show that f is a homomor-
phism: Let a, b ∈Z∗n ; then

f
�

[a]n [b ]n
�

= f
�

[ab ]n
�

=
�

[ab ] p , [ab ]q
�

=
�

[a] p [b ] p , [a]q [b ]q
�

=
�

[a] p , [a]q
��

[b ] p , [b ]q
�

= f
�

[a]n
�

f
�

[b ]n
�

(where Lemma 6.34 on page 138 and the definition of the operation in Z∗p×Z∗q justify the second
two equations).

It remains to show that f is one-to-one and onto. Rather amazingly, we can get the
Chinese Remainder Theorem to do most of the work for us. To show that f is onto, let
�

[a] p , [b ]q
�

∈ Z∗p ×Z∗q . We need to find x ∈ Z∗n such that f
�

[x ]n
�

=
�

[a] p , [b ]q
�

. Consider
the system of linear congruences

[x ] = [a] in Zp ;

[x ] = [b ] in Zq .

The Chinese Remainder Theorem tells us not only that such x exists in Zn , but that x is unique
in Zn .

We are not quite done; we have shown that a solution x exists in Zn , but what we really
need is that x ∈ Z∗n . To see that indeed x ∈ Z∗n , let d be any common divisor of x and n. By
way of contradiction, assume d 6= ±1; by Theorem 6.28, we can find an irreducible divisor r of
d ; by Exercise 1.31 on page 11, r | n and r | x. Recall that n = pq , so r | pq , so r | p or r | q .
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Without loss of generality, we may assume that r | p. Since [x ] p = [a] p , Lemma 3.85 on page 73
tells us that p | (x− a). Let y ∈ Z such that p y = x− a. Rewrite this equation as x− p y = a.
Recall that r | x and r | p; we can factor r from the left-hand side of the equation, rewriting it as
r z = a for some z ∈Z. Thus r | a, but this and r | a contradict the hypothesis that a ∈Z∗p ! Our
assumption that d 6= 1 must have been false; we conclude that the only common divisor of x and
n is in fact ±1. Hence x ∈Z∗n .

Corollary 6.46 gives us an “easy” way to compute the inverse of any x ∈ Z∗n . However, it can
take a long time to compute xϕ(n), so we conclude with a brief discussion of how to compute
canonical forms of exponents in this group. We will take two steps towards a fast exponentiation
in Z∗n .

Lemma 6.49. For any n ∈N+, [xa ] = [x ]a in Z∗n .

Proof. You do it! See Exercise 6.57 on the next page.

Example 6.50. In Z∗15 we can easily determine that
�

420� = [4]20 =
�

[4]2
�10

= [16]10 = [1]10 =

[1]. Notice that this is a lot faster than computing 420 = 1099511627776 and dividing to find the
canonical form.

Theorem 6.51 (Fast Exponentiation). Let a ∈ N and x ∈ Z. We can
compute xa in the following way:

1. Let b be the largest integer such that 2b ≤ a.
2. Use the Division Theorem to divide a repeatedly by 2b , 2b−1, . . . ,

21, 20 in that order; let the quotients of each division be qb , qb−1,
. . . , q1, q0.

3. Write a = qb 2b + qb−12b−1 + · · ·+ q121 + q020.
4. Let y = 1, z = x and i = 0.
5. Repeat the following until i > b :

(a) If qi 6= 0 then replace y with the product of y and z.
(b) Replace z with z2.
(c) Replace i with i + 1.

This ends with xa = y.

Theorem 6.51 effectively computes the binary representation of a and uses this to square x re-
peatedly, multiplying the result only by those powers that matter for the representation. Its
algorithm is especially effective on computers, whose mathematics is based on binary arithmetic.
Combining it with Lemma 6.49 gives an added bonus.

Example 6.52. Since 10 = 23 + 21, we can compute 410 = 423+21
following the algorithm of

Theorem 6.51:
1. We have q3 = 1, q2 = 0, q1 = 1, q0 = 0.
2. Let y = 1, z = 4 and i = 0.
3. When i = 0:

(a) We do not change y because q0 = 0.
(b) Put z = 42 = 16.
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(c) Put i = 1.
4. When i = 1:

(a) Put y = 1 ·16 = 16.
(b) Put z = 162 = 256.
(c) Put i = 2.

5. When i = 2:
(a) We do not change y because q2 = 0.
(b) Put z = 2562 = 65,536.
(c) Put i = 3.

6. When i = 3:
(a) Put y = 16 ·65,536 = 1,048,576.
(b) Put z = 65,5362 = 4,294,967,296.
(c) Put i = 4.

We conclude that 410 = 1,048,576. Hand computation the long way, or a half-decent calculator,
will verify this.

Proof of Fast Exponentiation.
Termination: Termination is due to the fact that b is a finite number, and the algorithm

assigns to i the values 0,1, . . . , b + 1 in succession.
Correctness: Since b is the largest integer such that 2b ≤ a, qb ∈ {0,1}; otherwise, 2b+1 =

2 · 2b ≤ a, contradicting the choice of b . For i = b − 1, . . . , 1, 0, we have the remainder from
division by 2i+1 smaller than 2i , and we immediately divide by 2b = 2i−1, so that qi ∈ {0,1} as
well. Hence qi ∈ {0,1} for i = 0,1, . . . , b and if qi 6= 0 then qi = 1. The algorithm therefore
multiplies z = x2i

to y only if qi 6= 0, which agrees with the binary representation

xa = xqb 2b+qb−12b−1+···+q121+q020
.

Exercises.

Exercise 6.53. Compute 328 in Z using fast exponentiation. Show each step.

Exercise 6.54. Compute 2428 in Z∗7 using fast exponentiation. Show each step.

Exercise 6.55. Prove that for all x ∈Z∗n , xϕ(n)−1 = x−1.

Exercise 6.56. Prove that for all x ∈N+, if x and n have no common divisors, then n |
�

xϕ(n)−1
�

.

Exercise 6.57. Prove that for any n ∈N+, [xa ] = [x ]a in Z∗n .

6.6: RSA Encryption

From the viewpoint of practical applications, some of the most important results of group
theory and number theory are those that enable security in internet commerce. We described this
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problem on page 1: when you buy something online, you usually submit some private informa-
tion, at least a credit card or bank account number, and usually more. There is no guarantee
that, as this information passes through the internet, it will pass only through servers run by
disinterested persons. It is quite possible for the information to pass through a computer run by
at least one ill-intentioned hacker, and possibly even organized crime. You probably don’t want
criminals looking at your credit card number.

Given the inherent insecurity of the internet, the solution is to disguise private informa-
tion so that disreputable snoopers cannot understand it. A common method in use today is the
RSA encryption algorithm.28 First we describe the algorithms for encryption and decryption;
afterwards we explain the ideas behind each stage, illustrating with an example; finally we prove
that it succesfully encrypts and decrypts messages.

Theorem 6.58 (RSA algorithm). Let M be a list of positive integers ob-
tained by converting the letters of a message. Let p, q be two irreducible
integers such that:
• gcd (p, q) = 1; and
• (p−1) (q−1)>max{m : m ∈M}.

Let N = pq , and let e ∈Z∗
ϕ(N )

, where ϕ is the Euler phi-function. If we

apply the following algorithm to M :
1. Let e ∈Z∗

ϕ(N )
.

2. Let C be a list of positive integers found by computing the canon-
ical representation of [me ]N for each m ∈M .

and subsequently apply the following algorithm to C :
1. Let d = e−1 ∈Z∗

ϕ(N )
.

2. Let D be a list of positive integers found by computing the canon-
ical representation of

�

c d
�

N
for each c ∈C .

then D = M .

Example 6.59. Consider the text message
ALGEBRA RULZ.

We convert the letters to integers in the fashion that you might expect: A=1, B=2, . . . , Z=26.
We also assign 0 to the space. This allows us to encode the message as,

M = (1,12,7,5,2,18,1,0,18,21,12,26) .

Let p = 5 and q = 11; then N = 55. Let e = 3; note that

gcd (3,ϕ (N )) = gcd (3,ϕ (5) ·ϕ (11)) = gcd (3,4×10)
= gcd (3,40) = 1.

Encrypt by computing me for each m ∈M :

C =
�

13, 123, 73, 53, 23, 183, 13, 03, 183, 213, 123, 263
�

= (1,23,13,15,8,2,1,0,2,21,23,31) .

28RSA stands for Rivest (of MIT), Shamir (of the Weizmann Institute in Israel), and Adleman (of USC).
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A snooper who intercepts C and tries to read it as a plain message would have several problems
trying to read it. First, it contains 31, a number that does not fall in the range 0 and 26. If he gave
that number the symbol _, he would see

AWMOHBA BUW_
which is not an obvious encryption of ALGEBRA RULZ.

The inverse of 3 ∈Z∗40 is d = 27 (we could compute this using Corollary 6.46, but it’s not
hard to see that 3×27 = 81 and [81] = [1] in Z∗40). Decrypt by computing c d for each c ∈C :

D =
�

127, 2327, 1327, 1527, 827, 227, 127, 027, 227, 2127, 2327, 3127
�

= (1,12,7,5,2,18,1,0,18,21,12,26) .

Trying to read this as a plain message, we have
ALGEBRA RULZ.

Doesn’t it?

A few observations are in order.
1. Encrypting messages letter-by-letter is quite weak; in a stronger approach, letters should be

grouped together and converted to integers. For example, the first four letters of the secret
message above are

ALGE
and we can convert this to a number using any of several methods; for example

ALGE → 1×263 + 12×262 + 7×26+ 5 = 25,785.

In order to encrypt this, we would need larger values for p and q . This becomes too
burdensome to carry out by hand, so you want a computer to help. We give an example in
the homework.

2. RSA is an example of a public-key cryptosystem. In effect, that means that person A broad-
casts to the world, “Anyone who wants to send me a secret message can use the RSA algo-
rithm with values N = . . . and e = . . ..” So a snooper knows the method, the modulus, N ,
and the encryption key, e !

3. If the snooper knows the method, N , and e , how can RSA be safe? To decrypt, the snooper
needs to compute d = e−1 ∈ Z∗

ϕ(N )
. This would be relatively easy if he knew ϕ (N );

using Corollary 6.46, it’s a matter of computing eϕ(N )−1. You might think that, since the
snooper knows the method, and therefore he knows that N = pq , it would be a simple
matter of factoring N and applying Lemma 6.47 to compute ϕ (N ) = (p−1) (q−1). In
practice, however, p and q are very large numbers (many digits long), and there is no known
method of computing ϕ (N ) “quickly” for sufficiently large N . There is a careful science to
choosing p and q in such a way that makes it hard to determine their values from N and e .

4. It is time-consuming to perform these computations by hand; a computer algebra system
will do the trick nicely. At the end of this section, after the exercises, we list programs
that will help you perform these computations in the Sage and Maple computer algebra
systems. The programs are:
• scramble, which accepts as input a plaintext message like “ALGEBRA RULZ” and

turns it into a list of integers;
• descramble, which accepts as input a list of integers and turns it into plaintext;
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• en_de_crypt, which encrypts or decrypts a message, depending on whether you feed
it the encryption or decryption exponent.

Examples of usage:
• in Sage:

◦ to determine the list of integers M , type M = scramble("ALGEBRA RULZ")
◦ to encrypt M , type

C = en_de_crypt(M,3,55)
◦ to decrypt C , type

en_de_crypt(C,27,55)
• in Maple:

◦ to determine the list of integers M , type M := scramble("ALGEBRA RULZ");
◦ to encrypt M , type

C := en_de_crypt(M,3,55);
◦ to decrypt C , type

en_de_crypt(C,27,55);
Now, why does the RSA algorithm work?

Proof of the RSA algorithm. Let i ∈ {1,2, . . . , |C |}. Let c ∈C . By definition of C , c = me ∈Z∗N
for some m ∈M . We need to show that c d = (me)d = m.

Since [e ] ∈Z∗
ϕ(N )

, we know that it has an inverse element, [d ]. That is, [d e ] = [d ] [e ] =
[1]. By Lemma 3.85, ϕ (N ) | (1− d e), so we can find b ∈ Z such that b ·ϕ (N ) = 1− d e , or
d e = 1− bϕ (N ).

We claim that [m]d e = [m] ∈ ZN . To do this, we will show two subclaims about the
behavior of the exponentiation in Zp and Zq .

Claim 1. [m]d e = [m] ∈Zp .

If p | m, then [m] = [0] ∈Zp . Without loss of generality, d , e ∈N+, so

[m]d e = [0]d e = [0] = [m] ∈Zp .

Otherwise, p - m. Recall that p is irreducible, so gcd (m, p) = 1. By Euler’s Theorem,

[m]ϕ(p) = [1] ∈Z∗p .

Recall that ϕ (N ) = ϕ (p)ϕ (q); thus,

[m]ϕ(N ) = [m]ϕ(p)ϕ(q) =
�

[m]ϕ(p)
�ϕ(q)

= [1] .

Thus, in Z∗p ,

[m]d e = [m]1−bϕ(N ) = [m] · [m]−bϕ(N )

= [m]
�

[m]ϕ(N )
�−b

= [m] · [1]−b = [m] .
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What is true for Z∗p is also true in Zp , since the former is a subset of the latter. Hence,

[m]d e = [m] ∈Zp .

Claim 2. [m]1−bϕ(N ) = [m] ∈Zq .

The argument is similar to that of the first claim.
Since [m]d e = [m] in both Zp and Zq , properties of the quotient groups Zp and Zq

tell us that
�

md e −m
�

= [0] in both Zp and Zq as well. In other words, both p and q divide
md e −m. You will show in Exercise 6.62 that this implies that N divides md e −m.

From the fact that N divides md e −m, we have [m]ed
N = [m]N . Thus, computing (me)d

in Zϕ(N ) gives us m.

Exercises.

Exercise 6.60. The phrase

[574,1,144,1060,1490,0,32,1001,574,243,533]

is the encryption of a message using the RSA algorithm with the numbers N = 1535 and e = 5.
You will decrypt this message.
(a) Factor N .
(b) Compute ϕ (N ).
(c) Find the appropriate decryption exponent.
(d) Decrypt the message.

Exercise 6.61. In this exercise, we encrypt a phrase using more than one letter in a number.
(a) Rewrite the phrase GOLDEN EAGLES as a list M of three positive integers, each of which

combines four consecutive letters of the phrase.
(b) Find two prime numbers whose product is larger than the largest number you would get

from four letters.
(c) Use those two prime numbers to compute an appropriate N and e to encrypt M using RSA.
(d) Find an appropriate d that will decrypt M using RSA.
(e) Decrypt the message to verify that you did this correctly.

Exercise 6.62. Let m, p, q ∈Z and suppose that gcd (p, q) = 1.
(a) Show that if p | m and q | m, then pq | m.
(b) Explain why this completes the proof of the RSA algorithm; that is, since p and q both

divide md e −m, then so does N .
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Sage programs

The following programs can be used in Sage to help make the amount of computation
involved in the exercises less burdensome:

def scramble(s):
result = []
for each in s:

if ord(each) >= ord("A") \
and ord(each) <= ord("Z"):

result.append(ord(each)-ord("A")+1)
else:

result.append(0)
return result

def descramble(M):
result = ""
for each in M:

if each == 0:
result = result + " "

else:
result = result + chr(each+ord("A") - 1)

return result

def en_de_crypt(M,p,N):
result = []
for each in M:

result.append((each^p).mod(N))
return result
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Maple programs

The following programs can be used in Maple to help make the amount of computation
involved in the exercises less burdensome:

scramble := proc(s)
local result, each, ord;
ord := StringTools[Ord];
result := [];
for each in s do

if ord(each) >= ord("A")
and ord(each) <= ord("Z") then

result := [op(result),
ord(each) - ord("A") + 1];

else
result := [op(result), 0];

end if;
end do;
return result;

end proc:

descramble := proc(M)
local result, each, char, ord;
char := StringTools[Char];
ord := StringTools[Ord];
result := "";
for each in M do

if each = 0 then
result := cat(result, " ");

else
result := cat(result,

char(each + ord("A") - 1));
end if;

end do;
return result;

end proc:

en_de_crypt := proc(M,p,N)
local result, each;
result := [];
for each in M do

result := [op(result), (each^p) mod N];
end do;
return result;

end proc:



Part III

Rings



Chapter 7:
Rings

Groups and monoids are simple in the following respect: a group or monoid is defined by
one operation. When we studied the set of matrices Rm×n as a group, for example, we considered
only the operation of addition. Likewise, when we studied Z as a group, we considered only the
operation of addition. With other groups, we studied other operations, but we only studied one
operation at a time.

In some cases, however, we want to analyze how both addition and multiplication interact
in a given set. This motivates the study of a structure that incorporates common properties of
both operations.

Section 7.1 of this chapter introduces us to this structure, called a ring. The rest of the
chapter examines special kinds of rings. In Section 7.2 we introduce special kinds of rings that
model useful properties of Z and Q. In Section 7.3 we introduce rings of polynomials. The
Euclidean algorithm, which proved so important in chapter 6, serves as the model for a special
kind of ring described in Section 7.4.

7.1: A structure for addition and multiplication

What sort of properties do we associate with both addition and multiplication?

Definition 7.1. Let R be a set with at least one element, and + and × two
binary operations on that set. We say that (R,+,×) is a ring if it satisfies
the following properties:
(R1) (R,+) is an abelian group.
(R2) R is closed under multiplication: that is,

for all a, b ∈ R, ab ∈ R.
(R3) R is associative under multiplication: that is,

for all a, b , c ∈ R, (ab ) c = a (b c).
(R4) R satisfies the distributive property of addition over multiplica-

tion: that is,
for all a, b , c ∈ R, a (b + c) = ab + ac and (a + b ) c = ac + b c .

Notation 7.2. As with groups, we usually refer simply to R as a group, rather than (R,+,×).
Since (R,+) is an abelian group, the ring has an additive identity, 0. We sometimes write

0R to emphasize that it is the additive identity of R. Likewise, if there is a multiplicative identity,
we write 1 or 1R, and not e .

Notice the following:
• While addition is commutative on account of (R1), we do not know whether multiplication

is commutative.
• If R is a ring and a, b ∈ R then if there exists r ∈ R such that a r = b or ra = b , we say that

a divides b , and that b is divisible by a.
• There is no requirement that a multiplicative identity exists.
• There is no requirement that multiplicative inverses exist.
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• There is no guarantee (yet) that the additive identity satisfies any properties that you re-
member from past experience: in particular, there is no guarantee that
◦ the zero-product rule holds; or even that
◦ 0R · a = 0R for any a ∈ R.

Example 7.3. Let R = Rm×m for some positive integer m. It turns out that R is a ring under the
usual addition and multiplication of matrices. The details are tedious, and can be found in any
linear algebra book.

However, we do want to point out something that should make you at least a little un-
comfortable. Let

A=

�

1 0
0 0

�

and B =

�

0 0
0 1

�

.

Routine computation shows that

AB =

�

0 0
0 0

�

even though A,B 6= 0. Hence
We can never assume in any ring R the zero product property that

∀a, b ∈ R ab = 0 =⇒ a = 0 or b = 0.

Likewise, the following sets with which you are long familiar are also rings:
• Z, Q, R, C under their usual addition and multiplication;
• the sets of univariate polynomials Z [x ], Q [x ], R [x ], C [x ] under their usual addition and

multiplication;
• the sets of multivariate polynomials Z [x1, . . . , xn ], etc. under their usual addition and mul-

tiplication.
You will study other example rings in the exercises. For now, we prove a familiar property of the
additive identity.

Proposition 7.4. For all r ∈ R, r ·0R = 0R · r = 0R.

Proof. Let r ∈ R. Since (R,+) is an abelian group, we know that 0R + 0R = 0R. By substi-
tution, r (0R + 0R) = r · 0R. By distribution, r · 0R + r · 0R = r · 0R. Since (R,+) is an abelian
group, r ·0R has an additive inverse; call it s . Applying the properties of a ring, we have

s +(r ·0R + r ·0R) = s + r ·0R

(s + r ·0R)+ r ·0R = s + r ·0R

0R + r ·0R = 0R

r ·0R = 0R.

A similar argument shows that 0R · r = 0R.

We now turn our attention to two properties that, while pleasant, are not necessary for a ring.
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Definition 7.5. Let R be a ring. If R has a multiplicative identity 1R such
that

r ·1R = 1R · r = r ∀r ∈ R,

we say that R is a ring with unity. (Another name for the multiplicative
identity is unity.)

If R is a ring and the multiplicative operation is commutative, so
that

r s = s r ∀r ∈ R,

then we say that R is a commutative ring.

Notice that a ring with unity is
• an abelian group under multiplication, and
• a (possibly commutative) monoid under addition.

Example 7.6. The set of matrices Rm×m is a ring with unity, where Im is the multiplicative
identity. However, it is not a commutative ring.

You will show in Exercise 7.9 that 2Z is a ring. It is a commutative ring, but not a ring
with unity.

For a commutative ring with unity, consider Z.

Remark 7.7. Although non-commutative rings are interesting, we will ignore them for the rest
of these notes. Henceforth,

all rings we consider are commutative,
unless otherwise noted.

As with groups, we can characterize all rings with only two elements.

Example 7.8. Let R be a ring with only two elements. There are two possible structures for R.
Why? Since (R,+) is an abelian group, by Example 2.9 on page 26 the addition table of R

has the form
+ 0R a
0R 0R a
a a 0R

.

By Proposition 7.4, we know that the multiplication table must have the form
× 0R a
0R 0R 0R
a 0R ?

where a · a is undetermined. Nothing in the properties of a ring tell us whether a · a = 0R or
a · a = a; in fact, rings exist with both properties:
• if R = Z2 (see Exercise 7.10 to see that this is a ring), then a = [1] and a · a = a; but
• if

R =

��

0 0
0 0

�

,a =

�

0 1
0 0

��

( (Z2)
2×2 ,

then a · a = 0 6= a.

Exercises
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Exercise 7.9.
(a) Show that 2Z is a ring under the usual addition and multiplication of integers.
(b) Show that for any n ∈ Z, nZ is a ring under the usual addition and multiplication of

integers.

Exercise 7.10. Define a multiplication in Zn in the following way: for [a] , [b ] ∈ Zn , [a] [b ] =
[ab ].
(a) Show that this notion of multiplication is well-defined; that is, if a 6= x, b 6= y, while

[a] = [x ] and [b ] = [y ], [a] [b ] = [x ] [y ].
(b) Show that Z2 is a ring under the addition and multiplication of cosets define in Section 3.5.
(c) Show that for any n ∈ Z where n > 1, Zn is a ring under the addition and multiplication

of cosets defined in Section 3.5.

Exercise 7.11. Let R be a ring.
(a) Show that for all r , s ∈ R, (−r ) s = r (−s) =− (r s).
(b) Suppose that R has unity. Show that −r =−1R · r for all r ∈ R.

Exercise 7.12. Let R be a ring with unity. Show that 1R = 0R if and only if R has only one
element.

Exercise 7.13. Consider the two possible ring structures from Example 7.8. Show that if a ring
R has only two elements, one of which is unity, then it can have only one of the structures.

Exercise 7.14. Let R = {T , F } with the additive operation ⊕ (Boolean xor) where

F ⊕ F = F
F ⊕T = T
T ⊕ F = T
T ⊕T = F

and a multiplicative operation ∧ (Boolean and) where

F ∧ F = F
F ∧T = F
T ∧ F = F
T ∧T = T .

(see also Exercises 2.19 and 2.20 on page 29). Is (R,⊕,∧) a ring? If it is a ring, then
(a) what is the zero element?
(b) does it have a unity element? if so, what is it?
(c) is it commutative?

Exercise 7.15. Let R and S be rings, with R⊆ S and α ∈ S. The extension of R by α is

R [α] = {rnα
n + · · ·+ r1α+ r0 : r0, r1, . . . , rn ∈ R} .

(a) Show that R [α] is also a ring.
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(b) Suppose R = Z, S = C, and α=
p
−5.

(i) What is the maximal n ∈N+ such that rnα
n + · · ·+ r1α+ r0 6∈ R?

(ii) Show that 6 can be factored two distinct ways in R [α]: one is the ordinary factoriza-
tion in R = Z, while the other exploits the difference of squares with α=

p
−5.

7.2: Integral Domains and Fields
Example 7.3 illustrates an important point: not all rings satisfy properties that we might

like to take for granted. Not only does the ring of matrices illustrate that the zero product
property is not satisfied for all rings, it also demonstrates that multiplicative inverses do not
necessarily exist in all rings. Both the zero product property and multiplicative inverses are very
useful—think of Q, R, and C—so we should give them special attention.

In this section, we always assume that R is a commutative ring with unity.

Definition 7.16. If the elements of R satisfy the zero product property,
then we call R an integral domain. Otherwise, we call any two non-zero
elements a, b ∈ R such that ab = 0 zero divisors.

Example 7.17. Naturally, Z, Q, R, and C are integral domains.
In Exercise 7.10, you showed that Zn was a ring under ordinary addition and multiplica-

tion. However, it need not be an integral domain. For example, in Z6 we have [2] · [3] = [6] = [0],
making [2] and [3] zero divisors. On the other hand, it isn’t hard to see that Z2, Z3, and Z5 are
integral domains, if only via an exhaustive check. What about Z4?

Definition 7.18. If every non-zero element of R has a multiplicative in-
verse, then we call R a field.

(Remember that in this section, we have assumed that R has unity. If we hadn’t assumed it, we
would have to do so for the definition of a field; otherwise, it wouldn’t make sense to speak of
multiplicative inverses.)

Example 7.19. The rings Q, R, and C are fields.
On the other hand, define the set of fractions over a ring R

Frac (R) :=

¨

p

q
: p, q ∈ R and q 6= 0

«

,

with addition and multiplication defined in the usual way for “fractions”, and equality defined by

a

b
=

p

q
⇐⇒ aq = b p.

This should remind you of Q, and for good reason. You might think as a result that Frac (R) is a
field, just as Q is, but it turns out that this is not always true: Frac (R) is not a field unless R is an
integral domain. Indeed, addition and subtraction might not even be defined in Frac (R) unless R
is an integral domain; that is, for all a, b , c ∈ R

ac

b c
=

ca

c b
=

a

b
.
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See Exercises 7.25 and 7.26.

Let’s show that, if R is an integral domain, then Frac (R) is a ring. Assume that R is
an integral domain. First we show that Frac (R) is an additive group. Let f , g , h ∈ R; choose
a, b , p, q , r , s ∈ Frac (R) such that f = a/b , g = p/q , and h = r /s . First we show that Frac (R)
is an abelian group.

closure: This is fairly routine, using common denominators and the fact that R is a
domain:

f + g =
a

b
+

p

q

=
aq

b q
+

b p

b q

=
aq + b p

b q
∈ Frac (R) .

Why did we need R do be an integral domain? If not, then it is possible that
b q = 0, and if so, f + g 6∈ Frac (R)!

associative: This is the hardest one:

( f + g )+ h =
aq + b p

b q
+

r

s

=
(aq + b p) s

(b q) s
+

(b q) r

(b q) s

=
((aq) s +(b p) s)+ (b q) r

(b q) s

=
a (q s)+ (b (p s)+ b (q r ))

b (q s)

=
a (q s)

b (q s)
+

b (p s)+ b (q r )

b (q s)

=
a

b
+

p s + q r

q s

=
a

b
+

�

p

q
+

r

s

�

= f +(g + h.)

identity: The ring identity of Frac (R) is 0R/1R. This is easy to see, since

f +
0R

1R
=

a

b
+

0R · b
1R · b

=
a

b
+

0R

b
=

a

b
= f .

additive inverse: For each f = p/q , (−p)/q is the additive inverse.
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commutative: We have

f + g =
a

b
+

c

d
=

ad

b d
+

b c

b d

=
ad + b c

b d
=

c b + da

d b

=
c b

d b
+

da

d b
=

c

d
+

a

b

= g + f .

Next we have to show that Frac (R) satisfies the requirements of a ring.

closure: Using closure in R and the fact that R is an integral domain, this is straightforward:
f g = (a p)/ (b q) ∈ Frac (R).

associative: Using the associative property of R, this is straightforward:

( f g ) h =

�

a p

b q

�

r

s
=

(a p) r

(b q) s
=

a (p r )

b (q s)

=
a

b

(p r )

q s
= f (g h) .

distributive: We rely on the distributive property of R:

f (g + h) =
a

b

�

p

q
+

r

s

�

=
a

b

�

p s + q r

q s

�

=
a (p s + q r )

b (q s)
=

a (p s)+ a (q r )

b (q s)

=
a (p s)

b (q s)
+

a (q r )

b (q s)
=

a p

b q
+

a r

b s

= f g + f h.

Finally, we show that Frac (R) is a field. We have to show that it is commutative, that it has a
multiplicative identity, and that every non-zero element has a multiplicative inverse.

commutative: We claim that the multiplication of Frac (R) is commutative. This fol-
lows from the fact that R, as an integral domain, has a commutative
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multiplication, so

f g =
a

b
·

p

q
=

a p

b q
=

pa

q b

=
p

q
·

a

b
= g f .

multiplicative identity: We claim that 1R
1R

is a multiplicative identity for Frac (R). Then

f ·
1R

1R
=

a

b
·
1R

1R
=

a ·1R

b ·1R
=

a

b
= f .

multiplicative inverse: Let f ∈ Frac (R) be a non-zero element. In Exercise 7.25, you will
show that any 0R/a ∈ Frac (R) is equivalent to the additive identity
0R/1R = 0Frac(R), so we may write f as a/b with a, b ∈ R, b 6= 0, and
even a 6= 0. Let g = b /a; then

f g =
a

b
·

b

a
=

ab

ab
.

In Exercise 7.25, you will show that

ab

ab
= 1Frac(R).

Definition 7.20. For any integral domain R, we call Frac (R) the ring of
fractions of R.

Already in Example 7.19 we see that there is a relationship between integral domains and fields:
we needed R to be an integral domain in order to get a field out of the ring of rational expressions.
It turns out that the relationship is even closer.

Theorem 7.21. Every field is an integral domain.

Proof. Let F be a field. We claim that F is an integral domain: that is, the elements of F satisfy
the zero product property. Let a, b ∈ F and assume that ab = 0. We need to show that a = 0 or
b = 0. If a = 0, we’re done, so assume that a 6= 0. Since F is a field, a has a multiplicative inverse.
Multiply both sides of ab = 0 on the left by a−1 and apply Proposition 7.4 to obtain

b = 1 · b =
�

a−1a
�

b = a−1 (ab ) = a−1 ·0 = 0.

Hence b = 0.
We had assumed that ab = 0 and a 6= 0. By concluding that b = 0, the fact that a and

b are arbitrary show that F is an integral domain. Since F is an arbitrary field, every field is an
integral domain.

Not every integral domain is a field, however. The most straightforward example is Z.
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Exercises.

Exercise 7.22. Explain why nZ is always an integral domain. Is it also a field?

Exercise 7.23. Show that Zn is an integral domain if and only if n is irreducible. Is it also a field
in these cases?

Exercise 7.24. You might think from Exercise 7.23 that we can turn Zn into a field, or at least an
integral domain, in the same way that we turned Zn into a multiplicative group: that is, working
with Z∗n . Explain that this doesn’t work in general, because Z∗n isn’t even a ring.

Exercise 7.25. Show that if R is an integral domain, then the set of fractions has the following
properties for any nonzero a, b , c ∈ R:

ac

b c
=

ca

c b
=

a

b
,

0R

a
=

0R

1
= 0Frac(R),

and
a

a
=

1R

1R
= 1Frac(R).

Exercise 7.26. To see concretely why Frac (R) is not a field if R is not a domain, consider R =
Z4. Find nonzero b , q ∈ R such that b q = 0, using them to find f , g ∈ Frac (R) such that
f g 6∈ Frac (R).

7.3: Polynomial rings

Polynomials make useful motivating examples for some of the remaining topics, and it
turns out that we can identify rings of polynomials. The following definition may seem pedantic,
but it is important to fix these terms now to avoid confusion later. The difference between a
“monomial” and a “term” is of special note. Let R be a ring.

Definition 7.27. An indeterminate variable of R is a symbol that repre-
sents an arbitrary value of R. A constant of R is a symbol that represents
a fixed value of R. Usually we refer to an indeterminate variable as simply
“a variable”.

A monomial over R is a finite product (×) of variables of R. The
total degree of a monomial is the number of factors in the product. We
say that two monomials are like monomials if the factors of each are
identical.

A term over R is a constant, or the product of a monomial over R
and a constant of R. The constant in a term is called the coefficient of the
term. Two terms are like terms if their monomials are like monomials.

Now we define polynomials.
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Definition 7.28. A polynomial over R is a finite sum (+) of terms over
R. We can write a generic polynomial f as f = a1t1 + a2t2 + · · ·+ am tm
where each ai ∈ R and each ti is a monomial. If we write T f for the set
of monomials of f with non-zero coefficient, then we can also write f as

f =
∑

i=1,...,#T f

ai ti =
∑

t∈T f

at t .

We call R the ground ring of each polynomial.

It is natural to think of a constant as a polynomial, where (using the notation of the preceding
definition) t1 = 1 and ai ∈ R. We will see that this leads to some unexpected, but interesting and
important consequences.

Definition 7.29. We say that the polynomial f is a vanishing polyno-
mial if, whenever we substitute arbitrary values of R for the variables, f
simplifies to zero. (We will see that this can happen even if f 6= 0R.) We
say that f is a constant polynomial if all the non-constant terms have
coefficient zero. Notice that 0R is thus both a constant polynomial and a
vanishing polynomial. We say that two polynomials f and g are equal if
T f = Tg and the coefficients of corresponding monomials are equal.

We will show in a moment that the following sets satisfy the ring structure.

Definition 7.30. R [x ] is the set of univariate polynomials in in the vari-
able x over R. That is, f ∈ R [x ] if and only if there exist m ∈ N and
am ,am−1, . . . ,a1 ∈ R such that

f (x) = am x m + am−1x m−1 + · · ·+ a1x + a0.

The set R [x, y ] is the set of bivariate polynomials in the variables
x and y whose coefficients are in R.

For n ≥ 2, the set R [x1, x2, . . . , xn ] is the set of multivariate poly-
nomials in the variables x1, x2, . . . , xn whose coefficients are in R.

The degree of a univariate polynomial f , written deg f , is the
largest of the total degrees of the monomials of f . We write lm ( f ) for
the monomial of f with that degree, and lc ( f ) for its coefficient. Unless
we say otherwise, the degree of a multivariate polynomial is undefined.

Example 7.31. Definition 7.30 tells us that Z6 [x, y ] is the set of bivariate polynomials in x and y
whose coefficients are in Z6. For example,

f (x, y) = 5x3 + 2x ∈Z6 [x, y ]

and
g (x, y) = x2y2−2x3 + 4 ∈Z6 [x, y ] .
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The ground ring for both f and g is Z6. Observe that f can be considered a univariate polyno-
mial, in which case deg f = 3.

We also consider constants to be polynomials of degree 0; thus 4 ∈ Z6 [x, y ] and even
0 ∈Z6 [x, y ].

Example 7.32. If f is a vanishing polynomial, that does not imply that f is the constant polyno-
mial 0. For example, let f (x) = x2 + x ∈Z2 [x ]. Observe that

f (0) = 02 + 0 and

f (1) = 12 + 1 = 0 (in Z2!).

Here f is a vanishing polynomial even though it is not zero.

So when must a vanishing polynomial be the constant polynomial 0?

Proposition 7.33. If R is a non-zero integral domain, then the following
are equivalent.
(A) 0 is the only vanishing polynomial in R [x1, . . . , xn ].
(B) R has infinitely many elements.

Before proving Proposition 7.33, we need the following theorem.

Theorem 7.34 (The Factor Theorem). If R is a non-zero integral domain,
f ∈ R [x ], and a ∈ R, then f (a) = 0 iff x− a divides f (x).

To prove Theorem 7.34, we need to make precise our notions of addition and multiplication of
polynomials.

Definition 7.35. To define addition of polynomials, let f , g ∈
R [x1, . . . , xn ] and T = T f ∪Tg . Write

f =
∑

t∈T

at and t =
∑

t∈T

bt t .

We define addition in R [x ] by

f + g =
∑

t∈T

(at + bt ) t .

We define polynomial multiplication by

f g =
∑

t∈T



at t

 

∑

u∈T

bu u

!

 ;

that is, polynomial multiplication is simply the sum of the term multiples
of the second polynomial with the terms of the first. Notice that in the
second summand we use u instead of t to distinguish the terms appearing
in g from those appearing in f .
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Proof of the Factor Theorem. If x−a divides f (x), then there exists q ∈ R [x ] such that f (x) =
(x− a) · q (x). By substitution, f (a) = (a− a) · q (a) = 0R · q (a) = 0R.

Conversely, assume f (a) = 0. You will show in Exercise 7.39 that we can write f (x) =
q (x) · (x− a)+ r for some r ∈ R. Thus

0 = f (a) = q (a) · (a− a)+ r = r ,

and substitution yields f (x) = q (x) · (x− a). In other words, x − a divides f (x), as claimed.

We now turn our attention to proving Proposition 7.33.

Proof of Lemma 7.33. Assume that R is a non-zero integral domain.
(A)⇒ (B): We proceed by the contrapositive. Assume that R has finitely many elements.

We can enumerate them all as r1, r2, . . . , rm . Let

f (x1, . . . , xn) = (x1− r1) (x1− r2) · · · (x1− rm) .

Let b1, . . . , bn ∈ R. By assumption, R is finite, so b1 = ri for some i ∈ {1,2, . . . , m}. Notice that f
is not only multivariate, it is also univariate: f ∈ R [x1]. By the Factor Theorem, f = 0. We have
shown that ¬(B) implies ¬(A); thus (A)implies (B).

(A) ⇐ (B): Assume that R has infinitely many elements. Let f be any zero polynomial.
We proceed by induction on n, the number of variables in R [x1, . . . , xn ].

Inductive base: Suppose n = 1. By the Factor Theorem, f is a zero polynomial.
Inductive hypothesis: Assume for all i satisfying 1 ≤ i < n, if f ∈ R [x1, . . . , xi ] is a zero

polynomial, then f is the constant polynomial 0.
Inductive step: Let n > 1, and f ∈ R [x1, . . . , xn ] be a vanishing polynomial. Let an ∈

R\{0}, and substitute xn = an into f . Denote the resulting polynomial as g . Observe that
g ∈ R

�

x1, . . . , xn−1
�

.
It turns out that g is also a vanishing polynomial in R

�

x1, . . . , xn−1
�

. By way of contra-
diction, assume that it is not. Then there exist a1, . . . ,an−1 ∈ R such that substituting xi = ai
gives us a non-zero value. However, the definition of g implies that

f (a1, . . . ,an) = g
�

a1, . . . ,an−1
�

6= 0.

This contradicts the choice of f as a vanishing polynomial. Hence g is a vanishing polynomial
in R

�

x1, . . . , xn−1
�

.
By the inductive hypothesis, g is the constant polynomial 0. Since an is arbitrary, this

is true for all an ∈ R. This implies that any the terms of f containing any of the variables
x1, . . . , xn−1 has a coefficient of zero. The only non-zero terms are those whose only variables are
xn , so f ∈ R [xn ]. Again, the inductive hypothesis implies that f is zero.

We come to the main purpose of this section.

Theorem 7.36. The univariate and multivariate polynomial rings over a
ring R are themselves rings.
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Proof. Let n ∈N+ and R a ring. We claim that R [x1, . . . , xn ] is a ring. To consider the require-
ments of a ring; select f , g , h ∈ R [x ] and let T = T f ∪Tg ∪Th . Write

f =
∑

t∈T

at t , g =
∑

t∈T

bt t , h =
∑

t∈T

ct t .

(R1) First we show that R [x1, . . . , xn ] is an abelian group.

(closure) By the definition of polynomial addition,

( f + g ) (x) =
∑

t∈T

(at + bt ) t .

Since R is closed under addition, we conclude that f + g ∈ R [x1, . . . , xn ].
(associativity) We rely on the associativity of R:

f +(g + h) =
∑

at t +
�∑

bt t +
∑

ct t
�

=
∑

at t +
∑

(bt + ct ) t

=
∑

[at +(bt + ct )] t

=
∑

[(at + bt )+ ct ] t

=
∑

(at + bt ) t +
∑

t∈T

ct t

=
�∑

at t +
∑

bt t
�

+
∑

ct t

= ( f + g )+ h.

(identity) We claim that the constant polynomial 0 is the identity. To see this, let
u ∈ T ; then

f + 0 =
∑

at t + 0

=
∑

at t +
∑

0 · t
=
∑

(at + 0) t

= f .

(inverse) Let p =
∑

t∈T (−at ) t . We claim that p is the additive inverse of f . In fact,

p + f =
∑

(−at ) t +
∑

at t

=
∑

(−at + at ) t

=
∑

0 · t
= 0.

(In the definition of p, I should state that the sum is over t ∈ T ; otherwise it isn’t
clear.)

(commutativity) By the definition of polynomial addition, g + f =
∑

(bt + at ) t .
Since R is commutative under addition, addition of coefficients is commutative,
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so

f + g =
∑

at t +
∑

bt t

=
∑

(at + bt ) t

=
∑

(bt + at ) t

=
∑

bt t +
∑

at t

= g + f .

(R2) Applying the definitions of polynomial and term multiplication, and recalling that inte-
gral domains are commutative rings, we have

f g =
∑

t∈T



(at t )
∑

u∈T

bu u





=
∑

t∈T





∑

u∈T

((at t ) (bu u))





=
∑

t∈T





∑

u∈T

(at bu) (t u)



 .

Since R is closed under multiplication, each (at bu) (t u) is a term. Thus f g is a sum of
sums of terms, or a sum of terms. In other words, f g ∈ R [x1, . . . , xn ].

(R3) We start by applying the form of a product that we derived in (R2):

( f g ) h =





∑

t∈T





∑

u∈T

(at bu) (t u)







 ·
∑

v∈T

cv v

=
∑

t∈T





∑

u∈T





∑

v∈T

[(at bu) cv ] [(t u) v ]







 .

Now apply the associative property of multiplication in R and the associative property
of addition in Z:

( f g ) h =
∑

t∈T





∑

u∈T





∑

v∈T

[at (bu cv)] [t (uv)]







 .

Now unapply the form of a product that we derived in (R2):

( f g ) h =
∑

t∈T





∑

u∈T





∑

v∈T

[at (bu cv)] [t (uv)]









=
∑

t∈T

at t ·




∑

u∈T





∑

v∈T

(bu cv) (uv)









= f (g h) .
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(R4) To analyze f (g + h), first apply addition, then multiplication:

f (g + h) =
∑

t∈T

at t ·
 

∑

u∈T

bu u +
∑

u∈T

cu u

!

=
∑

t∈T

at t ·
∑

u∈T

(bu + cu) u

=
∑

t∈T





∑

u∈T

[at (bu + cu)] (t u)



 .

Now apply the distributive property in the ring, and unapply the addition and multipli-
cation:

f (g + h) =
∑

t∈T





∑

u∈T

(at bu + at cu) (t u)





=
∑

t∈T





∑

u∈T

[(at bu) (t u)+ (at cu) (t u)]





=
∑

t∈T





∑

u∈T

(at bu) (t u)+
∑

u∈T

(at cu) (t u)





=
∑

t∈T





∑

u∈T

(at bu) (t u)





+
∑

t∈T





∑

u∈T

(at cu) (t u)





= f g + f h.

Exercises.

Exercise 7.37. Let f (x) = x and g (x) = x + 1 in Z2 [x ].
(a) Show that f and g are not vanishing polynomials.
(b) Compute the polynomial p = f g .
(c) Show that p (x) is a vanishing polynomial.
(d) Explain why this does not contradict Proposition 7.33.

Exercise 7.38. Pick at random a degree 5 polynomial f in Z [x ]. Then pick at random an integer
a.
(a) Find q ∈Z [x ] and r ∈Z such that f (x) = q (x) · (x− a)+ r .
(b) Explain why you cannot pick a nonzero integer b at random and expect willy-nilly to find

q ∈Z [x ] and r ∈Z such that f (x) = q (x) · (b x− a)+ r .
(c) Explain why you can pick a nonzero integer b at random and expect willy-nilly to find

q ∈Z [x ] and r , s ∈Z such that s · f (x) = q (x) · (b x− a)+ r . (Neat, huh?)
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(d) If the requirements of (b) were changed to finding q ∈Q [x ] and r ∈Q, would you then be
able to carry out (b)? Why or why not?

Exercise 7.39. Let R be an integral domain, f ∈ R [x ], and a ∈ R. Show that there exists q ∈ R [x ]
and r ∈ R such that f (x) = q (x) · (x− a)+ r .

Exercise 7.40. Let R be an integral domain.
(a) Show that R [x ] is also an integral domain.
(b) How does this not contradict Exercise (7.37)? After all, Z2 is a field, and thus an integral

domain!

Exercise 7.41. Let R be a ring, and f , g ∈ R [x ]. Show that deg ( f + g )≤max (deg f , deg g ).

Exercise 7.42. Let R be a ring and define

R (x) = Frac (R [x ]) ;

for example,

Z (x) = Frac (Z [x ]) =
¨

p

q
: p, q ∈Z [x ]

«

.

Is R (x) a ring? is it a field?

7.4: Euclidean domains

In this section we consider an important similarity between the ring of integers and the
ring of polynomials. This similarity will motivate us to define a new kind of ring. We will then
show that all rings of this type allow us to perform important operations that we find both useful
and necessary. What is the similarity? The ability to divide with remainder.

Theorem 7.43. Let R be one of the rings Q, R, or C, and consider the
polynomial ring R [x ]. Let f , g ∈ R [x ] with f 6= 0. There exist unique
q , r ∈ R [x ] satisfying (D1) and (D2) where
(D1) g = q f + r ;
(D2) r = 0 or deg r < deg f .
We call g the dividend, f the divisor, q the quotient, and r the remain-
der.

Proof. The proof is essentially the procedure of long division of polynomials.
If deg g < deg f , let r = g and q = 0. Then g = q f + r and deg r < deg f . Otherwise,

deg g ≥ deg f . Let deg f = m and n = deg g −deg f . We proceed by induction on n.
For the inductive base n = 0, notice that deg g = deg f = m. Choose am , . . . ,a1, bm , . . . , b1 ∈

R such that

g = am x m + am−1x m−1 + · · ·+ a1x + a0

f = bm xm + bm−1x m−1 + · · ·+ b1x + b0.
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Let q =
am
bm

and r = g − q f . We have g = q f + r , but is deg r < deg f ? Apply substitution,
distribution, and polynomial addition to obtain

r = g − q f

=
�

am x m + am−1x m−1 + · · ·+ a1x + a0

�

−
am

bm

�

bm x m + bm−1x m−1 + · · ·+ b1x + b0

�

=

�

am−
am

bm
· bm

�

x m +

�

am−1−
am

bm
· bm−1

�

x m−1

+ · · ·+
�

a0−
am

bm
· b0

�

= 0x m +

�

am−1−
am

bm
· bm−1

�

x m−1

+ · · ·+
�

a0−
am

bm
· b0

�

.

Notice that if r 6= 0, then deg r < deg f .

For the inductive hypothesis, assume that for all i < n there exist q , r ∈ R [x ] such that
g = q f + r and r = 0 or deg r < deg f .

For the inductive step, let `= deg g . Choose am , . . . ,a0, b`, . . . , b0 ∈ R such that

f = am x m + · · ·+ a0

g = b`x`+ · · ·+ b0.

Let q =
am
b`
· xn and r = g − q f . Apply substitution and distribution to obtain

g ′ = g − q f

=
�

b`x`+ · · ·+ b0

�

−
b`
am
· xn (am x m + · · ·+ a0)

=
�

b`x`+ · · ·+ b0

�

−
�

b`x m+n +
b`am−1

am
· x m−1+n + · · ·+

b`a0

am
· xn
�

.

Recall that n = deg g −deg f = `−m, so ` = m + n > n. Apply substitution and polynomial
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addition to obtain

g ′ = g − q f =
�

b`x`+ · · ·+ b0

�

−
�

b`x`+
b`am−1

am
· x`−1 + · · ·+

b`a0

am
· xn
�

= 0x`+
�

b`−1−
b`am−1

am

�

x`−1

+ · · ·+
�

bn−
b`a0

am

�

xn + bn−1xn−1 · · ·+ b0.

Observe that deg g ′ < ` = deg g , so deg g ′−deg f < n. Apply the inductive hypothesis to find
q ′, r ∈ R [x ] such that g ′ = q ′ f + r and r = 0 or deg r < deg f . Then

g = q f + g ′ = q f +
�

q ′ f + r
�

=
�

q + q ′
�

f + r .

Since R [x ] is a ring, q + q ′ ∈ R [x ], and we have shown the existence of a quotient and remainder.

For uniqueness, assume that there exist q1, q2, r1, r2 ∈ R [x ] such that g = q1 f + r1 =
q2 f + r2 and deg r1, deg r2 < deg f . Then

q1 f + r1 = q2 f + r2

0 = (q2− q1) f +(r2− r1) . (19)

If q2− q1 6= 0, then every term of (q2− q1) lm ( f ) has degree no smaller than deg f . Since every
term of r2− r1 has degree smaller than deg f , there are no like terms between the two. Thus,
there can be no cancellation between (q2− q1) lm ( f ) and r2− r1, and for similar reasons there
can be no cancellation between (q2− q1) lm ( f ) and lower-degree terms of (q2− q1) f . However,
the coefficients of (q2− q1) lm ( f ) are all 0 on the left hand side, so they must likewise be all zero
on the right hand side. That implies (q2− q1) lm ( f ) is equal to the constant polynomial 0. We
are working in an integral domain (Exercise 7.40), and lm ( f ) 6= 0, so it mus tbe that q2− q1 = 0.
In other words, q1 = q2.

In addition, since q2− q1 = 0, substitution into (19) implies that 0 = r2− r1. Immediately
we have r1 = r2. We have shown that q and r are unique.

We did not list Z as one of the rings of the theorem. Exercise 7.38 explains why. That’s a shame:
for some integral domains, we can perform a division on the corresponding polynomial ring, but
for others we cannot. We will classify the ones in which we can perform some kind of division;
you will see that we generalize the notion of remainder to something special here.
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Definition 7.44. Let R be an integral domain and v a function mapping
the nonzero elements of R to N+. We say that R is a Euclidean Do-
main with respect to the valuation function v if it satisfies (E1) and (E2)
where
(E1) v (r )≤ v (r s) for all nonzero r , s ∈ R.
(E2) For all nonzero f ∈ R and for all g ∈ R, there exist q , r ∈ R

such that
• g = q f + r , and
• r = 0 or v (r )< v ( f ).

If f , g ∈ R are such that f 6= 0 and g = q f for some q ∈ R, then we say
that f divides g .

Example 7.45. Both Z and R [x ] of Theorem 7.43 are Euclidean domains.
• In Z, the valuation function is v (r ) = |r |.
• In R [x ] above, the valuation function is v (r ) = deg r .

On the other hand, Z [x ] is not a Euclidean domain with the valuation function v (r ) = deg r . If
f = 2 and g = x, we cannot find q , r ∈Z [x ] such that g = q f + r and deg r < deg f . The best
we can do is x = 0 ·2+ x, but deg x > deg2.

Theorem 7.46. Let F be a field. Then F [x ] is a Euclidean domain.

Proof. You do it! See Exercise 7.54.

Since we can perform division with remainder in Euclidean rings, we can compute the greatest
common divisor using the Euclidean algorithm. Unlike integers, however, we have to relax our
expectation of uniqueness for the greatest common divisor.

Definition 7.47. Let R be a Euclidean domain with respect to v, and let
a, b ∈ R. If there exists d ∈ R such that d | a and d | b , then we call d a
common divisor of a and b . If in addition all other common divisors d ′

of a and b divide d , then d is a greatest common divisor of a and b .

Notice that the definition refers to a greatest common divisor, not the greatest common divisor.
There can be many greatest common divisors!

Example 7.48. Consider x2− 1, x2 + 2x + 1 ∈ Q [x ]. Recall from Theorem 7.43 and Defini-
tion 7.44 that Q [x ] is a Euclidean domain with respect to the valuation function v (p) = deg p.
Both of the given polynomials factor:

x2−1 = (x + 1) (x−1) and x2 + 2x + 1 = (x + 1)2 ,

so we see that x + 1 is a divisor of both. In fact, it is a greatest common divisor, since no polyno-
mial of degree two divides both x2−1 and x2 + 2x + 1.

However, x + 1 is not the only greatest common divisor. Another greatest common di-
visor is 2x + 2. It may not be obvious that 2x + 2 divides both x2− 1 and x2 + 2x + 1, but it
does:

x2−1 = (2x + 2)
� x

2
−

1

2

�
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and
x2 + 2x + 1 = (2x + 2)

� x

2
+

1

2

�

.

Notice that 2x + 2 divides x + 1 and vice-versa; also that deg (2x + 2) = deg (x + 1).
Likewise, x+1

3 is also a greatest common divisor of x2−1 and x2 + 2x + 1.
In fact, notice that in this new definition, there exists more than one greatest common

divisor in Z. For example, for a = 8 and b = 12, both 4 and −4 are greatest common divisors!
This happens because each divides the other, emphasizing that for us, the notion of a “greatest”
common divisor is relative to divisibility, not to other orderings.

That said, all greatest common divisors have something in common.

Proposition 7.49. Let R be a Euclidean domain with respect to v, and
a, b ∈ R. Suppose that d is a greatest common divisor of a and b . If d ′

is a common divisor of a and b , then v
�

d ′
�

≤ v (d ). If d ′ is another
greatest common divisor of a and b , then v (d ) = v

�

d ′
�

.

Proof. Since d is a greatest common divisor of a and b , and d ′ is a common divisor, the defi-
nition of a greatest common divisor tells us that d divides d ′. Thus there exists q ∈ R such that
qd ′ = d . From property (E1) of the valuation function,

v
�

d ′
�

≤ v
�

qd ′
�

= v (d ) .

On the other hand, if d ′ is also a greatest common divisor of a and b , an argument similar
to the one above shows that

v (d )≤ v
�

d ′
�

≤ v (d ) .

Hence v (d ) = v
�

d ′
�

.

Finally we come to the point of a Euclidean domain: we can use the Euclidean algorithm to com-
pute a gcd of any two elements! Essentially we transcribe the Euclidean Algorithm for integers
(Theorem 6.4 on page 126 of Section 6.1).

Theorem 7.50 (The Euclidean Algorithm for Euclidean domains). Let
R be a Euclidean domain with valuation v and m, n ∈ R\{0}. One can
compute a greatest common divisor of m, n in the following way:

1. Let s = m and t = n.
2. Repeat the following steps until t = 0:

(a) Let q be the quotient and r the remainder after dividing s
by t .

(b) Assign s the current value of t .
(c) Assign t the current value of r .

The final value of s is a greatest common divisor of m and n.

Proof. You do it! See Exercise 7.55.
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Just as we could adapt the Euclidean Algorithm for integers to the Extended Euclidean Algorithm
in order to compute a, b ∈Z such that

am + b n = gcd (m, n) ,

we can do the same thing in Euclidean domains, using exactly the same technique. In fact, you
will need this for Exercise 7.50

Exercises.

Exercise 7.51. Let f = x2 + 1 and g = x3−1.
(a) Show that 1 is a greatest common divisor of f and g in Q [x ], and find a, b ∈ Q [x ] such

that 1 = a f + b g .
(b) Recall that Z5 is a field. Show that 1 is a greatest common divisor of f and g in Z5 [x ], and

find a, b ∈Z5 [x ] such that 1 = a f + b g .
(c) Recall that Z [x ] is not a Euclidean domain. Explain why the result of part (a) cannot be

used to show that 1 is a greatest common divisor of f and g in Z [x ]. What would you get
if you used the Euclidean algorithm on f and g in Z [x ]?

Exercise 7.52. Let f = x4 + 9x3 + 27x2 + 31x + 12 and g = x4 + 13x3 + 62x2 + 128x + 96.
(a) Compute a greatest common divisor of f and g in Q [x ].
(b) Recall that Z31 is a field. Compute a greatest common divisor of f and g in Z31 [x ].
(c) Recall that Z3 is a field. Compute a greatest common divisor of f and g in Z3 [x ].
(d) Even though Z [x ] is not a Euclidean domain, it still has greatest common divisors. What’s

more, we can compute the greatest common divisors using the Euclidean algorithm! How?

Exercise 7.53. Show that every field is a Euclidean domain.

Exercise 7.54. Prove Theorem 7.46.

Exercise 7.55. Prove Theorem 7.50, the Euclidean Algorithm for Euclidean domains.

Exercise 7.56. A famous Euclidean domain is the ring of Gaussian integers

Z [i ] = {a + b i : a, b ∈Z}

where i2 =−1. The valuation function is

v (a + b i) = a2 + b 2.

To find any quotient and remainder, you must use the fact that the smallest distance between

a + b i and other complex number is at most 1
2

q

2
�

a2 + b 2
�

.
(a) Assuming the facts given about v, divide:

(i) 11 by 3;
(ii) 11 by 3i ;
(iii) 2+ 3i by 1+ 2i .

(b) Show that v is, in fact, a valuation function suitable for a Euclidean domain.
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(c) Give a general method for dividing Gaussian integers.



Chapter 8:
Ideals

This chapter fills two roles. Some sections describe ring analogues to structures that we
introduced in group theory:
• Section 8.1 introduces the ideal, an analogue to a normal subgroup;
• Section 8.4 provides an analogue of quotient groups; and
• Section 8.6 decribes ring homomorphisms.

The remaining sections use these ring structures to introduce new kinds of ring structures:
• Section 8.3 highlights an important class of ideals;
• Section 8.5 brings us to finite fields, which are important for computation in polynomial

rings; and
• Section 10.6 describes a fundamental relationship between ideals and the zeros of polyno-

mials.

8.1: Ideals

Just as groups have subgroups, rings have subrings:

Definition 8.1. Let R be a ring, and S a nonempty subset of R. If S is
also a ring under the same operations as R, then S is a subring of R.

Example 8.2. Recall from Exercise 7.9 that 2Z is a ring; since 2Z(Z, it is a subring of Z.

To show that a subset of a ring is a subring, do we have to show all four ring properties? No: as
with subgroups, we can simplify the characterization to two properties:

Theorem 8.3 (The Subring Theorem). Let R be a ring and S be a
nonempty subset of R. The following are equivalent:
(A) S is a subring of R.
(B) S is closed under subtraction and multiplication. That is, for all

a, b ∈ S
(S1) a− b ∈ S, and
(S2) ab ∈ S.

Proof. That (A) implies (B) is clear, so assume (B). From (B) we know that for any a, b ∈ S we
have (S1) and (S2). Now (S1) is essentially the Subgroup Theorem, so S is an additive subgroup
of the additive group R. On the other hand, (S2) only tells us that S satisfies property (R2) of a
ring, but any elements of S are elements of R, so the associative and distributive properties follow
from inheritance. Thus S is a ring in its own right, which makes it a subring of R.

You might think that, just as we moved from subgroups to quotient groups via cosets, we will
move from subrings to “quotient rings” via the ring analogue of normal subgroups. While this is
true, the analogue may not have quite the form you expect.
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Definition 8.4. Let A be a subring of R that satisfies the absorption
property:

∀r ∈ R ∀a ∈A ra ∈A.

Then A is an ideal subring of R, or simply, an ideal, and we write A/R.
An ideal A is proper if {0} 6= A 6= R.

Recall that our rings are assumed to be commutative, so if ra ∈A then a r ∈A, also.

Example 8.5. Recall the subring 2Z of the ring Z. We show that 2Z/Z: let r ∈Z, and a ∈ 2Z.
By definition of 2Z, there exists d ∈Z such that a = 2d . Substitution gives us

ra = r ·2d = 2 (r d ) ∈ 2Z,

so 2Z “absorbs” multiplication by Z. This makes 2Z an ideal of Z.
Naturally, we can generalize this proof to arbitrary n ∈Z: see Exercises 8.17 and 8.18.

Ideals in the ring of integers have a nice property that we will use in future examples.

Lemma 8.6. Let a, b ∈Z. The following are equivalent:
(A) a | b ;
(B) bZ⊆ aZ.

Proof. You do it! See Exercise 8.19.

Example 8.7. Certainly 3 | 6 since 3 ·2 = 6. Look at the ideals generated by 3 and 6:

3Z = {. . . ,−12,−9,−6,−3,0,3,6,9,12, . . .}
6Z = {. . . ,−12,−6,0,6,12, . . .} .

Inspection suggests that 6Z ⊆ 3Z. Is it? Let x ∈ 6Z. By definition, x = 6q for some q ∈Z. By
substitution, x = (3 ·2) q = 3 (2 · q) ∈ 3Z. Since x was arbitrary in 6Z, we have 6Z⊆ 3Z.

Perhaps the most important question in algebra — certainly, the one that has driven the most
work — is the question of determining when a polynomial takes the value zero.

Definition 8.8. Let R be a ring, a ∈ R, and f ∈ R [x ]. If f (a) = 0, then
we call a a root of f .

The absorption property makes ideals useful for studying roots of polynomials.

Example 8.9. You showed in Exercise 7.3 that C [x, y ] is a ring. Let A= {h f + k g : h, k ∈C [x, y ]}
where f = x2 + y2−4, g = xy−1. We claim that A is an ideal:
• For any a, b ∈A, we can write a = ha f + ka g and b = hb f + kb g for some ha , hb , ka , kb ∈

C [x, y ]. Thus

a− b = (ha f + ka g )− (hb f + kb g )
= (ha− hb ) f +(ka− kb ) g ∈A.
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It takes a little more work to show that ab ∈A:

ab = (ha f + ka g ) (hb f + kb g )
= ha hb f 2 + hakb f g + hb ka f g + kakb g 2

= (ha hb f + hakb g + hb ka g ) f +(kakb g ) g .

Let
h ′ = ha hb f + hakb g + hb ka g and k ′ = kakb g ;

then ab = h ′ f + k ′ g , so ab ∈ A, as well. By the Subring Theorem, A is a subring of
C [x, y ].
• For any a ∈A, r ∈C [x, y ], write a as before; then

ra = r (ha f + ka g ) = r (ha f )+ r (ka g )
= (r ha) f +(r ka) g ∈A.

Thus, A satisfies the absorption property.
We have shown that A satisfies the subring and absorption properties; thus, A/C [x, y ].

What’s interesting about A is the following algebraic fact: the common roots of f and g are
roots of any element of A. To see this, let (α,β) be a common root of f and g ; that is, f (α,β) =
g (α,β) = 0. Let p ∈ A; by definition, we can write p = h f + k g for some h, k ∈ C [x, y ]. By
substitution,

p (α,β) = (h f + k g ) (α,β)
= h (α,β) · f (α,β)+ k (α,β) · g (α,β)
= h (α,β) ·0+ k (α,β) ·0
= 0;

that is, (α,β) is a root of p.
Figure 8.1 depicts the root

(α,β) =
�
Æ

2+
p

3,2
Æ

2+
p

3−
Æ

6+ 3
p

3
�

.

It is also a root of every element of A.

You will show in Exercise 8.26 that the ideal of Example 8.9 can be generalized to other
rings and larger numbers of variables.

Remark 8.10. Recall from linear algebra that vector spaces are an important tool for the study of
systems of linear equations: finding a triangular basis of the vector space spanned by a system of
linear polynomials allows us to analyze the solutions of the system. Example 8.9 illustrates why
ideals are an important tool for the study of non-linear polynomial equations. If one can compute
a “triangular basis” of a polynomial ideal, then one can analyze the solutions of the system that
generates the ideal in a method very similar to methods for linear systems. We take up this task
in Chapter 10.

Since ideals are fundamental, we would like an analogue of the Subring Theorem to decide
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Figure 8.1. A common root of x2 + y2−4 and xy−1

whether a subset of a ring is an ideal.

Theorem 8.11 (The Ideal Theorem). Let R be a ring and A ⊂ R. The
following are equivalent:
(A) A is an ideal subring of R.
(B) A is closed under subtraction and absorption. That is,

(I1) for all a, b ∈A, a− b ∈A; and
(I2) for all a ∈A and r ∈ R, we have a r , ra ∈A.

Proof. You do it! See Exercise 8.21.

We conclude by defining a special kind of ideal, with a notation similar to that of cyclic subgroups,
but with a different meaning.

Notation 8.12. Let R be a ring with unity and r1, r2, . . . , rm ∈ R. Define the set 〈r1, r2, . . . , rm〉 as
the intersection of all the ideals of R that contain all of r1, r2, . . . , rm .

Proposition 8.13. Let R be a ring with unity. For all r1, . . . , rm ∈ R,
〈r1, . . . , rm〉 is an ideal.

Proof. Let a, b ∈ 〈r1, . . . , rm〉. Let I be any ideal that contains all of r1, . . . , rm . By definition
of 〈r1, . . . , rm〉, a, b ∈ I . By the Ideal Theorem, a− b ∈ I and for all r ∈ R, a r , ra ∈ I . Since I
was an arbitrary ideal containing all of r1, . . . , rm , every such ideal contains a− b and ra. Thus
a− b , ra ∈ 〈r1, . . . , rm〉. By the Ideal Theorem, 〈r1, . . . , rm〉 is an ideal.

Definition 8.14. In a ring with unity, we call 〈r1, r2, . . . , rm〉 the ideal
generated by r1, r2, . . . , rm , and {r1, r2, . . . , rm} a basis of 〈r1, r2, . . . , rm〉.



1. Ideals 180

Proposition 8.15. The ideal 〈r1, r2, . . . , rm〉 is precisely the set

I = {h1 r1 + h2 r2 + · · ·+ hm rm : hi ∈ R} .

Proof. First, we show that I ⊆ 〈r1, . . . , rm〉. Let p ∈ I ; by definition, there exist h1, . . . , hm ∈ R
such that p =

∑m
i=1 hi ri . Let J be any ideal that contains all of r1, . . . , rm . By definition, ri ∈ J

for each i . By absorption, hi ri ∈ J for each i . By closure, p =
∑m

i=1 hi ri ∈ J . Since J was an
arbitrary ideal containing all of r1, . . . , rm , we infer that all the ideals containing all of r1, . . . , rm
contain p. Since p is an arbitrary element of I , I is a subset of all the ideals containing all of
r1, . . . , rm . By definition, I ⊆ 〈r1, . . . , rm〉.

We must also show that I ⊇ 〈r1, . . . , rm〉. To that end, we claim first that I is an ideal.
Absorption is obvious; as for the closure of subtraction, let x, y ∈ I ; then choose hi , pi ∈ R such
that

x = h1 r1 + · · ·+ hm rm and
y = p1 r1 + · · ·+ pm rm .

Using the associative property, the commutative property of addition, the commutative property
of multiplication, distribution, and the closure of subtraction in R, we see that

x− y = ( f1 r1 + · · ·+ fm rm)− (p1 r1 + · · ·+ pm rm)

= ( f1 r1− p1 r1)+ · · ·+( fm rm− pm rm)

= ( f1− p1) r1 + · · ·+( fm− pm) rm .

Hence x− y ∈ I , and by the Ideal Theorem, I is an ideal. Moreover, it is easy to see that ri ∈ I
for each i = 1,2, . . . , m since

ri = 1 · ri +
∑

j 6=i

0 · r j ∈ I .

Hence I is an ideal containing all of r1, r2, . . . , rm . By definition of 〈r1, . . . , rm〉, I ⊇ 〈r1, . . . , rm〉.
We have shown that I ⊆ 〈r1, . . . , rm〉 ⊆ I . Hence I = 〈r1, . . . , rm〉 as claimed.

We conclude with an example that shows how an ideal can have more than one basis.

Example 8.16. Consider the ring Z, and let I = 〈4,6〉. Proposition 8.15 claims that

I = {4m + 6n : m, n ∈Z} .

Choosing concrete values of m and n, we see that

4 = 4 ·1+ 6 ·0 ∈ I
0 = 4 ·0+ 6 ·0 ∈ I

−12 = 4 · (−3)+ 6 ·0 ∈ I
−12 = 4 ·0+ 6 · (−2) ∈ I .

Notice that for some elements of I , we can provide representations in terms of 4 and 6 in more
than one way.
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While we’re at it, we claim that we can simplify I as I = 2Z. Why? For starters, 2 =
4 · (−1)+ 6 ·1, so 2 ∈ I . Now that we have 2 ∈ I , let x ∈ 2Z; then x = 2q for some q ∈Z. Then

x = 2q = [4 · (−1)+ 6 ·1] · q = 4 · (−q)+ 6 · q ∈ I .

Since x was arbitrary, I ⊇ 2Z. On the other hand, let x ∈ I ; there exist m, n ∈Z such that

x = 4m + 6n = 2 (2m + 3n) ∈ 2Z.

Since x was arbitrary, I ⊆ 2Z. Hence I = 2Z.

So I = 〈4,6〉 = 〈2〉 = 2Z. If we think of r1, . . . , rm as a “basis” for 〈r1, . . . , rm〉, then the
example above shows that any given ideal can have bases of different sizes.

You might wonder if every ideal can be written as 〈a〉. As you will see in Section 8.2, the
answer is, “Not always.” However, the statement is true for the ring Z (and a number of other
rings as well). You will explore this in Exercise 8.20, and Section 8.2.

Exercises.

Exercise 8.17. Show that for any n ∈N, nZ is an ideal of Z.

Exercise 8.18. Show that every ideal of Z has the form nZ, for some n ∈N.

Exercise 8.19.
(a) Prove Lemma 8.6.
(b) Explain why part (a) asked you to show that, in Z, a | b if and only if 〈b 〉 ⊆ 〈a〉.
(c) More generally, prove that in any ring with unity, a | b if and only if 〈b 〉 ⊆ 〈a〉.

Exercise 8.20. In this exercise, we explore how 〈r1, r2, . . . , rm〉 behaves in Z. Keep in mind that
the results do not necessarily generalize to other rings.
(a) For the following values of a, b ∈Z, show that 〈a, b 〉= 〈c〉 for a certain c ∈Z.

(i) a = 3, b = 5
(ii) a = 3, b = 6
(iii) a = 4, b = 6

(b) What is the relationship between a, b , and c in part (a)?
(c) Prove the conjecture you formed in part (b).

Exercise 8.21. Prove Theorem 8.11 (the Ideal Theorem).

Exercise 8.22. Suppose R is a ring with unity, and A an ideal. Show that if 1R ∈A, then A= R.

Exercise 8.23. Show that in any field F, the only two distinct ideals are the zero ideal and F itself.

Exercise 8.24. Let R be a ring and A and I two ideals of R. Decide whether the following subsets
of R are also ideals, and explain your reasoning:
(a) A∩ I
(b) A∪ I
(c) A+ I = {x + y : x ∈A, y ∈ I }
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(d) A · I = {xy : x ∈A, y ∈ I }
(e) AI =

¦

∑n
i=1 xi yi : n ∈N, xi ∈A, yi ∈ I

©

Exercise 8.25. Let A,B be two ideals of a ring R. Observe the definition of AB in Exercise 8.24
(a) Show that AB ⊆A∩B .
(b) Show that sometimes AB 6= A∩B ; that is, find a ring R and ideals A,B such that AB 6=

A∩B .

Exercise 8.26. Let R be a ring with unity. Recall the polynomial ring P = R [x1, x2, . . . , xn ],
whose ground ring is R (Section 7.3). Let

〈 f1, . . . , fm〉= {h1 f1 + · · ·+ hm fm : h1, h2, . . . , hm ∈ P} .

Example 8.9 showed that the set A =



x2 + y2−4, xy−1
�

was an ideal; Proposition 8.15 gener-
alizes this to show that 〈 f1, . . . , fm〉 is an ideal of P . Show that the common roots of f1, f2, . . . , fm
are common roots of all polynomials in the ideal I .

Exercise 8.27. Let A be an ideal of a ring R. Define its radical to be
p

A=
�

r ∈ R : r n ∈A∃r ∈N+	 .

Show that
p

A is an ideal.

8.2: Principal Ideal Domains

In the previous section, we described ideals for commutative rings with identity that are
generated by a finite set of elements, denoting them by 〈r1, . . . , rm〉. An important subclass of
these ideals consists of ideals generated by only one element.

Definition 8.28. Let A be an ideal of a ring R. If A= 〈a〉 for some a ∈ R,
then A is a principal ideal.

Many ideals can be rewritten as principal ideals. For example, the zero ideal {0} = 〈0〉. If R has
unity, we can write R = 〈1〉. On the other hand, not all ideals are principal. For example, if
A= 〈x, y〉 in the ring C [x, y ], there is no f ∈C [x, y ] such that A= 〈 f 〉.

The following property of principal ideals is extremely useful.

Lemma 8.29. Let a, b ∈ R. There exists q ∈ R such that qa = b if
and only if 〈b 〉 ⊆ 〈a〉. In addition, if R is an integral domain, q has a
multiplicative inverse if and only if 〈b 〉= 〈a〉.

Proof. The first assertion is precisely Exercise 8.19(b). For the second, assume that R is an
integral domain and that qa = b . The first assertion gives us 〈b 〉 ⊆ 〈a〉. By definition, q has a
multiplicative inverse r iff r q = 1R. By substitution, r b = r (qa) = a. By absorption, a ∈ 〈b 〉.
Hence 〈b 〉 ⊇ 〈a〉. Since we already had 〈b 〉 ⊆ 〈a〉, we conclude that 〈b 〉= 〈a〉.

Outside an integral domain, a could divide b with an element that has no multiplicative inverse,
yet 〈b 〉= 〈a〉. For example, in Z6, we have [2] · [2] = [4], but 〈[2]〉= {[0] , [2] , [4]}= 〈[4]〉.
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There are rings in which all ideals are principal.

Definition 8.30. A principal ideal domain is a ring where every ideal
can be written as a principal ideal.

Example 8.31. We claim that Z is a principal ideal domain, and we can prove this using a careful
application of Exercise 8.20. Let A be any ideal of Z. The zero ideal is 〈0〉, so assume that
A 6= {0}. That is, contains at least one non-zero element; call it a1. Without loss of generality,
we may assume that a1 ∈N+ (if not, we could take −a1 instead, since the definition of an ideal
requires −a1 ∈A as well).

Is A = 〈a1〉? If not, we can choose b1 ∈ A\〈a1〉. Let q1, r1 ∈ Z be the quotient and
remainder from division of b1 by a1; notice that r1 = b1− q1a1 ∈ A. Let a2 = gcd (a1, r1). By
the Extended Euclidean Algorithm, we can find x, y ∈ Z such that xa1 + y r1 = a2, and since
a1, r1 ∈A, absorption and closure give us a2 ∈A. Notice 0< a2 ≤ r1 < a1.

Is A = 〈a1,a2〉? If not, we can repeat the procedure to find b2 ∈ A\〈a1,a2〉, r2 ∈ A the
remainder of division of b2 by a2, and a3 = gcd (a2, r2), so that 0 < a3 < a2. Indeed, as long as
A 6= 〈a1,a2, . . . ,ai 〉, we can find bi ∈ A\〈a1, . . . ,ai 〉, ri ∈ A the remainder of division of bi by ai ,
and ai+1 = gcd (ai , ri ), with 0 < ai+1 < ai . This gives us a strictly decreasing chain of integers
a1 > a2 > · · · > ai > 0. Let S be the set of all ai that we can generate in this way; by the well-
ordering of N, S must have a least element, d . Since d is the smallest element of S, it must be the
last ai that we computed, implying that we cannot compute anymore. That implies A= 〈d 〉.

Before moving on, let’s take a moment to look at how the ideals are related, as well. Let
B1 = 〈a1〉, and B2 = 〈a1, r1〉. Exercise 8.20 tells us that, in fact, B2 = 〈a2〉. Lemma 8.29 implies that
B1 ( B2. When we choose, b3 ∈A\〈a1,a2〉, we are actually choosing b3 ∈A\〈a2〉. Likewise, if we
set B3 = 〈a2, r2〉 = 〈a3〉, then B2 ( B3. In fact, as long as A 6= 〈ai 〉, we can generate an ascending
sequence of ideals B1 ( B2 ( · · · . In other words, another way of looking at this proof is that it
tries to expand the principal ideal Bi until Bi = A, basically by adding elements not in Bi . Rather
amazingly, the argument above implies that this ascending chain of ideals must stabilize, at least
in Z.

This property that an ascending chain of ideals must stabilize is one that some rings satisfy,
but not all; we return to it in a moment.

We can extend the argument of Example 8.31 to more general rings.

Theorem 8.32. Every Euclidean domain is a principal ideal domain.

Proof. Let R be a Euclidean domain with respect to v, and let A be any non-zero ideal of R. Let
a1 ∈A. As long as A 6= 〈ai 〉, do the following:

• find bi ∈A\〈ai 〉;
• let ri be the remainder of dividing bi by ai ;

◦ notice v (ri )< v (ai );

• compute a gcd ai+1 of ai and ri ;

◦ notice v
�

ai+1
�

≤ v (ri )< v (ai );

• this means 〈ai 〉(



ai+1
�

; after all,
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◦ as a gcd, ai+1 | ai , but
◦ ai - ai+1, lest ai | ai+1 imply v (ai )≤ v

�

ai+1
�

< v (ai )

• hence, 〈ai 〉(



ai+1
�

and v
�

ai+1
�

< v (ai ).

Let T be the set of all the ai that we can generate in this way, and let S = {v (t ) : t ∈ T }. By
the well-ordering of N, S must have a least element, d . By definition, there exists t ∈ T such
that d = v (t ), and t = ai for some i . Since d = v (ai ), d is minimal, and computing an ai+1
using the procedure above would give us v

�

ai+1
�

< v (ai ), it must not be possible to compute
any more ai . If A 6= 〈ai 〉, however, we could certainly compute another one. Thus, A= 〈ai 〉.

Not all integral domains are principal ideal domains; you will show in the exercises that for any
field F and its polynomial ring F [x, y ], the ideal 〈x, y〉 is not principal. For now, though, we will
turn to a phenomenon that appeared in Example 8.31 and Theorem 8.32. In each case, we built a
chain of ideals

〈a1〉( 〈a2〉( 〈a3〉( · · ·

and were able to show that the procedure we used to find the ai must eventually terminate.
As we mentioned above, this property is very useful for a ring. In both Example 8.31 and

Theorem 8.32, we relied on the well-ordering of N, but that is not always available to us. So
the property might be useful in other settings, even in cases where ideals aren’t guaranteed to be
principal. For example, eventually we will show that F [x, y ] satisfies this property.

Definition 8.33. Let R be a ring. If for every ascending chain of ideals
A1 ⊆ A2 ⊆ · · · we can find an integer k such that Ak = Ak+1 = · · · , then
R satisfies the Ascending Chain Condition.

Remark 8.34. Another name for a ring that satisfies the Ascending Chain Condition is a Noethe-
rian ring, after Emmy Noether.

Theorem 8.35. Each of the following holds.
(A) Every principal ideal domain satisfies the Ascending Chain Con-

dition.
(B) Any field F satisfies the Ascending Chain Condition.
(C) If a ring R satisfies the Ascending Chain Condition, so does R [x ].
(D) If a ring R satisfies the Ascending Chain Condition, so does

R [x1, x2, . . . , xn ].

Proof. (A) Let R be a principal ideal domain, and let A1 ⊆ A2 ⊆ · · · be an ascending chain of
ideals in R. Let B =

⋃∞
i=1 Ai . By Exercise 8.40, B is an ideal. Since R is a principal ideal domain,

B = 〈b 〉 for some b ∈ R. By definition of a union, b ∈ Ai for some i ∈N. The definition of an
ideal now implies that r b ∈ Ai for all r ∈ R; so 〈b 〉 ⊆ Ai . By substitution, B ⊆ Ai . By definition
of B , we also have Ai ⊆ B . Hence Ai = B , and a similar argument shows that Aj = B for all j ≥ i .
Hence the chain of ideals stabilizes at Ai . Since the chain was arbitrary, every ascending chain of
ideals in R stabilizes, so R satisfies the ascending chain condition.

(B) By Exercise 7.53, any field F is a Euclidean domain, so this follows from (A) and
Theorem 8.32. However, it’s instructive to look at it from the point of view of a field as well.
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Recall from Exercise 8.23 that a field has only two distinct ideals: the zero ideal, and the field
itself. Hence, any ascending chain of ideals stabilizes either at the zero ideal or at F itself.

(C) Assume that R satisfies the Ascending Chain Condition. If every ideal of R [x ] is
finitely generated, then we are done, since for any ascending chain I1 ⊆ I2 ⊆ · · · the set I = ∪∞i=1Ii
is also an ideal (Exercise 8.40), and is finitely generated, say I = 〈 f1, . . . , fm〉, which implies that
the chain stabilizes at I j where f1, . . . , fm ∈ I j .

So if we show that every ideal of R [x ] is finitely generated, then we are done. Let I be any
ideal of R [x ], and choose f1, f2, . . . ∈ I in the following way:

• Let J0 = {0}, and k = 0.
• While I 6= 〈Jk〉:

◦ Let Sk = {deg f : f ∈ I\〈Jk〉}. Since Sk ⊆N, it has a least element; call it dk .
◦ Let fk ∈ I\Jk be any polynomial of degree dk . Notice that fk ∈ I\Jk implies Jk (
〈Jk ∪{ fk}〉.
◦ Let Jk+1 = Jk ∪{ fk}, and increment k by 1.

Does this process terminate? We built 〈 f1〉( 〈 f1, f2〉( · · · as an ascending chain of ideals. Denote
the leading coefficient of fi by ai and let Ki = 〈a1,a2, . . . ,ai 〉. Since R satisfies the Ascending
Chain Condition, the ascending chain of ideals K1 ⊆K2 ⊆ · · · stabilizes for some m ∈N.

By way of contradiction, suppose we can find fm+1 of minimal degree in I\〈 f1, . . . , fm〉.
Since Km = Km+1 of necessity, am+1 = b1a1 + · · ·+ bmam for some b1, . . . , bm ∈ F. Write di =
degx fi , and consider

p = b1 f1xdm+1−d1 + · · ·+ bm fm xdm+1−dm .

Choosing the fi ’s to be of minimal degree implies that for each i , di ≤ dm+1, so dm+1− di ∈N.
Moreover, we have set up the sum and products so that the leading term of p is

(b1a1 + · · ·+ bmam) xdm+1 = am+1xdm+1 .

Let g = fm+1− p. Since lt
�

fm+1
�

= lt (p) and lc
�

fm+1
�

= lc (p), their leading terms cancel
in the subtraction. Thus, deg g < deg fm+1. By construction, p ∈ 〈 f1, f2, . . . , fm〉. If fm+1 6∈
〈 f1, f2, . . . , fm〉, then g 6∈ 〈 f1, f2, . . . , fm〉; otherwise, f = g + p ∈ 〈 f1, f2, . . . , fm〉. Thus, g ∈
I\〈 f1, f2, . . . , fm〉. This contradicts the choice of fm+1, which was supposed to have minimal
degree in I\〈 f1, . . . , fm〉.

Thus, the process must terminate. Since it does not terminate unless I = 〈Jk〉, we conclude
that eventually I = 〈Jk〉= 〈 f1, . . . , fk〉. In other words, I is finitely generated. As explained above,
this implies that R [x ] satisfies the ascending chain condition.

(D) follows from (C) by induction on the number of variables n: use R to show R [x1]
satisfies the Ascending Chain Condition; use R [x1] to show that R [x1, x2] = (R [x1]) [x2] satisfies
the Ascending Chain Condition; etc.

Corollary 8.36 (Hilbert Basis Theorem). For any field F,
F [x1, x2, . . . , xn ] satisfies the Ascending Chain Condition. Thus,
for any ideal I of F [x1, . . . , xn ], we can find f1, . . . , fm ∈ I such that
I = 〈 f1, . . . , fm〉.
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Proof. Apply (B) and (D) of Theorem 8.35.

Exercises

Exercise 8.37. Let q be an element of a ring with unity. Show that q has a multiplicative inverse
if and only if 〈q〉= 〈1〉.

Exercise 8.38. Is F [x ] a principal ideal domain for every field F? What about R [x ] for every ring
R?

Exercise 8.39. Let F be any field, and consider the polynomial ring F [x, y ]. Explain why 〈x, y〉
cannot be principal.

Exercise 8.40. Let R be a ring and I1 ⊆ I2 ⊆ · · · an ascending chain of ideals. Show that I =
⋃∞

i=1 Ii is itself an ideal.

8.3: Prime and maximal ideals

Two important classes of ideals are prime and maximal ideals. Let R be a ring.

Definition 8.41. A proper ideal A of R is a maximal ideal if no other
proper ideal of R contains A.

Another way of expressing that A is maximal is the following: for any other ideal I of R, A⊆ I
implies that A= I or I = R.

Example 8.42. In Exercise 8.18 you showed that all ideals of Z have the form nZ for some n ∈Z.
Are any of these (or all of them) maximal ideals?

Let n ∈Z and suppose that nZ is maximal. Certainly n 6= 0, since 2Z 6⊆ {0}. We claim
that n is irreducible; that is, n is divisible only by ±1,±n. To see this, recall Lemma 8.6: m ∈Z

is a divisor of n iff nZ ⊆ mZ. Since nZ is maximal, either mZ = Z or mZ = nZ. In the first
case, m =±1; in the second case, m =±n. Hence n is irreducible.

For prime ideals, you need to recall from Exercise 8.24 that for any two ideals A,B of R,
AB is also an ideal.

Definition 8.43. A proper ideal P of R is a prime ideal if for every two
ideals A,B of R we know that

if AB ⊆ P then A⊆ P or B ⊆ P .

Definition 8.43 might remind you of our definition of prime integers from page 6.29. Indeed, the
two are connected.

Example 8.44. Let n ∈Z be a prime integer. Let a, b ∈Z such that p | ab . Hence p | a or p | b .
Suppose that p | a.

Let’s turn our attention to the corresponding ideals. Since p | ab , Lemma 8.6 tells us that
(ab )Z ⊆ pZ. It is routine to show that (ab )Z = (aZ) (bZ). Put A = aZ, B = bZ, and
P = pZ; thus AB ⊆ P .
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Recall that p | a; applying Lemma 8.6 again, we have A= aZ⊆ pZ = P .
Conversely, if n is not prime, nZ is not a prime ideal: for example, 6Z is not a prime

ideal because (2Z) (3Z) ⊆ 6Z but by Lemma 8.19 neither 2Z ⊆ 6Z nor 3Z ⊆ 6Z. This can be
generalized easily to all integers that are not prime: see Exercise 8.48.

You might wonder if the relationship found in Example 8.42 works the other way. That
is: we found in Example 8.42 that an ideal in Z is maximal iff it is generated by a prime integer,
and in Example 8.44 we argued that an ideal is prime iff it is generated by a prime integer. We can
see that in the integers, at least, an ideal is maximal if and only if it is prime.

What about other rings?

Theorem 8.45. If R is a ring with unity, then every maximal ideal is
prime.

Proof. Let M be a maximal ideal of R. Let A,B be any two ideals of R such that AB ⊆ M . We
claim that A⊆M or B ⊆M .

Assume that A 6⊆ M ; we claim that B ⊆ M . Recall from Exercise 8.24 that A+M is also
an ideal. Since M is maximal, A+ M = M or A+ M = R. Since A 6⊆ M , A+ M 6= M ; thus
A+M = R. Since R has unity, 1R ∈A+M , so there exist a ∈A, m ∈M such that

1R = a + m. (20)

Let b ∈ B and multiply both sides of (20) on the right by b ; we have

1R · b = (a + m) b
b = ab + mb .

Recall that AB ⊆ M ; since ab ∈ AB , ab ∈ M . Likewise, since M is an ideal, mb ∈ M . Ideals are
subrings, hence closed under addition, so ab + mb ∈ M . Substitution implies that b ∈ M . Since
b was arbitrary in B , B ⊆M .

We assumed that AB ⊆M , and found that A⊆M or B ⊆M . Thus, M is prime.

Theorem 8.46. If R is a ring without unity, then maximal ideals might
not be prime.

Proof. The proof is by counterexample: Clearly 2Z is a ring without unity. (If this isn’t clear,
reread the previous section.) We claim that 4Z is an ideal of R = 2Z:

subring: Let x, y ∈ 4Z. By definition of 4Z, x = 4a and y = 4b for some a, b ∈Z. Using
the distributive property and substitution, we have x− y = 4a−4b = 4 (a− b ) ∈
4Z.

absorption: Let x ∈ 4Z and r ∈ 2Z. By definition of 4Z, x = 4q for some q ∈Z. By subtitu-
tion, the associative property, and the commutative property of integer multipli-
cation, r x = 4 (r q) ∈ 4Z.

Having shown that 4Z is an ideal, we now show that it is a maximal ideal. Let A be any ideal of
2Z such that 4Z(A. Let x ∈A\4Z; by the Division Theorem, x = 4q + r such that 0< r < 4.
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Since x ∈ 2Z, we can write x = 2d for some d ∈ Z. Thus r = x− 4q = 2 (d −2q) ∈ 2Z. But
0< r < 4 and r ∈ 2Z implies that r = 2.

Now 4q ∈ 4Z and thus in A, so x−4q ∈A. By substitution, x−4q = (4q + 2)−4q = 2;
since A is an ideal, 2 ∈ A. By absorption, 2n ∈ A for all n ∈ Z. Thus 2Z ⊆ A. But A is an ideal
of 2Z, so 2Z ⊆ A ⊆ 2Z, which implies that A = 2Z. Since A is an arbitrary ideal of 2Z that
contains 4Z properly, 4Z is maximal in 2Z.

Finally, we show that 4Z is not prime. This is easy: (2Z) (2Z)⊆ 4Z, but 2Z 6⊆ 4Z.

Theorem 8.47. A prime ideal is not necessarily maximal, even in a ring
with unity.

Proof. Recall that R = C [x, y ] is a ring with unity, and that I = 〈x〉 is an ideal of R.
We claim that I is a prime ideal of R. Let A,B be ideals of R such that AB ⊆ I . Suppose

that A 6⊆ I ; let a ∈A\I . For any b ∈ B , ab ∈AB ⊆ I = 〈x〉, so ab ∈ 〈x〉. This implies that x | ab ;
let q ∈ R such that q x = ab . Write a = f · x + a′ and b = g · x + b ′ where a′, b ′ ∈ R\I ; that is, a′

and b ′ are polynomials with no terms that are multiples of x. By substitution,

ab =
�

f · x + a′
��

g · x + b ′
�

q x = ( f · x) · (g · x)+ a′ · (g · x)
+ b ′ · ( f · x)+ a′ · b ′

�

q− f g − a′ g − b ′ f
�

x = a′b ′.

Hence a′b ′ ∈ 〈x〉. However, no term of a′ or b ′ is a multiple of x, so no term of a′b ′ is a multiple
of x. The only element of 〈x〉 that satisfies this property is 0. Hence a′b ′ = 0, which by the zero
product property of complex numbers implies that a′ = 0 or b ′ = 0.

Which is it? If a′ = 0, then a = f · x + 0 ∈ 〈x〉= I , which contradicts the assumption that
a ∈ A\I . Hence a′ 6= 0, implying that b ′ = 0, so b = g x + 0 ∈ 〈x〉= I . Since b is arbitrary, this
holds for all b ∈ B ; that is, B ⊆ I .

We took two arbitrary ideals such that AB ⊆ I and showed that A ⊆ I or B ⊆ I ; hence
I = 〈x〉 is prime. However, I is not maximal, since

• y 6∈ 〈x〉, implying that 〈x〉( 〈x, y〉; and
• 1 6∈ 〈x, y〉, implying that 〈x, y〉 6∈C [x, y ].

So prime and maximal ideals need not be equivalent. In Chapter 9, we will find conditions on a
ring that ensure that prime and maximal ideals are equivalent.

Chapter Exercises.

Exercise 8.48. Let n ∈Z be an integer that is not prime. Show that nZ is not a prime ideal.

Exercise 8.49. Show that {[0] , [4]} is a proper ideal of Z8, but that it is not maximal. Then find a
maximal ideal of Z8.

Exercise 8.50. Find all the maximal ideals of Z12. Are they prime? How do you know?



4. Quotient Rings 189

Exercise 8.51. Let F be a field, and a1,a2 . . . ,an ∈F.
(a) Show that the ideal 〈x1− a1, x2− a1, . . . , xn− an〉 is both a prime ideal and a maximal ideal

of F [x1, x2, . . . , xn ] .
(b) Use Exercise 8.26 to describe the common root(s) of this ideal.

8.4: Quotient Rings

We now generalize the notion of quotient groups to rings, and prove some interesting
properties of certain quotient groups that help explain various phenomena we observed in both
group theory and ring theory.

Theorem 8.52. Let R be a ring and A an ideal of R. For every r ∈ R,
denote

r +A := {r + a : a ∈A} ,

called a coset. Then define

R/A := {r +A : r ∈ R}

and define addition and multiplication for this set in the “natural” way:
for all X ,Y ∈ R/A denoted as x +A, y +A for some x, y ∈ R,

X +Y = (x + y)+A
X Y = (xy)+A.

The set R/A is a ring under these operations, called the quotient ring.

Notation 8.53. When we consider elements of X ∈ R/A, we refer to the “usual representation”
of X as x +A for appropriate x ∈ R; that is, “big” X is represented by “little” x.

As in the group context, coset of ideals can have more than one representation. So, part of prov-
ing Theorem 8.52 involves showing that addition and multiplication of cosets are well-defined.
Thus the structure of the proof of Theorem 8.52 will answer:
• whether the operations are well-defined;
• whether R/A is an additive group; and
• whether R/A is a ring.

You may remember that, when working in quotient rings, we made heavy use of Lemma 3.29 on
page 60. Before proving Theorem 8.52, we need a similar property for the cosets x +A of R/A.

Lemma 8.54 (Equality of cosets in a ring). Let X ,Y ∈ R/A with repre-
sentations X = x +A and Y = y +A for appropriate x, y ∈ R. Then (A)
and (B) hold where
(A) X = Y if and only if x− y ∈A.
(B) X = A if and only if x ∈A.

Proof. You do it! See Exercise 8.60.

We now turn to the proof of Theorem 8.52.
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Proof of Theorem 8.52. First we show that the operations are well-defined. Let X ,Y ∈ R/A
and consider two representations w + A and x + A of X (so w + A = x + A = X ) and two
representations y +A and z +A of Y , for appropriate w, x, y, z ∈ R.

Is addition well-defined? The definition of the operation tells us that X +Y = (x + y)+
A and X + Y = (w + z) + A. By the hypothesis that x + A = w + A and y + A = z + A,
Lemma 8.54 implies that x−w ∈A and y− z ∈A. By closure, (x−w)+ (y− z) ∈A. Using the
properties of a ring,

(x + y)− (w + z) = (x−w)+ (y− z) ∈A.

Again from Lemma 8.54, (x + y)+A= (w + z)+A, so, by definition,

X +Y = (x +A)+ (y +A) = (x + y)+A
= (w + z)+A= (w +A)+ (z +A)
= X +Y .

It does not matter, therefore, what representation we use for X ; the sum X +Y has the same
value, so addition in R/A is well-defined.

Is multiplication well-defined? Observe that X Y = (x +A) (y +A) = xy +A. As ex-
plained above, x−w ∈A and y− z ∈A. Let a, ba ∈A such that x−w = a and y− z = ba; from the
absorption property of an ideal, ay ∈A, so

xy−w z = (xy− x z)+ (x z−w z)
= x (y− z)+ (x−w) z
= xba + az ∈A.

Again from Lemma 8.54, xy +A= w z +A, and by definition

(x +A) (y +A) = xy +A= w z +A= (w +A) (z +A) .

It does not matter, therefore, what representation we use for X ; the product X Y has the same
value, so multiplication in R/A is well-defined.

Having shown that addition and multiplication is well-defined in R/A, we turn to show-
ing that R/A is a ring. First we show the properties of a group under addition:

closure: Let X ,Y ∈ R/A, with the usual representation. By substitution, X +Y = (x + y)+
A. Since R, a ring, is closed under addition, x + y ∈ R. Thus X +Y ∈ R/A.

associative: Let X ,Y ,Z ∈ R/A, with the usual representation. Applying substitution and the
associative property of R, we have

(X +Y )+Z = ((x + y)+A)+ (z +A)
= ((x + y)+ z)+A
= (x +(y + z))+A
= (x +A)+ ((y + z)+A)
= X +(Y +Z) .

identity: We claim that A = 0+A is itself the identity of R/A; that is, A = 0R/A. Let X ∈
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R/A with the usual representation. Indeed, substitution and the additive identity
of R demonstrate this:

X +A= (x +A)+ (0+A)
= (x + 0)+A
= x +A
= X .

inverse: Let X ∈ R/A with the usual representation. We claim that −x +A is the additive
inverse of X . Indeed,

X +(−x +A) = (x +(−x))+A
= 0+A
= A
= 0R/A.

Hence −x +A is the additive inverse of X .

Now we show that R/A satisfies the ring properties. Each property falls back on the correspond-
ing property of R.

closure: Let X ,Y ∈ R/A with the usual representation. By definition and closure in R,

X Y = (x +A) (y +A)
= (xy)+A
∈ R/A.

associative: Let X ,Y ,Z ∈ R/A with the usual representation. By definition and the associative
property in R,

(X Y )Z = ((xy)+A) (z +A)
= ((xy) z)+A
= (x (y z))+A
= (x +A) ((y z)+A)
= X (Y Z) .

distributive: Let X ,Y ,Z ∈ R/A with the usual representation. By definition and the distribu-
tive property in R,

X (Y +Z) = (x +A) ((y + z)+A)
= (x (y + z))+A
= (xy + x z)+A
= ((xy)+A)+ ((x z)+A)
= X Y +X Z .
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Hence R/A is a ring.

Proposition 8.55. If R is a ring with unity, then R/A is also a ring with
unity, which is 1R +A.

Proof. You do it! See Exercise 8.61.

In Section 3.5 we showed that one could define a group using the quotient group Zn = Z/nZ.
Since Z is a ring and nZ is an ideal of Z by Exercise 8.17, it follows that Zn is also a ring. Of
course, you had already argued this in Exercise 7.10.

We can say more. You found in Exercise 7.23 that Zn is not, in general, an integral
domain, let alone a field. The relationship between maximal ideals and prime ideals that we
studied in Section 8.3 helps explain this.

Theorem 8.56. If R is a ring with unity and M is a maximal ideal of R,
then R/M is a field. The converse is also true.

Proof. (⇒) Assume that R is a ring with unity and M is a maximal ideal of R. Let X ∈ R/M and
assume that X 6= M ; that is, X is non-zero. Since X 6= M , X = x +M for some x 6∈M . Since M is
a maximal ideal, the ideal 〈x〉+M satisfies M ( 〈x〉+M = R (see Exercise 8.24, Definition 8.14,
and Proposition 8.15). By Exercise 8.22, 1 6∈M . Thus 〈1〉+M also satisfies 〈1〉+M = R. In other
words, 〈x〉+ M = 〈1〉+ M . Since 1 = 1+ 0 ∈ 〈1〉+ M , we see that 1 ∈ 〈x〉+ M , so there exist
h ∈ R, m ∈M such that 1 = h x + m. Thus 1− h x = m ∈M , and by Lemma 8.54

1+M = h x +M = (h +M ) (x +M ) .

This shows that h +M is a multiplicative inverse of X = x +M in R/M . Since X was an arbitrary
non-zero element of R/M , every element of R/M has a multiplicative inverse, and R/M is a field.

(⇐) For the converse, assume that R/M is a field. Let N be any ideal of R such that
M (N ⊆ R. Let x ∈N\M ; then x +M 6= M , and since R/M is a field, x +M has a multiplicative
inverse; call it Y with the usual representation. Thus

(xy)+M = (x +M ) (y +M ) = 1+M ,

which by Lemma 8.54 implies that xy − 1 ∈ M . Let m ∈ M such that xy − 1 = m; then 1 =
xy−m. Now, x ∈ N implies by absorption that xy ∈ N , and m ∈ M ( N implies by inclusion
that m ∈N . Closure of the subring N implies that 1 ∈N , and Exercise 8.22 implies that N = R.
Since N was an arbitrary ideal that contained M properly, M is maximal.

A similar property holds true for prime ideals.

Theorem 8.57. If R is a ring with unity and P is a prime ideal of R, then
R/P is an integral domain. The converse is also true.

Proof. (⇒) Assume that R is a ring with unity and P is a prime ideal of R. Let X ,Y ∈ R/P
with the usual representation, and assume that X Y = 0R/P = P . By definition of the operation,
X Y = (xy)+ P ; by Lemma 8.54, xy ∈ P . We claim that this implies that x ∈ P or y ∈ P .
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Assume to the contrary that x, y 6∈ P . For any z ∈ 〈x〉 〈y〉 , we have z =
∑m

k=1 (hk x) (qk y)
for an appropriate choice of hk , qk ∈ R. Recall that R is commutative and P absorbs multiplica-
tion, which means z = [

∑

(hk qk)] (xy) ∈ P . Since z was arbitrary in 〈x〉 〈y〉, we conclude that
〈x〉 〈y〉 ⊆ P . Now P is a prime ideal, so 〈x〉 ⊆ P or 〈y〉 ⊆ P ; without loss of generality, 〈x〉 ⊆ P ,
so that x ∈ 〈x〉 ⊆ P .

Since x ∈ P , Lemma 8.54 implies that x + P = P . Thus X = 0R/P .
We took two arbitrary elements of R/P , and showed that if their product was the zero

element of R/P , then one of those elements had to be P , the zero element of R/P . That is, R/P
is an integral domain.

(⇐) For the converse, assume that R/P is an integral domain. Let A,B be two ideals of
R, and assume that AB ⊆ P . Assume that A 6⊆ P and let a ∈A\P ; we have however ab ∈AB ⊆ P
for all b ∈ P . Thus

(a + P ) (b + P ) = (ab )+ P = P ∀b ∈ B .

Since R/P is an integral domain and P = 0R/P , b + P = P for all b ∈ B . By Lemma 8.54 b ∈ P
for all b ∈ B . Hence B ⊆ P . We took two arbitrary ideals of R, and showed that if their product
was a subset of P , then one of them had to be a subset of P . Thus P is a prime ideal.

A corollary gives us an alternate proof of Theorem .8.45.

Corollary 8.58. In a ring with unity, every maximal ideal is prime, but
the converse is not necessarily true.

Proof. Let R be a ring with unity, and M a maximal ideal. By Theorem 8.56, R/M is a field. By
Theorem 7.21, R/M is an integral domain. By Theorem 8.57, M is prime.

The converse is not necessarily true because not every integral domain is a field.

Exercises.

Exercise 8.59. Let R = Z5 [x ] and I =



x2 + 2x + 2
�

.
(a) Explain why

�

x2 + x + 3
�

+ I = (4x + 1)+ I .
(b) Find a factorization of x2 + 2x + 2 in R.
(c) Explain why R/I is, therefore, not a field.
(d) Find two non-zero elements of R/I whose product is the zero element of R/I .

Exercise 8.60. Prove Lemma 8.54.

Exercise 8.61. Prove Proposition 8.55.

Exercise 8.62. Consider the ideal I =



x2 + 1
�

in R = R [x ]. The purpose of this exercise is to
show that I is maximal.
(a) Explain why x2 + x + I = x−1+ I .
(b) Explain why every f ∈ R/I has the form r + I for some r ∈ R such that deg r < 2.
(c) Part (b) implies that every element of R/I can be written in the form f = (ax + b )+ I

where a, b ∈C. Show that if f + I is a nonzero element of R/I , then a2 + b 2 6= 0.
(d) Let f + I ∈ R/I be nonzero, and find g + I ∈ R/I such that g + I = ( f + I )−1; that is,

( f g )+ I = 1R/I .
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(e) Explain why part (d) shows that I is maximal.
(f) Explain why




x2 + 1
�

is not even prime if R = C [x ], let alone maximal. Show further that
this is because the observation in part (d) is false in C.

Exercise 8.63. Let F be a field, and f ∈ F [x ] be any polynomial that does not factor in F [x ].
Show that F [x ]/ 〈 f 〉 is a field.

Exercise 8.64. Recall the ideal I =



x2 + y2−4, xy−1
�

of Exercise 8.9. We want to know
whether this ideal is maximal. The purpose of this exercise is to show that it is not so “easy”
to accomplish this as it was in Exercise 8.62.
(a) Explain why someone might think naïvely that every f ∈ R/I has the form r + I where

r ∈ R and r = b x + p (y), for appropriate b ∈C and p ∈C [y ]; in the same way, someone
might think naïvely that every distinct polynomial r of that form represents a distinct
element of R/I .

(b) Show that, to the contrary, 1+ I =
�

y3−4y + x + 1
�

+ I .

Exercise 8.65. Determine necessary and sufficient conditions on a ring R such that in R [x, y ]:
(a) the ideal I = 〈x〉 is prime;
(b) the ideal I = 〈x, y〉 is maximal.

8.5: Finite Fields I

Most of the fields you have studied in the past have been infinite: Q,R,C, etc. Some fields
have not been; in Exercise 7.24 on page 162 you showed in Exercise 7.23 that if n is irreducible,
then Zn is not only an integral domain, but a field. However, that does not characterize all finite
fields. In this section we will explore finite fields; in particular we will construct some finite fields
and show that any finite field has pn elements where p, n ∈N and p is irreducible.

Before we proceed, we will need the following definition.

Definition 8.66. Let R be a ring.
• If there exists r ∈ R such that {n r : n ∈N} is infinite, then R has

characteristic zero.
• Otherwise, there exists a smallest positive integer c such that c r =

0R for all nonzero r ∈ R. In this case, R has characteristic c .

Example 8.67. The rings Z,Q,R,C have characteristic zero, since

{n ·1 : n ∈N}= N⊆Z⊆Q⊆R⊆C.

The ring Z8 has characteristic 8, since 8 · [1] = [0] and no smaller positive integer multiple of [1]
is [0].

Example 8.68. Let p ∈Z be irreducible. By Exercise 7.24, Zp is a field. Its characteristic is p.

Given these examples, you might expect the characteristic of a finite ring to be the number
of elements in the ring. This is not always the case.
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Example 8.69. Let R = Z2×Z4 = {(a, b ) : a ∈Z2, b ∈Z4}, with addition and multiplication
defined in the natural way:

(a, b )+ (c , d ) = (a + c , b + d )
(a, b ) · (c , d ) = (ac , b d ) .

It is not hard to show that R is a ring; we leave it to Exercise 8.75. It has eight elements,

R =
��

[0]2 , [0]4
�

,
�

[0]2 , [1]4
�

,
�

[0]2 , [2]4
�

,
�

[0]2 , [3]4
�

,
�

[1]2 , [0]4
�

,
�

[1]2 , [1]4
�

,
�

[1]2 , [2]4
�

,
�

[1]2 , [3]4
�	

.

However, the characteristic of R is not eight, but four:
• for any a ∈Z2, we know that 2a = [0]2 , so 4a = 2 [0]2 = [0]2; and
• for any b ∈Z4, we know that 4b = [0]4; thus
• for any (a, b ) ∈ R, we see that 4 (a, b ) = (4a, 4b ) =

�

[0]2 , [0]4
�

= 0R.

That said, we can make the following observation.

Proposition 8.70. In a ring R with multiplicative identity 1R, the char-
acteristic of a ring is determined by the multiplicative identity. That is,
if c is the smallest positive integer such that c · 1R = 0R, then c is the
characteristic of the ring.

Proof. You do it! See Exercise 8.76.

In case you are wondering why we have dedicated this much time to Definition 8.66 and Proposi-
tion 8.70, which are about rings, whereas this section is supposedly about fields, don’t forget that
a field is a commutative ring with a multiplicative identity and a little more. Thus we have been
talking about fields, but we have also been talking about other kinds of rings as well. This is one
of the nice things about abstraction: later, when we talk about other kinds of rings that are not
fields but are commutative and have a multiplicative identity, we can still apply Proposition 8.70.

At any rate, it is time to get down into the dirt of building finite fields. The standard
method of building a finite field is different from what we will do here, but the method used here
is an interesting application of quotient rings.

Notation 8.71. Our notation for a finite field with n elements is Fn . However, we cannot yet
say that Fp = Zp whenever p is prime.

Example 8.72. We will build finite fields with four and sixteen elements. In the exercises, you
will use the same technique to build fields of nine and twenty-seven elements.

Case 1. F4
Start with the polynomial ring Z2 [x ]. We claim that f (x) = x2 + x + 1 does not factor in
Z2 [x ]. If it did, it would have to factor as a product of linear polynomials; that is,

f (x) = (x + a) (x + b )
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where a, b ∈Z2. This implies that a is a root of f (remember that in Z2, a =−a), but f has
no zeroes:

f (0) = 02 + 0+ 1 = 1 and

f (1) = 12 + 1+ 1 = 1.

Thus f does not factor. By Exercise 8.63, I = 〈 f 〉 is a maximal ideal in R = Z2 [x ], and by
Theorem 8.56, R/I is a field.

How many elements does this field have? Let X ∈ R/I ; choose a representation g + I of X
where g ∈ R. I claim that we can assume that deg g < 2. Why? If deg g ≥ 2 then we can
subtract multiples of f ; since f + I is the zero element of R/I , this does not affect X .

Given that deg g < 2, there must be two terms in g : x1 and x0. Each of these terms can
have one of two coefficients: 0 or 1. This gives us 2× 2 = 4 distinct possibilities for the
representation of X ; thus there are 4 elements of R/I . We can write them as

I , 1+ I , x + I , x + 1+ I .

Case 2. F16

Start with the polynomial ring Z2 [x ]. We claim that f (x) = x4 + x + 1 does not factor in
Z2 [x ]; if it did, it would have to factor as a product of either a linear and cubic polynomial,
or as a product of two quadratic polynomials. The former is impossible, since neither 0 nor
1 is a zero of f . As for the second, suppose that f =

�

x2 + ax + b
��

x2 + c x + d
�

, where
a, b , c , d ∈Z2. Let’s consider this possibility: If

x4 + x + 1 = x4 +(a + c) x3 +(ac + b + d ) x2

+(ad + b c) x + d b ,

and since (from linear algebra) equal polynomials must have the same coefficients for like
terms, we have the system of linear equations

a + c = 0 (21)
ac + b + d = 0

ad + b c = 1
b d = 1.

From (21) we conclude that a = −c , but in Z2 this implies that a = c . The system now
simplifies to

a2 + b + d = 0 (22)
a (b + d ) = 1 (23)

b d = 1. (24)

Again, in Z2 we know that a2 = a regardless of the value of a, so (22) implies a =− (b + d ) =
b + d . Substituting this into (23), we have a2 = 1, which implies that a = 1. Hence b + d = 1,
which implies that one of b and d is 1, while the other is 0. This implies that b d = 0,
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contradicting (24).
Thus f does not factor. By Exercise 8.63, I = 〈 f 〉 is a maximal ideal in R = Z2 [x ], and by
Theorem 8.56, R/I is a field.
How many elements does this field have? Let X ∈ R/I ; choose a representation g + I of X
where g ∈ R. Without loss of generality, we can assume that deg g < 4, since if deg g ≥ 4 then
we can subtract multiples of f ; since f + I is the zero element of R/I , this does not affect X .
Since deg g < 4, there are four terms in g : x3, x2, x1, and x0. Each of these terms can have one
of two coefficients: [0] or [1]. This gives us 24 = 16 distinct possibilities for the representation
of X ; thus there are 16 elements of R/I . We can write them as

I , 1+ I ,
x2 + I x2 + 1+ I ,

x3 + I , x3 + 1+ I ,
x3 + x2 + I , x3 + x2 + 1+ I ,

x + I , x + 1+ I ,
x2 + x + I , x2 + x + 1+ I ,
x3 + x + I , x3 + x + 1+ I ,

x3 + x2 + x + I , x3 + x2 + x + 1+ I .

You may have noticed that in each case we ended up with pn elements where p = 2. Since
we started with Zp , you might wonder if the generalization of this to arbitrary finite fields starts
with Zp [x ], finds a polynomial that does not factor in that ring, then builds the quotient ring.
Yes and no. One does start with Zp , and if we could find an irreducible polynomial of degree n
over Zp , then we would be finished. Unfortunately, finding an irreducible polynomial of Zp is
not easy.

Instead, one considers f (x) = x pn − x; from Euler’s Theorem (6.45) we deduce (via in-
duction) that f (a) = 0 for all a ∈ Zp . One can then use field extensions from Galois Theory to
construct pn roots of f , so that f factors into linear polynomials. Extend Zp by those roots;
the resulting field has pn elements. However, this is beyond the scope of this section. We settle
instead for the following.

Theorem 8.73. Suppose that Fn is a finite field with n elements. Then n
is a power of an irreducible integer p, and the characteristic of Fn is p.

Proof. The proof has three steps.29

First, we show that Fn has characteristic p, where p is an irreducible integer. Let p be the
characteristic of Fn . Since Fn is finite, p 6= 0. Suppose that p = ab for some a, b ∈N+. Now

0Fn
= p ·1Fn

= (ab ) ·1Fn
=
�

a ·1Fn

��

b ·1Fn

�

.

Recall that a field is an integral domain; by definition, it has no zero divisors. Hence a ·1Fn
= 0Fn

or b · 1Fn
= 0Fn

; without loss of generality, a · 1Fn
= 0Fn

. By Proposition 8.70, p is the smallest

29Adapted from the proofs of Theorems 31.5, 42.4, and 46.1 in [AF05].



5. Finite Fields I 198

positive integer c such that c · 1Fn
= 0Fn

; thus p ≤ a. However, a divides p, so a ≤ p. This
implies that a = p and b = 1; since p = ab was an arbitrary factorization of p, p is irreducible.

Second, we claim that for any irreducible q ∈N that divides n = |Fn |, we can find x ∈Fn
such that q · x = 0Fn

. Let q ∈N such that q is irreducible and q divides n = |Fn |. Consider the
additive group of Fn . Let

L=

(

�

a1,a2, . . . ,aq

�

∈Fq
n :

q
∑

i=1

ai = 0

)

;

that is, L is the set of all lists of q elements of Fn such that the sum of those elements is the
additive identity. For example,

q ·0Fn
= 0Fn

+ 0Fn
+ · · ·+ 0Fn

= 0Fn
,

so
�

0Fn
, 0Fn

, . . . , 0Fn

�

∈L.
Recall the group of permutations Sq . Let σ ∈ Sq ; the commutative property implies

σ
�

a1,a2, . . . ,aq

�

∈L. In particular, if σ is an element of

�

1 2 · · · q
��

, then σ
�

a1,a2, . . . ,aq

�

∈
L. In fact, when we permute any element A∈ L by some σ ∈


�

1 2 · · · q
��

, then σ (A) 6= A
implies that σ 6=

�

1
�

and A has at least two distinct elements. Assume that σ 6=
�

1
�

; if
σ (A) 6= A, then all the permutations of


�

1 2 · · · q
��

generate q different lists. Let

• M1 be the subset of L that is invariant under Sq — that is, if A ∈M1 and σ ∈ Sq , then
σ (A) = A; and
• M2 be a subset of L containing exactly one permutation of any A∈ L that is not invariant

under Sq — that is, if A∈M2, then there exists σ ∈ Sq such that σ (A) 6= A, but only one
such permutation of A is in Sq .

Example 8.74. In F6 with q = 3, we know that 1+ 3+ 2 = 0, so A = (1,3,2) ∈ L. Certainly A
is not invariant under S3, since if σ =

�

1 2
�

, we have σ (A) = (3,1,2) 6= A. This does not mean
that A∈M2; rather, exactly one of

(1,3,2) , (3,1,2) , (2,3,1) , (1,2,3) , (3,2,1) , (2,1,3)

is in M2. Notice, therefore, that each element of M2 corresponds to q ! = 6 elements of L.

Back to the proof!
Which elements are in M1? Let A∈L, and notice that if ai 6= a j , then σ =

�

i j
�

swaps
those two elements in σ (A). So if ai 6= a j for any i and j , then A is not invariant under Sq .
Thus, the elements of M1 are those tuples whose entries are identical; that is,

�

a1, . . . ,aq

�

∈M1

iff a1 = · · ·= aq . In particular,
�

0Fn
, 0Fn

, . . . , 0Fn

�

∈M1.
Let |M1| = r and |M2| = s . Recall from the example above that each element of M2

corresponds to q ! elements of L. Since each element of L is either invariant under Sq , and thus
in M1, or modified by some permutation of Sq , and thus in M2, we can count the elements of L
by

|L|= |M1|+ q ! · |M2|= r + q ! · s .
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In addition, any element of L satisfies

aq =−
�

a1 + a2 + · · ·+ aq−1

�

,

so we can choose any elements from Fn that we want for a1, . . . , aq−1, while the final, qth element
is determined. Since Fn has n elements, we have n choices for each of these, so

|L|= |Fn |
q−1 = nq−1.

By substitution,
nq−1 = r + q ! · s .

Recall that q | n, say n = qd for d ∈N, so

(qd )q−1 = r + q ! · s
q
�

d (qd )q−2− (q−1)! · s
�

= r ,

so q | r . Recall also that
�

0Fn
, 0Fn

, . . . , 0Fn

�

∈ L; this tells us that r ≥ 1. Since q is irreducible,
q 6= 1; so r 6= 1, so r > 1. Since r = |M1|, it must be that M1 contains a non-zero element; call
it A. Since M1 ⊆L,

a1 + a2 + · · ·+ aq = 0.

Recall that elements of M1 are those whose entries are identical; that is, a1 = a2 = · · · = aq . By
substitution, then,

a1 + a1 + · · ·+ a1 = 0.

This is a sum of q copies of a1, so
q · a1 = 0Fn

.

Third, recall that, in the first claim, we showed that the characteristic of Fn is an irre-
ducible positive integer, p. We claim that for any irreducible q ∈Z that divides n, q = p. To see
this, let q be an irreducible integer that divides n. Recall that in the second claim, we showed that
there existsed some x ∈ Fn such that q · x = 0Fn

. Choose such an x. Since the characteristic of
Fn is p, we also have p x = 0. Consider the additive cyclic group 〈x〉; by Exercise 2.61 on page 45,
ord (x) | p , but p is irreducible, so ord (x) = 1 or ord (x) = p. Since x 6= 0Fn

, ord (x) 6= 1; thus
ord (x) = p. Likewise, p | q , and since both p and q are irreducible, this implies that q = p.

We have shown that if q | n, then q = p. Thus all the irreducible divisors of n are p, so n
is a power of p.

A natural question to ask is whether Fpn exists for every irreducible p and every n ∈N+. You
might think that the answer is yes; after all, it suffices to find an polynomial of degree n that is
irreducible over Fp . However, it is not obvious that such polynomials exist for every possible p
and n. That is the subject of Section 9.3.

Exercises.

Exercise 8.75. Recall R = Z2×Z4 from Example 8.69.
(a) Show that R is a ring, but not an integral domain.
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(b) Show that for any two rings R1 and R2, R1×R2 is a ring with addition and multiplication
defined in the natural way.

(c) Show that even if the rings R1 and R2 are fields, R1×R2 is not even an integral domain, let
alone a field. Observe that this argument holds true even for infinite fields, since the rings
R1 and R2 are arbitrary.

(d) Show that for any n rings R1, R2, . . . , Rn , R1×R2× · · · ×Rn is a ring with addition and
multiplication defined in the natural way.

In other words, we can construct direct products of rings.

Exercise 8.76. Prove Proposition 8.70.

Exercise 8.77. Build the addition and multiplication tables of the field of four elements that we
constructed in Example 8.72.

Exercise 8.78. Construct a field with 9 elements, and list them all.

Exercise 8.79. Construct a field with 27 elements, and list them all.

Exercise 8.80. Does every infinite field have characteristic 0?

8.6: Ring isomorphisms

As with groups and rings, it is often useful to show that two rings have the same ring
structure. With monoids and groups, we defined isomorphisms to do this. We will do the same
thing with rings. However, ring homomorphisms are a little more complicated, as rings have two
operations, rather than one.

Definition 8.81. Let R and S be rings. A function f : R→ S is a ring
homomorphism if for all a, b ∈ R

f (a + b ) = f (a)+ f (b )

and
f (ab ) = f (a) f (b ) .

If, in addition, f is one-to-one and onto, we call it a ring isomorphism.

Right away, you should see that a ring homomorphism is a special type of group homomor-
phism with respect to addition. Even if the ring has unity, however, it might not be a monoid
homomorphism with respect to multiplication, because there is no guarantee that f (1R) = 1S .

Example 8.82. Let f : Z→Z2 by f (x) = [x ]. The homomorphism properties are satisfied:

f (x + y) = [x + y ] = [x ] + [y ] = f (x)+ f (y)

and f is onto, but f is certainly not one-to-one, inasmuch as f (0) = f (2).

On the other hand, consider Example 8.83.
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Example 8.83. Let f : Z→ 2Z by f (x) = 4x. In Example 4.3 on page 79 we showed that this
was a homomorphism of groups. However, it is not a homomorphism of rings, because it does
not preserve multiplication:

f (xy) = 4xy but f (x) f (y) = (4x) (4y) 6= f (xy) .

Example 8.83 drives home the point that rings are more complicated than groups on ac-
count of having two operations. It is harder to show that two rings are homomorphic, and
therefore harder to show that they are isomorphic. This is especially interesting in this example,
since we had shown earlier that Z ∼= nZ as groups for all nonzero n. If this is the case with rings,
then we have to find some other function between the two. Theorem (8.84) shows that this is not
possible, in a way that should not surprise you.

Theorem 8.84. Let R be a ring with unity. If there exists an onto ho-
momorphism between R and another ring S, then S is also a ring with
unity.

Proof. Let S be a ring such that there exists a homomorphism f between R and S. We claim
that f (1R) is an identity for S.

Let y ∈ S; the fact that R is onto implies that f (x) = y for some x ∈ R. Applying the
homomorphism property,

y = f (x) = f (x ·1R) = f (x) f (1R) = y · f (1R) .

A similar argument shows that y = f (1R) · y. Since y was arbitrary in S, f (1R) is an identity for
S.

We can deduce from this that Z and nZ are not isomorphic as rings whenever n 6= 1:
• to be isomorphic, there would have to exist an onto function from Z to nZ;
• Z has a multiplicative identity;
• by Theorem 8.84, nZ would also have to have a multiplicative identity;
• but nZ does not have a multiplicative identity when n 6= 1.

Here are more useful properties of a ring homomorphism.

Theorem 8.85. Let R and S be rings, and f a ring homomorphism from
R to S. Each of the following holds:
(A) f (0R) = 0S ;
(B) for all x ∈ R, f (−x) =− f (x);
(C) for all x ∈ R, if x has a multiplicative inverse and f is onto, then

f (x) has a multiplicative inverse, and f
�

x−1�= f (x)−1.

Proof. You do it! See Exercise 8.90 on page 205.

We have not yet encountered an example of a ring isomorphism, so let’s consider one.

Example 8.86. Let F be any field, and p = ax + b ∈ F [x ], where a 6= 0. Recall from Exer-
cise 8.63 that 〈p〉 is maximal in F [x ]. For convenience, we will write R = F [x ] and I = 〈p〉; by
Theorem 8.56, R/I is a field.
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Are F and R/I isomorphic? Let f : F→ R/I in the following way: let f (c) = c + I for
every c ∈F. Is f a homomorphism?
Homomorphism property? Let c , d ∈ F; using the definition of f and the properties of coset

addition,

f (c + d ) = (c + d )+ I
= (c + I )+ (d + I ) = f (c)+ f (d ) .

Similarly,
f (cd ) = (cd )+ I = (c + I ) (d + I ) = f (c) f (d ) .

One-to-one? Let c , d ∈F and suppose that f (c) = f (d ). Then c + I = d + I ; by Lemma 8.54,
c− d ∈ I . By closure, c− d ∈F, while I = 〈ax + b 〉 is the set of all multiples of ax + b .
Since a 6= 0, the only rational number in I is 0, which implies that c − d = 0, so c = d .

Onto? Let X ∈ R/I ; choose a representation X = p + I where p ∈ R. Divide p by ax + b to
obtain

p = q (ax + b )+ r

where q , r ∈ R and deg r < deg (ax + b ) = 1. Since ax + b ∈ I , absorption tells us that
q (ax + b ) ∈ I , so

p + I = [q (ax + b )+ r ] + I
= [q (ax + b )+ I ] + (r + I )
= I +(r + I )
= r + I .

Now, deg r < 1 implies that deg r = 0, or in other words, r is a constant. The constants
of R = F [x ] are elements of F, so r ∈F. Hence

f (r ) = r + I = p + I ,

and f is onto.
We have shown that there exists a one-to-one, onto ring homomorphism from F to F [x ]; as a
consequence, F and F [x ] are isomorphic as rings.

We conclude with an important result. First, we need to revisit the definition of a kernel.

Definition 8.87. Let R and S be rings, and f : R→ S a homomorphism
of rings. The kernel of f , denoted ker f , is the set of all elements of R
that map to 0S . That is,

ker f = {x ∈ R : f (x) = 0S} .

You will show in Exercise 8.91 that ker f is an ideal of R, and that the function g : R→ R/ ker f
by g (x) = x +ker f is a homomorphism of rings.
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Theorem 8.88. Let R, S be rings, and f : R → S an onto homomor-
phism. Let g : R → R/ ker f be the natural homomorphism g (r ) =
r + ker f . There exists an isomorphism h : R/ ker f → S such that
f = h ◦ g .

Proof. Define h by h (X ) = f (x) where X = x +ker f . Is f an isomorphism? Since its domain
consists of cosets, we must show first that it’s well-defined:

well-defined? Let X ∈ R/ ker f and consider two representations X = x +ker f and X = y +
ker f . We must show that h (X ) has the same value regardless of which represen-
tation we use. Now, x +ker f = X = y +ker f , so by Lemma 8.54, x− y ∈ ker f .
From the definition of the kernel, f (x− y) = 0S . We can apply Theorem 8.85 to
see that

0S = f (x− y)
= f (x +(−y))
= f (x)+ f (−y)
= f (x)+ [− f (y)]

f (y) = f (x) .

Thus, we have h (y +ker f ) = f (y) = f (x) = h (x +ker f ). In other words, the
representation of X does not affect the value of h, and h is well-defined.

homomorphism property? Let X ,Y ∈ R/ ker f and consider the representations X = x +ker f
and Y = y +ker f . Since f is a ring homomorphism,

h (X +Y ) = h ((x +ker f )+ (y +ker f ))
= h ((x + y)+ker f )
= f (x + y)
= f (x)+ f (y)
= h (x +ker f )+ f (y +ker f )
= h (X )+ h (Y )

and similarly

h (X Y ) = h ((x +ker f ) · (y +ker f ))
= h ((xy)+ker f )
= f (xy)
= f (x) f (y)
= h (x +ker f ) · f (y +ker f )
= h (X ) · h (Y ) .

Thus h is a ring homomorphism.
one-to-one? Let X ,Y ∈ R/ ker f and suppose that h (X ) = h (Y ). By the definition of h,

f (x) = f (y) where X = x + ker f and Y = y + ker y for appropriate x, y ∈ R.
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Applying Theorem 8.85, we see that

f (x) = f (y) =⇒ f (x)− f (y) = 0S

=⇒ f (x− y) = 0S

=⇒ x− y ∈ ker f
=⇒ x +ker f = y +ker f ,

so X = Y . Thus h is one-to-one.
onto? Let y ∈ S. Since f is onto, there exists x ∈ R such that f (x) = y. Then

h (x +ker f ) = f (x) = y, so h is onto.

We have shown that h is a well-defined, one-to-one, onto homomorphism of rings. Thus h is an
isomorphism from R/ ker f to S.

Example 8.89. Let f : Q [x ] → Q by f (p) = p (2) for any polynomial p ∈ Q [x ]. That is, f
maps any polynomial to the value that polynomial gives for x = 2. For example, if p = 3x3− 1,
then p (2) = 3 (2)3−1 = 23, so f

�

3x3−1
�

= 23.
Is f a homomorphism? For any polynomials p, q ∈Q [x ], we have

f (p + q) = (p + q) (2) ;

applying a property of polynomial addition we have

f (p + q) = (p + q) (2) = p (2)+ q (2) = f (p)+ f (q) .

A similar property of polynomial multiplication gives

f (pq) = (pq) (2) = p (2) · q (2) = f (p) f (q) ,

so f is a homomorphism.
Is f onto? Let a ∈ Q; we need a polynomial p ∈ Q [x ] such that p (2) = a. The easiest

way to do this is use a linear polynomial, and p = x +(a−2) will work, since

f (p) = p (2) = 2+(a−2) = a.

Hence f is onto.
Is f one-to-one? The answer is no. We already saw that f

�

3x3−1
�

= 23, and from our
work showing that f is onto, we deduce that f (x + 21) = 23, so f is not one-to-one.

Let’s apply Theorem 8.88 to obtain an isomorphism. First, identify ker f : it consists of
all the polynomials p ∈Q [x ] such that p (2) = 0. The Factor Theorem (7.34) implies that x− 2
must be a factor of any such polynomial. In other words,

ker f =
�

p ∈Q [x ] : (x−2) divides p
	

= 〈x−2〉 .

Since ker f = 〈x−2〉, Theorem 8.88 tells us that there exists an isomorphism between the quo-
tient ring Q [x ]/ 〈x−2〉 and Q.

Notice, as in Example 8.86, that x− 2 is a linear polynomial. Linear polynomials do not
factor. By Exercise 8.63, 〈x−2〉 is a maximal ideal; so Q [x ]/ 〈x−2〉must be a field—as is Q.
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Exercises.

Exercise 8.90. Prove Theorem 8.85.

Exercise 8.91. Let R and S be rings, and f : R→ S a homomorphism of rings.
(a) Show that ker f is an ideal of R.
(b) Show that the function g : R → R/ ker f by g (x) = x + ker f is a homomorphism of

rings.

Exercise 8.92. Let R be a ring and a ∈ R. The evaluation map with respect to a is ϕa : R [x ]→ R
by ϕa ( f ) = f (a); that is, ϕa maps a polynomial to its value at a.
(a) Suppose R = Q [x ] and a = 2/3, find ϕa

�

2x2−1
�

and ϕa (3x−2).
(b) Show that the evaluation map is a ring homomorphism.
(c) Recall from Example 8.86 that Q is isomorphic to the quotient ring Q [x ]/ 〈ax + b 〉where

ax + b ∈Q [x ] is non-zero. Use Theorem 8.88 to show this a different way.

Exercise 8.93. Use Theorem 8.88 to show that Q [x ]/



x2� is isomorphic to
��

a b
0 a

��

⊂Q2×2.

Note: Q2×2 is not commutative! However, Q [x ]/



x2� is commutative, so this isomorphism
shows that the given susbet of Q2×2 is, too. (It might not be the most efficient way of showing
that, of course.)

Exercise 8.94. In this exercise we show that R is not isomorphic to Q as rings, and C is not
isomorphic to R as rings.
(a) Assume to the contrary that there exists an isomorphism f from R to Q.

(i) Use the properties of an onto homomorphism to find f (1).
(ii) Use the properties of a homomorphism with the result of (i) to find f (2).
(iii) Use the properties of a homomorphism to obtain a contradiction with f

�p
2
�

.
(b) Find a similar proof that C and R are not isomorphic.

Exercise 8.95. Let p ∈Z be irreducible, and R = Zp [x ]. Show that ϕ : R→ R by ϕ ( f ) = f p is
an automorphism. This is called the Frobenius automorphism.

Exercise 8.96. Show that if R is an integral domain, then Frac (R) is isomorphic to the intersec-
tion of all fields containing R as a subring.



Chapter 9:
Factorization

In this chapter we begin a turn toward applications of ring theory. In particular, here we
will build up some basic algorithms for factoring polynomials. To do this, we will study more
precisely the rings that factor, then delve into the algorithms themselves.

Remark 9.1. In this chapter, every ring is an integral domain, unless otherwise specified.

9.1: The link between factoring and ideals

We start with two important problems for factorization: the link between factoring and
ideals, and the distinction between irreducible and prime elements of a ring.

As for the latter, we mentioned in Chapter 6 that although irreducible integers are prime
and vice-versa, the same would not hold true later. Here we want to explore the question,

When is a prime element of a ring irreducible, and vice-versa?
Before answering that question, we should first define what are meant by the two terms. In fact,
their definitions are identical to the definitions in Chapter 6. Compare the definitions below to
Definitions 6.26 and 6.29.

Definition 9.2. Let R be a commutative ring with unity, and a, b , c ∈
R\{0}. We say that
• a is a unit if a has a multiplicative inverse;
• a and b are associates if a = b c and c is a unit;
• a is irreducible if a is not a unit and for every factorization a = b c ,

one of b or c is a unit; and
• a is prime if a is not a unit and whenever a | b c , we can conclude

that a | b or a | c .

Example 9.3. Consider the ring Q [x ].
• The only units are the rational numbers, since no polynomial has a multiplicative inverse.
• 4x2 + 6 and 6x2 + 9 are associates, since 4x2 + 6 = 2

3

�

6x2 + 9
�

, and 2
3 is a unit. Notice that

they are not associates in Z [x ], however.
• x + q is irreducible for every q ∈ Q. x2 + q is also irreducible for every q ∈ Q such that

q > 0.

The link between divisibility and principal ideals that you studied in Exercise 8.19(b) implies that
we can rewrite Definition 9.2 in terms of ideals.

Theorem 9.4. Let R be an integral domain, and let a, b ∈ R.
(A) a is a unit if and only if 〈a〉= R.
(B) a and b are associates if and only if 〈a〉= 〈b 〉.
(C) In a principal ideal domain, a is irreducible if and only if 〈a〉 is

maximal.
(D) In a principal ideal domain, a is prime if and only if 〈a〉 is prime.
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Proof. We show (A) and (C), and leave (B) and (D) to the exercises.
(A) This is a straightforward chain: a is a unit if and only if there exists b ∈ R such that

ab = 1R if and only if 1R ∈ 〈a〉 if and only if R = 〈a〉.
(C) Assume that R is a principal ideal domain, and suppose first that a is irreducible. Let

B be an ideal of R such that 〈a〉 ⊆ B ⊆ R. Since R is a principal ideal domain, B = 〈b 〉 for some
b ∈ R. Since a ∈ B = 〈b 〉, a = r b for some r ∈ R. By definition of irreducible, r or b is a unit. If
r is a unit, then by definition, a and b are associates, and by part (B) 〈a〉= 〈b 〉= B . Otherwise,
b is a unit, and by part (A) B = 〈b 〉 = R. Since 〈a〉 ⊆ B ⊆ R implies 〈a〉 = B or B = R, we can
conclude that 〈a〉 is maximal.

For the converse, we show the contrapositive. Assume that a is not irreducible; then there
exist r , b ∈ R such that a = r b and neither r nor b is a unit. Thus a ∈ 〈b 〉 and by Lemma 8.29 and
part (B) of this lemma, 〈a〉( 〈b 〉( R. In other words, 〈a〉 is not maximal. By the contrapositive,
then, if 〈a〉 is maximal, then a is irreducible.

Remark 9.5. In the proof, we do need R to be an integral domain to show (B). For a counterex-
ample, consider R = Z6; we have 〈2〉 = 〈4〉, but 2 · 2 = 4 and 4 · 2 = 2. Neither 2 nor 4 is a unit,
so 2 and 4 are not associates.

We did not need the assumption that R be a principal ideal domain to show that if 〈a〉 is
maximal, then a is irreducible. So in fact this remains true even when R is not a principal ideal
domain.

On the other hand, if R is not a principal ideal domain, then it can happen that a is
irreducible, but 〈a〉 is not maximal. Returning to the example C [x, y ] that we exploited in Theo-
rem 8.47 on page 188, x is irreducible, but 〈x〉( 〈x, y〉(C [x, y ].

In a similar way, the proof you develop of part (D) should show that if 〈a〉 is prime, then
a is prime even if R is not a principal ideal domain. The converse, however, might not be true.
In any case, we have the following result.

Theorem 9.6. Let R be an integral domain, and let p ∈ R. If 〈p〉 is
maximal, then p is irreducible, and if 〈p〉 is prime, then p is prime.

It is now easy to answer part of the question that we posed at the beginning of the section.

Corollary 9.7. In a principal ideal domain, if an element p is irreducible,
then it is prime.

Proof. You do it! See Exercise 9.12.

The converse is true even if we are not in a principal ideal domain.

Theorem 9.8. If R is an integral domain and p ∈ R is prime, then p is
irreducible.

Proof. Let R be a ring with unity, and p ∈ R. Assume that p is prime. Suppose that there exist
a, b ∈ R such that p factors as p = ab . Since p · 1 = ab , the definition of prime implies that
p | a or p | b . Without loss of generality, there exists q ∈ R such that pq = a. By substition,
p = ab = (pq) b . Since we are in an integral domain, it follows that 1R = q b ; that is, b is a unit.
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We took an arbitrary prime p that factored, and found that one of its factors is a unit. By
definition, then, p is irreducible.

To resolve the question, we must still decide whether:
1. an irreducible element is prime even when the ring is not a principal ideal domain; or
2. a prime element is irreducible even when the ring is not an integral domain.

The answer to both question is, “only sometimes”. We can actually get there with a more sophis-
ticated structure, but we don’t have the information yet.

Example 9.9. Let
Z
�p
−5
�

=
¦

a + b
p
−5 : a, b ∈Z

©

.

You will show in the exercises that this is a ring. However, it is not a principal ideal domain.
Rather than show this directly, consider the fact that

6 = 2 ·3 =
�

1+
p
−5
��

1−
p
−5
�

.

It is not hard to see that 2, 3, 1+
p
−5, and 1−

p
−5 are irreducible in this ring. The above

equation implies that they cannot be prime, either, since (for example) 2 divides the product
�

1+
p
−5
��

1−
p
−5
�

but neither of the factors. We know from Corollary 9.7 that irreducibles
are prime in a principal ideal domain; hence, Z

�p
−5
�

must not be a principal ideal domain.

Example 9.10. Consider the ring Z18. It is not hard to verify that 2 is a prime element of Z18.
However, 2 is not irreducible, since 2 = 72 = 12 ·6, neither of which is a unit.

We have now answered the question posed at the beginning of the chapter:
• If R is an integral domain, then prime elements are irreducible.
• If R is a principal ideal domain, then irreducible elements are prime.

Because we are generally interested in factoring only for integral domains, many authors restrict
the definition of prime so that it is defined only in an integral domain. In this case, a prime
element is always irreducible, although the converse might not be true, since not all integral
domains are principal ideal domains. We went beyond this in order to show, as we did above,
why it is defined in this way. Since we maintain throughout most of this chapter the assumption
that all rings are integral domains, one could shorten this (as many authors do) to,

A prime element is always irreducible, but an irreducible element is not always prime.

Exercises.

Exercise 9.11. Prove parts (B) and (D) of Theorem 9.4.

Exercise 9.12. Prove Corollary 9.7.

Exercise 9.13. Prove that Z
�p
−5
�

is a ring.

Exercise 9.14. Show that in an integral domain, factorization terminates iff every ascending se-
quence of principal ideals 〈a1〉 ⊆ 〈a2〉 ⊆ · · · is eventually stationary; that is, for some n ∈ N+,
〈ai 〉=




ai+1
�

for all i ≥ n.
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Exercise 9.15. Show that in a principal ideal domain R, a greatest common divisor d of a, b ∈ R
always exists, and:
(a) 〈d 〉= 〈a, b 〉; and
(b) there exist r , s ∈ R such that d = ra + s b .

9.2: Unique Factorization domains

An important fact about the integers is that every integer factors uniquely into a product
of irreducible elements. We saw this in Chapter 6 with the Fundamental Theorem of Arithmetic
(Theorem 6.32). This is not true in every ring. For example, consider Z

�

−
p

5
�

from Exer-
cise 7.15; here 6 = 2 ·3, but 6 =

�

1+
p
−5
��

1−
p
−5
�

. In this ring, 2, 3, 1+
p
−5, and 1−

p
−5

are all irreducible, so 6 factors two different ways as a product of irreducibles. We are interested
in unique factorization, so we will start with a definition:

Definition 9.16. An integral domain is a unique factorization domain
if every r ∈ R factors into irreducibles r = pα1

1 pα2
2 · · · p

αn
n , and if this

factorization is unique up to order and associates.

The Fundamental Theorem of Arithmetic tells us that Z is a unique factorization domain. What
are some others?

Example 9.17. Z [x ] is a unique factorization domain. To see this takes two major steps. Let
f ∈ Z [x ]. If the terms of f have a common divisor, we can factor that out easily; for example,
2x2+4x = 2x (x + 2). So we may assume, without loss of generality, that the terms of f have no
common factor. If f is not irreducible, then we claim it must factor as two polynomials of smaller
degree. Otherwise, f would factor as a g where dega = 0, which implies a ∈ Z, which implies
that a is a common factor of the terms of f , contradicting the hypothesis. Since the degrees of
the factors of f are integers, and they decrease each time we factor a polynomial further, the
well-ordering property of Z implies that this process must eventually end with irreducibles; that
is, f = p1 p1 · · · pn — but i 6= j does not imply that pi 6= p j .

Suppose that we can also factor f into irreducibles by f = q1 · · · qn . Consider f as an
element of Q [x ], which by Exercise 8.38 is a principal ideal domain. Corollary 9.7 tells us that
irreducible elements of Q [x ] are prime. Hence p1 divides q j for some j = 1, . . . , m. Without loss
of generality, p1 | q1. Since q1 is also irreducible, p1 and q1 are associates; say p1 = a1q1 for some
unit a1. The units of Q [x ] are the nonzero elements of Q, so a1 ∈Q\{0}. And so forth; each pi
is an associate of a unique q j in the product.

Right now we have pi and q j as associates in Q [x ]. If we can show that each ai = ±1,
then we will have shown that the corresponding pi and q j are associates in Z [x ] as well, so we
will have shown that Z [x ] is a unique factorization domain. Write a1 =

b
c where gcd (b , c) = 1;

we have p1 =
b
c · q1. We can rewrite this as c p1 = b q1. Lemma 6.15 implies both that c | q1 and

that b | p1. However, if the greatest common divisor of the coefficients of p1 is not 1, then p1
would not be irreducible in Z [x ]! So b , c = ±1, which implies that a1 = ±1. Hence p1 and q1
are associates in Z [x ].

The same argument can be applied to the remaining irreducible factors. Thus, the factor-
ization of f was unique up to order and associates.
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This result generalizes to an important class of rings.

Theorem 9.18. Every principal ideal domain is a unique factorization
domain.

Proof. Let R be a principal ideal domain, and f ∈ R.
First we show that f has a factorization. Suppose f is not irreducible; then there exist

p1, p2 ∈ R such that f = p1 p2 and f is not an associate of either. By Theorem 9.4, 〈 f 〉( 〈p1〉 and
〈 f 〉( 〈p2〉. If p1 is not irreducible, then there exist p3, p4 ∈ R such that p1 = p3 p4 and p1 is not
an associate of either. Again, 〈p1〉( 〈p3〉 and 〈p1〉( 〈p4〉. Continuing in this fashion, we obtain
an ascending chain of ideals

〈 f 〉( 〈p1〉( 〈p3〉( · · · .

By Theorem 8.35, a principal ideal domain satisfies the ascending chain condition; thus, this
chain must terminate eventually. It can terminate only if we reach an irreducible polynomial.
This holds for each chain, so they must all terminate with irreducible polynomials. Combining
the results, we obtain f = pα1

1 · · · p
αm
m where each pi is irreducible.

Now we show the factorization is unique. Suppose that f = pα1
1 · · · p

αm
m and f = qβ1

1 · · · q
βn
n

where m ≤ n and the pi and q j are irreducible. Recall that irreducible elements are prime in a
principal ideal domain (Corollary 9.7). Hence p1 divides one of the qi ; without loss of generality,
p1 | q1. However, q1 is irreducible, so p1 and q1 must be associates; say p1 = a1q1 for some unit
a1 ∈ R. Since we are in an integral domain, we can cancel p1 and q1 from f = f , obtaining

pα2
2 · · · p

αm
m = a−1

1 qβ1−α1
1 qβ2

2 · · · q
βn
n .

Since p2 is irreducible, hence prime, we can continue this process until we conclude with 1R =
a−1

1 · · ·a
−1
m qγ1

1 · · · q
γn
n . By definition, irreducible elements are not units, so γ1, . . . ,γn are all zero.

Thus the factorization is unique up to ordering and associates.
We chose an arbitrary element of an arbitrary principal ideal domain R, and showed that

it had only one factorization into irreducibles. Thus every principal ideal domain is a unique
factorization domain.

Corollary 9.19. Every Euclidean domain is a unique factorization do-
main.

Proof. This is a consequence of Theorem 9.18 and Theorem 8.32.

The converse is false; see Example 7.45. However, the definition of a greatest common divisor that
we introduced with Euclidean domains certainly generalizes to unique factorization domains.

We can likewise extend a result from a previous section.

Theorem 9.20. In a unique factorization domain, irreducible elements
are prime.

Proof. You do it! See Exercise 9.24.
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Corollary 9.21. In a unique factorization domain:
• an element is irreducible iff it is prime; and
• an ideal is maximal iff it is prime.

In addition, we can say the following:

Theorem 9.22. In a unique factorization domain, greatest common divi-
sors are unique up to associates.

Proof. Let R be a unique factorization domain, and let f , g ∈ R. Let d , bd be two gcds of f , g .
Let d = pα1

1 · · · p
αm
m be an irreducible factorization of d , and bd = qβ1

1 · · · q
βn
n be an irreducible

factorization of bd . Since d and bd are both gcds, d | bd and bd | d . So p1 | bd . By Theorem 9.20,
irreducible elements are prime in a unique factorization domain, so p1 | qi for some i = 1, . . . , n.
Without loss of generality, p1 | q1. Since q1 is irreducible, p1 and q1 must be associates.

We can continue this argument with d
p1

and
bd

p1
, so that d = a bd for some unit a ∈ R. Since

d and bd are unique up to associates, greatest common divisors are unique up to associates.

Exercises.

Exercise 9.23. Use Z [x ] to show that even if R is a unique factorization domain but not a prin-
cipal ideal domain, then we cannot write always find r , s ∈ R such that gcd (a, b ) = ra + s b for
every a, b ∈ R.

Exercise 9.24. Prove Theorem 9.20.

Exercise 9.25. Consider the ideal 〈180〉 ⊂Z. Use unique factorization to build a chain of ideals
〈180〉 = 〈a1〉 ( 〈a2〉 ( · · · ( 〈an〉 = Z such that there are no ideals between 〈ai 〉 and




ai+1
�

.
Identify a1,a2, . . . clearly.

Exercise 9.26. Theorem 9.22 says that gcds are unique up to associate in every unique factor-
ization domain. Suppose that P = F [x ] for some field F. Since P is a Euclidean domain (Exer-
cise 7.54), it is a unique factorization domain, and gcds are unique up to associates (Theorem 9.22).
The fact that the base ring is a field allows us some leeway that we do not have in an ordinary
unique factorization domain. For any two f , g ∈ P , use the properties of a field to describe a
method to define a “canonical” gcd of f and g , and show that this canonical gcd is unique.

Exercise 9.27. Generalize the argument of Example 9.17 to show that for any unique factoriza-
tion domain R, the polynomial ring R [x ] is a unique factorization domain. Explain why this
shows that for any unique factorization domain R, the polynomial ring R [x1, . . . , xn ] is a unique
factorization domain. On the other hand, give an example that shows that if R is not a unique
factorization domain, then neither is R [x ].

9.3: Finite fields II
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We saw in Section 8.5 that if a field is finite, then its size is pn for some n ∈N+ and some
irreducible integer p. In this section, we show the converse: for every irreducible integer p and
for every n ∈ N+, there exists a field with pn elements. In this section, we show that for any
polynomial f ∈F [x ], where F is a field of characteristic p,
• there exists a field E containing one root of f ;
• there exists a field E where f factors into linear polynomials; and
• we can use this fact to build a finite field with pn elements for any irreducible integer p,

and for any n ∈N+.

Theorem 9.28. Suppose f ∈F [x ] is irreducible.
(A) E = F [x ]/ 〈 f 〉 is a field.
(B) F is isomorphic to a subfield F′ of E.
(C) Let bf ∈E [x ] such that the coefficient of x i is ai + 〈 f 〉, where ai is

the coefficient of x i in f . There exists α ∈E such that bf (α) = 0.
In other words, E contains a root of bf .

Proof. Denote I = 〈 f 〉.
(A) Let E = F [x ]/I . In Exercise 8.63, you showed that if f is irreducible in F [x ], then I

is maximal in F [x ]. By Theorem 8.56, the quotient ring E = F [x ]/I is a field.
(B) To see that F is isomorophic to

F′ = {a + I : a ∈F}(E,

use the function ϕ : F → F′ by ϕ (a) = a + I . You will show in the exercises that ϕ is a ring
isomorphism.

(C) Let α= x + I . Let a0,a1, . . . ,an ∈F such that

f = a0 + a1x + · · ·+ an xn .

As defined in this Theorem,

bf (α) = (a0 + I )+ (a1 + I )α+ · · ·+(an + I )αn .

By substitution and the arithmetic of ideals,

bf (α) = (a0 + I )+ (a1 + I ) (x + I )+ · · ·+(an + I ) (x + I )n

= (a0 + I )+ (a1x + I )+ · · ·+(an xn + I )
= (a0 + a1x + · · ·+ an xn)+ I
= f + I .

By Theorem 8.54, f + I = I , so bf (α) = I . Recall that E = F [x ]/I ; it follows that bf (α) =
0E.

The isomorphism between F and F′ implies that we can always assume that an irreducible poly-
nomial over a field F has a root in another field containing F. We will, in the future, think of E

as a field containing F, rather than containing a field isomorphic to F.
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Corollary 9.29 (Kronecker’s Theorem). Let f ∈ F [x ] and n = deg f .
There exists a field E such that F ⊆ E, and f factors into linear polyno-
mials in E.

Proof. We proceed by induction on deg f .
Inductive base: If deg f = 1, then f = ax + b for some a, b ∈ F with a 6= 0. In this case,

let E = F; then −a−1b ∈E is a root of f .
Inductive hypothesis: Assume that for any polynomial of degree n, there exists a field E

such that F⊆E, and f factors into linear polynomials in E.
Inductive step: Assume deg f = n + 1. By Exercise 9.27, F [x ] is a unique factorization

domain, so let p be an irreducible factor of f . Let g ∈F [x ] such that f = p g . By Theorem 9.28,
there exists a field D such that F(D and D contains a root α of p. Of course, if α is a root of p,
then it is a root of f : f (α) = p (α) g (α) = 0 · g (α) = 0. By the Factor Theorem, we can write
f = (x−α) q (x) ∈ D [x ]. We now have deg q = deg f − 1 = n. By the inductive hypothesis,
there exists a field E such that D ⊆ E, and q factors into linear polynomials in E. But then
F(D⊆E, and f factors into linear polynomials in E.

Example 9.30. Let f (x) = x4 + 1 ∈Q [x ]. We can construct a field D with a root α of f ; using
the proofs above,

D = Q [x ]/ 〈 f 〉 and α= x + 〈 f 〉 .

Notice that −α is also a root of f , so in fact, D contains two roots of f . If we repeat the
procedure, we obtain two more roots of f in a field E.

Before we proceed to the third topic of this section, we need a concept that we borrow from
Calculus.

Definition 9.31. Let f ∈ F [x ], and write f = a0 + a1x + a2x2 + · · ·+
an xn . The formal derivative of f is

f ′ = a1 + 2a2x + · · ·+ nan xn−1.

Proposition 9.32 (The product rule). Let f ∈ F [x ], and suppose f fac-
tors as f = pq . Then f ′ = p ′q + pq ′.

Proof. Write p =
∑m

i=0 ai x i and q =
∑n

j=0 b j x j . First we write f in terms of the coefficients
of p and q . By Definition 7.35 and the distributive property,

f = pq =
m
∑

i=0






ai x i

n
∑

j=0

b j x j






=

m
∑

i=0







n
∑

j=0

�

ai b j

�

x i+ j






.

If we collect like terms, we can rewrite this as

f =
m+n
∑

k=0













∑

i+ j=k

ai b j






xk






.
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We can now examine the claim. By definition,

f ′ =
m+n
∑

k=1






k







∑

i+ j=k

ai b j






xk−1






.

On the other hand,

p ′q + pq ′ =

 

m
∑

i=1

iai x i−1

!







n
∑

j=0

b j x j







+

 

m
∑

i=0

ai x i

!







n
∑

j=1

j b j x j−1







=
m+n
∑

k=1













∑

i+ j=k

iai b j






xk−1







+
m+n
∑

k=1













∑

i+ j=k

j ai b j






xk−1







=
m+n
∑

k=1













∑

i+ j=k

(i + j )ai b j






xk−1







=
m+n
∑

k=1













∑

i+ j=k

kai b j






xk−1







= f ′.

We need one more result: a generalization of Euler’s Theorem.

Lemma 9.33. Let p be an irreducible integer. For all a ∈ Fp and for all
n ∈N+, a pn − a = 0, and thus a pn

= a and in Zp [x ], we have

x p − x =
∏

a∈Zp

(x− a) .

.
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Proof. Euler’s Theorem tells us that a p−1 = 1. Thus,

a pn
− a = a

�

a pn−1−1
�

= a
�

a(p−1)( pn−1+pn−2+···+1)−1
�

= a
�

�

a(p−1)
�( pn−1+pn−2+···+1)−1

�

= a
�

1pn−1+pn−2+···+1−1
�

= 0.

Since a p = a, a p − a = 0, so a is a root of x p − x; applying the Factor Theorem gives us the
factorization claimed.

We can now prove the final assertion of this section.

Theorem 9.34. For any irreducible integer p, and for any n ∈N+, there
exists a field with pn elements.

Proof. First, suppose p = 2. If n = 1, the field Z2 proves the theorem. If n = 2, the field Z5
proves the theorem. We may therefore assume that p 6= 2 or n 6= 1,2.

Let f = x pn − x ∈ Zp [x ]. By Kronecker’s Theorem, there exists a field D such that
Zp ⊆ D, and f factors into linear polynomials in D. Let E = {α ∈D : f (α) = 0}. We claim
that E has pn elements, and that E is a field.

To see that E has pn elements, it suffices to show that f has no repeated linear factors.
Suppose to the contrary that it has at least one such factor, x− a. We can write

f = (x− a)m · g

for some g ∈E [x ] where (x− a) - g . By Proposition 9.32,

f ′ = m (x− a)m−1 · g +(x− a)m · g ′

= (x− a)m−1 ·
�

m g +(x− a) g ′
�

.

That is, x− a divides f ′.
Is f ′ 6= 0? certainly x − a 6= 0, so we would have to have m g + (x− a) g ′ = 0. This

implies either g ′ = 0 and m = p, or (x− a) | g . However, neither of these can hold. On the
one hand, if we let b ∈F\{a}, then Lemma 9.33 tells us that f (b ) = 0. By the Factor Theorem,
x− b is a factor of f ; since it is irreducible, hence prime, it is a factor of one of (x− a)m or g .
Since a 6= b , x− b has no common factor with x− a, so x− b must divide g . Thus, g ′ 6= 0. On
the other hand, we chose m to be large enough that (x− a) - g . Hence f ′ 6= 0.

Recall that f = x pn − x. The definition of a formal derivative tells us that

f ′ = pn x pn−1−1.

In Zp , pn = 0, so we can simplify f ′ as

f ′ = 0−1 =−1.
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When we assumed that f had a repeated linear factor, we concluded that x− a divides f ′. How-
ever, we see now that f ′ = −1, and x− a certainly does not divide −1, since deg (x− a) = 1 >
0 = deg (−1). That assumption leads to a contradiction; so, f has no repeated linear factors.

We now show that E is a field. By its very definition, E consists of elements of D; thus,
E⊆D. We know that D is a field, and thus a ring; we can therefore use the Subring Theorem to
show that E is a ring. Once we have that, we have to find an inverse for any nonzero element of
E.

For the Subring Theorem, let a, b ∈E. We must show that ab and a− b are both roots of
f ; they would then be elements of E by definition of the latter. You will show in Exercise 9.37(a)
that ab is a root of f . For subtraction, we claim that

(a− b ) pn
= a pn

− b pn
.

We proceed by induction.

Inductive base: Assume n = 1. Observe that

(a− b ) p = a p +
p−1
∑

i=1

(−1)i
�p

i

�

a i b p−i +(−1) p b p .

By assumption, p is an irreducible integer, so its only divisors in N are itself and 1. For any
i ∈N+, then, the integer

�p

i

�

=
p !

i ! (p− i)!

can be factored into the two integers
�p

i

�

= p ·
(p−1)!

i ! (p− i)!
;

the fraction (p−1)!
i !(p−i)! is an integer precisely because no element of the denominator can divide p.

Using Exercise 9.37(b), we can rewrite (a− b ) p as

(a− b ) p = a p +
p−1
∑

i=1

(−1)i p !

i ! (p− i)!
a i b p−i +(−1) p b p

= a p + p ·
p−1
∑

i=1

(−1)i (p−1)!

i ! (p− i)!
a i b p−i +(−1) p b p

= a p + 0+(−1) p b p

= a p +(−1) p b p .

If p = 2, then −1 = 1, so either way we have a p − b p , as desired.

Inductive hypothesis: Assume that (a− b ) pn
= a pn − b pn

.
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Inductive step: Applying the properties of exponents,

(a− b ) pn+1
=
�

(a− b ) pn�p

=
�

a pn
− b pn�p

= a pn+1
− b pn+1

,

where the final step uses the base case. Thus

(a− b ) pn
− (a− b ) =

�

a pn
− b pn�

− (a− b ) .

Again, a and b are roots of f , so a pn
= a and b pn

= b , so

(a− b ) pn
− (a− b ) = (a− b )− (a− b ) = 0.

We see that a− b is a root of f , and therefore a− b ∈E.
Finally, we show that every nonzero element of E has an inverse in E. Let a ∈E\{0}; by

definition, a ∈D. Since D is a field, there exists an inverse of a in D; call it b . By definition of
E, a is a root of f ; that is, a pn −a = 0. Multiply both sides of this equation by b 2, and rewrite to
obtain a pn−2 = b . Using the substitutions b = a pn−2 and a pn

= a in f (b ) shows that:

f (b ) = b pn
− b

=
�

a pn−2
�pn

− a pn−2

=
�

a pn
· a−2

�pn

− a pn−2

=
�

a pn�pn �

a pn�−2− a pn−2

= a pn
· a−2− a pn−2

= a pn−2− a pn−2

= 0.

We have shown that b is a root of f . By definition, b ∈E. Since b = a−1 and a was an arbitrary
element of E\{0}, every nonzero element of E has its inverse in E.

We have shown that

• E has pn elements;
• it is a ring, since it is closed under multiplication and subtraction; and
• it is a field, since every nonzero element has a multiplicative inverse in E.

In other words, E is a field with pn elements.
In a finite field, we can generalize Euler’s Theorem a little further.

Theorem 9.35 (Fermat’s Little Theorem). In Zpd [x ], we have

x pd
− x =

∏

a∈Z
pd

(x− a) .
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Proof. Let a ∈Zpd . If a = 0, it is clear that x−a = x is a factor of x pd − x. Otherwise, a lies in

the multiplicative group Zpd \{0}. By Lagrange’s Theorem, its order divides
�

�

�Zpd \{0}
�

�

�= pd −1,

so a pd−1 = 1. Multiplying both sides by a, we have a pd
= a, which we can rewrite as a pd −a = 0,

showing that a is a root of x pd − x. By the Factor Theorem, x− a is a factor of x pd − x.
Now let b ∈Zpd \{a}. A similar argument shows that x− b is a factor of x pd − x. Since

b 6= a, x− b and x−a can have no common factors. Thus, every element of Zpd corresponds to

a unique factor of x pd − x, proving the theorem.

Exercises.

Exercise 9.36. Show that the function ϕ defined in part (B) of the proof of Theorem 9.28 is an
isomorphism between F and F′.

Exercise 9.37. Let p be an irreducible integer and f (x) = x pn − x ∈ Zp [x ]. Define E =
Zp [x ]/ 〈 f 〉.
(a) Show that pa = 0 for all a ∈E.
(b) Show that if f (a) = f (b ) = 0, then f (ab ) = 0.

9.4: Extending a ring by a root

Let R and S be rings, with R ⊆ S and α ∈ S. In Exercise 7.15, you showed that R [α] was
also a ring, called a ring extension of R. Sometimes, this is equivalent to a polynomial ring over
R, but in one important case, it is more interesting.

Example 9.38. Let R = R, S = C, and α = i =
p
−1. Then R [i ] is a ring extension of C.

Moreover, R [i ] is not really a polynomial ring over R, since i2 + 1 = 0, but x2 + 1 6= 0 in R [x ].
In fact, since every element of R [i ] has the form a + b i for some a, b ∈ R, we can view

R [i ] as a vector space of dimension 2 over R! The basis elements are u = 1 and v = i , and
a + b i = au+ bv.

Let’s see if this result generalizes, at least for fields. For the rest of this section, we let F

and E be fields, with α ∈E. It’s helpful to look at polynomials whose leading coefficient is 1.

Definition 9.39. Let f ∈ R [x ]. If lc ( f ) = 1, we say that f is monic.

Notation 9.40. We write F (α) for the smallest field containing both F and α.

Example 9.41. In the previous example, R [i ] = R (i) = C. This is not always the case, though;
if α=

p
2, then R

�p
2
�

(R
�p

2
�

(C.

Theorem 9.42. Let f be an irreducible polynomial over the field F, and
E = F [x ]/ 〈 f 〉. Then E is a vector space over F of dimension d = deg f .
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Proof. Let I = 〈 f 〉. Notice that F ⊆ E. Since f is irreducible, 〈 f 〉 is maximal, and E is a field.
Any element of E has the form g + I where g ∈F [x ]; we can use the fact that F [x ] is a Euclidean
Domain to write

g = q f + r

where q , r ∈ F [x ] and deg r < deg f = d . Hence, we may assume, without loss of generality,
that any element of E can be written in the form g + I where g ∈ F [x ] and deg g < d . In other
words, every element of E has the form

�

ad−1xd−1 + · · ·+ a1x1 + a0x0
�

+ I

where ad−1, . . . , a1, a0 ∈F. Since F is a field, and x i + I cannot be written as a linear combination
of the x j + I where j 6= i , we have proved that E is a vector space over F with basis

B =
¦

x0 + I , x1 + I , . . . , xd−1 + I
©

.

It turns out that the field described in the previous theorem has an important relationship to the
roots of the irreducible polynomial f .

Corollary 9.43. Let f be an irreducible, monic polynomial of degree d
over a field F. Let I = 〈 f 〉 and α = x + I ∈ F [x ]/I . Then f (α) = 0;
that is, α is a root of f .

Proof. Choose a0, . . . , ad as in Theorem 9.42. Then

f (α) = ad (x + I )d + · · ·+ a1 (x + I )1 + a0 (x + I )0

= ad

�

xd + I
�

+ · · ·+ a1

�

x1 + I
�

+ a0

�

x0 + I
�

=
�

ad xd + · · ·+ a1x1 + a0x0
�

+ I

= f (x)+ 〈 f 〉
= 〈 f 〉= 0E

where E = F [x ]/I , as before.

The result of this is that, given any irreducible polynomial over a field, we can factor it symboli-
cally as follows:
• let f0 = f , E0 = F, and i =0;
• repeat while fi 6= 1:

◦ let Ei+1 = Ei [x ]/Ii ;
◦ let αi = x + Ii ∈Ei+1, where Ii = 〈 fi 〉;
◦ by Corollary 9.43, fi (αi ) = 0, so by the Factor Theorem, x−αi is a factor of fi ;
◦ let fi+1 ∈Ei+1 [x ] such that fi = (x−αi ) fi+1;
◦ increment i .

Each pass through the loop generates a new root αi , and a new polynomial fi whose degree
satisfies the equation

deg fi = deg fi+1−1.
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Since we have a strictly decreasing sequence of natural numbers, the algorithm terminates after
deg f steps (Exercise 1.32). We have thus described a way to factor irreducible polynomials.

Definition 9.44. Let f and α be as in Corollary 9.43. We say that deg f
is the degree of α, and write F (α) = F [x ]/ 〈 f 〉.

It is sensible to say that deg f = degα since we showed in Theorem 9.42 that deg f = dim (F [x ]/ 〈 f 〉).
We need one last result.

Theorem 9.45. Suppose F is a field, E = F (α), and D = E (β). Then D

is a vector space over F of dimension degα ·degβ, and in fact D = F (γ )
for some root γ of an irreducible polynomial over F.

Proof. By Theorem 9.42, B1 =
¦

α0, . . . ,αd1−1
©

and B2 =
¦

β0, . . . ,βd2−1
©

are bases of E over F

and D over E, respectively, where d1 and d2 are the respective degrees of the irreducible polyno-
mials of which α andβ are roots. We claim that B3 =

¦

α(i)β( j ) : 0≤ i < d1, 0≤ j < d2

©

is a basis
of D over F. To see this, we must show that it is both a spanning set — that is, every element
of D can be written as a linear combination of elements of B3 over F — and that its elements are
linearly independent.

To show that B3 is a spanning set, let γ ∈ D. By definition of basis, there exist b0, . . . ,
bd2−1 ∈E such that

γ = b0β
0 + · · ·+ bd2−1β

d2−1.

Likewise, for each j = 0, . . . , d2−1 there exist a( j )
0 , . . . , a( j )

d1−1
∈F such that

b j = a( j )
0 α0 + · · ·+ a( j )

d1−1
αd1−1.

By substitution,

γ =
d2−1
∑

j=0

b jβ
j

=
d2−1
∑

j=0







d1−1
∑

i=0

a( j )
i αi






β j

=
d−1
∑

i=0

d−1
∑

j=0

a( j )
i

�

αiβ j
�

.

Hence, B3 is a spanning set of D over F.
To show that it is a basis, we must show that its elements are linearly independent. For

that, assume we can find c ( j )
i ∈F such that

d1−1
∑

i=0

d2−1
∑

j=0

c ( j )
i

�

αiβ j
�

= 0.
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We can rewrite this as an element of D over E by rearranging the sum:

d2−1
∑

j=0







d1−1
∑

i=0

c ( j )
i αi






β j = 0.

Since B2 is a basis, its elements are linearly independent, so the coefficient of each β j must be
zero. In other words, for each j , we have

d1−1
∑

i=0

c ( j )
i αi = 0.

Of course, B1 is also a basis, so its elements are also linearly independent, so the coefficient of
each αi must be zero. In other words, for each j and each i ,

c ( j )
i = 0.

We took an arbitrary linear combination of elements of B3 over F, and showed that it is zero
only if each of the coefficients are zero. Thus, the elements of B3 are linearly independent.

Since the elements of B3 are a linearly independent spanning set, B3 is a basis of D over
F. If we cound the number of elements of B3, we find that there are d1 · d2 elements of the basis.
Hence,

dimF D = |B3|= d1 · d2 = degα ·degβ.

Exercises

Exercise 9.46. Let F = R
�p

2
��p

3
�

.
(a) Find an irreducible polynomial f ∈R [x ] that factors in F.
(b) What is dimR F?

Exercise 9.47. Factor x3 + 2 over Q using the techniques described in this section. You may use
the fact that if a = b n , then xn + a = (x + b )

�

xn−1− b xn−2 + · · ·+ b n−1�.

9.5: Polynomial factorization in finite fields

We now turn to the question of factoring polynomials in R [x ]. This material comes
primarily from [vzGG99].

Suppose that f ∈ R [x ]; factorization requires the following steps.
• Squarefree factorization is the process of removing multiples of factors p of f ; that is, if

pa | f , then we want to work with f
pa−1 , for which only p is a factor.

• Distinct degree factorization is the process of factoring a squarefree polynomial f into
polynomials p1, . . . , pm such that if pi factors as pi = q1 · · · qn , then deg q1 = · · ·deg qn .
• Equal degree factorization is the process of factoring each distinct degree factor pi into

its equal degree factors q1, . . . , qn .
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The algorithms we develop in this chapter only work in finite fields. To factor a polynomial
in Z [x ], we will first factor over several finite fields Zp [x ], then use the Chinese Remainder
Theorem to recover a factorization in Z [x ]. We discuss this in Section 9.6.

The goal of this section is merely to show you how the ideas studied so far combine into
this problem. The algorithm we will study is not an inefficient algorithm, but more efficient ones
exist.

For the rest of this section, we assume that p ∈N is irreducible and f ∈Zp [x ].

Distinct degree factorization.

Distinct-degree factorization can be accomplished using Fermat’s Little Theorem.

Example 9.48. Suppose p = 5. You already know from basic algebra that

x5− x = x
�

x4−1
�

= x
�

x2−1
��

x2 + 1
�

= x (x−1) (x + 1)
�

x2 + 1
�

.

We are working in Z5, so 1 = −4. Thus x + 1 = x − 4, and (x−2) (x−3) =
�

x2−5x + 6
�

=
�

x2 + 1
�

. This means that we can write

x5− x = x (x−1) (x−2) (x−3) (x−4) =
∏

a∈Z5

(x− a) ,

as claimed.

We can generalize this to the following.

Theorem 9.49. For any d , d ′ ≥ 1, x pd d ′ − x is the product of all monic
irreducible polynomials in Zpd [x ] whose degree divides d ′.

Proof. We will show that if f ∈Zpd [x ] is monic and irreducible of degree n, then satisfies

f |
�

x pd d ′
− x
�

⇐⇒ n | d ′.

Assume first that f divides x pd d ′ − x. By Fermat’s Little Theorem on the field pd d ′ , the factors
of f are of the form x − a, where a ∈ Z

pd d ′ . Let α be any one of the corresponding roots, and

let E = F (α). Using the basis B of Theorem 9.42, we see that |E|=
�

pd
�n

, since it has |B |= n
basis elements, and pd choices for each coefficient of a basis element.

Now, Z
pd d ′ is the extension of E by the remaining roots of x pd d ′ − x, one after the other.

By reasoning similar to that for E, we see that pd d ′ =

�

�

�

�

Z
pd d ′

�

�

�

�

=
��

pd
�n�a

for some a ∈N+.

Rewriting the extreme sides of that equation, we have

�

pd
�d ′

=
�

pd
�na

.
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Algorithm 4. Distinct degree factorization
1: inputs
2: f ∈Zp [x ], squarefree and monic, of degree n > 0
3: outputs
4: p1, . . . , pm ∈Zp [x ], a distinct-degree factorization of f
5: do
6: Let h0 = x
7: Let f0 = f
8: Let i = 0
9: repeat while fi 6= 1

10: Increment i
11: Let hi be the remainder of division of h p

i−1 by f
12: Let pi = gcd

�

hi − x, fi−1
�

13: Let fi =
fi−1
pi

14: Let m = i
15: return p1, . . . , pm

Since na = d ′, we see that n | d ′.
Conversely, assume that n | d ′. We construct Fpd n = F [x ]/ 〈 f 〉, and let α be the corre-

sponding root x + 〈 f 〉 of f . Fermat’s Little Theorem tells us that α pd n
= α. Notice that

pd d ′−1 =
�

pd n−1
�
�

pd d ′−d n + pd d ′−2d n + · · ·+ 1
�

.

Let r = pd d ′−d n + pd d ′−2d n + · · ·+ 1; we have

x pd d ′−1−1 =
�

x pd n−1−1
�
�

x r−1 + · · ·+ 1
�

.

Rewrite this as
x pd d ′

− x =
�

x pd n
− x
�
�

x r−1 + · · ·+ 1
�

.

Hence, x pd n − x divides x pd d ′ − x, so x−α is a root of x pd d ′ − x, as well. Since α was an arbitrary
root of f , every root of f is a root of x pd d ′ − x, and unique factorization guarantees us that f
divides x pd d ′ − x.

Theorem 9.49 suggests an “easy” algorithm to compute the distinct degree factorization of f ∈
Zp [x ]. See algorithm 4.

Theorem 9.50. algorithm 4 terminates with each pi the product of the
factors of f that are all of degree i .

Proof. Note that the second and third steps of the loop are an optimization of the computa-
tion of gcd

�

x p i − x, f
�

; you can see this by thinking about how the Euclidean algorithm would
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compute the gcd. So termination is guaranteed by the fact that eventually deg h p
i > deg fi : Theo-

rem 9.49 implies that at this point, all distinct degree factors of f have been removed. Correctness
is guaranteed by the fact that in each step we are computing gcd

�

x p i − x, f
�

.

Example 9.51. Returning to Z5 [x ], let’s look at

f = x (x + 3)
�

x3 + 4
�

.

Notice that we do not know whether this factorization is into irreducible elements. Expanded,
f = x5 + 3x4 + 4x2 + 2x. When we plug it into algorithm 4, the following occurs:
• For i = 1,

◦ the remainder of division of h5
0 = x5 by f is h1 = 2x4 + x2 + 3x;

◦ p1 = x3 + 2x2 + 2x;
◦ f1 = x2 + x + 1.

• For i = 2,
◦ the remainder of division of h5

1 = 2x20 + x10 + 3x5 by f is h2 = x;
◦ p2 = gcd (0, f1) = f1;
◦ f2 = 1.

Thus the distinct degree factorization of f is

f =
�

x3 + 2x2 + 2x
��

x2 + x + 1
�

.

This demonstrates that the original factorization was not into irreducible elements, since x (x + 3)
is not equal to either of the two new factors, so that x3 + 4 must have a linear factor as well.

Equal degree factorization

Once we have a distinct degree factorization of f ∈ Zp [x ] as f = p1 · · · pm , where each
pi is the product of the factors of degree i of a squarefree polynomial f , we need to factor each
pi into its irreducible factors. Here we consider the case that p is an odd prime; the case where
p = 2 requires different methods.

Take any pi , and let its factorization into irreducible polynomials of degree i be pi =
q1 · · · qn . Suppose we select at random some h ∈ Zp [x ] with deg h < n. If pi and h share a
common factor, then gcd (pi , h) 6= 1, and we have found a factor of pi . Otherwise, we will try
the following. Since each q j is irreducible and of degree i ,

¬

q j

¶

is a maximal ideal in Zp [x ], so
Zp [x ]/

¬

q j

¶

is a field with p i elements. Denote it by F.

Lemma 9.52. Let G be the set of nonzero elements of F; that is, G =

F\{0}. Let a =
p i−1

2 , and let ϕ : G→G by ϕ (g ) = g e .
(A) ϕ is a group homomorphism of G.
(B) Its image, ϕ (G), consists of the square roots of unity.
(C) |kerϕ|= a.

Proof. From the definition of a field, G is an abelian group under multiplication.



5. Polynomial factorization in finite fields 225

(A) Let g , h ∈G. Since G is abelian,

ϕ (g h) = (g h)a = (g h) (g h) · · · (g h)
︸ ︷︷ ︸

a copies

= (g · g · · · g )
︸ ︷︷ ︸

a copies

· (h · h · · · h)
︸ ︷︷ ︸

a copies

= g a ha = ϕ (g )ϕ (h) .

(B) Let y ∈ ϕ (G); by definition, there exists g ∈G such that

y = ϕ (g ) = g a .

Corollary 3.46 to Lagrange’s Theorem, with the fact that |G|= p i −1, implies that

y2 = (g a)2 =

�

g
pi−1

2

�2
= g p i−1 = 1.

We see that y is a square root of unity. We chose y ∈ ϕ (G) arbitrarily, so every element of ϕ (G)
is a square root of unity.

(C) Observe that g ∈ kerϕ implies g a = 1, or g a − 1 = 0. That makes g an ath root
of unity. Since g ∈ kerϕ was chosen arbitrarily, kerϕ consists of ath roots of unity. By Theo-
rem 7.34 on page 164, each g ∈ kerϕ corresponds to a linear factor x − g of xa − 1. There can
be at most a such factors, so there can be at most a distinct elements of kerϕ; that is, |kerϕ| ≤ a.
Since ϕ (G) consists of the square roots of unity, similar reasoning implies that there are at most
two elements in ϕ (G). Since G has p i −1 elements, Exercise 4.26 on page 84 gives us

p i −1 = |G|= |kerϕ| |ϕ (G)| ≤ a ·2 =
p i −1

��2
· ��2 = p i −1.

The inequality is actually an equality, forcing |kerϕ|= a.

To see how Lemma 9.52 is useful, consider a nonzero coset in F,

[h ] = h +
¬

q j

¶

∈F.

Since gcd
�

h, q j

�

= 1, h 6∈
¬

q j

¶

, so [h ] 6= 0F, so [h ] ∈G. Raising [h ] to the ath power gives us an
element of ϕ (G). Part (B) of the lemma tells us that ϕ (G) consists of the square roots of unity
in G, so [h ]a is a square root of 1F, either 1F or −1F. If [h ]a = 1F, then [h ]a − 1F = 0F. Recall
that F is a quotient ring, and [h ] = h +

¬

q j

¶

. Thus

(ha−1)+
¬

q j

¶

= [h ]a−1F = 0F =
¬

q j

¶

.

This is a phenomenal consequence! Equality of cosets implies that ha − 1 ∈
¬

q j

¶

, so q j divides
ha− 1. This means that ha− 1 has at least q j in common with pi ! Taking the greatest common
divisor of ha−1 and pi extracts the greatest common factor, which may be a multiple of q j . This
leads us to algorithm 5. Note that there we have written f instead of pi and d instead of i .



5. Polynomial factorization in finite fields 226

Algorithm 5. Equal-degree factorization
1: inputs
2: f ∈Zp [x ], where p is irreducible and odd, f is squarefree, n = deg f , and all factors of f

are of degree d
3: outputs
4: a factor qi of f
5: do
6: Let q = 1
7: repeat while q = 1
8: Let h ∈Zp [x ]\Zp , with deg h < n
9: Let q = gcd (h, f )

10: if q = 1

11: Let h be the remainder from division of h
pd−1

2 by f
12: Let q = gcd (h−1, f )
13: return q

algorithm 5 is a little different from previous algorithms, in that it requires us to select a
random element. Not all choices of h have either a common factor with pi , or an image ϕ ([h ]) =
1F. So to get q 6= 1, we have to be “lucky”. If we’re extraordinarily unlucky, algorithm 5 might
never terminate. But this is highly unlikely, for two reasons. First, Lemma 9.52(C) implies that
the number of elements g ∈ G such that ϕ (g ) = 1 is a. We have to have gcd (h, pi ) = 1 to be
unlucky, so [h ] ∈G. Observe that

a =
p i −1

2
=
|G|
2

,

so we have less than 50% probability of being unlucky, and the cumulative probability decreases
with each iteration. In addition, we can (in theory) keep track of which polynomials we have
computed, ensuring that we never use an “unlucky” polynomial more than once.

Keep in mind that algorithm 5 only returns one factor, and that factor might not be irre-
ducible! This is not a problem, since
• we can repeat the algorithm on f /g to extract another factor of f ;
• if deg q = d , then q is irreducible; otherwise;
• d < deg q < n, so we can repeat the algorithm in q to extract a smaller factor.

Since the degree of f or q decreases each time we feed it as input to the algorithm, the well-
ordering of N implies that we will eventually conclude with an irreducible factor.

Example 9.53. Recall from Example 9.51 that

f = x (x + 3)
�

x3 + 4
�

∈Z5 [x ]

gave us the distinct degree factorization

f =
�

x3 + 2x2 + 2x
��

x2 + x + 1
�

.

The second polynomial is in fact the one irreducible quadratic factor of f ; the first polynomial,
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p1 = x3 + 2x2 + 2x, is the product of the irreducible linear factors of f . We use algorithm 5 to
factor the linear factors.
• We have to pick h ∈Z5 [x ] with deg h < deg p1 = 3. Let h = x2 + 3.

◦ Using the Euclidean algorithm, we find that h and f are relatively prime. (In partic-
ular, r1 = f − (x + 2) h = 4x + 4, r2 = h− (4x + 1) r1 = 4.)

◦ The remainder of division of h
51−1

2 by f is 3x2 + 4x + 4.
◦ Now q = gcd

��

3x2 + 4x + 4
�

−1, p1
�

= x + 4.
◦ Return x + 4 as a factor of p1.

We did not know this factor from the outset! In fact, f = x (x + 3) (x + 4)
�

x2 + x + 1
�

.

As with algorithm 4, we need efficient algorithms to compute gcd’s and exponents in
order to perform algorithm 5. Doing these as efficiently as possible is beyond the scope of these
notes, but we do in fact have relatively efficient algorithms to do both: the Euclidean algorithm
(algorithm 1 on page 126) and fast exponentiation (Section 6.5).

Squarefree factorization

We can take two approaches to squarefree factorization. The first, which works fine for
any polynomial f ∈ C [x ], is to compute its derivative f ′, then to compute g = gcd

�

f , f ′
�

, and
finally to factor f

g , which (as you will show in the exercises) is squarefree.
Another approach is to combine the previous two algorithms in such a way as to guarantee

that, once we identify an irreducible factor, we remove all powers of that factor from f before
proceeding to the next factor. See algorithm 6.

Example 9.54. In Exercise 9.58 you will try (and fail) to perform a distinct degree factorization
on f = x5 + x3 using only algorithm 4. Suppose that we use algorithm 6 to factor f instead.
• Since f is monic, b = 1.
• With i = 1, distinct-degree factorization gives us h1 = 4x3, q1 = x3 + x, f1 = x2.

◦ Suppose that the first factor that algorithm 5 gives us is x. We can then divide f1
twice by x, so α j = 3 and we conclude the innermost loop with f1 = 1.
◦ algorithm 5 subsequently gives us the remaining factors x + 2 and x + 3, none of

which divides f1 more than once..
The algorithm thus terminates with b = 1, p1 = x, p2 = x +2, p3 = x3, α1 = 3, and α2 = α3 = 1.

Exercises.

Exercise 9.55. Show that f
g is squarefree if f ∈C [x ], f ′ is the usual derivative from Calculus, and

g = gcd
�

f , f ′
�

.

Exercise 9.56. Use the distinct degree factorization of Example 9.51 and the fact that f = x (x + 3)
�

x3 + 4
�

to find a complete factorization of f , using only the fact that you now know three irreducible
factors f (two linear, one quadratic).

Exercise 9.57. Compute the distinct degree factorization of f = x5 + x4 + 2x3 + 2x2 + 2x + 1 in
Z5 [x ]. Explain why you know this factorization is into irreducible elements.
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Algorithm 6. Squarefree factorization in Zp [x ]

1: inputs
2: f ∈Zp [x ]
3: outputs
4: An irreducible factorization f = b pα1

1 · · · p
αm
m

5: do
6: Let b = lc ( f )
7: Let h0 = x
8: Let f0 = b−1 · f — After this step, f is monic
9: Let i = j = 0

10: repeat while fi 6= 1
11: — One step of distinct degree factorization
12: Increment i
13: Let hi be the remainder of division of h p

i−1 by f
14: Let qi = gcd

�

hi − x, fi−1
�

15: Let fi =
fi−1
qi

— Find the equal degree factors of qi
16: repeat while qi 6= 1
17: Increment j
18: Find a degree-i factor p j of qi using algorithm 5
19: Let qi =

qi
p j

— Divide out all copies of p j from fi
20: Let α j = 1
21: repeat while p j divides fi
22: Increment α j

23: Let fi =
fi
p j

24: Let m = j
25: return b , p1, . . . , pm ,α1, . . . ,αm
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Exercise 9.58. Explain why you might think that algorithm 4 might not work for f = x5 + x3.
Then try using the algorithm to factor f in Z5 [x ], and explain why the result is incorrect.

Exercise 9.59. Suppose that we don’t want the factors of f , but only its roots. Explain how we
can use gcd (x p − x, f ) to give us the maximum number of roots of f in Zp . Use the polynomial
from Example 9.57 to illustrate your argument.

9.6: Factoring integer polynomials

We conclude, at the end of this chapter, with factorization in Z [x ]. In the previous sec-
tion, we showed how one could factor a polynomial in an arbitrary finite field whose character-
istic is an odd irreducible integer. We can use this technique to factor a polynomial f ∈ Z [x ].
As in the previous section, this method is not necessarily the most efficient, but it does illustrate
techniques that are used in practice.

We show this using the example

f = x4 + 8x3−33x2 + 120x−720.

Suppose f factors as
f = pα1

1 · · · p
αm
m .

Now let p ∈N+ be odd and irreducible, and consider bf ∈Zp [x ] such that the coefficients of bf
are the coefficients of f mapped to their cosets in Zp . That is,

bf = [1] p x4 + [8] p x3 + [−33] p x2 + [120] p x + [−720] p .

By the properties of arithmetic in Zp , we know that bf will factor as

bf = bpα1
1 · · · bp

αm
m ,

where the coefficients of each bpi are the coefficeints of pi mapped to their cosets in Zp . As we
will see, these bpi might not be irreducible for each choice of p; we might have instead

bf = bqβ1
1 · · · bq

βn
n

where each bqi divides some bp j . Nevertheless, we will be able to recover the irreducible factors of
f even from these factors; it will simply be more complicated.

We will approach factorization by two different routes: using one big irreducible p, or
several small irreducibles along with the Chinese Remainder Theorem.

One big irreducible.

One approach is to choose an odd, irreducible p ∈ N+ sufficiently large that, once we
factor bf , the coefficient ai of any pi is either the corresponding coefficient in bpi or (on account
of the modulus) the largest negative integer corresponding to it. Sophisticated methods to obtain
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p exist, but for our purposes it will suffice to choose p that is approximately twice the size of the
maximum coefficient of bf .

Example 9.60. The maximum coefficient in the example f given above is 720. There are several
irreducible integers larger than 1440 and “close” to it. We’ll try the closest one, 1447. Using the
techniques of the previous section, we obtain the factorization in Z1447 [x ]

bf = (x + 12) (x + 1443)
�

x2 + 15
�

∈Z1447 [x ] .

It is “obvious” that this cannot be the correct factorization in Z [x ], because 1443 is too large. On
the other hand, properties of modular arithmetic tell us that

bf = (x + 12) (x−4)
�

x2 + 15
�

∈Z1447 [x ] .

In fact,
f = (x + 12) (x−4)

�

x2 + 15
�

∈Z [x ] .

This is why we chose an irreducible number that is approximately twice the largest coefficient of
f : it will recover negative factors as integers that are “too large”.

We mentioned above that we can get “false positives” in the finite field.

Example 9.61. Let f = x2 + 1. In Z5 [x ], this factors as x2 + [1]5 =
�

x + [2]5
��

x + [3]5
�

, but
certainly f 6= (x + 2) (x + 3) in Z [x ].

Avoiding this problem requires techniques that are beyond the scope of these notes. How-
ever, it is certain easy enough to verify whether a potential factor of pi is a factor of f using
division; once we find all the factors bq j of bf that do not give us factors pi of f , we can try
combinations of them until they give us the correct factor. Unfortunately, this can be very time-
consuming, which is why in general one would want to avoid this problem entirely.

Several small primes.

For various reasons, we may not want to try factorization modulo one large prime; in this
case, it would be possible to factor using several small primes, then recover f using the Chinese
Remainder Theorem. Recall that the Chinese Remainder Theorem tells us that if gcd

�

mi , m j

�

=
1 for each 1≤ i < j ≤ n, then we can find x satisfying



















[x ] = [α1] in Zm1
;

[x ] = [α2] in Zm2
;

...
[x ] = [αn ] in Zmn

;

and [x ] is unique in ZN where N = m1 · · ·mn . If we choose m1, . . . , mn to be all irreducible,
they will certainly satisfy gcd

�

mi , m j

�

= 1; if we factor f in each Zmi
, we can use the Chinese

Remainder Theorem to recover the coefficients of each pi from the corresponding bq j .
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Example 9.62. Returning to the polynomial given previously; we would like a unique solution
in Z720 (or so). Unfortunately, the factorization 720 = 24 ·32 ·5 is not very convenient for factor-
ization. We can, however, use 3 ·5 ·7 ·11 = 1155:
• in Z3 [x ],

bf = x3 (x + 2);
• in Z5 [x ],

bf = (x + 1) (x + 2) x2;
• in Z7 [x ],

bf = (x + 3) (x + 5)
�

x2 + 1
�

; and
• in Z11 [x ],

bf = (x + 1) (x + 7)
�

x2 + 4
�

.
If we examine all these factorizations, we can see that there appears to be a “false positive” in
Z3 [x ]; we should have

f = (x + a) (x + b )
�

x2 + c
�

.

The easiest of the coefficients to recover will be c , since it is unambiguous that










c = [0]3
c = [0]5
c = [1]7
c = [4]11

In fact, the Chinese Remainder Theorem tells us that c = [15] ∈Z1155.
The problem with recovering a and b is that we have to guess “correctly” which arrange-

ment of the coefficients in the finite fields give us the arrangement corresponding to Z. For
example, the system











b = [0]3
b = [1]5
b = [3]7
b = [1]11

gives us b = [276]1155, which will turn out to be wrong, but the system










b = [0]3
b = [2]5
b = [5]7
b = [1]11

gives us b = [12]1155, the correct coefficient in Z.
The drawback to this approach is that, in the worst case, we would try 24 = 16 combina-

tions before we can know whether we have found the correct one.

Exercises.

Exercise 9.63. Factor x7 + 8x6 + 5x5 + 53x4− 26x3 + 93x2− 96x + 18 using each of the two
approaches described here.



Chapter 10:
Roots of multivariate polyomials

This chapter is about the roots of polynomial equations. However, rather than investigate
the computation of roots, it considers the analysis of roots, and the tools used to compute that
analysis. In particular, we want to know when the roots to a multivariate system of polynomial
equations exists.

A chemist named A— once emailed me about a problem he was studying that involved mi-
croarrays. Microarrays measure gene expression, and A— was using some data to build a system
of equations of this form:

axy− b1x− cy + d1 = 0
axy− b2x− cy + d2 = 0 (25)

axy− b2x− b1y + d3 = 0

where a, b1, b2, c , d1, d2, d3 ∈N are known constants and x, y ∈ R were unknown. A— wanted
to find values for x and y that made all the equations true.

This already is an interesting problem, and it is well-studied. In fact, A— had a fancy
software program that sometimes solved the system. However, it didn’t always solve the system,
and he didn’t understand whether it was because there was something wrong with his numbers,
or with the system itself. All he knew is that for some values of the coefficients, the system gave
him a solution, but for other values the system turned red, which meant that it found no solution.

The software that A— was using relied on well-known numerical techniques to look for a
solution. There are many reasons that numerical techniques can fail; most importantly, they can
fail even when a solution exists.

Analyzing these systems with an algebraic technique, I was able to give A— some glum
news: the reason the software failed to find a solution is that, in fact, no solution existed in R.
Instead, solutions existed in C. So, the problem wasn’t with the software’s numerical techniques.

This chapter develops and describes the algebraic techniques that allowed me to reach
this conclusion. Most of the material in these notes are relatively “old”: at least a century old.
Gröbner bases, however, are relatively new: they were first described in 1965 [Buc65]. We will
develop Gröbner bases, and finally explain how they answer the following important questions
for any system of polynomial equations

f1 (x1, x2, . . . , xn) = 0, · · · fm (x1, x2, . . . , xn) = 0

whose coefficients are in R:
1. Does the system have any solutions in C?
2. If so,

(a) Are there infinitely many, or finitely many?
i. If finitely many, exactly how many?

ii. If infinitely many, what is the “dimension” of the solution set?
(b) Are any of the solutions in R?

We will refer to these five question as five natural questions about the roots of a polynomial
system. To answer them, we will first review a little linear algebra, then study monomials a bit
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more, before concluding with a foray into Hilbert’s Nullstellensatz and Gröbner bases, funda-
mental results and tools of commutative algebra and algebraic geometry.

Remark 10.1. From here on, all rings are polynomial rings over a field F, unless we say otherwise.

10.1: Gaussian elimination

Let’s look again at the system (25) described in the introduction:

axy− b1x− cy + d1 = 0
axy− b2x− cy + d2 = 0

axy− b2x− b1y + d3 = 0.

It is almost a linear system, and you’ve studied linear systems in the past. In fact, you’ve even
studied how to answer the five natural questions about the roots of a linear polynomial system.
Let’s review how we accomplish this in the linear case.

A generic system of m linear equations in n variables looks like

a11x1 + a12x2 + · · ·+ a1n xn = b1

a21x1 + a22x2 + · · ·+ a2n xn = b2
...

...
am1x1 + am2x2 + · · ·+ amn xn = bm

where the ai j and bi are elements of a field F. Linear algebra can be done over any field F,
although it is typically taught with F = Q; in computational mathematics it is frequent to have
F = R. Since these are notes in algebra, let’s use a field constructed from cosets!

Example 10.2. A linear system with m = 3 and n = 5 and coefficients in Z13 is

5x1 + x2 + 7x5 = 7
x3 + 11x4 + 2x5 = 1
3x1 + 7x2 + 8x3 = 2.

An equivalent system, with the same solutions, is

5x1 + x2 + 7x5 + 8 = 0
x3 + 11x4 + 2x5 + 12 = 0
3x1 + 7x2 + 8x3 + 11 = 0.

In these notes, we favor the latter form.

To answer the five natural questions about the linear system, we use a technique called
Gaussian elimination to obtain a “triangular system” that is equivalent to the original system. By
“equivalent”, we mean that (a1, . . . ,an) ∈ Fn is a solution to the triangular system if and only if
it is a solution to the original system as well. What is meant by triangular form?
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Definition 10.3. Let G = (g1, g2, . . . , gm) be a list of linear polynomials
in n variables. For each i = 1,2, . . . , m designate the leading variable
of gi , as the variable with smallest index whose coefficient is non-zero.
Write lv (gi ) for this variable, and order the variables as x1 > x2 > . . . >
xn .

The leading variable of the zero polynomial is undefined.

Example 10.4. Using the example from 10.2,

lv (5x1 + x2 + 7x5 + 8) = x1,
lv (x3 + 11x4 + 2x5 + 12) = x3.

Remark 10.5. There are other ways to decide on a leading term, and some are smarter than
others. However, we will settle on this rather straightforward method, and refer to it as the
lexicographic term ordering.

Definition 10.6. A list of linear polynomials F is in triangular form if
for each i < j ,
• f j = 0, or

• fi 6= 0, f j 6= 0, and lv ( fi )> lv
�

f j

�

.

Example 10.7. Using the example from 10.2,the list

F = (5x1 + x2 + 7x5 + 8, x3 + 11x4 + 2x5 + 12,
3x1 + 7x2 + 8x3 + 11)

is not in triangular form, since lv ( f2) = x3 and lv ( f3) = x1, so lv ( f2)< lv ( f3), whereas we want
lv ( f2)> lv ( f3).

On the other hand, the list

G = (x1 + 6, x2 + 3x4, 0)

is in triangular form, because lv (g1) > lv (g2) and g3 is zero. However, if we permute G using
π=

�

2 3
�

, then
H = π (G) = (x1 + 6,0, x2 + 3x4)

is not in triangular form, because h3 6= 0 but h2 = 0.

Algorithm 7 describes one way to apply the method.

Theorem 10.8. Algorithm 7 terminates correctly.

Proof. All the loops of the algorithm are explicitly finite, so the algorithm terminates. To show
that it terminates correctly, we must show both that G is triangular and that its roots are the roots
of F .
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Algorithm 7. Gaussian elimination
1: inputs
2: F = ( f1, f2, . . . , fm), a list of linear polynomials in n variables, whose coefficients are from

a field F.
3: outputs
4: G = (g1, g2, . . . , gm), a list of linear polynomials in n variables, in triangular form, whose

roots are precisely the roots of F (if F has any roots).
5: do
6: Let G := F
7: for i = 1,2, . . . , m−1
8: Use permutations to rearrange gi , gi+1, . . . , gm so that for each k < `, g` = 0, or lv (gk)≥

lv (g`)
9: if gi 6= 0

10: Denote the coefficient of lv (gi ) by a
11: for j = i + 1, i + 2, . . . m
12: if lv

�

g j

�

= lv (gi )

13: Denote the coefficient of lv
�

g j

�

by b
14: Replace g j with a g j − b gi
15: return G

That G is triangular: We claim that each iteration of the outer loop terminates with G in
i -subtriangular form; by this we mean that

• the list (g1, . . . , gi ) is in triangular form; and
• for each j = 1, . . . , i if g j 6= 0 then the coefficient of lv

�

g j

�

in gi+1, . . . , gm is 0.

Note that G is in triangular form if and only if G is in i -subtriangular form for all i = 1,2, . . . , m.
We proceed by induction on i .
Inductive base: Consider i = 1. If g1 = 0, then the form required by line (8) ensures

that g2 = . . . = gm = 0, in which case G is in triangular form, which implies that G is in 1-
subtriangular form. Otherwise, g1 6= 0, so let x = lv (g1). Line (14) implies that the coefficient
of x in g j will be zero for j = 2, . . . , m. Thus (g1) is in triangular form, and the coefficient of
lv (g1) in g2, . . . , gm is 0. In either case, G is in 1-subtriangular form.

Inductive step: Let i > 1. Use the inductive hypothesis to show that
�

g1, g2, . . . , gi−1
�

is in
triangular form and for each j = 1, . . . , i − 1 if lv

�

g j

�

is defined then its coefficient in gi , . . . , gm
is 0. If gi = 0 then the form required by line (8) ensures that gi+1 = . . . = gm = 0, in which case
G is in triangular form. This implies that G is in i -subtriangular form. Otherwise, gi 6= 0, so
let x = lv (gi ). Line (14) implies that the coefficient of x in g j will be zero for j = i + 1, . . . , m.
In addition, the form required by line (8) ensures that x < lv

�

g j

�

for j = 1, . . . , i − 1. Thus
(g1, . . . , gi ) is in triangular form, and the coefficient of lv (gi ) in g2, . . . , gm is 0. In either case, G
is in i -subtriangular form.

By induction, each outer loop terminates with G in i -subtriangular form. When the mth
loop terminates, G is in m-subtriangular form, which is precisely triangular form.

That G is equivalent to F : The combinations of F that produce G are all linear; that is, for



1. Gaussian elimination 236

each j = 1, . . . , m there exist ci , j ∈F such that

g j = c1, j f1 + c2, j f2 + · · ·+ am, j fm .

Hence if (α1, . . . ,αn) ∈ Fn is a common root of F , it is also a common root of G. For the
converse, observe from the algorithm that there exists some i such that fi = g1; then there exists
some j ∈ {1, . . . , m}\{i} and some a, b ∈ F such that f j = a g1− b g2; and so forth. Hence the
elements of F are also a linear combination of the elements of G, and a similar argument shows
that the common roots of G are common roots of F .

Remark 10.9. There are other ways to define both triangular form and Gaussian elimination.
Our method is perhaps stricter than necessary, but we have chosen this definition first to keep
matters relatively simple, and second to assist us in the development of Gröbner bases.

Example 10.10. We use Algorithm 7 to illustrate Gaussian elimination for the system of equa-
tions described in Example 10.2.

• We start with the input,

F = (5x1 + x2 + 7x5 + 8, x3 + 11x4 + 2x5 + 12,
3x1 + 7x2 + 8x3 + 11) .

• Line 6 tells us to set G = F , so now

G = (5x1 + x2 + 7x5 + 8, x3 + 11x4 + 2x5 + 12,
3x1 + 7x2 + 8x3 + 11) .

• We now enter an outer loop:
◦ In the first iteration, i = 1.
◦ We rearrange G, obtaining

G = (5x1 + x2 + 7x5 + 8,3x1 + 7x2 + 8x3 + 11,
x3 + 11x4 + 2x5 + 12) .

◦ Since gi 6= 0, we proceed: Line 10 now tell us to denote a as the coefficient of lv (gi );
since lv (gi ) = x1, a = 5.
◦ We now enter an inner loop:

? In the first iteration, j = 2.
? Since lv

�

g j

�

= lv (gi ), we proceed: denote b as the coefficient of lv
�

g j

�

; since
lv
�

g j

�

= x1, b = 3.
? Replace g j with

a g j − b gi = 5 (3x1 + 7x2 + 8x3 + 11)

−3 (5x1 + x2 + 7x5 + 8)
= 32x2 + 40x3−21x5 + 31.
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Recall that the field is Z13, so we can rewrite this as

6x2 + x3 + 5x5 + 5.

We now have

G = (5x1 + x2 + 7x5 + 8,6x2 + x3 + 5x5 + 5,
x3 + 11x4 + 2x5 + 12) .

◦ We continue with the inner loop:
? In the second iteration, j = 3.
? Since lv

�

g j

�

6= lv (gi ), we do not proceed with this iteration.
◦ Now j = 3 = m, and the inner loop is finished.

• We continue with the outer loop:
◦ In the second iteration, i = 2.
◦ We do not rearrange G, as it is already in the form indicated. (In fact, it is in triangular

form already, but the algorithm does not “know” this yet.)
◦ Since gi 6= 0, we proceed: Line 10 now tell us to denote a as the coefficient of lv (gi );

since lv (gi ) = x2, a = 6.
◦ We now enter an inner loop:

? In the first iteration, j = 2.
? Since lv

�

g j

�

6= lv (gi ), we do not proceed with this iteration.
◦ Now j = 3 = m, and the inner loop is finished.

• Now i = 2 = m−1, and the outer loop is finished.
• We return G, which is in triangular form!

Once we have found the triangular form of a linear system, it is easy to answer the five natural
questions.

Theorem 10.11. Let G = (g1, g2, . . . , gm) is a list of nonzero linear poly-
nomials in n variables over a field F. Denote by S the system of linear
equations {gi = 0}mi=1. If G is in triangular form, then each of the follow-
ing holds.
(A) S has a solution if and only if none of the gi is a constant.
(B) S has finitely many solutions if and only if S has a solution and

m = n. In this case, there is exactly one solution.
(C) S has solutions of dimension d if and only if S has a solution and

d = n−m.

A proof of Theorem 10.11 can be found in any textbook on linear algebra, although probably
not in one place.

Example 10.12. Continuing with the system that we have used in this section, we found that a
triangular form of

F = (5x1 + x2 + 7x5 + 8, x3 + 11x4 + 2x5 + 12,
3x1 + 7x2 + 8x3 + 11) .



1. Gaussian elimination 238

is

G = (5x1 + x2 + 7x5 + 8,6x2 + x3 + 5x5 + 5,
x3 + 11x4 + 2x5 + 12) .

Let S = {g1 = 0, g2 = 0, g3 = 0}. Theorem 10.11 implies that
(A) S has a solution, because none of the gi is a constant.
(B) S has infinitely many solutions, because the number of polynomials (m = 3) is not the

same as the number of variables (n = 5).
(C) S has solutions of dimension d = n−m = 2.
In fact, from linear algebra we can parametrize the solution set. Let s , t ∈Z13 be arbitrary values,
and let x4 = s and x5 = t . Back-substituting in S, we have:
• From g3 = 0, x3 = 2s + 11t + 1.
• From g2 = 0,

6x2 = 12x3 + 8t + 8. (26)

The Euclidean algorithm helps us derive the multiplicative inverse of 6 in Z2; we get 11.
Multiplying both sides of (26) by 11, we have

x2 = 2x3 + 10t + 10.

Recall that we found x3 = 2s + 11t + 1, so

x2 = 2 (2s + 11t + 1)+ 10t + 10 = 4s + 6t + 12.

• From g1 = 0,
5x1 = 12x2 + 6x5 + 5.

Repeating the process that we carried out in the previous step, we find that

x1 = 7s + 9.

We can verify this solution by substituting it into the original system:

f1 : = 5 (7s + 9)+ (4s + 6t + 12)+ 7t + 8
= (9s + 6)+ 4s + 20
= 0

f2 : = (2s + 11t + 1)+ 11s + 2t + 12
= 0

f3 :3 (7s + 9)+ 7 (4s + 6t + 12)+ 8 (2s + 11t + 1)+ 11
= (8s + 1)+ (2s + 3t + 6)+ (3s + 10t + 8)+ 11
= 0.

Before proceeding to the next section, study the proof of Theorem (10.8) carefully. Think
about how we might relate these ideas to non-linear polynomials.

Exercises.
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Exercise 10.13. A homogeneous linear system is one where none of the polynomials has a constant
term: that is, every term of every polynomial contains a variable. Explain why homogeneous
systems always have at least one solution.

Exercise 10.14. Find the triangular form of the following linear systems, and use it to find the
common solutions of the corresponding system of equations (if any).
(a) f1 = 3x + 2y− z−1, f2 = 8x + 3y−2z, and f3 = 2x + z−3; over the field Z7.
(b) f1 = 5a + b − c + 1, f2 = 3a + 2b −1, f3 = 2a− b − c + 1; over the same field.
(c) The same system as (a), over the field Q.

Exercise 10.15. In linear algebra you also used matrices to solve linear systems, by rewriting them
in echelon (or triangular) form. Do the same with system (a) of the previous exercise.

Exercise 10.16. Does Algorithm 7 also terminate correctly if the coefficients of F are not from a
field, but from an integral domain? If so, and if m = n, can we then solve the resulting triangular
system G for the roots of F as easily as if the coefficients were from a field? Why or why not?

10.2: Monomial orderings

As with linear polynomials, we need some way to identify the “most important” mono-
mial in a polynomial. With linear polynomials, this was relatively easy; we picked the variable
with the smallest index. With non-linear polynomials, the situation is (again) more complicated.
In the polynomial on the right hand side of equation (27), which monomial should be the leading
monomial? Should it be x, y3, or y? It seems clear enough that y should not be the leading term,
since it divides y3, and therefore seems not to “lead”. With x and y3, however, things are not so
obvious. We need to settle on a method.

Recall from Section 7.3 the definition of M, the set of monomials over x1, x2, . . . , xn .

Definition 10.17. Let t , u ∈ M. The lexicographic ordering orders
t > u if
• degx1

t > degx1
u, or

• degx1
t = degx1

u and degx2
t > degx2

u, or
• . . .
• degxi

t = degxi
u for i = 1,2, . . . , n−1 and degxn

t > degxn
u.

Another way of saying this is that t > u iff there exists i such that
• degx j

t = degx j
u for all j = 1,2, . . . , i −1, and

• degxi
t > degxi

u.
The leading monomial of a non-zero polynomial p is any monomial t
such that t > u for all other terms u of p. The leading monomial of 0 is
left undefined.

Notation 10.18. We denote the leading monomial of a polynomial p as lm (p).
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Example 10.19. Using the lexicographic ordering over x, y,

lm
�

x2 + y2−4
�

= x2

lm (xy−1) = xy

lm
�

x + y3−4y
�

= x.

Before proceeding, we should prove a few simple, but important, properties of the lexicographic
ordering.

Proposition 10.20. The lexicographic ordering on M

(A) is a linear ordering;
(B) is a subordering of divisibility: for any t , u ∈M, if t | u, then

t ≤ u;
(C) is preserved by multiplication: for any t , u, v ∈M, if t < u, then

for any monomial v over x, t v < uv;
(D) orders 1≤ t for any t ∈M; and
(E) is a well ordering.

(Recall that we defined a monoid way back in Section 1.2, and used M as an example.)

Proof. For (A), suppose that t 6= u. Then there exists i such that degxi
t 6= degxi

u. Pick the
smallest i for which this is true; then degx j

t = degx j
u for j = 1,2, . . . , i −1. If degxi

t < degxi
u,

then t < u; otherwise, degxi
t > degxi

u, so t > u.
For (B), we know that t | u iff degxi

t ≤ degxi
u for all i = 1,2, . . . , m. Hence t ≤ u.

For (C), assume that t < u. Let i be such that degx j
t = degx j

u for all j = 1,2, . . . , i − 1
and degxi

t < degxi
u. For any ∀ j = 1,2, . . . , i −1, we have

degx j
(t v) = degx j

t +degx j
v

= degx j
u +degx j

v

= degx j
uv

and

degxi
(t v) = degxi

t +degxi
v

< degxi
u +degxi

v = degxi
uv.

Hence t v < uv.
(D) is a special case of (B).
For (E), let M ⊂ M. We proceed by induction on the number of variables n. For the

inductive base, if n = 1 then the monomials are ordered according to the exponent on x1, which
is a natural number. Let E be the set of all exponents of the monomials in M ; then E ⊂N. Recall
that N is well-ordered. Hence E has a least element; call it e . By definition of E , e is the exponent
of some monomial m of M . Since e ≤ α for any other exponent xα ∈ M , m is a least element
of M . For the inductive hypothesis, assume that for all i < n, the set of monomials in i variables
is well-ordered. For the inductive step, let N be the set of all monomials in n− 1 variables such
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that for each t ∈ N , there exists m ∈ M such that m = t · x e
n for some e ∈N. By the inductive

hypothesis, N has a least element; call it t . Let

P =
¦

t · x e
n : t · x e

n ∈M ∃e ∈N
©

.

All the elements of P are equal in the first n−1 variables: their exponents are the exponents of t .
Let E be the set of all exponents of xn for any monomial u ∈ P . As before, E ⊂N. Hence E has
a least element; call it e . By definition of E , there exists u ∈ P such that u = t · x e

n ; since e ≤ α
for all α ∈ E , u is a least element of P .

Finally, let v ∈M . Since t is minimal in N , either there exists i such that

degx j
u = degx j

t = degx j
v ∀ j = 1, . . . , i −1

and
degxi

u = degxi
t < degxi

v,

or
degx j

u = degx j
t = degx j

v ∀ j = 1,2, . . . , n−1

In the first case, u < v by definition. Otherwise, since e is minimal in E ,

degxn
u = e ≤ degxn

v,

in which case u ≤ v. Hence u is a least element of M .
Since M is arbitrary in M, every subset of M has a least element. Hence M is well-

ordered.

Before we start looking for a triangular form of non-linear systems, let’s observe one more
thing.

Proposition 10.21. Let p be a polynomial in the variables x =
(x1, x2, . . . , xn). If lm (p) = xαi , then every other monomial u of p has
the form

u =
n
∏

j=i

x
β j

j

for some β j ∈N. In addition, βi <α.

Proof. Assume that lm (p) = xαi . Let u be any monomial of p. Write

u =
n
∏

j=1

x
β j

j

for appropriate β j ∈N. Since u < lm (p), the definition of the lexicographic ordering implies
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that

degx j
u = degx j

lm (p) = degx j
xαi ∀ j = 1,2, . . . , i −1

and
degxi

u < degxi
t .

Hence u has the form claimed.

We now identify and generalize the properties of Proposition 10.20 to a generic ordering on
monomials.

Definition 10.22. An admissible ordering < on M is a relation that
(O1) is a linear ordering;
(O2) is a subordering of divisibility; and
(O3) is preserved by multiplication.

(The terms, “subordering with divisibility” and “preserved by multiplication” are identical to
their description in Proposition 10.20.)

By definition, properties (B)–(D) of Proposition 10.20 hold for an admissible ordering.
What of the others?

Proposition 10.23. The following properties of an admissible ordering
all hold.
(A) 1≤ t for all t ∈M.
(B) The set M of all monomials over x = (x1, x2, . . . , xn) is well-

ordered by any admissible ordering. That is, every subset M of
M has a least element.

Proof. For (A), you do it! See Exercise 10.33. For (B), the argument is identical to Proposi-
tion 10.20—after all, we now have (O1)–(O3) and (A), which were used in Proposition 10.20.

We can now introduce an ordering that you haven’t seen before.

Definition 10.24. For a monomial t , the total degree of t is the sum of
the exponents, denoted tdeg (t ). For two monomials t , u, a total-degree
ordering orders t < u whenever tdeg (t )< tdeg (u).

Example 10.25. The total degree of x3y2 is 5, and x3y2 < xy5.

However, a total degree ordering is not admissible, because not it does not satisfy (O1) for all
pairs of monomials.

Example 10.26. We cannot order x3y2 and x2y3 by total degree alone, because tdeg
�

x3y2� =
tdeg

�

x2y3� but x3y2 6= x2y3.

When there is a tie in the total degree, we need to fall back on another method. An
interesting way of doing this is the following.
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Definition 10.27. For two monomials t , u the graded reverse lexico-
graphic ordering, or grevlex, orders t < u whenever
• tdeg (t )< tdeg (u), or
• tdeg (t ) = tdeg (u) and there exists i ∈ {1, . . . , n} such that for all

j = i + 1, . . . , n
◦ degx j

t = degx j
u, and

◦ degxi
t > degxi

u.

Notice that to break a total-degree tie, grevlex reverses the lexicographic ordering in a double way:
it searches backwards for the smallest degree, and designates the winner as the larger monomial.

Example 10.28. Under grevlex, x3y2 > x2y3 because the total degrees are the same and y2 < y3.

Theorem 10.29. The graded reverse lexicographic ordering is an admis-
sible ordering.

Proof. We have to show properties (O1)–(O3). Let t , u ∈M.
(O1) Assume t 6= u; by definition, there exists i ∈N+ such that degxi

t 6= degxi
u. Choose

the largest such i , so that degx j
t = degx j

u for all j = i +1, . . . , n. Then t < u if degxi
t < degxi

u;
otherwise u < t .

(O2) Assume t | u. By definition, degxi
t ≤ degxi

u for all i = 1, . . . , n. If t = u, then
we’re done. Otherwise, t 6= u. If tdeg (t )> tdeg (u), then the fact that the degrees are all natural
numbers implies (see Exercise ) that for some i = 1, . . . , n we have degxi

t > degxi
u, contradicting

the hypothesis that t | u! Hence tdeg (t ) = tdeg (u). Since t 6= u, there exists i ∈ {1, . . . , n} such
that degxi

t 6= degxi
u. Choose the largest such i , so that degx j

t = degx j
u for j = i + 1, . . . , n.

Since t | u, degxi
t < degxi

u, and degx j
t ≤ degx j

u. Hence

tdeg (t ) =
i−1
∑

j=1

degx j
t +degxi

t +
n
∑

j=i+1

degx j
t

=
i−1
∑

j=1

degx j
t +degxi

t +
n
∑

j=i+1

degx j
u

≤
i−1
∑

j=1

degx j
u +degxi

t +
n
∑

j=i+1

degx j
u

<
i−1
∑

j=1

degx j
u +degxi

u +
n
∑

j=i+1

degx j
u

= tdeg (u) .

Hence t < u.
(O3) Assume t < u, and let v ∈ M. By definition, tdeg (t ) < tdeg (u) or there exists

i ∈ {1,2, . . . , n} such that degxi
t > degxi

u and degx j
t = degx j

u for all j = i + 1, . . . , n. In the
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first case, you will show in the exercises that

tdeg (t v) = tdeg (t )+ tdeg (v)
< tdeg (u)+ tdeg (v) = tdeg (uv) .

In the second,

degxi
t v = degxi

t +degxi
v > degxi

u +degxi
v = degxi

uv

while
degx j

t v = degx j
t +degx j

v = degx j
u +degx j

v = degx j
uv.

In either case, t v < uv as needed.

A useful tool when dealing with monomial orderings is a monomial diagram. These are most
useful for monomials in a bivariate polynomial ring F [x, y ], but we can often imagine important
aspects of these diagrams in multivariate rings, as well. We discuss the bivariate case here.

Definition 10.30. Let t ∈M. Define the exponent vector (α1, . . . ,αn) ∈
Nn where αi = degxi

t .

Let t ∈F [x, y ] be a monomial, and (α,β) its exponent vector. That is,

t = xαyβ.

We can consider (α,β) as a point in the x-y plane. If we do this with all the monomials of
M⊂F [x, y ], and we obtain the following diagram:

1 2 3 4

1

2

3

4

This diagram is not especially useful, aside from pointing out that the monomial x2 is the third
point on the left in the bottom row, and the monomial 1 is the point in the lower left corner.
What does make diagrams like this useful is the fact that if t | u, then the point corresponding to
u lies above and/or to the right of the point corresponding to t , but never below or to the left
of it. We often shade the points corresponding monomials divisible by a given monomial; for
example, the points corresponding to monomials divisible by xy2 lie within the shaded region of
the following diagram:
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1 2 3 4

1

2

3

4

As we will see later, diagrams such as the one above can come in handy when visualizing certain
features of an ideal.

What interests us most for now is that we can sketch vectors on a monomial diagram that
show the ordering of the monomials.

Example 10.31. We sketch monomial diagrams that show how lex and grevlex order M. We
already know that the smallest monomial is 1. The next smallest will always be y.

For the lex order, ya < x for every choice of a ∈N, no matter how large. Hence the next
largest monomial is y2, followed by y3, etc. Once we have marked every power of y, the next
largest monomial is x, followed by xy, by xy2, etc., for xya < x2 for all a ∈N. Continuing in
this fashion, we have the following diagram:

1 2 3 4

1

2

3

4

With the grevlex order, by contrast, the next largest monomial after y is x, since tdeg (x) <
tdeg

�

y2�. After x come y2, xy, and x2, in that order, followed by the degree-three monomials
y2, xy2, x2y, and x3, again in that order. This leads to the following monomial diagram:

1 2 3 4

1

2

3

4

These diagrams illustrate an important and useful fact.



3. Matrix representations of monomial orderings 246

Theorem 10.32. Let t ∈M.
(A) In the lexicographic order, there are infinitely many monomials

smaller than t if and only if t is not a power of xn alone.
(B) In the grevlex order, there are finitely many monomials smaller

than t .

Proof. You do it! See Exercise .

Exercises.

Exercise 10.33. Show that for any admissible ordering and any t ∈M, 1≤ t .

Exercise 10.34. The graded lexicographic order, which we will denote by gralex, orders t < u
if
• tdeg (t )< tdeg (u), or
• tdeg (t ) = tdeg (u) and the lexicographic ordering would place t < u.

(a) Order x2y, xy2, and z5 by gralex.
(b) Show that gralex is an admissible order.
(d) Sketch a monomial diagram that shows how gralex orders M.

Exercise 10.35. Prove Theorem 10.32.

10.3: Matrix representations of monomial orderings

Aside from lexicographic and graded reverse lexicographic orderings, there are limitless
ways to design an admissible ordering.

Definition 10.36. Let M ∈ Rn×n . We define the weighted vector
w (t ) = M t.

Example 10.37. Consider the matrix

M =















1 1 · · · 1 1
−1

−1
· · ·

−1















where the empty entries are zeroes. We claim that M represents the grevlex ordering, and
weighted vectors computed with M can be read from top to bottom, where the first entry that
does not tie determines the larger monomial.

Why? The top row of M adds all the elements of the exponent vector, so the top entry
of the weighted vector is the total degree of the monomial. Hence if the two monomials have
different total degrees, the top entry of the weighted vector determines the larger monomial. In
case they have the same total degree, the second entry of M t contains −degxn

t , so if they have
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different degree in the smallest variable, the second entry determines the larger variables. And so
forth.

The monomials t = x3y2, u = x2y3, and v = xy5 have exponent vectors t = (3,2),
u = (2,3), and v = (1,5), respectively. We have

M t =
�

5
−2

�

, Mu =

�

5
−3

�

, Mv =

�

6
−5

�

,

from which we conclude that v > t > u.

Not all matrices can represent admissible orderings. It would be useful to know in advance which
ones do.

Theorem 10.38. Let M ∈Rm×m . The following are equivalent.
(A) M represents a admissible ordering.
(B) Each of the following holds:

(MO1) Its rows are linearly independent over Z.
(MO2) The topmost nonzero entry in each column is positive.

To prove the theorem, we need the following lemma.

Lemma 10.39. If a matrix M satisfies (B) of Theorem 10.38, then there
exists a matrix N that satisfies (B), whose entries are all nonnegative, and
for all t ∈ Zn comparison from top to bottom implies that N t > Nu if
and only if M t>Mu.

Example 10.40. In Example 10.37, we saw that grevlex could be represented by

M =















1 1 · · · 1 1
−1

−1
· · ·

−1















.

However, it can also be represented by

N =















1 1 1 · · · 1
1 1 · · · 1
· · ·

1 1
1















where the empty entries are, again, zeroes. Notice that the first row operates exactly the same,
while the second row adds all the entries except the last. If tn < yn then from t1 + · · ·+ tn =
u1 + · · ·+ un we infer that t1 + · · ·+ tn−1 > u1 + · · ·+ un−1, so the second row of N t and Nu
would break the tie in exactly the same way as the second row of M t and Mu. And so forth.

In addition, notice that we can obtain N by adding row 1 of M to row 2 of M , then adding
the modified row 2 of M to the modified row 3, and so forth.
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Proof. Let M ∈ Rn×n satisfy (B) of Theorem 10.38. Construct N in the following way by
building matrices M0, M1, . . . in the following way. Let M1 = M . Suppose that M1, M2, . . . , Mi−1
all have nonnegative entries in rows 1, 2, etc. but M has a negative entry α in row i , column
j . The topmost nonzero entry β of column j in Mi−1 is positive; say it is in row k. Use the
Archimedean property of R to find K ∈N+ such that Kβ≥ |α|, and add K times row k of Mi−1
to row j . The entry in row i and column j of Mi is now nonnegative, and if there were other
negative values in row i of Mi , the fact that row k of Mi−1 contained nonnegative entries implies
that the absolute values of these negative entries are no larger than before, so we can repeat this
on each entry. Since there is a finite number of entries in each row, and a finite number of rows
in M , this process does not continue indefinitely, and terminates with a matrix N whose entries
are all nonnegative.

In addition, we can write the i th row N(i) of N as

N(i) = K1M(1)+K2M(2)+ · · ·+Ki M(i)

where M(k) indicates the kth row of M . For any t ∈M, the i th entry of N t is therefore

N(i)t =
�

K1M(1)+K2M(2)+ · · ·+Ki M(i)

�

t

= K1

�

M(1)t
�

+K2

�

M(2)t
�

+ · · ·+Ki

�

M(i)t
�

.

We see that if M(1)t = · · · = M(i−1)t = 0 and M(i)t = α 6= 0, then N(1)t = · · · = N(i−1)t = 0 and
N(i)t = Kiα 6= 0. Hence N t>Nu if and only if M t>Mu.

Now we can prove Theorem 10.38.

Proof of Theorem 10.38. That (A) implies (B): Assume that M represents an admissible ordering.
For (MO2), observe that the monomial 1 has the exponent vector t = (0, . . . , 0) and the mono-
mial xi has the exponent vector u with zeroes everywhere except in the i th position. The prod-
uct M t > Mu if the i th element of the top row of M is negative, but this contradicts Proposi-
tion 10.23(A). For (MO1), observe that property (O1) of Definition 10.22 implies that no pair
of distinct monomials can produce the same weighted vector. Hence the rows of M are linearly
independent over Z.

That (B) implies (A): Assume that M satisfies (B); thus it satisfies (MO1) and (MO2). We
need to show that properties (O1)–(O3) of Definition 10.22 are satisfied.

(O1): Since the rows of M are linearly independent over Z, every pair of monomials t
and u produces a pair of distinct weighted vectors M t and Mu if and only if t 6= u. Reading these
vectors from top to bottom allows us to decide whether t > u, t < u, or t = u.

(O2): This follows from linear algebra. Let t , u ∈ M, and assume that t | u. Then
degxi

t ≤ degxi
u for all i = 1,2, . . . , n. In the exponent vectors t and u, ti ≤ ui for each i . Let

v ∈Nn such that u = t+v; then

Mu = M (t+v) = M t+Mv.

From Lemma 10.39 we can assume that the entries of M are all nonnegative. Thus the entries of
Mu, M t, and Mv are also nonnegative. Thus the topmost nonzero entry of Mv is positive, and
Mu>M t.

(O3): This is similar to (O2), so we omit it.
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In the Exercises you will find other matrices that represent term orderings, some of them
somewhat exotic.

Exercises

Exercise 10.41. Find a matrix that represents (a) the lexicographic term ordering, and (b) the
gralex ordering.

Exercise 10.42. Explain why the matrix

M =



























1 1
1 1 1
1 1 1 1
−1

1 1 1 1
1 1 1

1 1
−1



























represents an admissible ordering. Use M to order the monomials

x1x2
3 x4x6, x1x8

4 x7, x2x2
3 x4x6, x8, , x2

8 , x7x8.

Exercise 10.43. Suppose you know nothing about an admissible order < on F [x, y ] except that
x > y and x2 < y3. Find a matrix that represents this order.

10.4: The structure of a Gröbner basis
When we consider the non-linear case, things become a little more complicated. Consider

the following system of equations:

x2 + y2 = 4
xy = 1.

We can visualize the real solutions to this system; see Figure 10.1 on the following page. The com-
mon solutions occur wherever the circle and the hyperbola intersect. We see four intersections
in the real plane; one of them is hilighted with a dot.

However, we don’t know if complex solutions exist. In addition, plotting equations in-
volving more than two variables is difficult, and more than three is effectively impossible. Finally,
while it’s relatively easy to solve the system given above, it isn’t a “triangular” system in the sense
that the last equation is only in one variable. So we can’t solve for one variable immediately and
then go backwards. We can solve for y in terms of x, but not for an exact value of y.

It gets worse! Although the system is triangular in a “linear” sense, it is not triangular in
a non-linear sense: we can multiply the two polynomials above by monomials and obtain a new
polynomial that isn’t obviously spanned by either of these two:

y
�

x2 + y2−4
�

− x (xy−1) = x + y3−4y. (27)
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Figure 10.1. Plots of x2 + y2 = 4 and xy = 1

None of the terms of this new polynomial appears in either of the original polynomials. This
sort of thing does not happen in the linear case, largely because
• cancellation of variables can be resolved using scalar multiplication, hence in a vector space;

but
• cancellation of terms cannot be resolved without monomial multiplication, hence it requires

an ideal.
So we need to find a “triangular form” for non-linear systems.

Let’s rephrase this problem in the language of rings and ideals. The primary issue we
would like to resolve is the one that we remarked immediately after computing the subtraction
polynomial of equation (27): we built a polynomial p whose leading term x was not divisible
by the leading term of either the hyperbola (xy) or the circle (x2). When we built p, we used
operations of the polynomial ring that allowed us to remain within the ideal generated by the
hyperbola and the circle. That is,

p = x + y3−4y = y
�

x2 + y2−4
�

− x (xy−1) ;

by Theorem 8.11 ideals absorb multiplication and are closed under subtraction, so

p ∈
¬

x2 + y2−4, xy−1
¶

.

So one problem appears to be that p is in the ideal, but its leading monomial is not divisible by
the leading monomials of the ideal’s basis. Let’s define a special kind of idael basis that will not
give us this problem.

Definition 10.44. Let {g1, g2, . . . , gm} be a basis of an ideal I ; that is,
I = 〈g1, g2, . . . , gm〉. We say that G = (g1, g2, . . . , gm) is a Gröbner basis
of I if for every p ∈ I , lm (gk) | lm (p) for some k ∈ {1,2, . . . , m}.

It isn’t obvious at the moment how we can decide that any given basis forms a Gröbner basis,
because there are infinitely many polynomials that we’d have to check. However, we can certainly
determine that the list

�

x2 + y2−4, xy−1
�
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is not a Gröbner basis, because we found a polynomial in its ideal that violated the definition of a
Gröbner basis: x + y3−4y.

How did we find that polynomial? We built a subtraction polynomial that was calculated in
such a way as to “raise” the polynomials to the lowest level where their leading monomials would
cancel! Let t , u be monomials in the variables x = (x1, x2, . . . , xn). Write t = xα1

1 xα2
2 · · · x

αn
n and

u = xβ1
1 xβ2

2 · · · x
βn
n . Any common multiple of t and u must have the form

v = xγ1
1 xγ2

2 · · · x
γn
n

where γi ≥ αi and γi ≥βi for each i = 1,2, . . . , n. We can thus identify a least common multiple

lcm (t , u) = xγ1
1 xγ2

2 · · · x
γn
n

where γi = max (αi ,βi ) for each i = 1,2, . . . , n. It really is the least because no common multiple
can have a smaller degree in any of the variables, and so it is smallest by the definition of the
lexicographic ordering.

Lemma 10.45. For any two polynomials p, q ∈ F [x1, x2, . . . , xn ], with
lm (p) = t and lm (q) = u, we can build a polynomial in the ideal of p
and q that would raise the leading terms to the smallest level where they
would cancel by computing

S = lc (q) ·
lcm (t , u)

t
· p

− lc (p) ·
lcm (t , u)

u
· q .

Moreover, for all other monomials τ,µ and a, b ∈ F, if aτ p− bµq can-
cels the leading terms of τ p and µq , then it is a multiple of S.

Proof. First we show that the leading monomials of the two polynomials in the subtraction
cancel. By Proposition 10.20,

lm

�

lcm (t , u)

t
· p
�

=
lcm (t , u)

t
· lm (p)

=
lcm (t , u)

t
· t = lcm (t , u) ;

likewise

lm

�

lcm (t , u)

u
· q
�

=
lcm (t , u)

u
· lm (q)

=
lcm (t , u)

u
· u = lcm (t , u) .
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Thus

lc

�

lc (q) ·
lcm (t , u)

t
· p
�

= lc (q) · lc (p)

and

lc

�

lc (p) ·
lcm (t , u)

t
· q
�

= lc (p) · lc (q) .

Hence the leading monomials of the two polynomials in S cancel.
Let τ,µ be monomials over x = (x1, x2, . . . , xn) and a, b ∈ F such that the leading mono-

mials of the two polynomials in aτ p− bµq cancel. Let τ = xα1
1 · · · x

αn
n and µ = xβ1

1 · · · x
βn
n for

appropriate αi and βi in N. Write lm (p) = xζ1
1 · · · x

ζn
n and lm (q) = xω1

1 · · · x
ωn
n for appropriate

ζi andωi in N. The leading monomials of aτ p− bµq cancel, so for each i = 1,2, . . . , n

αi + ζi =βi +ωi .

We have
αi =βi +(ωi − ζi ) .

Thus

αi − (max (ζi ,ωi )− ζi ) = [(βi +(ωi − ζi ))

− (max (ζi ,ωi )− ζi )]

=βi − (max (ζi ,ωi )−ωi ) .

Let ηi = αi − (max (ζi ,ωi )− ζi ) and let

v =
n
∏

i=1

xηi
i .

Then

aτ p− bµq = v
�

a ·
lcm (t , u)

t
· p− b ·

lcm (t , u)

u
· q
�

,

as claimed.

The subtraction polynomial of Lemma 10.45 is important enough that we give it a special name.

Definition 10.46. Let p, q ∈ F [x1, x2, . . . , xn ]. We define the S-poly-
nomial of p and q with respect to the lexicographic ordering to be

Spol (p, q) = lc (q) ·
lcm (lm (p) , lm (q))

lm (p)
· p

− lc (p) ·
lcm (lm (p) , lm (q))

lm (q)
· q .

It should be clear from the discussion above the definition that S-poly-nomials capture the can-
cellation of leading monomials. In fact, they are a natural generalization of the cancellation used
in Algorithm 7, Gaussian elimination, to obtain the triangular form of a linear system. In the
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same way, we need to generalize the notion that cancellation does not introduce any new leading
variables. In our case, we have to make sure that cancellation does not introduce any new leading
terms. We introduce the notion of top-reduction for this.

Definition 10.47. Let p, q ∈ F [x1, x2, . . . , xn ]. If lm (p) divides lm (q),
then we say that p top-reduces q .

If p top-reduces q , let t = lm (q)/lm (p) and c = lc (q)/lc (p).
Let r = q− c t · p; we say that p top-reduces q to r .

Finally, let F = ( f1, f2, . . . , fm) be a list of polynomials in
F [x1, x2, . . . , xn ], and r1, r2, . . . , rk ∈F [x1, x2, . . . , xn ] such that
• some polynomial of F top-reduces p to r1,
• some polynomial of F top-reduces r1 to r2,
• . . .
• some polynomial of F top-reduces rk−1 to rk .

In this case, we say that p top-reduces to rk with respect to F .

Example 10.48. Let p = x + 1 and q = x2 + 1. We have lm (p) = x and lm (q) = x2. Since
lm (p) divides lm (q), p top-reduces q . Let t = x2

x = x and c = 1
1 = 1; we see that p top-reduces

q to r = q−1 · x · p =−x + 1.

Remark 10.49. Observe that top-reduction is a kind of S-polynomial computation. To see this,
write lm (p) = xα1

1 · · · x
αn
n and lm (q) = xβ1

1 · · · x
βn
n . Since lm (p) divides lm (q), αi ≤βi for each

i . Thus lcm (lm (q) , lm (p)) = lm (p). Let t = lm(q)
lm(p) and c = lc(q)

lc(p) ; substitution gives us

Spol (q , p) = lc (p) ·
�
�
�
��

1
lm (q)

lm (q)
· q− lc (q) ·

lm (q)

lm (p)
· p

= lc (p) · q−
lc (p)

lc (p)
· lc (q) · t · p

= lc (p) · (q− c t · p)

where q− c t · p is the ordinary top-reduction of q by p. Thus top-reduction is a scalar multiple
of an S-polynomial.

We will need the following properties of polynomial operations.

Proposition 10.50. Let p, q , r ∈ F [x1, x2, . . . , xn ]. Each of the following
holds:
(A) lm (pq) = lm (p) · lm (q)
(B) lm (p± q)≤max (lm (p) , lm (q))
(C) lm (Spol (p, q))< lcm (lm (p) , lm (q))
(D) If p top-reduces q to r , then lm (r )< lm (q).

Proof. For convenience, write t = lm (p) and u = lm (q).
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(A) Any monomial of pq can be written as the product of two monomials vw, where v
is a monomial of p and w is a monomial of q . If v 6= lm (p), then the definition of a leading
monomial implies that v < t . Proposition 10.20 implies that

vw ≤ t w,

with equality only if v = t . The same reasoning implies that

vw ≤ t w ≤ t u,

with equality only if w = u. Hence

lm (pq) = t u = lm (p) lm (q) .

(B) Any monomial of p± q is also a monomial of p or a product of q . Hence lm (p± q)
is a monomial of p or of q . The maximum of these is max (lm (p) , lm (q)). Hence lm (p± q)≤
max (lm (p) , lm (q)).

(C) Definition 10.46 and (B) imply lm (Spol (p, q))< lcm (lm (p) , lm (q)).
(D) Assume that p top-reduces q to r . Top-reduction is a special case of of an S-poly-

nomial; that is, r = Spol (p, q). Here lcm (lm (p) , lm (q)) = lm (q), and (C) implies that
lm (r )< lm (q).

In a triangular linear system, we achieve a triangular form by rewriting all polynomials that
share a leading variable. In the linear case we can accomplish this using scalar multiplication,
requiring nothing else. In the non-linear case, we need to check for divisibility of monomials.
The following result should, therefore, not surprise you very much.

Theorem 10.51 (Buchberger’s characterization). Let g1, g2, . . . , gm ∈
F [x1, x2, . . . , xn ]. The following are equivalent.
(A) G = (g1, g2, . . . , gm) is a Gröbner basis of the ideal I =

〈g1, g2, . . . , gm〉.
(B) For any pair i , j with 1 ≤ i < j ≤ m, Spol

�

gi , g j

�

top-reduces to
zero with respect to G.

Example 10.52. Recall two systems considered at the beginning of this chapter,

F =
�

x2 + y2−4, xy−1
�

and
G =

�

x2 + y2−4, xy−1, x + y3−4y,−y4 + 4y2−1
�

.

Is either of these a Gröbner basis?
• Certainly F is not; we already showed that the one S-polynomial is

S = Spol ( f1, f2)

= y
�

x2 + y2−4
�

− x (xy−1)

= x + y3−4y;
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this does not top-reduce to zero because lm (S) = x, and neither leading term of F divides
this.
• On the other hand, G is a Gröbner basis. We will not show all six S-polynomials (you will

verify this in Exercise 10.55), but

Spol (g1, g2)− g3 = 0,

so the problem with F does not reappear. It is also worth noting that when G top-reduces
Spol (g1, g4), we derive the following equation:

Spol (g1, g4)−
�

4y2−1
�

g1 +
�

y2−4
�

g4 = 0.

If we rewrite Spol (g1, g4) = y4 g1 + x2 g4 and substitute it into the above equation, some-
thing very interesting turns up:

�

y4 g1 + x2 g4

�

−
�

4y2−1
�

g1 +
�

y2−4
�

g4 = 0

−
�

−y4 + 4y2−1
�

g1 +
�

x2 + y2−4
�

g4 = 0

−g4 g1 + g1 g4 = 0.

Remark 10.53. Example 10.52 suggests a method to compute a Gröbner basis of an ideal: given
a basis, use S-polynomials to find elements of the ideal that do not satisfy Definition 10.44; then
keep adding these to the basis until all of them reduce to zero. Eventually, this is exactly what we
will do, but until then there are two problems with acknowledging it:
• We don’t know that a Gröbner basis exists for every ideal. For all we know, there may be

ideals for which no Gröbner basis exists.
• We don’t know that the proposed method will even terminate! It could be that we can go

on forever, adding new polynomials to the ideal without ever stopping.
We resolve these questions in the following section.

It remains to prove Theorem 10.51, but before we can do that we will need the following useful
lemma. While small, it has important repercussions later.

Lemma 10.54. Let p, f1, f2, . . . , fm ∈ F [x1, x2, . . . , xn ]. Let F =
( f1, f2, . . . , fm). Then (A) implies (B) where
(A) p top-reduces to zero with respect to F .
(B) There exist q1, q2, . . . , qm ∈ F [x1, x2, . . . , xn ] such that each of the

following holds:
(B1) p = q1 f1 + q2 f2 + · · ·+ qm fm ; and
(B2) For each k = 1,2, . . . , m,qk = 0 or lm (qk) lm (gk) ≤

lm (p).

Proof. You do it! See Exercise 10.61.

You will see in the following that Lemma 10.54allows us to replace polynomials that are “too
large” with smaller polynomials. This allows us to obtain the desired form.
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Proof of Theorem 10.51. That (A)⇒ (B): Assume that G is a Gröbner basis, and let i , j be such
that 1≤ i < j ≤ m. Then

Spol
�

gi , g j

�

∈
¬

gi , g j

¶

⊂ 〈g1, g2, . . . , gm〉 ,

and the definition of a Gröbner basis implies that there exists k1 ∈ {1,2, . . . , m} such that gk1
top-

reduces Spol
�

gi , g j

�

to a new polynomial, say r1. The definition further implies that if r1 is not
zero, then there exists k2 ∈ {1,2, . . . , m} such that gk2

top-reduces r1 to a new polynomial, say r2.
Repeating this iteratively, we obtain a chain of polynomials r1, r2, . . . such that r` top-reduces to
r`+1 for each ` ∈N. From Proposition 10.50, we see that

lm (r1)> lm (r2)> · · · .

Recall that the set of all monomials over x = (x1, x2, . . . , xn) is well-ordered, so any set of mono-
mials over x has a least element. This includes the set R = {lm (r1) , lm (r2) , . . .}! Thus the chain
of top-reductions cannot continue indefinitely. It cannot conclude with a non-zero polynomial
rlast, since:

• top-reduction keeps each r` in the ideal:
◦ subtraction by the subring property, and

? multiplication by the absorption property; hence
◦ by the definition of a Gröbner basis, a non-zero rlast would be top-reducible by some

element of G.

Proof. The chain of top-reductions must conclude with zero, so Spol
�

gi , g j

�

top-reduces to
zero.

That (A) ⇐ (B): Assume (B). We want to show (A); that is, any element of I is top-
reducible by an element of G. So let p ∈ I ; by definition, there exist polynomials h1, . . . , hm ∈
F [x1, x2, . . . , xn ] such that

p = h1 g1 + · · ·+ hm gm .

For each i , write ti = lm (gi ) and ui = lm (hi ). Let T = maxi=1,2,...,m (ui ti ). We call T the
maximal term of the representation h1, h2, . . . , hm . If lm (p) = T , then we are done, since

lm (p) = T = uk tk = lm (hk) lm (gk) ∃k ∈ {1,2, . . . , m} .

Otherwise, there must be some cancellation among the leading monomials of each polynomial
in the sum on the right hand side. That is,

T = lm
�

h`1
g`1

�

= lm
�

h`2
g`2

�

= · · ·= lm
�

h`s
g`s

�

for some `1,`2, . . . ,`s ∈ {1,2, . . . , m}. From Lemma 10.45, we know that we can write the sum of
these leading terms as a sum of multiples of a S-polynomials of G. That is,

lc
�

h`1

�

lm
�

h`1

�

g`1
+ · · ·+ lc

�

h`s

�

lm
�

h`s

�

g`s
=

=
∑

1≤a<b≤s

ca,b ua,b Spol
�

g`a
, g`b

�
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where for each a, b we have ca,b ∈F and ua,b ∈M. Let

S =
∑

1≤a<b≤s

ca,b ua,b Spol
�

g`a
, g`b

�

.

Observe that
�

lm
�

h`1

�

g`1
+ lm

�

h`2

�

g`2
+ · · ·+ lm

�

h`s

�

g`s

�

− S = 0. (28)

By (B), we know that each S-polynomial of S top-reduces to zero. This fact, Lemma 10.54 and
Proposition 10.50, implies that for each a, b we can find q (a,b )

λ
∈F [x1, x2, . . . , xn ] such that

Spol
�

g`a
, g`b

�

= q (a,b )
1 g1 + · · ·+ g (a,b )

m gm

and for each λ= 1,2, . . . , m we have q (a,b )
λ

= 0 or

lm
�

q (a,b )
λ

�

lm (gλ)≤ lm
�

Spol
�

g`a
, g`b

��

< lcm
�

lm
�

g`a

�

, lm
�

g`b

��

. (29)

Let Q1,Q2, . . . ,Qm ∈F [x1, x2, . . . , xn ] such that

Qk =

(

∑

1≤a<b≤s ca,b ua,b q (a,b )
k

, k ∈ {`1, . . . ,`s} ;
0, otherwise.

Then
S = Q1 g1 +Q2 g2 + · · ·+Qm gm .

In other words,
S− (Q1 g1 +Q2 g2 + · · ·+Qm gm) = 0.

By equation (29) and Proposition 10.50, for each k = 1,2, . . . , m we have Qk = 0 or

lm (Qk) lm (gk)≤ max
1≤a<b≤s

nh

ua,b lm
�

q (a,b )
k

�i

lm (gk)
o

= max
1≤a<b≤s

n

ua,b

h

lm
�

q (a,b )
k

�

lm (gk)
io

≤ max
1≤a<b≤s

¦

ua,b lm
�

Spol
�

g`a
, g`b

��©

< ua,b lcm
�

lm
�

g`a

�

, lm
�

g`b

��

= T . (30)
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By substitution,

p = (h1 g1 + h2 g2 + · · ·+ hm gm)−






S−

∑

k∈{`1,...,`s }
Qk gk







=







∑

k 6∈{`1,...,`s }
hk gk +

∑

k∈{`1,...,`s }
(hk − lc (hk) lm (hk)) gk







+







���
���

���
���

���
�:0

∑

k∈{`1,...,`s }
lc (hk) lm (hk) gk − S







+
∑

k∈{`1,...,`s }
Qk gk .

Let Q1, . . . ,Qm ∈F [x1, . . . , xn ] such that

Qk (x) =

(

hk , k 6∈ {`1, . . . ,`s} ;
hk − lc (hk) lm (hk)+Qk , otherwise.

By substitution,

p =Q1 g1 + · · ·+Qm gm .

If k 6∈ {`1, . . . ,`s}, then the choice of T as the maximal term of the representation implies that

lm (Qk) lm (gk) = lm (hk) lm (gk)< T .

Otherwise, Proposition 10.50 and equation (30) imply that

lm (Qk) lm (gk)≤
≤max ((lm (hk − lc (hk) lm (hk)) , lm (Qk)) lm (gk))

< lm (hk) lm (gk) = T .

What have we done? We have rewritten the original representation of p over the ideal,
which had maximal term T , with another representation, which has maximal term smaller than
T . This was possible because all the S-polynomials reduced to zero; S-polynomials appeared
because T > lm (p), implying cancellation in the representation of p over the ideal. We can
repeat this as long as T > lm (p), generating a list of monomials

T1 > T2 > · · · .

The well-ordering of M implies that this cannot continue indefinitely! Hence there must be a
representation

p = H1 g1 + · · ·+Hm gm

such that for each k = 1,2, . . . , m Hk = 0 or lm (Hk) lm (gk) ≤ lm (p). Both sides of the equa-
tion must simplify to the same polynomial, with the same leading variable, so at least one k
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has lm (Hk) lm (gk) = lm (p); that is, lm (gk) | lm (p). Since p was arbitrary, G satisfies the
definition of a Gröbner basis.

Exercises.

Exercise 10.55. Show that

G =
�

x2 + y2−4, xy−1, x + y3−4y,−y4 + 4y2−1
�

is a Gröbner basis with respect to the lexicographic ordering.

Exercise 10.56. Show that G of Exercise 10.55 is not a Gröbner basis with respect to the grevlex
ordering. As a consequence, the Gröbner basis property depends on the choice of term ordering!

Exercise 10.57. Show that any Gröbner basis G of an ideal I is a basis of the ideal; that is, any
p ∈ I can be written as p =

∑m
i=1 hi gi for appropriate hi ∈F [x1, . . . , xn ].

Exercise 10.58. Show that for any non-constant polynomial f , F = ( f , f + 1) is not a Gröbner
basis.

Exercise 10.59. Show that every list of monomials is a Gröbner basis.

Exercise 10.60. We call a basis G of an ideal a minimal basis if no monomial of any g1 ∈ G is
divisible by the leading monomial of any g2 ∈G.
(a) Suppose that a Gröbner basis G is not minimal. Show that we obtain a minimal basis by

repeatedly replacing each g ∈G by g − t g ′ where t lm
�

g ′
�

is a monomial of g .
(b) Explain why the minimal basis obtained in part (a) is also a Gröbner basis of the same ideal.

Exercise 10.61. Let

p = 4x4−3x3−3x2y4 + 4x2y2−16x2 + 3xy3−3xy2 + 12x

and F =
�

x2 + y2−4, xy−1
�

.
(a) Show that p reduces to zero with respect to F .
(b) Show that there exist q1, q2 ∈F [x, y ] such that p = q1 f1 + q2 f2.
(c) Generalize the argument of (b) to prove Lemma 10.54.

Exercise 10.62. For G to be a Gröbner basis, Definition 10.44 requires that every polynomial in
the ideal generated by G be top-reducible by some element of G. If polynomials in the basis are
top-reducible by other polynomials in the basis, we call them redundant elements of the basis.
(a) The Gröbner basis of Exercise 10.55 has redundant elements. Find a subset Gmin of G that

contains no redundant elements, but is still a Gröbner basis.
(b) Describe the method you used to find Gmin.
(c) Explain why redundant polynomials are not required to satisfy Definition 10.44. That is,

if we know that G is a Gröbner basis, then we could remove redundant elements to obtain
a smaller list, Gmin, which is also a Gröbner basis of the same ideal.
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10.5: Buchberger’s algorithm
Algorithm 7 on page 235 shows how to triangularize a linear system. If you study it, you

will see that essentially it looks for parts of the system that are not triangular (equations with the
same leading variable) then adds a new polynomial to account for the triangular form. The new
polynomial replaces one of the older polynomials in the pair.

For non-linear systems, we will try an approach that is similar, not but identical. We will
look for polynomials in the ideal that do not satisfy the Gröbner basis property, we will add
a new polynomial to repair this defect. We will not, however, replace the older polynomials,
because in a non-linear system this might cause us either to lose the Gröbner basis property or
even to change the ideal.

Example 10.63. Let F =
�

xy + x z + z2, y z + z2�, and use grevlex with x > y > z. The S-
polynomial of f1 and f2 is

S = z
�

xy + x z + z2
�

− x
�

y z + z2
�

= z3.

Let G =
�

xy + x z + z2, z3�; that is, G is F with f2 replaced by S. It turns out that y z + z2 6∈ 〈G〉.
If it were, then

y z + z2 = h1

�

xy + x z + z2
�

+ h2 · z
3.

Every term of the right hand side will be divisible either by x or by z2, but y z is divisible by
neither. Hence y z + z2 ∈ 〈G〉.

Thus we will adapt Algorithm 7 without replacing or discarding any polynomials. How
will we look for polynomials in the ideal that do not satisfy the Gröbner basis property? For
Guassian elimination with linear polynomials, this was “obvious”: look for polynomials whose
leading variables are the same. With non-linear polynomials, Buchberger’s characterization (The-
orem 10.51) suggests that we compute the S-polynomials, and top-reduce them. If they all top-
reduce to zero, then Buchberger’s characterization implies that we have a Gröbner basis already,
so there is nothing to do. Otherwise, at least one S-polynomial does not top-reduce to zero,
so we add its reduced form to the basis and test the new S-polynomials as well. This suggests
Algorithm 8.

Theorem 10.64. For any list of polynomials F over a field, Buchberger’s
algorithm terminates with a Gröbner basis of 〈F 〉.

Correctness isn’t hard if Buchberger’s algorithm terminates, because it discards nothing, adds
only polynomials that are already in 〈F 〉, and terminates only if all the S-polynomials of G top-
reduce to zero. The problem is termination, which relies on the Ascending Chain Condition.

Proof. For termination, let F be a field, and F a list of polynomials over F. Designate

I0 = 〈lm (g1) , lm (g2) , . . . , lm (gm)〉
I1 =




lm (g1) , lm (g2) , . . . , lm (gm) , lm
�

gm+1
��

I2 =



lm (g1) , . . . , lm (gm) , lm
�

gm+1
�

, lm
�

gm+2
��

...
Ii =




lm (g1) , . . . , lm
�

gm+i
��
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Algorithm 8. Buchberger’s algorithm to compute a Gröbner basis
1: inputs
2: F = ( f1, f2, . . . , fm), where each fi ∈F [x1, . . . , xn ].
3: <, an admissible ordering.
4: outputs
5: G, a Gröbner basis of 〈F 〉 with respect to <.
6: do
7: Let G := F
8: Let P =

�

( f , g ) : ∀ f , g ∈G such that f 6= g
	

9: repeat while P 6= ;
10: Choose ( f , g ) ∈ P
11: Remove ( f , g ) from P
12: Let S be the S-polynomial of f , g
13: Let r be the top-reduction of S with respect to G
14: if r 6= 0
15: Replace P by P ∪{(h, r ) : h ∈G}
16: Append r to G
17: return G

where gm+i is the i th polynomial added to G by line 16 of Algorithm 8.

We claim that I0 ⊆ I1 ⊆ I2 ⊆ · · · is a strictly ascending chain of ideals. After all, a poly-
nomial r is added to the basis only when it is non-zero (line 14); since it has not top-reduced to
zero, lm (r ) is not top-reducible by

Gi−1 =
�

g1, g2, . . . , gm+i−1
�

.

Thus for any p ∈ Gi−1, lm (p) does not divide lm (r ). We further claim that this implies that
lm (p) 6∈ Ii−1. By way of contradiction, suppose that it is. By Exercise 10.59 on page 259, any list
of monomials is a Gröbner basis; hence

T =
�

lm (g1) , lm (g2) , . . . , lm
�

gm+i−1
��

is a Gröbner basis, and by Definition 10.44 every polynomial in Ii−1 is top-reducible by T . Since
p is not top-reducible by T , lm (p) 6∈ Ii−1.

Thus Ii−1 ( Ii , and I0 ⊆ I1 ⊆ I2 ⊆ · · · is a strictly ascending chain of ideals in F [x1x2, . . . , xn ].
By Proposition 8.35 and Definition 8.33, there exists M ∈N such that IM = IM+1 = · · · . This
implies that the algorithm can add at most M −m polynomials to G; after having done so, any
remaining elements of P generate S-polynomials that top-reduce to zero! Line 11 removes each
pair (i , j ) from P , so P decreases after we have added these M −m polynomials. Eventually P
decreases to ;, and the algorithm terminates.

For correctness, we have to show two things: first, that G is a basis of the same ideal as
F , and second, that G satisfies the Gröbner basis property. For the first, observe that every
polynomial added to G is by construction an element of 〈G〉, so the ideal does not change. For
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the second, let p ∈ 〈G〉; there exist h1, . . . , hm ∈F [x1, . . . , xn ] such that

p = h1 g1 + · · ·+ hm gm . (31)

We consider three cases.

Case 1. There exists i such that lm (hi ) lm (gi ) = lm (p).

In this case lm (gi ) divides lm (p), and we are done.

Case 1. For all i = 1,2, . . . , m, lm (hi ) lm (gi ) = lm (p).

This and Proposition 10.23 contradict equation (31), so this case cannot occur.

Case 1. There exists i such that lm (hi ) lm (gi )> lm (p).

Choose i such that lm (hi ) lm (gi ) is maximal among the monomials and i is maximal among
the indices. Write t = lm (hi ) lm (gi ). To satisfy equation (31), t must cancel with another term
on the right hand side. Thus, there exists j 6= i such that t = lm

�

h j

�

lm
�

g j

�

; choose such a j .
We now show how to use the S-polynomial of gi and g j to rewrite equation (31) with a “smaller”
representation.

Let a ∈F such that

a · lc
�

h j

�

lc
�

g j

�

=−lc (hi ) lc (gi ) .

Thus

lc (hi ) lm (hi ) lc (gi ) lm (gi )

+a · lc
�

h j

�

lm
�

h j

�

lc
�

g j

�

lm
�

g j

�

=

=
�

lc (hi ) lc (gi )+ a · lc
�

h j

�

lc
�

g j

��

· t = 0.

By Lemma 10.45, lc (hi ) lm (hi ) gi + a · lc
�

h j

�

lm
�

h j

�

g j is a multiple of Spol
�

gi , g j

�

; choose a
constant b ∈F and a monomial t ∈M such that

lc (hi ) lm (hi ) gi + a · lc
�

h j

�

lm
�

h j g j

�

= b t ·Spol
�

gi , g j

�

.

The algorithm has terminated, so it considered this S-polynomial and top-reduced it to zero with
respect to G. By Lemma 10.54 there exist q1, . . . , qm ∈F [x1, . . . , xn ] such that

Spol
�

gi , g j

�

= q1 g1 + · · ·+ qm gm

and

lm (qk) lm (gk)≤ lm
�

Spol
�

gi , g j

��

< lcm
�

lm (gi ) , lm
�

g j

��
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for each k = 1,2, . . . , m. Rewrite equation (31) in the following way:

p = h1 g1 + · · ·+ hm gm

= (h1 g1 + · · ·+ hm gm)− b t ·Spol
�

gi , g j

�

+ b t · (q1 g1 + · · ·+ qm gm)

= (h1 g1 + · · ·+ hm gm)

− b t ·






lc
�

g j

� lcm
�

lm (gi ) , lm
�

g j

��

lm (gi )
· gi

−lc (gi )
lcm

�

lm (gi ) , lm
�

g j

��

lm
�

g j

� · g j







+ b t · (q1 g1 + · · ·+ qm gm) .

Let

Hk =



















hk + b t · qk , k 6= i , j

hi − b t · lc
�

g j

�

·
lcm
�

lm(gi ),lm
�

g j
��

lm(gi )
+ b t · qi , k = i

h j − b t · lc (gi ) ·
lcm
�

lm(gi ),lm
�

g j
��

lm
�

g j
� + b t · q j , k = j .

Now lm (Hi ) lm (gi ) < lm (hi ) lm (gi ) because of cancellation in Hi . In a similar way, we can
show lm

�

H j

�

lm
�

g j

�

< lm
�

h j

�

lm
�

g j

�

. By substitution,

p = H1 g1 + · · ·+Hm gm .

There are only finitely many elements in G, so there were finitely many candidates

Proof. We have now rewritten the representation of p so that lm (Hi )< lm (hi ), so lm (Hi ) lm (gi )<
t . We had chosen i maximal among the indices satisfying lm (hi ) lm (gi ) = t , so if there exists
k such that the new representation has lm (hk) lm (gk) = t , then k < i . Thanks to the Gröbner
basis property, we can continue to do this as long as any lm (hi ) lm (gi ) = t , so after finitely
many steps we rewrite equation (31) so that lm (hk) lm (gk)< t for all k = 1,2, . . . , m.

If we can still find i such that lm (hi ) lm (gi ) > lm (p), then we repeat the process again.
This gives us a descending chain of monomials t = u1 > u2 > · · · ; Proposition 10.23(B) on
page 242, the well-ordering of the monomials under <, implies that eventually each chain must
stop. It stops only when lm (hi ) lm (gi ) ≤ lm (p) for each i . As in the case above, we cannot
have all of them smaller, so there must be at least one i such that lm (hi ) lm (gi ) = lm (p). This
implies that lm (gi ) divides lm (p) for at least one gi ∈G.

Exercises

Exercise 10.65. Using G of Exercise 10.55, compute a Gröbner basis with respect to the grevlex
ordering.

Exercise 10.66. Following up on Exercises 10.56 and 10.65, a simple diagram will help show that
it is “easier” to compute a Gröbner basis in any total degree ordering than it is in the lexicographic
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ordering. We can diagram the monomials in x and y on the x-y plane by plotting xαyβ at the
point (α,β).
(a) Shade the region of monomials that are smaller than x2y3 with respect to the lexicographic

ordering.
(b) Shade the region of monomials that are smaller than x2y3 with respect to the graded reverse

lexicographic ordering.
(c) Explain why the diagram implies that top-reduction of a polynomial with leading mono-

mial x2y3 will probably take less effort in grevlex than in the lexicographic ordering.

Exercise 10.67. Let g1, g2, . . . , gm ∈ F [x1, x2, . . . , xn ]. We say that a non-linear polynomial is
homogeneous if every term is of the same total degree. For example, xy− 1 is not homogeneous,
but xy − h2 is. As you may have guessed, we can homogenize any polynomial by multiplying
every term by an appropriate power of a homogenizing variable h. When h = 1, we have the
original polynomial.

(a) Homogenize the following polynomials.
(i) x2 + y2−4
(ii) x3− y5 + 1
(iii) x z + z3−4x5y− xy z2 + 3x

(b) Explain the relationship between solutions to a system of nonlinear polynomials G and
solutions to the system of homogenized polynomials H .

(c) With homogenized polynomials, we usually use a variant of the lexicographic ordering.
Although h comes first in the dictionary, we pretend that it comes last. So x > y h2 and
y > h10. Use this modified lexicographic ordering to determine the leading monomials of
your solutions for part (a).

(d) Does homogenization preserve leading monomials?

Exercise 10.68. Assume that the g1, g2, . . . , gm are homogeneous; in this case, we can build the
ordered Macaulay matrix of G of degree D in the following way.
• Each row of the matrix represents a monomial multiple of some gi . If gi is of degree d ≤D ,

then we compute all the monomial multiples of gi that have degree D . There are of these.
• Each column represents a monomial of degree d . Column 1 corresponds to the largest

monomial with respect to the lexicographic ordering; column 2 corresponds to the next-
largest polynomial; etc.
• Each entry of the matrix is the coefficient of a monomial for a unique monomial multiple

of some gi .

(a) The homogenization of the circle and the hyperbola gives us the system

F =
�

x2 + y2−4h2, xy− h2
�

.

Verify that its ordered Macaulay matrix of degree 3 is






















x3 x2y xy2 y3 x2h xy h y2h x h2 y h2 h3

1 1 −4 x f1
1 1 −4 y f1

1 1 −4 h f1
1 −1 x f2

1 −1 y f2
1 −1 h f2























.
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Show that if you triangularize this matrix without swapping columns, the row correspond-
ing to x f2 now contains coefficients that correspond to the homogenization of x + y3−4y.

(b) Compute the ordered Macaulay matrix of F of degree 4, then triangularize it. Be sure not
to swap columns, nor to destroy rows that provide new information. Show that
• the entries of at least one row correspond to the coefficients of a multiple of the

homogenization of x + y3−4y, and
• the entries of at least one other row are the coefficients of the homogenization of
±
�

y4−4y2 + 1
�

.
(c) Explain the relationship between triangularizing the ordered Macaulay matrix and Buch-

berger’s algorithm.
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Sage programs

The following programs can be used in Sage to help make the amount of computation
involved in the exercises less burdensome. Use
• M, mons = sylvester_matrix(F,d) to make an ordered Macaulay matrix of degree d for

the list of polynomials F ,
• N = triangularize_matrix(M) to triangularize M in a way that respects the monomial

order, and
• extract_polys(N,mons) to obtain the polynomials of N .

def make_monomials(xvars,d,p=0,order="lex"):
result = set([1])
for each in range(d):

new_result = set()
for each in result:

for x in xvars:
new_result.add(each*x)

result = new_result
result = list(result)
result.sort(lambda t,u: monomial_cmp(t,u))
n = sage.rings.integer.Integer(len(xvars))
return result

def monomial_cmp(t,u):
xvars = t.parent().gens()
for x in xvars:

if t.degree(x) != u.degree(x):
return u.degree(x) - t.degree(x)

return 0

def homogenize_all(polys):
for i in range(len(polys)):

if not polys[i].is_homogeneous():
polys[i] = polys[i].homogenize()

def sylvester_matrix(polys,D,order="lex"):
L = [ ]
homogenize_all(polys)
xvars = polys[0].parent().gens()
for p in polys:

d = D - p.degree()
R = polys[0].parent()
mons = make_monomials(R.gens(),d,order=order)
for t in mons:

L.append(t*p)
mons = make_monomials(R.gens(),D,order=order)
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mons_dict = {}
for each in range(len(mons)):

mons_dict.update({mons[each]:each})
M = matrix(len(L),len(mons))
for i in range(len(L)):

p = L[i]
pmons = p.monomials()
pcoeffs = p.coefficients()
for j in range(len(pmons)):

M[i,mons_dict[pmons[j]]] = pcoeffs[j]
return M, mons

def triangularize_matrix(M):
N = M.copy()
m = N.nrows()
n = N.ncols()
for i in range(m):

pivot = 0
while pivot < n and N[i,pivot] == 0:

pivot = pivot + 1
if pivot < n:

a = N[i,pivot]
for j in range(i+1,m):

if N[j,pivot] != 0:
b = N[j,pivot]
for k in range(pivot,n):

N[j,k] = a * N[j,k] - b * N [i,k]
return N

def extract_polys(M, mons):
L = [ ]
for i in range(M.nrows()):

p = 0 for j in range(M.ncols()):
if M[i,j] != 0:

p = p + M[i,j]*mons[j]
L.append(p)

return L
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10.6: Nullstellensatz

In this section,
• F is an algebraically closed field—that is, all nonconstant polynomials over F have all their

roots in F;
• R= F [x1, x2, . . . , xn ] is a polynomial ring;
• F ⊆R;
• VF ⊆Fn is the set of common roots of elements of F ;30 and
• I = 〈F 〉.

Note that C is algebraically closed, but R is not, since the roots of x2 + 1 ∈R [x ] are not in R.
An interesting and useful consequence of algebraic closure is the following.

Lemma 10.69. F is infinite.

Proof. Let n ∈N+, and a1, . . . ,an ∈ F. Obviously, f = (x− a1) · · · (x− an) satisfies f (x) = 0
for all x = a1, . . . ,an . Let g = f + 1; then g (x) 6= 0 for all x = a1, . . . ,an . Since F is closed, g has
a root b ∈F\{a1, . . . ,an}. Thus, no finite list of elements enumerates F, which means F must be
infinite.

Theorem 10.70 (Hilbert’s Weak Nullstellensatz). If VF = ;, then I =R.

Proof. We proceed by induction on n, the number of variables.
Inductive base: Let n = 1. Recall that in this case, R = F [x ] is a Euclidean domain, and

hence a principal ideal domain. Thus I = 〈 f 〉 for some f ∈ R. If VF = ;, then f has no roots
in F. Theorem 9.18 tells us that every principal ideal domain is a unique factorization domain,
so if f is non-constant, it has a unique factorization into irreducible polynomials. Theorem 9.28
tells us that any irreducible p extends R to a field E = R/ 〈p〉 containing both F and a root α
of p. Since F is algebraically closed, α ∈ F itself; that is, E = F. But then x−α ∈R is a factor
of p, contradicting the assumption that p is irreducible. Since p was an arbitrary factor, f itself
has no irreducible factors, which (since we are in a unique factorization domain) means that f
is a nonzero constant; that is, f ∈ F. By the inverse property of fields, f −1 ∈ F ⊆ F [x ], and
absorption implies that 1 = f · f −1 ∈ I .

Inductive hypothesis: Let k ∈N+, and suppose that in any polynomial ring over a closed
field with n = k variables, VF = ; implies I =R.

Inductive step: Let n = k + 1. Assume VF = ;. If f is constant, then we are done; thus,
assume f is constant. Let d be the maximum degree of a term of f . Rewrite f by substituting

x1 = y1,
x2 = y2 + a2y1,

...
xn = yn + any1,

30The notation VF comes from the term variety in algebraic geometry.
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for some a1, . . . ,an ∈ F. (We make the choice of which a1, . . . ,an specific below.) Notice that if
i 6= 1, then

xd
i = yd

i + a2y1yd−1
i · · ·+ ad

i yd
1 ,

so if both 1< i < j and b + c = d , then

x b
i x c

j =
�

y b
i + · · ·+ ab

i y b
1

�
�

y c
j + · · ·+ ac

j y c
1

�

= ab
i ac

j y b+c
1 + g

�

y1, yi , y j

�

= ab
i ac

j yd
1 + g

�

y1, yi , y j

�

,

where degy1
g < d . Thus, we can collect terms containing yd

1 as

f = cyd
1 + g (y1, . . . , yn)

where c ∈F and degy g < d . Since F is infinite, we can find a2, . . . ,an such that c 6= 0.
Let ϕ : R−→F [y1, . . . , yn ] by

ϕ ( f (x1, . . . , xn)) = f (y1, y2 + a2y1, . . . , yn + any1) ;

that is, ϕ substitutes every element of R with the values that we obtained so that f1 would have
the special form above. This is a ring isomomorphism (Exercise 10.72), so J = ϕ (I ) is an ideal
of F [y1, . . . , yn ]. Note that if VJ 6= ;, then any b ∈VJ can be transformed into an element of VF
(see Exercise 10.73); hence VJ = ; as well.

Now let η : F [y1, . . . , yn ] −→ F [y2, . . . , yn ] by η (g ) = g (0, y2, . . . , yn). Again, K = η (J )
is an ideal, though the proof is different (Exercise 10.75). We claim that if VK 6= ;, then likewise
VJ 6= ;. To see why, let h ∈ η (F [y1, . . . , yn ]), and suppose b ∈ Fn−1 satisfies h (b ) = 0. Let g be
any element of F [y1, . . . , yn ] such that η (g ) = h; then

g
�

0, b1, . . . , bn−1
�

= h
�

b1, . . . , bn−1
�

= 0,

so that we can prepend 0 to any element of VK and obtain an element of VJ . Since VJ = ;, this is
impossible, so VK = ;.

Since VK = ; and K ⊆ F [y2, . . . , yn ], the inductive hypothesis finally helps us see that
K = F [y2, . . . , yn ]. In other words, 1 ∈ K . Since K ⊂ J (see Exercise ), 1 ∈ J . Since ϕ ( f ) ∈ F if
and only if f ∈F (Exercise 10.74), there exists some f ∈ 〈F 〉 such that f ∈F.

Exercises

Exercise 10.71. Show that the intersection of two radical ideals is also radical.

Exercise 10.72. Show that ϕ in the proof of Theorem 10.70 is a ring isomomorphism.

Exercise 10.73. Show that in the proof of Theorem 10.70, any b ∈ Vϕ(F ) can be rewritten to
obtain an element of VF . Hint: Reverse the translation that defines ϕ.

Exercise 10.74. Show that in the proof of Theorem 10.70, ϕ ( f ) ∈F if and only if f ∈F.



7. Elementary applications 270

Exercise 10.75. Show that η in the proof of Theorem 10.70, if J is an ideal of F [y1, . . . , yn ], then
η (J ) is an ideal of F [y2, . . . , yn ]. Hint: F [y2, . . . , yn ] ( F [y1, . . . , yn ] and η (J ) = J ∩F [x2, . . . , yn ]
is an ideal of F [y2, . . . , yn ].

10.7: Elementary applications

We now turn our attention to posing, and answering, questions that make Gröbner bases
interesting. As in Section 10.6,
• F is an algebraically closed field—that is, all polynomials over F have their roots in F;
• R= F [x1, x2, . . . , xn ] is a polynomial ring;
• F ⊂R;
• VF ⊂Fn is the set of common roots of elements of F ;
• I = 〈F 〉; and
• G = (g1, g2, . . . , gm) is a Gröbner basis of I with respect to an admissible ordering.

Note that C is algebraically closed, but R is not, since the roots of x2 + 1 ∈R [x ] are not in R.
Our first question regards membership in an ideal.

Theorem 10.76 (The Ideal Membership Problem). Let p ∈ R. The fol-
lowing are equivalent.
(A) p ∈ I .
(B) p top-reduces to zero with respect to G.

Proof. That (A) =⇒ (B): Assume that p ∈ I . If p = 0, then we are done. Otherwise, the
definition of a Gröbner basis implies that lm (p) is top-reducible by some element of G. Let
g ∈ G such that lm (g ) | lm (p), and choose c ∈ F and u ∈ M such that lc (p) lm (p) = c u ·
lc (g ) lm (g ). Let r1 be the result of the top-reduction; that is,

r1 = p− c u · g .

Then lm (r1) < lm (p) and by the definition of an ideal, r1 ∈ I . If r1 = 0, then we are done;
otherwise the definition of a Gröbner basis implies that lm (p) is top-reducible by some element
of G. Continuing as above, we generate a list of polynomials p, r1, r2, . . . such that

lm (p)> lm (r1)> lm (r2)> · · · .

By the well-ordering of M, this list cannot continue indefinitely, so eventually top-reduction
must be impossible. Choose i such that ri does not top-reduce with respect to G. Inductively,
ri ∈ I , and G is a Gröbner basis of I , so it must be that ri = 0.

That (B) =⇒ (A): Assume that p top-reduces to zero with respect to G. Lemma 10.54
implies that p ∈ I .

Now that we have ideal membership, let us return to a topic we considered briefly in Chapter 7.
In Exercise 8.26 you showed that

. . . the common roots of f1, f2, . . . , fm are common roots of all polynomials in the
ideal I .
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Since I = 〈G〉, the common roots of g1, g2, . . . , gm are common roots of all polynomials
in I . Thus if we start with a system F , and we want to analyze its polynomials, we can do so by
analyzing the roots of any Gröbner basis G of 〈F 〉. This might seem unremarkable, except that
like triangular linear systems, it is easy to analyze the roots of Gröbner bases! Our next result gives
an easy test for the existence of common roots.

Theorem 10.77. The following both hold.
(A) VF = VG ; that is, common roots of F are common roots of

G, and vice versa.
(B) F has no common roots if and only if G contains a nonzero

constant polynomials.

Proof. (A) Let α ∈VF . By definition, fi (α1, . . . ,αn) = 0 for each i = 1, . . . , m. By construction,
G ⊆ 〈F 〉, so g ∈G implies that g = h1 f1+ · · ·+ hm fm for certain h1, . . . , hm ∈R. By substitution,

g (α1, . . . ,αn) =
m
∑

i=1

hi (α1, . . . ,αn) fi (α1, . . . ,αn)

=
m
∑

i=1

hi (α1, . . . ,αn) ·0

= 0.

That is, α is also a common root of G. In other words, VF ⊆VG .
On the other hand, F ⊆ 〈F 〉 = 〈G〉 by Exercise 10.57, so a similar argument shows that

VF ⊇VG . We conclude that VF =VG .
(B) Let g be a nonzero constant polynomial, and observe that g (α1, . . . ,αn) 6= 0 for any

α ∈ Fn . Thus, if g ∈ G, then VG = ;. By (A), VF = VG = ;, so F has no common roots if G
contains a nonzero constant polynomial.

For the converse, we need the Weak Nullstellensatz, Theorem 10.70 on page 268. If F has
no common roots, then VF = ;, and by the Weak Nullstellensatz, I = R. In this case, 1R ∈ I .
By definition of a Gröbner basis, there is some g ∈G such that lm (g ) | lm (1R). This requires g
to be a constant.

Once we know common solutions exist, we want to know how many there are.

Theorem 10.78. There are finitely many complex solutions if and only if
for each i = 1,2, . . . , n we can find g ∈G and a ∈N such that lm (g ) =
xa

i .

Theorem 10.78 is related to a famous result called Hilbert’s Nullstellensatz.

Proof of Theorem 10.78. Observe that we can find g ∈ G and α ∈N such that lm (g ) = xa
i for

each i = 1,2, . . . , n if and only if R/I is finite; see Figure . However, R/I is independent of
any monomial ordering. Thus, we can assume, without loss of generality, that the ordering is
lexicographic.

Assume first that for each i = 1, . . . , n we can find g ∈ G and a ∈N such that lm (g ) =
xa

i . Since xn is the smallest variable, even xn−1 > xn , so g must be a polynomial in xn alone;
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any other variable in a non-leading monomial would contradict the assumption that lm (g ) =
xa

n . The Fundamental Theorem of Algebra implies that g has a complex solutions. We can
back-substitute these solutions into the remaining polynomials, using similar logic. Each back-
substitution yields only finitely many solutions. There are finitely many polynomials, so G has
finitely many complex solutions.

Conversely, assume G has finitely many solutions; call them α(1), . . . ,α(`) ∈Fn . Let

J =
D

x1−α
(1)
1 , . . . , xn−α(

1)
n

E
⋂

· · ·
⋂
D

x1−α
(`)
1 , . . . , xn−α(

`)
n

E

.

Recall that J is an ideal. You will show in the exercises that I and J have the same common
solutions; that is, VI =VJ .

For any f ∈
p

I , the fact that R is an integral domain implies that

f (α) = 0 ⇐⇒ f a (α) = 0 ∃a ∈N+,

so VI = VpI . Let K be the ideal of polynomials that vanish on VI . Notice that I ⊆
p

I ⊆ K
by definition. We claim that

p
I ⊇ K as well. Why? Let p ∈ K be nonzero. Consider the

polynomial ring F [x1, . . . , xn , y ] where y is a new variable. Let A = 〈 f1, . . . , fm , 1− y p〉. Notice
that VA = ;, since fi = 0 for each i implies that p = 0, but then 1− y p 6= 0. By Theorem 10.77,
any Gröbner basis of A has a nonconstant polynomial, call it c . By definition of A, there exist
H1, . . . , Hm+1 ∈F [x1, . . . , xn , y ] such that

c = H1 f1 + · · ·+Hm fm +Hm+1 (1− y p) .

Let hi = c−1Hi and
1 = h1 f1 + · · ·+ hm fm + hm+1 (1− y p) .

Put y = 1
p and we have

1 = h1 f1 + · · ·+ hm fm + hm+1 ·0

where each hi is now in terms of x1, . . . , xn and 1/ p. Clear the denominators by multiplying
both sides by a suitable power a of p, and we have

pa = h ′1 f1 + · · ·+ h ′m fm

where each h ′i ∈R. Since I = 〈 f1, . . . , fm〉, we see that pa ∈ I . Thus p ∈
p

I . Since p was abitrary
in K , we have

p
I ⊇K , as claimed.

We have shown that K =
p

I . Since K is the ideal of polynomials that vanish on VI , and
by construction, VpI = VI = VJ , You will show in the exercises that J =

p

J , so VpI = Vp
J
.

Hence
p

I =
p

J . By definition of J ,

q j =
∏̀

i=1

�

x j − a(i)
j

�

∈ J
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for each j = 1, . . . , n. Since
p

I = J , suitable choices of a1, . . . ,an ∈N+ give us

q1 =
∏̀

i=1

�

x1−α
(i)
1

�a1
, . . . , qn =

∏̀

i=1

�

xn−α(
i)

n

�an ∈ I .

Notice that lm (qi ) = xai
i for each i . Since G is a Gröbner basis of I , the definition of a Gröbner

basis implies that for each i there exists g ∈G such that lm (g ) | lm (qi ). In other words, for each
i there exists g ∈G and a ∈N such that lm (g ) = xa

i .

Example 10.79. Recall the system from Example 10.52,

F =
�

x2 + y2−4, xy−1
�

.

In Exercise 10.55 you computed a Gröbner basis in the lexicographic ordering. You probably
obtained this a superset of

G =
�

x + y3−4y, y4−4y2 + 1
�

.

G is also a Gröbner basis of 〈F 〉. Since G contains no constants, we know that F has common
roots. Since x = lm (g1) and y4 = lm (g2), we know that there are finitely many common roots.

We conclude by pointing in the direction of how to find the common roots of a system.

Theorem 10.80 (The Elimination Theorem). Suppose the ordering is
lexicographic with x1 > x2 > · · · > xn . For all i = 1,2, . . . , n, each of
the following holds.
(A) bI = I ∩F

�

xi , xi+1, . . . , xn
�

is an ideal of F
�

xi , xi+1, . . . , xn
�

. (If
i = n, then bI = I ∩F.)

(B) bG = G∩F
�

xi , xi+1, . . . , xn
�

is a Gröbner basis of the ideal bI .

Proof. For (A), let f , g ∈ bI and h ∈ F
�

xi , xi+1, . . . , xn
�

. Now f , g ∈ I as well, we know that
f − g ∈ I , and subtraction does not add any terms with factors from x1, . . . , xi−1, so f − g ∈
F
�

xi , xi+1, . . . , xn
�

as well. By definition of bI , f − g ∈ bI . Similarly, h ∈ F [x1, x2, . . . , xn ] as
well, so f h ∈ I , and multiplication does not add any terms with factors from x1, . . . , xi−1, so
f h ∈F

�

xi , xi+1, . . . , xn
�

as well. By definition of bI , f h ∈ bI .
For (B), let p ∈ bI . Again, p ∈ I , so there exists g ∈ G such that lm (g ) divides lm (p).

The ordering is lexicographic, so g cannot have any terms with factors from x1, . . . , xi−1. Thus
g ∈ F

�

xi , xi+1, . . . , xn
�

. By definition of bG, g ∈ bG. Thus bG satisfies the definition of a Gröbner
basis of bI .

The ideal bI is important enough to merit its own terminology.

Definition 10.81. For i = 1,2, . . . , n the ideal bI = I ∩F
�

xi , xi+1, . . . , xn
�

is called the ith elimination ideal of I .

Theorem 10.80 suggests that to find the common roots of F , we use a lexicographic ordering,
then:
• find common roots of G∩F [xn ];
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• back-substitute to find common roots of G∩F
�

xn−1, xn
�

;
• . . .
• back-substitute to find common roots of G∩F [x1, x2, . . . , xn ].

Example 10.82. We can find the common solutions of the circle and the hyperbola in Figure 10.1
on page 250 using the Gröbner basis computed in Example 273 on page 10.79. Since

G =
�

x + y3−4y, y4−4y2 + 1
�

,

we have
bG = G∩C [y ] =

¦

y4−4y2 + 1
©

.

It isn’t hard to find the roots of this polynomial. Let u = y2; the resulting substitution gives us
the quadratic equation u2−4u + 1 whose roots are

u =
4±
Æ

(−4)2−4 ·1 ·1
2

= 2±
p

3.

Back-substituting u into bG,

y =±
p

u =±
Æ

2±
p

3.

We can now back-substitute y into G to find that

x =−y3 + 4y

=∓
�
Æ

2±
p

3
�3
±4
Æ

2±
p

3.

Thus there are four common roots, all of them real, illustrated by the four intersections of the
circle and the hyperbola.

Exercises.

Exercise 10.83. Determine whether x6 + x4 + 5y−2x + 3xy2 + xy + 1 is an element of the ideal



x2 + 1, xy + 1
�

.

Exercise 10.84. Determine the common roots of x2 + 1 and xy + 1 in C.

Exercise 10.85. Repeat the problem in Z2.

Exercise 10.86. Suppose A,B are ideals of R.
(a) Show that VA∩B =V (A)∪V (B).
(b) Explain why this shows that for the ideals I and J defined in the proof of Theorem 10.78,

VI =VJ .



Chapter 11:
Advanced methods of computing Gröbner bases

11.1: The Gebauer-Möller algorithm

Buchberger’s algorithm (Algorithm 8 on page 261) allows us to compute Gröbner bases,
but it turns out that, without any optimizations, the algorithm is quite inefficient. To explain
why this is the case, we make the following observations:

1. The goal of the algorithm is to add polynomials until we have a Gröbner basis. That is, the
algorithm is looking for new information.

2. We obtain this new information whenever an S-polynomial does not reduce to zero.
3. When an S-polynomial does reduce to zero, we do not add anything. In other words, we

have no new information.
4. Thus, reducing an S-polynomial to zero is a wasted computation.

With these observations, we begin to see why the basic Buchberger algorithm is inefficient: it
computes every S-polynomial, including those that reduce to zero. Once we have added the
last polynomial necessary to satisfy the Gröbner basis property, there is no need to continue.
However, at the very least, line 15 of the algorithm generates a larger number of new pairs for P
that will create S-polynomials that will reduce to zero. It is also possible that a large number of
other pairs will not yet have been considered, and so will also need to be reduced to zero! This
prompts us to look for criteria that detect useless computations, and to apply these criteria in
such a way as to maximize their usage. Buchberger discovered two additional criteria that do this;
this section explores these criteria, then presents a revised Buchberger algorithm that attempts to
maximize their effect.

The first criterion arises from an observation that you might have noticed already.

Example 11.1. Let p = x2 + 2xy + 3x and q = y2 + 2x + 1. Consider any ordering such that
lm (p) = x2 and lm (q) = y2. Notice that the leading monomials of p and q are relatively prime;
that is, they have no variables in common.

Now consider the S-polynomial of p and q (we highlight in each step the leading mono-
mial under the grevlex ordering):

S = y2 p− x2q

= 2xy3−2x3 + 3xy2− x2.

This S-polynomial top-reduces to zero:

S−2xyq =
�

3xy2−2x3− x2
�

−
�

4x2y + 2xy
�

=−2x3−4x2y + 3xy2− x2−2xy;

then

(S−2xyq)+ 2x p =
�

−4x2y + 3xy2− x2−2xy
�

+
�

4x2y + 6x2
�

= 3xy2 + 5x2−2xy;
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then

(S−2xyq + 2x p)−3xq =
�

5x2−2xy
�

−
�

6x2 + 3x
�

=−x2−2xy−3x;

finally

(S−2xyq + 2x p−3xq)+ p = (−2xy−3x)+ (2xy + 3x)
= 0.�

To generalize this beyond the example, observe that we have shown that

S +(2x + 1) p− (2xy + 3x) q = 0

or
S =− (2x + 1) p +(2xy + 3x) q .

If you study p, q , and the polynomials in that last equation, you might notice that the quotients
from top-reduction allow us to write:

S =− (q− lc (q) lm (q)) · p +(p− lc (p) lm (p)) · q .

This is rather difficult to look at, so we will adopt the notation for the trailing terms of p—that
is, all the terms of p except the term containing the leading monomial. Rewriting the above
equation, we have

S =−tts (q) · p + tts (q) · p.

If this were true in general, it might—might—be helpful.

Lemma 11.2 (Buchberger’s gcd criterion). Let p and q be two polynomi-
als whose leading monomials are u and v, respectively. If u and v have
no common variables, then the S-polynomial of p and q has the form

S =−tts (q) · p + tts (p) · q .

Proof. Since u and v have no common variables, lcm (u, v) = uv. Thus the S-polynomial of p
and q is

S = lc (q) ·
uv

u
· (lc (p) · u + tts (p))− lc (p) ·

uv

v
· (lc (q) · v + tts (q))

= lc (q) · v · tts (p)− lc (p) · u · tts (q)
= lc (q) · v · tts (p)− lc (p) · u · tts (q)+ [tts (p) · tts (q)− tts (p) · tts (q)]
= tts (p) · [lc (q) · v + tts (q)]− tts (q) · [lc (p) · u + tts (p)]
= tts (p) · q− tts (q) · p.
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Lemma 11.2 is not quite enough. Recall Theorem 10.51 on page 254, the characterization theo-
rem of a Gröbner basis:

Theorem 11.3 (Buchberger’s characterization). Let g1, g2, . . . , gm ∈
F [x1, x2, . . . , xn ]. The following are equivalent.
(A) G = (g1, g2, . . . , gm) is a Gröbner basis of the ideal I =

〈g1, g2, . . . , gm〉.
(B) For any pair i , j with 1 ≤ i < j ≤ m, Spol

�

gi , g j

�

top-reduces to
zero with respect to G.

To satisfy Theorem 10.51, we have to show that the S-polynomials top-reduce to zero. However,
the proof of Theorem 10.51 used Lemma 10.54:

Lemma 11.4. Let p, f1, f2, . . . , fm ∈ F [x1, x2, . . . , xn ]. Let F =
( f1, f2, . . . , fm). Then (A) implies (B) where
(A) p top-reduces to zero with respect to F .
(B) There exist q1, q2, . . . , qm ∈ F [x1, x2, . . . , xn ] such that each of the

following holds:
(B1) p = q1 f1 + q2 f2 + · · ·+ qm fm ; and
(B2) For each k = 1,2, . . . , m,qk = 0 or lm (qk) lm (gk) ≤

lm (p).

We can describe this in the following way, due to Daniel Lazard:

Theorem 11.5 (Lazard’s characterization). Let g1, g2, . . . , gm ∈
F [x1, x2, . . . , xn ]. The following are equivalent.
(A) G = (g1, g2, . . . , gm) is a Gröbner basis of the ideal I =

〈g1, g2, . . . , gm〉.
(B) For any pair i , j with 1 ≤ i < j ≤ m, Spol

�

gi , g j

�

top-reduces to
zero with respect to G.

(C) For any pair i , j with 1≤ i < j ≤ m, Spol
�

gi , g j

�

has the form

Spol
�

gi , g j

�

= q1 g1 + q2 g2 + · · ·+ qm gm

and for each k = 1,2, . . . , m, qk = 0 or lm (qk) lm (gk) <
lcm (lm (p) , lm (q)).

Proof. That (A) is equivalent to (B) was the substance of Buchberger’s characterization. That
(B) implies (C) is a consequence of Lemma 10.54. That (C) implies (A) is implicit in the proof of
Buchberger’s characterization: you will extract it in Exercise 11.13.

The form of an S-polynomial described in (C) of Theorem 11.5 is important enough to identify
with a special term.

Definition 11.6. Let G = (g1, g2, . . . , gm). We say that the S-polynomial
of gi and g j has an S-representation (q1, . . . , qm) with respect to G if
q1, q2, . . . , qm ∈F [x1, . . . , xn ] and (C) of Theorem 11.5 is satisfied.
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Lazard’s characterization allows us to show that Buchberger’s gcd criterion allows us to avoid
top-reducing the S-polynomial of any pair whose leading monomials are relatively prime.

Corollary 11.7. Let g1, g2, . . . , gm ∈ F [x1, x2, . . . , xn ]. The following are
equivalent.
(A) G = (g1, g2, . . . , gm) is a Gröbner basis of the ideal I =

〈g1, g2, . . . , gm〉.
(B) For any pair (i , j ) with 1≤ i < j ≤ m, one of the following holds:

(B1) The leading monomials of gi and g j have no common vari-
ables.

(B2) Spol
�

gi , g j

�

top-reduces to zero with respect to G.

Proof. Since (A) implies (B2), (A) also implies (B). For the converse, assume (B). Let bP be the
set of all pairs of P that have an S-representation with respect to G. If (i , j ) satisfies (B1), then
Buchberger’s gcd criterion (Lemma 11.2) implies that

Spol
�

gi , g j

�

= q1 g1 + · · ·+ qm gm (32)

where qi =−tts
�

g j

�

, q j = tts (gi ), and qk = 0 for k 6= i , j . Notice that

lm (qi ) lm (gi ) = lm
�

tts
�

g j

��

· lm (gi )< lm
�

g j

�

lm (gi ) = lcm
�

lm (gi ) , lm
�

g j

��

.

Thus 32 is an S-representation of Spol
�

gi , g j

�

, so (i , j ) ∈ bP . If (i , j ) satisfes (B2), then by

Lemma 10.54, (i , j ) ∈ bP also. Hence every pair (i , j ) is in bP . Lazard’s characterization now
implies that G is a Gröbner basis of 〈G〉; that is, (A).

Although the gcd criterion is clearly useful, it is rare to encounter in practice a pair of polynomials
whose leading monomials have no common variables. That said, you have seen such pairs once
already, in Exercises 10.55 and 10.65.

We need, therefore, a stronger criterion. The next one is a little harder to discover, so we
present it directly.

Lemma 11.8 (Buchberger’s lcm criterion). Let p and q be two polyno-
mials whose leading monomials are u and v, respectively. Let f be a
polynomial whose leading monomial is t . If t divides lcm (u, v), then
the S-polynomial of p and q has the form

S =
lc (q) · lcm (u, v)

lc ( f ) · lcm (t , u)
·Spol (p, f )+

lc (p) · lcm (u, v)

lc ( f ) · lcm (t , v)
·Spol ( f , q) .

(33)

Proof. First we show that the fractions in equation (33) reduce to monomials. Let x be any
variable. Since t divides lcm (u, v), we know that

degx t ≤ degx lcm (u, v) = max
�

degx u, degx v
�

.
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(See Exercise 11.12.) Thus

degx lcm (t , u) = max
�

degx t , degx u
�

≤max
�

degx u, degx v
�

= degx lcm (u, v) .

A similar argument shows that

degx lcm (t , v)≤ degx lcm (u, v) .

Thus the fractions in (33) reduce to monomials.
It remains to show that (33) is, in fact, consistent. This is routine; working from the right,

and writing Sa,b for the S-polynomial of a and b and La,b for lcm (a, b ), we have

lc (q) ·Lu,v

lc ( f ) ·Lt ,u
· Sp, f +

lc (p) ·Lu,v

lc ( f ) ·Lt ,v
· S f ,q = lc (q) ·

Lu,v

u
· p

−
���

��
���

���
�lc (p) · lc (q)

lc ( f )
·

Lu,v

t
· f

+
���

���
���

���lc (p) · lc (q)

lc ( f )
·

Lu,v

t
· f

− lc (p) ·
Lu,v

v
· q

= Sp,q .

How does this help us?

Corollary 11.9. Let g1, g2, . . . , gm ∈ F [x1, x2, . . . , xn ]. The following are
equivalent.
(A) G = (g1, g2, . . . , gm) is a Gröbner basis of the ideal I =

〈g1, g2, . . . , gm〉.
(B) For any pair i , j with 1≤ i < j ≤ m, one of the following holds:

(B1) The leading monomials of gi and g j have no common vari-
ables.

(B2) There exists k such that
• lm (gk) divides lcm

�

lm (gi ) , lm
�

g j

��

;
• Spol (gi , gk) has an S-representation with respect to

G; and
• Spol

�

gk , g j

�

has an S-representation with respect to
G.

(B3) Spol
�

gi , g j

�

top-reduces to zero with respect to G.

Proof. We need merely show that (B2) implies the existence of an S-representation of Spol
�

gi , g j

�

with respect to G; Lazard’s characterization and the proof of Corollary 11.7 supply the rest. So
assume (B2). Choose h1, h2, . . . , hm such that

Spol (gi , gk) = h1 g1 + · · ·+ hm gm
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and for each `= 1,2, . . . , m we have h` = 0 or

lm (h`) lm (g`)< lcm (lm (gi ) , lm (gk)) .

Also choose q1, q2, . . . , qm such that

Spol
�

gk , g j

�

= q1 g1 + · · ·+ qm gm

and for each `= 1,2, . . . , m we have q` = 0 or

lm (q`) lm (g`)< lcm
�

lm (gk) , lm
�

g j

��

.

Write La,b = lcm (lm (ga) , lm (gb )). Buchberger’s lcm criterion tells us that

Spol
�

gi , g j

�

=
lc
�

g j

�

·Li , j

lc (gk) ·Li ,k
·Spol (gi , gk)+

lc (gi ) ·Li , j

lc (gk) ·L j ,k
·Spol

�

gk , g j

�

.

For i = 1,2, . . . , m let

Hi =
lc
�

g j

�

·Li , j

lc (gk) ·Li ,k
· hi +

lc (gi ) ·Li , j

lc (gk) ·L j ,k
· qi .

Substitution implies that
Spol

�

gi , g j

�

= H1 g1 + · · ·+Hm gm . (34)

In addition, for each i = 1,2, . . . , m we have Hi = 0 or

lm (Hi ) lm (gi )≤max

 

Li , j

Li ,k
· lm (hi ) ,

Li , j

L j ,k
· lm (qi )

!

· lm (gi )

= max

 

Li , j

Li ,k
· lm (hi ) lm (gi ) ,

Li , j

L j ,k
· lm (qi ) lm (gi )

!

<max

 

Li , j

�
��Li ,k
·
�
��Li ,k ,

Li , j

�
��L j ,k
·
�
��L j ,k

!

= Li , j

= lcm
�

lm (gi ) , lm
�

g j

��

.

Thus equation (34) is an S-representation of Spol
�

gi , g j

�

.
The remainder of the corollary follows as described.

It is not hard to exploit Corollary 11.9 and modify Buchberger’s algorithm in such a way as
to take advantage of these criteria. The result is Algorithm 9. The only changes to Buchberger’s
algorithm are the addition of lines 8, 19, 12, and 13; they ensure that an S-polynomial is computed
only if the corresponding pair does not satisfy one of the gcd or lcm criteria.

It is possible to exploit Buchberger’s criteria more efficiently, using the Gebauer-Möller
algorithm (Algorithms 10 and 11). This implementation attempts to apply Buchberger’s criteria
as quickly as possible. Thus the first while loop of Algorithm 11 eliminates new pairs that
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Algorithm 9. Buchberger’s algorithm with Buchberger’s criteria
1: inputs
2: F = ( f1, f2, . . . , fm), a list of polynomials in n variables, whose coefficients are from a field

F.
3: outputs
4: G = (g1, g2, . . . , gM ), a Gröbner basis of 〈F 〉. Notice #G = M which might be different

from m.
5: do
6: Let G := F
7: Let P =

�

( f , g ) : ∀ f , g ∈G such that f 6= g
	

8: Let Done = {}
9: repeat while P 6= ;

10: Choose ( f , g ) ∈ P
11: Remove ( f , g ) from P
12: if lm ( f ) and lm (g ) share at least one variable — check gcd criterion
13: if not (∃p 6= f , g such that lm (p) divides lcm (lm ( f ) , lm (g )) and (p, f ) , (p, g ) ∈

Done) — check lcm criterion
14: Let S be the S-polynomial of f , g
15: Let r be the top-reduction of S with respect to G
16: if r 6= 0
17: Replace P by P ∪{(h, r ) : ∀h ∈G}
18: Append r to G
19: Add ( f , g ) to Done
20: return G
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Algorithm 10. Gebauer-Möller algorithm
1: inputs
2: F = ( f1, f2, . . . , fm), a list of polynomials in n variables, whose coefficients are from a field

F.
3: outputs
4: G = (g1, g2, . . . , gM ), a Gröbner basis of 〈F 〉. Notice #G = M which might be different

from m.
5: do
6: Let G := {}
7: Let P := {}
8: repeat while F 6= ;
9: Let f ∈ F

10: Remove f from F
— See Algorithm 11 for a description of Update

11: G, P := Update (G, P , f )
12: repeat while P 6= ;
13: Pick any( f , g ) ∈ P , and remove it
14: Let h be the top-reduction of Spol ( f , g ) with respect to G
15: if h 6= 0
16: G, P := Update (G, P , h)
17: return G

satisfy Buchberger’s lcm criterion; the second while loop eliminates new pairs that satisfy Buch-
berger’s gcd criterion; the third while loop eliminates some old pairs that satisfy Buchberger’s
lcm criterion; and the fourth while loop removes redundant elements of the basis in a safe way
(see Exercise 10.62).

We will not give here a detailed proof that the Gebauer-Möller algorithm terminates cor-
rectly. That said, you should be able to see intuitively that it does so, and to fill in the details
as well. Think carefully about why it is true. Notice that unlike Buchberger’s algorithm, the
pseudocode here builds critical pairs using elements ( f , g ) of G, rather than indices (i , j ) of G.

For some time, the Gebauer-Möller algorithm was considered the benchmark by which
other algorithms were measured. Many optimizations of the algorithm to compute a Gröbner
basis can be applied to the Gebauer-Möller algorithm without lessening the effectiveness of Buch-
berger’s criteria. Nevertheless, the Gebauer-Möller algorithm continues to reduce a large number
of S-polynomials to zero.

Exercises.

Exercise 11.10. In Exercise 10.55 on page 259 you computed the Gröbner basis for the system

F =
�

x2 + y2−4, xy−1
�

in the lexicographic ordering using Algorithm 8 on page 261. Review your work on that problem,
and identify which pairs (i , j ) would not generate an S-polynomial if you had used Algorithm 9
on the previous page instead.
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Algorithm 11. Update the Gebauer-Möller pairs
1: inputs
2: Gold, a list of polynomials in n variables, whose coefficients are from a field F.
3: Pold, a set of critical pairs of elements of Gold
4: a non-zero polynomial p in

¬

Gold
¶

5: outputs
6: Gnew, a (possibly different) basis of

¬

Gold
¶

.
7: Pold, a set of critical pairs of Gnew
8: do
9: Let C :=

¦

(p, g ) : g ∈Gold
©

— C is the set of all pairs of the new polynomial p with an older element of the basis
10: Let D := {}

— D is formed by pruning pairs of C using Buchberger’s lcm criterion
— We do not yet check Buchberger’s gcd criterion because with the original input there
may be some cases of the lcm criterion that are eliminated by the gcd criterion

11: repeat while C 6= ;
12: Pick any (p, g ) ∈C , and remove it
13: if lm (p) and lm (g ) share no variables or no (p, h) ∈ C ∪ D satisfies

lcm (lm (p) , lm (h)) | lcm (lm (p) , lm (g ))
14: Add (p, g ) to D
15: Let E := ;

— E is the result of pruning pairs of D using Buchberger’s gcd criterion
16: repeat while D 6= ;
17: Pick any (p, g ) ∈D , and remove it
18: if lm (p) and lm (g ) share at least one variable
19: E := E ∪ (p, g )

— Pint is the result of pruning pairs of Pold using Buchberger’s lcm criterion
Let Pint := {}

20: repeat while Pold 6= ;
21: Pick ( f , g ) ∈ Pold, and remove it
22: if lm (p) does not divide lcm (lm ( f ) , lm (g )) or lcm (lm (p) , lm (h)) =

lcm (lm ( f ) , lm (g )) for h ∈ { f , g}
23: Add ( f , g ) to Pint

— Add new pairs to surviving pre-existing pairs
24: Pnew := Pint∪E

— Prune redundant elements of the basis, but not their critical pairs
25: Let Gnew := {}
26: repeat while Gold 6= ;
27: Pick any g ∈Gold, and remove it
28: if lm (p) does not divide lm (g )
29: Add g to Gnew
30: Add p to Gnew
31: return Gnew, Pnew
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Exercise 11.11. Use the Gebauer-Möller algorithm to compute the Gröbner basis for the system

F =
�

x2 + y2−4, xy−1
�

.

Indicate clearly the values of the sets C , D , E , Gnew, and Pnew after each while loop in Algo-
rithm 11 on the preceding page.

Exercise 11.12. Let t , u be two monomials, and x any variable. Show that

degx lcm (t , u) = max
�

degx t , degx u
�

.

Exercise 11.13. Study the proof of Buchberger’s characterization, and extract from it a proof that
(C) implies (A) in Theorem 11.5.

11.2: The F4 algorithm
An interesting development of the last ten years in the computation of Gröbner bases has

revolved around changing the point of view to that of linear algebra. Recall from Exercise 10.68
that for any polynomial system we can construct a matrix whose triangularization simulates the
computation of S-polynomials and top-reduction involved in the computation of a Gröbner basis.
However, a naïve implementation of this approach is worse than Buchberger’s method:
• every possible multiple of each polynomial appears as a row of a matrix;
• many rows do not correspond to S-polynomials, and so are useless for triangularization;
• as with Buchberger’s algorithm, where most of the S-polynomials are not necessary to

compute the basis, most of the rows that are not useless for triangularization are useless for
computing the Gröbner basis!

Jean-Charles Faugère devised two algorithms that use the ordered Macaulay matrix to compute
a Gröbner basis: F4 and F5. We focus on F4, as F5 requires more discussion than, quite frankly,
I’m willing to put into these notes at this time.

Remark 11.14. F4 does not strictly require homogeneous polynomials, but for the sake of sim-
plicity we stick with homogeneous polynomials, so as to introduce d -Gröbner bases.

Rather than build the entire ordered Macaulay matrix for any particular degree, Faugère
first applied the principle of building only those rows that correspond to S-polynomials. Thus,
given the homogeneous input

F =
�

x2 + y2−4h2, xy− h2
�

,

the usual degree-3 ordered Macaulay matrix would be






















x3 x2y xy2 y3 x2h xy h y2h x h2 y h2 h3

1 1 −4 x f1
1 1 −4 y f1

1 1 −4 h f1
1 −1 x f2

1 −1 y f2
1 −1 h f2























.
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However, only two rows of the matrix correspond to an S-polynomial: y f1 and x f2. For top-
reduction we might need other rows: non-zero entries of rows y f1 and x f2 involve the monomials

y3, x h2, and y h2;

but no other row might reduce those monomials: that is, there is no top-reduction possible. We
could, therefore, triangularize just as easily if we built the matrix







x3 x2y xy2 y3 x2h xy h y2h x h2 y h2 h3

1 1 −4 y f1
1 −1 x f2






.

Triangularizing it results in






x3 x2y xy2 y3 x2h xy h y2h x h2 y h2 h3

1 1 −4 y f1
1 1 4 y f1− x f2






,

whose corresponds to the S-polynomial y f1− x f2. We have thus generated a new polynomial,

f3 = y3 + x h2 + 4y h2.

Proceeding to degree four, there are two possible S-polynomials: for ( f1, f3) and for
( f2, f3). We can discard ( f1, f3) thanks to Buchberger’s gcd criterion, but not ( f2, f3). Build-
ing the S-polynomial for ( f2, f3) would require us to subtract the polynomials y2 f2 and x f3. The
non-leading monomial of y2 f2 is y2h2, and no leading monomial divides that, but the non-leading
monomials of x f3 are x2h2 and xy h2, both of which are divisible by h2 f1 and h2 f2. The non-
leading monomials of h2 f1 are y2h2, for which we have already introduced a row, and h4, which
no leading monomial divides; likewise, the non-leading monomial of h2 f2 is h4.

We have now identified all the polynomials that might be necessary in the top-reduction
of the S-polynomial for ( f2, f3):

y2 f2, x f3, h2 f1, and h2 f2.

We build the matrix using rows that correspond to these polynomials, resulting in














xy3 x2h2 xy h2 y2h2 h2

1 −1 y2 f2
1 1 4 x f3

1 1 −4 h2 f1
1 −1 h2 f2















.
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Triangularizing this matrix results in (step-by-step)














xy3 x2h2 xy h2 y2h2 h2

1 −1 y2 f2
−1 −4 −1 y2 f2− x f3
1 1 −4 h2 f1

1 −1 h2 f2















;















xy3 x2h2 xy h2 y2h2 h2

1 −1 y2 f2
−4 0 −4 y2 f2− x f3 + h2 f1

1 1 −4 h2 f1
1 −1 h2 f2















;

and finally














xy3 x2h2 xy h2 y2h2 h2

1 −1 y2 f2
0 y2 f2− x f3 + h2 f1 + 4h2 f2

1 1 −4 h2 f1
1 −1 h2 f2















.

This corresponds to the fact that the S-polynomial of f2 and f3 reduces to zero: and we can now
stop, as there are no more critical pairs to consider.

Aside from building a matrix, the F4 algorithm thus modifies Buchberger’s algorithm
(with the additional criteria, Algorithm 9 in the two following ways:
• rather than choose a critical pair in line 10, one chooses all critical pairs of minimal degree;

and
• all the S-polynomials of this minimal degree are computed simultaneously, allowing us to

reduce them “all at once”.
In addition, the move to a matrix means that linear algebra techniques for triangularizing a matrix
can be applied, although the need to preserve the monomial ordering implies that column swaps
are forbidden. Algorithm 12 describes a simplified F4 algorithm. The approach outlined has an
important advantage that we have not yet explained.

Definition 11.15. Let G be a list of homogeneous polynomials, let d ∈
N+, and let I be a an ideal of homogeneous polynomials. We say that G
is a d -Gröbner basis of I if 〈G〉 = I and for every a ≤ d , every S-poly-
nomial of degree a top-reduces to zero with respect to G.

Example 11.16. In the example given at the beginning of this section,

G =
�

x2 + y2−4h2, xy− h2, y3 + x h2 + 4y h2
�

is a 3-Gröbner basis. �

A Gröbner basis G is always a d -Gröbner basis for all d ∈N. However, not every d -Gröbner
basis is a Gröbner basis.
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Algorithm 12. A simplified F4 that implements Buchberger’s algorithm with Buchberger’s cri-
teria

1: inputs
2: F = ( f1, f2, . . . , fm), a list of homogeneous polynomials in n variables, whose coefficients

are from a field F.
3: outputs
4: G = (g1, g2, . . . , gM ), a Gröbner basis of 〈F 〉. Notice #G = M which might be different

from m.
5: do
6: Let G := F
7: Let P :=

�

( f , g ) : ∀ f , g ∈G such that f 6= g
	

8: Let Done := {}
9: Let d := 1

10: repeat while P 6= ;
11: Let Pd be the list of all pairs (i , j ) ∈ P that generate S-polynomials of degree d
12: Replace P with P\Pd
13: Denote Lp,q := lcm (lm (p) , lm (q))
14: Let Q be the subset of Pd such that ( f , g ) ∈Q implies that:

• lm ( f ) and lm (g ) share at least one variable; and
• not (∃p ∈G\{ f , g} such that lm (p) divides L f ,g and ( f , p) , (g , p) ∈Done)

15: Let R :=
¦

t p, uq : (p, q) ∈Q and t = Lp,q /lm (p) , u = Lp,q /lm (q)
©

16: Let S be the set of all t p where t is a monomial, p ∈ G, and t · lm (p) is a non-leading
monomial of some q ∈ R∪ S

17: Let M be the submatrix of the ordered Macaulay matrix of F corresponding to the ele-
ments of R∪ S

18: Let N be any triangularization of M that does not swap columns
19: Let Gnew be the set of polynomials that correspond to rows of N that changed from M
20: for p ∈Gnew
21: Replace P by P ∪{(h, p) : ∀h ∈G}
22: Add p to G
23: Add ( f , g ) to Done
24: Increase d by 1
25: return G
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Example 11.17. Let G =
�

x2 + h2, xy + h2�. The S-polynomial of g1 and g2 is the degree 3
polynomial

S12 = y h2− x h2,

which does not top-reduce. Let

G3 =
�

x2 + h2, xy + h2, x h2− y h2
�

;

the critical pairs of G3 are
• (g1, g2), whose S-polynomial now reduces to zero;
• (g1, g3), which generates an S-polynomial of degree 4 (the lcm of the leading monomials is

x2h2); and
• (g2, g3), which also generates an S-polynomial of degree 4 (the lcm of the leading monomi-

als is xy h2).
All degree 3 S-polynomials reduce to zero, so G3 is a 3-Gröbner basis.

However, G3 is not a Gröbner basis, because the pair (g2, g3) generates an S-polynomial
of degree 4 that does not top-reduce to zero:

S23 = h4 + y2h2.

Enlarging the basis to

G4 =
�

x2 + h2, xy + h2, x h2− y h2, y2h2 + h4
�

gives us a 4-Gröbner basis, which is also the Gröbner basis of G. �

One useful property of d -Gröbner bases is that we can answer some question that re-
quire Gröbner bases by short-circuiting the computation of a Gröbner basis, settling instead for
a d -Gröbner basis of sufficiently high degree. For our concluding theorem, we revisit the Ideal
Membership Problem, discussed in Theorem 10.76.

Theorem 11.18. Let R be a polynomial ring, let p ∈ R be a homoge-
neous polynomial of degree d , and let I be a homogeneous ideal of R.
The following are equivalent.
(A) p ∈ I .
(B) p top-reduces to zero with respect to a d -Gröbner Gd of I .

Proof. That (A) implies (B): If p = 0, then we are done; otherwise, let p0 = p and Gd be a
d -Gröbner basis of I . Since p0 = p ∈ I , there exist h1, . . . , hm ∈R such that

p0 = h1 g1 + · · ·+ hm gm .

Moreover, since p is of degree d , we can say that for every i such that the degree of gi is larger
than d , hi = 0.

If there exists i ∈ {1,2, . . . , m} such that lm (gi ) divides lm (p0), then we are done. Oth-
erwise, the equality implies that some leading terms on the right hand side cancel; that is, there
exists at least one pair (i , j ) such that lm (hi ) lm (gi ) = lm

�

h j

�

lm
�

g j

�

> lm (p0). This can-
cellation is a multiple of the S-polynomial of gi and g j ; by definition of a d -Gröbner basis, this
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S-polynomial top-reduces to zero, so we can replace

lc (hi ) lm (hi ) gi + lc
�

h j

�

lm
�

h j

�

g j = q1 g1 + · · ·+ qm gm

such that each k = 1,2, . . . , m satisfies

lm (qk) lm (gk)< lm (hi ) lm (gi ) .

We can repeat this process any time that lm (hi ) lm (gi ) > lm (p0). The well-ordering of the
monomials implies that eventually we must arrive at a representation

p0 = h1 g1 + · · ·+ hm gm

where at least one k satisfies lm (p0) = lm (hk) lm (gk). This says that lm (gk) divides lm (p0), so
we can top-reduce p0 by gk to a polynomial p1. Note that lm (p1)< lm (p0).

By construction, p1 ∈ I also, and applying the same argument to p1 as we did to p0 implies
that it also top-reduces by some element of Gd to an element p2 ∈ I where lm (p2) < lm (p1).
Iterating this observation, we have

lm (p0)> lm (p1)> · · ·

and the well-ordering of the monomials implies that this chain cannot continue indefinitely.
Hence it must stop, but since Gd is a d -Gröbner basis, it does not stop with a non-zero poly-
nomial. That is, p top-reduces to zero with respect to G.

That (B) implies (A): Since p top-reduces to zero with respect to Gd , Lemma 10.54 implies
that p ∈ I .

Exercises.

Exercise 11.19. Use the simplified F4 algorithm given here to compute a d -Gröbner bases for



x2y− z2h, x z2− y2h, y z3− x2h2� for d ≤ 6. Use the grevlex term ordering with x > y > z > h.

Exercise 11.20. Given a non-homogeneous polynomial system F , describe how you could use
the simplified F4 to compute a non-homogeneous Gröbner basis of 〈F 〉.

11.3: Signature-based algorithms to compute a Gröbner basis

This section is inspired by recent advances in the computation of Gröbner basis, including
my own recent work. As with F4, the original algorithm in this area was devised by Faugère, and
is named F5 [Fau02]. A few years later, Christian Eder and I published an article that showed
how one could improve F5 somewhat [EP10]; the following year, the GGV algorithm was pub-
lished [GGV10], and Alberto Arri asked me to help him finish an article that sought to generalize
some notions of F5 [AP]. Seeing the similarities between Arri’s algorithm and GGV, I teamed
up with Christian Eder again to author a paper that lies behind this work [EP11]. The algorithm
as presented here is intermediate between Arri’s algorithm (which is quite general) and the one
we present there (which is specialized).
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In its full generality, the idea relies on a generalization of vector spaces.

Definition 11.21. Let R be a ring. A module M over R satisfies the
following properties. Let r , s ∈ R and x, y, z ∈M . Then
• M is an additive group;
• r x ∈M ;
• r (x + y) = r x + r y;
• (r + s) x = r x + s x;
• 1Rx = x.

We will not in fact use modules extensively, but the reader should be aware of the connection.
In any case, it is possible to describe it at a level suitable for the intended audience of these notes
(namely, me and any of my students whose research might lead in this direction). We adopt the
following notation:
• R= F [x1, . . . , xn ] is a polynomial ring;
• M the set of monomials of R;
• l a monomial ordering;
• f1, . . . , fm ∈R;
• F = ( f1, . . . , fm);
• I = 〈F 〉.

Definition 11.22. Let p ∈ I and h1, . . . , hm ∈ R. We say that H =
(h1, . . . , hm) is an F -representation of p if

p = h1 f1 + · · ·+ hm fm .

If, in addition, p = 0, then we say that H is a syzygy of F .a
aIt can be shown that the set of all syzygies is a module over R, called the module of
syzygies.

Example 11.23. Suppose F =
�

x2 + y2−4, xy−1
�

. Recall that p = x + y3−4y ∈ 〈F 〉, since

x + y3−4y = y f1− x f2.

In this case, (y, x) is not an S-representation of p, since ylm ( f1) = x2y = lcm
�

x2, xy
�

. However,
it is an F -representation.

On the other hand,

0 = f2 f1− f1 f2 = (xy−1) f1−
�

x2 + y2−4
�

f2,

so ( f2,− f1) is an F -representation of 0; that is, ( f2,− f1) is a syzygy. �

Keep in mind that an F -representation is almost never an S-representation (Definition 11.6).
However, an F -representation exists for any element of I , even if F is not a Gröbner basis. An
S-representation does not exist for at least one S-polynomial when F is not a Gröbner basis.

We now generalize the notion of a leading monomial of a polynomial to a leading mono-
mial of an F -representation.
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Definition 11.24. Write Fi for the m-tuple whose entries are all zero
except for entry i , which is 1.a Given an F -representation H of some
p ∈ I , whose rightmost nonzero entry occurs in position i , we say that
lm (hi )Fi is a leading monomial of H , and write lm (H ) = lm (hi )Fi .
Let

S = {lm (H ) : h1 f1 + · · ·+ hm fm ∈ I } ;

that is, S is the set of all possible leading monomials of an F -
representation.
aIn the parlance of modules, {F1, . . . ,Fm} is the set of canonical generators of the free
R-module Rm .

Example 11.25. Recall F from Example 11.23. We have F1 = (1,0) and F2 = (0,1). The lead-
ing monomial of (y, 0) is yF1. The leading monomial of (y, x) is xF2 = (0, x). The leading
monomial of ( f2,− f1) is lm (− f1)F2 =

�

0, x2�. �

Once we have leading monomials of F -representations, it is natural to generalize the ordering of
monomials of M to an ordering of leading monomials.

Definition 11.26. Define a relation ≺ on S as follows: we say that tFi ≺
uF j if
• i < j , or
• i = j and t l u.

Lemma 11.27. ≺ is a well-ordering of S.

Proof. Let S ⊆ S. Since < is a well-ordering of N+, there exists a minimal i ∈N+ such that
tFi ∈ S for any t ∈M. Let T = {t : tFi ∈ S}; notice that T ⊆M. Since l is a well-ordering of
M, T has a least element t . By definition, tFi � uF j for any uF j ∈ S.\

Corollary 11.28. Let p ∈ I andH the set of all possible F -representations
of p. Let

S = {lm (H ) : H ∈H} .

Then S has a smallest element with respect to ≺.

Proof. S ⊂ S, which is well ordered by ≺.

Definition 11.29. We call the smallest element of S the signature of p,
denoted by sig (p).

Now let’s consider how the ordering behaves on some useful operations with F -representations.
First, some notation.
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Definition 11.30. If t ∈M and H , H ′ ∈Rm , we define

t H = (t h1, . . . , t hm) and H +H ′ =
�

h1 + h ′1, . . . , hm + h ′m
�

.

In addition, we define t sig (p) = t (uFi ) = (t u)Fi .

Lemma 11.31. Let p, q ∈ I , H an F -representation of f , H ′ an F -
representation of q , and t , u ∈ M. Suppose τ = lm (H ) and υ =
lm
�

H ′
�

. Each of the following holds.
(A) t H is an F -representation of t p;
(B) sig (t p)� tτ = lm (t H );
(C) if tτ ≺ uυ, then lm

�

t H ± uH ′
�

= uυ;
(D) if tτ = uυ, then there exists c ∈ F such that lm

�

c t H + uH ′
�

≺
tτ.

(E) if Spol (p, q) = at p − b uq for appropriate a, b ∈ F, then
sig (Spol (p, q))�max (tτ, uυ);

(F) if H ′′ is an F -representation of p and lm
�

H ′′
�

≺ lm (H ), then
there exists a syzygy Z ∈Rm such that
• H ′′+Z = H and
• lm (Z) = lm (H );

and
(G) if H ′′ is an F -representation of p such that lm

�

H ′′
�

= sig (p),
then lm

�

H ′′
�

< lm (H ) if and only if there exists a nonzero
syzygy Z such that H ′′+Z = H and lm (Z) = lm (H ).

It is important to note that even if tτ = lm (t H ), that does not imply that tτ = sig (t p) even if
τ = sig (p).

Proof. (A) Since H is an F -representation of p, we know that p =
∑

hi fi . By the distributive
and associative properties, t p = t

∑

hi fi =
∑

[(t hi ) fi ]. Hence t H is an F -representation of t p.
(B) The definition of a signature implies that sig (t p) � tτ. That tτ = lm (t H ) is a

consequence of (A).
(C) Assume tτ ≺ uυ. Write τ = vFi and υ = wF j . By definition of the ordering ≺,

either i < j or i = j and lm (hi )l lm
�

h ′j
�

. Either way, lm
�

t H ± uH ′
�

is ulm
�

h ′j
�

F j = uυ.
(D) Assume tτ = uυ. Let a = lc (H ), b = lc

�

H ′
�

, and c = b /a. Then lm (t H ) = tτ =
uυ = lm

�

uH ′
�

, and c lc (t H ) = lc
�

uH ′
�

. Together, these imply that the leading monomials of
c t H and uH ′ cancel in the subtraction c t H − uH ′. Hence lm

�

c t H − uH ′
�

≺ tτ.
(E) follows from (B), (C), and (D).
(F) Assume that H ′′ is an F -representation of p and lm

�

H ′′
�

≺ lm (H ). Then

0 = p− p =
∑

hi fi −
∑

h ′′i fi =
∑�

hi − h ′′i
�

fi .

Let Z =
�

h1− h ′′1 , . . . , hm− h ′′m
�

. By definition, Z is a sygyzy. In addition, lm
�

H ′′
�

≺ lm (H )
and (C) imply that lm (Z) = lm (H ).

(G) One direction follows from (F); the other is routine.
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We saw in previous sections that if we considered critical pairs by ascending lcm, we were
able to take advantage of previous computations to reduce substantially the amount of work
needed to compute a Gröbner basis. It turns out that we can likewise reduce the amount of work
substantially if we proceed by ascending signature. This will depend on an important fact.

Definition 11.32. Let p ∈ I , and H an S-representation of p. If
lm (hk) sig (gk) � lm (p) for each k, then we say that H is a signature-
compatible representation of p, or a sig-representation for short.

Lemma 11.33. Let τ ∈ S, and suppose that every S-polynomial of G ( I
with signature smaller than τ has a sig-representation. Let p, q ∈ I and
t , u ∈ M such that usig (q) � t sig (p) = τ, Spol (p, q) = lc (q) t p −
lc (p) uq . Suppose that one of the following holds:
(A) sig (t p) = sig (uq); or
(B) t sig (p) 6= sig (Spol (p, q)).
Then Spol (p, q) has a sig-representation.

Proof. (A) Let H and H ′ be F -representations of p and q (respectively) such that lm (H ) =
sig (p) and lm

�

H ′
�

= sig (q). By Lemma 11.31(D), there exists c ∈ F satisfying the property
lm
�

c t H + uH ′
�

≺ lm (c t H ); in other words, sig (c t p + uq) ≺ sig (t p). Let H ′′ be an F -
representation of c t p+ uq such that lm

�

H ′′
�

= sig (c t p + uq); by hypothesis, all top-cancellations
of the sum

h ′′1 f1 + · · ·+ h ′′m fm

have sig-representations. The fact that the top-cancellations have signature smaller than τ implies
that we can rewrite these top-cancellations repeatedly as long as they exist. Each rewriting leads
to smaller leading monomials, and signatures no larger than those of the top-cancellations. Since
the monomial ordering is a well ordering, we cannot rewrite these top-cancellations indefinitely.
Hence this process of rewriting eventually terminates with a sig-representation of c t p + uq . If
c t p + uq is a scalar multiple of Spol (p, q), then we are done; notice sig (Spol (p, q))≺ t sig (p).

If c t p + uq is not a scalar multiple of Spol (p, q), then sig (Spol (p, q)) = t sig (p) = τ.
Consider the fact that cSpol (p, q) = lc (q) (c t p + uq)− (c lc (p)+ lc (q)) uq . One summand
on the right hand side is a scalar multiple of q , so it has a sig-representation no larger than
usig (q) ≺ τ. The previous paragraph showed that c t p + uq has a sig-representation smaller
than τ. The sum of these sig-representations is also a sig-representation no larger than τ. Hence
the left hand side has an F -representation H ′′′ with lm

�

H ′′′
�

� τ.
(B) By part (A), we know that if usig (q) = t sig (p), then Spol (p, q) has a sig-representation.

Assume therefore that usig (q) ≺ t sig (p) = τ. Since t sig (p) 6= sig (t p), Lemma 11.31 implies
that sig (t p)≺ t sig (p) = τ. Likewise, sig (uq)� usig (q)≺ τ, so

sig (Spol (p, q))�max (sig (t p) , sig (uq))≺ τ.

The hypothesis implies that Spol (p, q) has a sig-representation.

To compute a Gröbner basis using signatures, we have to reduce polynomials in such a way
that we have a good estimate of the signature. To do this, we cannot allow a reduction r − t g
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Algorithm 13. Signature-based algorithm to compute a Gröbner basis
1: inputs
2: F (R
3: outputs
4: G (R, a Gröbner basis of 〈F 〉
5: do
6: Let G = {(Fi , fi )}

m
i=1

7: Let S =
¦

lm
�

f j

�

Fi : 1≤ j < i
©m

i=1
8: Let P =

�

(υ, p, q) : (σ , p) , (τ, q) ∈G and υ is the expected signature of Spol (p, q)
	

9: repeat while P 6= ;
10: Select any (σ , p, q) ∈ P such that τ is minimal
11: Let S = Spol (p, q)
12: if ∃ (τ, g ) ∈G, t ∈M such that tτ = σ and t lm (g )≤ lm (S)
13: if σ is not a monomial multiuple of any τ ∈ S
14: Top-reduce S to r over G in such a way that sig (r )� σ
15: if r 6= 0 and r is not sig-redundant to G
16: for (τ, g ) ∈G
17: if g 6= 0 and tσ 6= uτ, where t and u are the monomials needed to construct

Spol (r , g )
18: Add (υ, r , g ) to P , where υ is the expected signature of Spol (r , g )
19: else
20: Add σ to S
21: return

�

g : (τ, g ∈G) and g 6= 0
	

if sig (r ) � t sig (g ); otherwise, we have no way to recuperate sig (r ). Thus, a signature-based
algorithm to compute a Gröbner basis can sometimes add redundant polynomials to the basis.
Recall that termination of the Gröbner basis algorithms studied so far follows from the property
of those algorithms that r was not added to a basis if it was redundant. This presents us with
a problem. The solution looks like a natural generalization, but it took several years before
someone devised it.

Definition 11.34. Let G = {(τk , gk)}
`
k=1 for some ` ∈ N+, gk ∈ I ,

and τk ∈ S, satisfying τk = sig (gk) for each k. We say that (σ , r ) is
signature-redundant, or sig-redundant, if there exists (τ, g ) ∈ G such
that τ | σ and lm (g ) | lm (r ).

Algorithm 13 uses these ideas to compute a Gröbner basis of an ideal.

Theorem 11.35. Algorithm 13 terminates correctly.

Proof. To see why the algorithm terminates, let M′ be the set of variables in x1, . . . , xn and
xn+1, . . . , xn , and define two functions

• ψ : M→M′ by ψ
�

xα1
1 · · · x

αn
n

�

= xα1
n+1 · · · x

αn
2n , and

• ϕ : G→
�

M′�m by ϕ (uFi , g ) = (u ·ψ (lm (g )))Fi .



3. Signature-based algorithms to compute a Gröbner basis 295

Notice that the variable shift imposed by ψ implies that ϕ (uFi , g ) divides ϕ
�

u ′Fi , g ′
�

if and
only if u | u ′ and lm (g ) | lm

�

g ′
�

. This is true if and only if
�

u ′Fi , g ′
�

is sig-redundant with
(uFi , g ), which contradicts how the algorithm works! Let J be the ideal generated by ϕ (G)
in
�

M′�m . As we just saw, adding elements to G implies that we expand some component of
J . However, Proposition 8.35 and Definition 8.33 imply that the components of J can expand
only finitely many times. Hence the algorithm can add only finitely many elements to G, which
implies that it terminates.

For correctness, we need to show that the output satisfies the criteria of Lemma 11.33.
Lines 12, 13, and 17 are the only ones that could cause a problem.

For line 12, suppose (τ, g ) ∈G and t ∈M satisfy tτ = σ and t lm (g )≤ lm (Spol (p, q)).
Let H , H ′ ∈ Rm be F -representations of S = Spol (p, q) and g , respectively. We can choose H
and H ′ such that lm (H ) = σ and lm

�

H ′
�

= τ. By Lemma 11.31, there exists c ∈ F such that
sig (cS + t g ) ≺ σ . On the other hand, t lm (g ) < lm (S) implies that lm (cS + t g ) = lm (S).
The algorithm proceeds by ascending signature, so cS + t g has a sig-representation H ′′ (over G,
not F ). Thus,

cS + t g =
∑

h ′′k gk =⇒ S =−c−1t g +
∑�

c−1h ′′k
�

gk

Every monomial of H ′′ is, by definition of a sig-representation, smaller than lm (cS + t g ) =
lm (S). In addition, sig (t g )� σ , and sig

�

h ′′
k

gk

�

≺ σ for each k. Define

bhk =







c−1bhk , g 6= gk ;

c−1
�

bhk − t
�

, g = gk .

Then bH =
�

bh1, . . . ,bh#G

�

is a sig-representation of Spol (p, q).

For line 13, inspection of the algorithm shows that either τ = lm
�

f j

�

Fi for some j < i ,
or
�

τ, bp, bq
�

was selected from P , and the algorithm reduced Spol
�

bp, bq
�

to zero. In the first case,
suppose σ = uFi . Let H ∈ Rm an F -representation of Spol (p, q) such that lm (H ) = σ , and
t ∈M such that t lm

�

f j

�

Fi = σ . Let Z ∈Rm such that

zk =







fi , k = j ;
− f j , k = i ;
0, otherwise.

Observe that Z is a syzygy, since
∑

z` f` = fi f j +
�

− f j

�

fi = 0. In addition, j < i so lm (Z) =

lm
�

f j

�

Fi . Thus

Spol (p, q) = Spol (p, q)+ t
∑

z` f` = Spol (p, q)+
∑

(t z`) f`.

The right hand side has signature smaller than σ (look at H +Z), so the left hand side must, as
well. By Lemma 11.33, Spol (p, q) has a sig-representation.

In the second case, we have some
�

τ, bp, bq
�

selected from P whose S-polynomial reduced
to zero, and some t ∈M such that tτ = σ . Since the reduction respects the signature τ, there
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exists a sig-representation H of Spol
�

bp, bq
�

; that is,

Spol
�

bp, bq
�

=
∑

h` g`

and sig (h` g`) ≺ τ for each ` = 1, . . . , #G. Thus Spol
�

bp, bq
�

−
∑

h` g` = 0. This implies the
existence of a syzygy Z ∈Rm such that lm (Z) = sig

�

Spol
�

bp, bq
�

−
∑

h` g`
�

= τ. Thus

Spol (p, q) = Spol (p, q)− t
∑

z` f` = Spol (p, q)−
∑

(t z`) f`,

but the right side clearly has signature smaller than σ , so the left hand side must, as well. By
Lemma 11.33, Spol (p, q) has a sig-representation.31

For line 17, let (τ, g ) ∈ G such that τ | σ and lm (g ) | lm (r ). Let t , u ∈M such that
tτ = σ and ulm (g ) = lm (r ). If u < t , then uτ ≺ σ , which contradicts the hypothesis that
(σ , r ) completed a reduction that respects the signature. Otherwise, t ≤ u, which implies that
tτ = σ and t lm (g )≤ lm (r )≤ lm (Spol (p, q)). In this case, an argument similar to the one for
line 12 applies.

31Notice that both cases for line 13 use syzygies. This is why S has that name: S for syzygy.
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Where can I go from here?

Advanced group theory

Galois theory [Rot98], representation theory, other topics [AF05, Rot06]

Advanced ring theory

Commutative algebra [GPS05], algebraic geometry [CLO97, CLO98], non-commutative
algebra

Applications

General [LP98], coding theory, cryptography, computational algebra [vzGG99]



Hints to Exercises

Hints to Chapter 1

Exercise 1.20: Since you have to prove something for any subset of Z, give it a name: let S be any
subset of Z. Then explain why any two elements a, b ∈ S satisfy a < b , a = b , or a > b . If you
think about the definition of a subset in the right way, your proof will be a lot shorter than the
proof of Theorem 1.14.

Exercise 1.23: Try to show that a− b = 0.

Exercise 1.24: Use the definition of <.

Exercise 1.26: Use Exercise 1.25(c).

Exercise 1.27: Let m, n be two smallest elements of S. Since m is a smallest element of S, what
do you know about m and n? Likewise, since n is a smallest element of S, what do you know
about m and n? Then. . .

Exercise 1.28: Pick an example n, d ∈Z and look at the resulting M . Which value of q gives you
an element of N as well? If n ∈N then you can easily identify such q . If n < 0 it takes a little
more work.

Exercise 1.29: Here, “smallest” doesn’t mean what you think of as smallest; it means smallest
with respect to the definition. That is, you have to explain why there does not exist a ∈N such
that for all other b ∈N, we have a > b .

Exercise 1.30: This question is really asking you to find a new ordering ≺ of Q that is a linear
ordering and that behaves the same on Z as<. To define≺, choose p, q ∈Q. By definition, there
exist a, b , c , d ∈Z such that p = a/b and q = c/d . What condition can you place on ad − b c
that would (a) order p and q , and (b) remain compatible with < in Z in case p, q ∈Z as well?

Exercise 1.50: Don’t confuse what you have to do here, or what the elements are. You have to
work with elements of P (S); these are subsets of S. So, if I choose X ∈ P (S), I know that X ⊆ S.
Notice that I use capital letters for X , even though it is an element of P (S), precisely because
it is a set. This isn’t something you have to do, strictly speaking, but you might find it helpful
to select an element of X to prove at least one of the properties of a monoid, and it looks more
natural to select x ∈X than to select a ∈ x, even if this latter x is a set.

Exercise 1.53: To show closure, you have to explain how we know that the set specified in the
definition of lcm has a minimum.

Exercise 1.68: By Definition 1.3, you have to show that
• for any monoid M , M ∼= M (reflexive);
• for any two monoids M and N , if M ∼= N , then also N ∼= M (symmetric); and
• for any three monoids M , N , and P , if M ∼= N and N ∼= P , then M ∼= P (transitive).

In the first case, you have to find an isomorphism f : M −→ M . In the second, you have to
assume that there exist isomorphisms f : M −→ N , then show that there exists an isomorphism
f : N −→M .



Hints to Chapter 2 300

Hints to Chapter 2

Exercise 2.15: Remember that − means the additive inverse. So, you have to show that the
additive inverse of −x is x.

Exercise 2.17: Use substitution.

Exercise 2.18: Work with arbitrary elements of R2×2. The structure of such elements is

A=

�

a11 a12
a21 a22

�

where a11,a12,a21,a22 ∈R.

Exercise 2.22: At least one such monoid appears in the exercises to this section.

Exercise 2.26: You probably did this in linear algebra, or saw it done. Work with arbitrary
elements of Rm×m , which have the structure

A=
�

ai , j

�

i=1...m, j=1...m
.

Exercise 2.78: You will need the condition that 16a3 = 27c2.

Exercise 2.79: For closure, it suffices to show that each line between two distinct, finite points of
the curve intersects the curve a third time, possibly at P∞.

Exercise 2.80: You may want to use a computer algebra system to help with this. In the appendix
to this section we show how you can do it with the computer algebra system Sage.

Exercise 2.28:
(a) Try m = 2, and find two invertible matrices A,B such that (AB)

�

A−1B−1� 6= I2.
(b) Use the associative property to help simplify the expression (ab )

�

b−1a−1�.

Exercise 2.34: Exercise 2.28 on page 30 is similar.

Exercise 2.35: You may assume that composition of functions is associative in this problem.
(a) Use the fact that (F ◦ F ) (P ) = F (F (P )) to show that (F ◦ F ) (P ) = I (P ), and repeat

with the other functions.
(b) One of closure, identity, or inverse fails. Which?
(c) Add elements to G that are lacking, until all the properties are now satisfied.
(d) A clever argument would avoid a brute force computation.

Exercise 2.81: This goes a lot faster if you work with approximate numbers.

Exercise 2.60: Use the product notation as we did.

Exercise 2.61: Use Theorem 2.57.

Exercise 2.62: Look back at Exercise 2.31 on page 30.

Exercise 2.65: Use denominators to show that no matter what you choose for x ∈ Q, there is
some y ∈Q such that y 6∈ 〈x〉.

Exercise 2.66: One possibility is to exploit det (AB) = detA ·detB . It helps to know that R is not
cyclic (which may not be obvious, but should make sense from Exercise 2.65).
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Exercise 2.44: To rewrite products so that ρ never precedes ϕ, use Corollary 2.41. To show
that D3 satisfies the properties of a group, you may use the fact that D3 is a subset of GL (2),
the multiplicative group of 2× 2 invertiable matrices. Thus D3 “inherits” certain properties of
GL (2), but which ones? For the others, simple inspection of the multiplication table should
suffice.

Exercise 2.46:
(a) You may use the property that |P −Q|2 = |P |2 + |Q|2− 2P ·Q, where |X | indicates the

distance of X from the origin, and |X −Y | indicates the distance between X and Y .
(c) Use the hint from part (a), along with the result in part (a), to show that the distance

between the vectors is zero. Also use the property of dot products that for any vector X ,
X ·X = |X |2. Don’t use part (b).

Exercise 2.47: Let P = (p1, p2) be an arbitrary point in R2, and assume that ρ leaves it station-
ary. You can represent P by a vector. The equation ρ · ~P = ~P gives you a system of two linear
equations in two variables; you can solve this system for p1 and p2.

Exercise 2.48: Repeat what you did in Exercise 2.47. This time the system of linear equations will
have infinitely many solutions. You know from linear algebra that in R2 this describes a line.
Solve one of the equations for p2 to obtain the equation of this line.

Hints to Chapter 3

Exercise 3.13: Start with the smallest possible subgroup, then add elements one at a time. Don’t
forget the adjective “proper” subgroup.

Exercise 3.15: Look at what L has in common with H from Example 3.8.

Exercise 3.19: Use Exercise 2.65 on page 45.

Exercise 3.21: Look at Exercise 3.18 on page 56.

Exercise 3.37: For (CE1), you have to show that two sets are equal. Follow the structure of the
proof for Theorem 3.28 on page 59. Take an arbitrary element of eH , and show that it also an
element of H ; that gives eH ⊆ H . Then take an arbitrary element of H , and show that it is an
element of eH ; that gives eH ⊇H . The two inclusions give eH = H .

As for (CE2) and (CE3), you can prove them in a manner similar to that of (CE1), or you
can explain how they are actually consequences of (CE1).

Exercise 3.50: Use Corollary 3.46 on page 63.

Exercise 3.51: See Exercises 2.62 on page 45 and 3.50.

Exercise 3.69: Theorem 3.57 tells us that the subgroup of an abelian group is normal. If you can
show that Dm (R) is abelian, then you are finished.

Exercise 3.71: It is evident from the definition that Z (G)⊆G. You must show first that Z (G)<
G. Then you must show that Z (G) /G. Make sure that you separate these steps and justify each
one carefully!

Exercise 3.72: First you must show that H ⊆ NG (H ). Then you must show that H < NG (H ).
Finally you must show that H /NG (H ). Make sure that you separate these steps and justify each
one carefully!
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Exercise 3.73: List the two left cosets, then the two right cosets. What does a partition mean?
Given that, what sets must be equal?

Exercise 3.74(c): The “hard” way is to show that for all g ∈G, g [G,G] = [G,G] g . This requires
you to show that two sets are equal. Any element of [G,G] has the form [x, y ] for some x, y ∈G.
At some point, you will have to show that g [x, y ] = [w, z ] g for some w, x ∈ G. This is an
existence proof, and it suffices to construct w and z that satisfy the equation. To construct them,
think about conjugation.

An “easier” way uses the result of Exercise 3.67, showing that gG′ g−1 = G′ for any g ∈G.
Exercise 2.37 should help you see why gG′ g−1 ⊆ G′; to show the reverse direction, show why
any g ′ ∈G′ has the form g−1 [x g , y g ] g for any g ∈G, so gG′ g−1 ⊇G′.

Exercise 3.85: Use Lemma 3.29 on page 60.

Hints to Chapter 4

Exercise 4.17(b): Generalize the isomorphism of (a).

Exercise 4.32: Use the Subgroup Theorem along with the properties of a homomorphism.

Exercise 4.24: For a homomorphism function, think about the equation that describes the points
on L.

Exercise 4.25: Since it’s a corollary to Theorem 4.10, you should use that theorem.

Exercise 4.28: Use induction on the positive powers of g ; use a theorem for the nonpositive
powers of g .

Exercise 4.29(b): Let G = Z2 and H = D3; find a homomorphism from G to H .

Exercise 4.30: Recall that

f (A) = {y ∈H : f (x) = y ∃x ∈A} ,

and use the Subgroup Theorem.

Exercise 4.31(b): See the last part of Exercise 4.29.

Exercise 4.32: Denote K = ker f . Show that gK g−1 = K for arbitrary g ∈G; then Exercise 3.67
applies. Showing that gK g−1 ⊆ K is routine. To show that gK g−1 ⊇ K , let k ∈ K ; by closure,
g−1k g = x for some x ∈ G. Show that x ∈ K , then rewrite the definition of x to obtain
k ∈ gK g−1.

Exercise 4.48(a): Consider f : R2→R by f (a) = b where the point a = (a1,a2) lies on the line
y = x + b .

Exercise 4.49(b): You already know the answer from Exercise 3.65 on page 69; find a homomor-
phism f from Q8 to that group such that ker f = 〈−1〉.

Exercise 4.61: Use some of the ideas from Example 4.51(c), as well as the Subgroup Theorem.

Exercise 4.63: We can think of D3 as generated by the elements ρ and ϕ, and each of these
generates a non-trivial cyclic subgroup. Any automorphism α is therefore determined by these
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generators, so you can find all automorphisms α by finding all possible results for α (ρ) and α (ϕ),
then examining that carefully.

Hints to Chapter 5

Exercise 5.27: Life will probably be easier if you convert it to cycle notation first.

Exercise 5.30: List the six elements of S3 as
�

1
�

, α, α2, β, αβ, α2β, using the previous exercises
both to justify and to simplify this task.

Exercise 5.34: Try computing α ◦β and β◦α.

Exercise 5.31: Show that f is an isomorphism either exhaustively (this requires 6×6 = 36 checks
for each possible value of f

�

ρaϕb
�

), or by a clever argument, perhaps using using the Isomor-
phism Theorem (since D3/ {ι} ∼= D3).

Exercise 3.108: There are one subgroup of order 1, three subgroups of order 2, one subgroup of
order 3, and one subgroup of order 6. From Exercise 5.31 on page 109, you know that S3

∼= D3,
and some subgroups of D3 appear in Example 3.9 on page 54 and Exercise 3.18 on page 56.

Exercise 5.65: Lemma 5.54 tells us that any permutation can be written as a product of cycles, so
it will suffice to show that any cycle can be written as a product of transpositions. For that, take
an arbitrary cycle α=

�

α1 α2 · · · αn
�

and write it as a product of transpositions, as suggested
by Example 5.53. Be sure to explain why this product does in fact equal α.

Exercise 5.66: You can do this by showing that any transposition is its own inverse. Take an
arbitrary transposition α=

�

α1 α2
�

and show that α2 = ι.

Exercise 5.67: Let α and β be arbitrary cycles. Consider the four possible cases where α and β
are even or odd.

Exercise 5.68: See a previous exercise about subgroups or cosets.

Exercise 5.72: Use the same strategy as that of the proof of Theorem 5.71: find the permuta-
tion σ−1 that corresponds to the current confiuration, and decide whether σ−1 ∈ A16. If not,
you know the answer is no. If so, you must still check that it can be written as a product of
transpositions that satisfy the rules of the puzzle.

Hints to Chapter 6

Exercise 6.21: At least you know that gcd (16,33) = 1, so you can apply the Chinese Remainder
Theorem to the first two equations and find a solution in Z16·33. Now you have to extend your
solution so that it also solves the third equation; use your knowledge of cosets to do that.

Exercise 6.25: Since d ∈ S, we can write d = am + b n for some a, b ∈Z. Show first that every
common divisor of m, n is also a divisor of d . Then show that d is a divisor of m and n. For this
last part, use the Division Theorem to divide m by d , and show that if the remainder is not zero,
then d is not the smallest element of M .

Exercise 6.33: Use the properties of prime numbers.

Exercise 6.57: Consider Lemma 6.34 on page 138.
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Exercise 6.60(c): Using the Extended Euclidean Algorithm might make this go faster. The proof
of the RSA algorithm outlines how to use it.

Exercise 6.61:
(b) That largest number should come from encrypting ZZZZ.
(d) Using the Extended Euclidean Algorithm might make this go faster. The proof of the RSA

algorithm outlines how to use it.

Exercise 6.62: There are a couple of ways to argue this. The best way for you is to explain why
there exist a, b such that a p + b q = 1. Next, explain why there exist integers d1, d2 such that
m = d1a and m = d2b . Observe that m = m · 1 = m · (a p + b q). Put all these facts together to
show that ab | m.

Hints to Chapter 7

Exercise 7.9: The cases where n = 0 and n = 1 can be disposed of rather quickly; the case where
n 6= 0,1 is similar to (a).

Exercise 7.11:
(a) This is short, but not trivial. You need to show that (−r ) s + r s = 0R. Try using the

distributive property.
(b) You need to show that −1R · r + r = 0. Try using a proof similar to part (a), but work in

the additive identity as well.

Exercise 7.12: Proceed by contradiction. Show that if r ∈ R and r 6= 0,1, then something goes
terribly wrong with multiplication in the ring.

Exercise 7.13: Use the result of Exercise 7.12.

Exercise 7.14: You already know that (B ,⊕) is an additive group, so it remains to decide whether
∧ satisfies the requirements of multiplication in a ring.

Exercise 7.25: Use the definition of equality in this set given in Example 7.19. For the first
simplification rule, show the equalities separately; that is, show first that (ac)/ (b c) = a/b ;
then show that (ca)/ (c b ) = a/b .

Exercise 7.26: For the latter part, try to find f g such that f and g are not even defined, let alone
an element of Frac (R).

Exercise 7.39: Proceed by induction on deg f . We did not say that r was unique.

Exercise 7.52: Z [x ] is a subring of what Euclidean domain? But don’t be too careless–if you can
find the gcd in that Euclidean domain, how can you go from there back to a gcd in Z [x ]?

Exercise 7.53: Since it’s a field, you should never encounter a remainder, so finding a valuation
function should be easy.

Exercise 7.54: There are two parts to this problem. The first is to find a “good” valuation function.
The second is to show that you can actually divide elements of the ring. You should be able to do
both if you read the proof of Theorem 7.43 carefully.

Exercise 7.55: For correctness, you will want to show something similar to Theorem 6.13 on
page 129.
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Exercise 7.56(a,iii): A system of equations could help with this latter division.

Hints to Chapter 8

Exercise 8.18: Use the Division Theorem for Integers (Theorem 1.18).

Exercise 8.25: For part (b), consider ideals of Z.

Exercise 8.20: The Extended Euclidean Algorithm (Theorem 6.13 on page 129) would be useful.

Exercise 8.40: Use the Ideal Theorem.

Exercise 8.39: Show that if there exists f ∈ F [x, y ] such that x, y ∈ 〈 f 〉, then f = 1 and 〈 f 〉 =
F [x, y ]. To show that f = 1, consider the degrees of x and y necessary to find p, q ∈F [x, y ] such
that x = p f and y = q f .

Exercise 8.48: Follow the argument of Example 8.44.

Exercise 8.62:
(c) Let g have the form c x + d where c , d ∈ C are unknown. Try to solve for c , d . You will

need to reduce the polynomial f g by an appropriate multiple of x2 + 1 (this preserves the
representation ( f g )+ I but lowers the degree) and solve a system of two linear equations
in the two unknowns c , d .

(e) Use the fact that x2 + 1 factors in C [x ] to find a zero divisor in C [x ]/



x2 + 1
�

.

Exercise 8.63: Try the contrapositive. If F [x ]/ 〈 f 〉 is not a field, what does Theorem 8.56 tell
you? By Theorem 7.54, F [x ] is a Euclidean domain, so you can find a greatest common divisor
of f and a polynomial g that is not in 〈 f 〉 (but where is g located?). From this gcd, we obtain a
factorization of f .

Or, follow the strategy of Exercise 8.62 (but this will be very, very ugly).

Exercise 8.64:
(a) Look at the previous problem.
(b) Notice that

y
�

x2 + y2−4
�

+ I = I

and x (xy−1) + I = I . This is related to the idea of the subtraction polynomials in later
chapters.

Exercise 8.75(d): Proceed by induction on n.

Exercise 8.76: Rewrite an abitrary element of the ring using the multiplicative identity, then
apply the commutative property of the ring.

Exercise 8.80: Think of a fraction field over an appropriate ring.

Exercise 8.90: Use strategies similar to those used to prove Theorem 4.10 on page 82.

Exercise 8.92: Follow Example 8.89 on page 204.

Exercise 8.93: Multiply two polynomials of degree at least two, and multiply two matrices of the
form given, to see what the polynomial map should be.

Exercise 8.94(d): Think about i =
p
−1.
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Exercise 8.95: Showing that ϕ is multiplicative should be straightforward. To show that ϕ is
additive, use the Binomial Theorem

(x + y)n =
n
∑

i=0

�n

i

�

xnyn−i

along with the fact that p is irreducible.

Hints to Chapter 9

Exercise 9.13: You could do this by proving that it is a subring of C. Keep in mind that
�p
−5
��p

−5
�

=−5.

Hints to Chapter 10

Exercise 10.61(b): Use part (a).

Exercise 10.62(c): Don’t forget to explain why 〈G〉=
¬

Gminimal
¶

! It is essential that the S-poly-
nomials of these redundant elements top-reduce to zero. Lemma 10.54 is also useful.
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image, 80
ring, 200

Homomorphism Theorem, 84

ideal, 177
basis, 179
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identity, 13, 24
image of a homomorphism, 80
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integral domain, 158
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integer, 136
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isomorphism, 79, 80
isomorphisms, 200

kernel, 79, 83

lcm, 16, 251
leading variable of a linear polynomial,

234
least common multiple, 251
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for monomials, 239
for variables, 234

linear ordering, 7

Macaulay matrix, 264
mod, 70
module, 290
modulo, 70
monoid, 13
monomial, 162

diagram, 244
ordering, 239

monomial diagram, 244
multiplication principle, 100
multivariate, 163

n-gon, 109
natural homomorphism, 92
normal series, 74
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onto, 17
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of a group, 25
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ordering
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linear, 7
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even, 120
odd, 120
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prime, 136
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quotient, 10, 169
quotient group, 68, 189

relation to quotient rings, 176
quotient rings, 176

redundant elements (of a Gröbner basis),
259

relation, 5
remainder, 10, 169
ring, 154

commutative, 156
ground, 163
Noetherian, 184
of fractions, 161
unity, 156

ring extension, 157, 218
ring of fractions, 161
root, 45, 177

of unity, 45
primitive nth root of unity, 47

solvable group, 74
stationary, 101
subgroup

commutator, 70, 75
subtraction polynomial, 305

tabular notation, 99
term, 162
theorems (named)

Cayley’s Theorem, 114
Chinese Remainder Theorem, 129,

133
Division Theorem

for integers, 9
for polynomials, 169

Elimination Theorem, 273
Euclidean algorithm, 126, 173
Euler’s Theorem, 143, 214
Extended Euclidean Algorithm, 129
Fast Exponentiation, 145
Fermat’s Little Theorem, 217
Fundamental Theorem of Arithmetic,

137
Hilbert’s Nullstellensatz, 271
Hilbert’s Weak Nullstellensatz, 268
Homomorphism Theorem, 84
Ideal Theorem, 179
Lagrange’s Theorem, 63
RSA algorithm, 147
Subgroup Theorem, 53
Subring Theorem, 176

top-reduction, 253
total degree, 162
transposition, 117
triangular form (linear systems), 234

unity, 156
univariate, 163

valuation function, 172
vanishing polynomial, 163
variable, 162
variety, 268

weighted vectors, 246
well ordering, 8
well-defined, 64

xor, 15

zero divisor, 140
zero divisors, 158
zero product property, 155
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