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CHAPTER 1

Introduction

1.1. THREE INTERESTING PROBLEMS

We’d like to motivate this study of algebra with three problems that we hope you will find
interesting. We’ll also provide some hints at solutions, but at the outset of a course you don’t
yet know enough to follow the solutions in all their depth. One can compare the situation to
walking into the darkened room of a museum; beside you is a guide who tells you what is in
the room, but until the guide turns on the lights, the description will be unlikely to meet your
expectations.

A CARD TRICK. Take twelve cards. Ask a friend to choose one of them, to replace it in the
stack of twelve cards, then to shuffle them thoroughly. Arrange the cards on a table face up, in
rows of three. Ask your friend what column the card is in; call that number α.

Now collect the cards, making sure they remain in the same order as they were when you
dealt them. Arrange them on a a table face up again, in rows of four. It is essential that you
maintain the same order; the first card you placed on the table in rows of three must be the same
card you place on the table in rows of four; likewise the last card must remain last. Ask your
friend again what column the card is in; call that number β.

In your head, compute x = 4α− 3β. If x does not lie between 1 and 12 inclusive, add or
subtract 12 as many times as necessary until it is. Starting with the first card, and following the
order in which you laid the cards on the table, count to the xth card. This will be the card your
friend chose.

Mastering this trick isn’t hard, and takes only a little practice. To understand why it works
requires a marvelous result called the Chinese Remainder Theorem, so named because many cen-
turies ago the Chinese military used this technique to count the number of casualties of a battle.1

We cover the Chinese Remainder Theorem later in this course.

INTERNET COMMERCE. You go online to check your bank account. Before you can gain access
to your account, your computer must send your login name and password to the bank. Likewise,
your bank sends a lot of information, such as your account number and your balance, from its
computers to yours. Most likely, you’d rather keep such sensitive information secret from all the
other computers through which the information passes on its way to and from the bank. How
can you do this?

The solution is called public-key cryptography. In public-key cryptography, your computer
tells the bank’s computer how to send it a message, and the bank’s computer tells your computer
how to send it a message. One key—a special number used to encrypt the message—is therefore
public. Anyone in the world can see it. What’s more, anyone in the world can look up the

1I asked a Chinese colleague what name the Chinese have for this theorem. He didn’t know at first. He went
to look in his books, and came back to tell me that they call it Sun Tzu’s Theorem, apparently because it appears in
Sun Tzu’s Art of War.
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1.2. COMMON PATTERNS 9

method used to decrypt the message: he just needs to figure out the hidden key, the special num-
ber required to decrypt the message. It isn’t hard to determine what the special properties of this
number are; we discuss them later in this course. By solving a“simple” mathematical problem—
factoring an integer into two primes: essentially, deciding that 21 = 3 · 7—an eavesdropper can
determine your key and the bank’s key, and decrypt the messages.

Why is this method safe for internet commerce? Although the problem to solve is “simple”,
it takes too long to solve! The prime numbers used contain hundreds of computer bits. Even
the world’s fastest computers cannot factor these large integers into two primes fast enough to
decrypt the message in a reasonable timeframe; in fact, the world’s fastest computers won’t be
fast enough to do this for many decades, if not centuries.

FACTORIZATION. How can we factor polynomials like p (x) = x6 + 7x5 + 19x4 + 27x3 +
26x2 + 20x + 8? There are a number of ways to do it, but it turns out that one of the most
efficient ways involves a trick called modular arithmetic. We discuss the theory of modular arith-
metic later in the course, but for now the general principle will do: pretend that the only only
numbers we can use come from a clock that runs from 0 to 28. Just as with the twelve-hour
clock, when we hit the integer 29, we reset to 0; when we hit the integer 30, we reset to 1; and
in general for any number that does not lie between 0 and 28, we divide by 29 and take the
remainder. For example,

25 ·3 + 8 = 83  25.
How does this help us factor? When looking for factors of the polynomial p, we can simplify

multiplication by working in this modular arithmetic. This makes it easy for us to reject many
possible factorizations before we start. In addition, the set {0,1, . . . , 28} has many interesting
properties under modular arithmetic that we can exploit further.

CONCLUSION. Abstract algebra is, by nature, a theoretical course. We start discussing that
somewhat in the next section, and especially in the next chapter. You may be tempted on many
occasions to wonder what is the point of all this abstraction and theory; who would ever need
it?

The three problems above are examples of how abstract algebra is not only useful, but nec-
essary. It is abstract, but its applications have been profound and broad. Eventually we expect
to explain to you how the problems above are solved using the methods of algebra; for now, you
can only start to imagine.

1.2. COMMON PATTERNS

Until now, your background in mathematics directed you in the study of a large number of
seemingly different sets:

• numbers, of which you have seen
◦ the natural numbers N = {0,1,2,3, . . .}, also written Z≥0;
◦ the integers Z = {. . . ,−1,0,1,2, . . .};
◦ the rational numbers Q =

¦

a
b : a, b ∈Z and b 6= 0

©

;
◦ the real numbers R;
◦ the complex numbers C =

¦

a + b i : a, b ∈R and i =
p
−1
©

;
• polynomials, of which you have seen
◦ polynomials in one variable R [x ];
◦ polynomials in more than one variable R [x, y ], R [x, y, z ], R [x1, x2, . . . , xn ];
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• square matrices Rm×m .
Each set is especially useful for representing certain kinds of objects. Natural numbers can repre-
sent objects that we count: two apples, or twenty planks of flooring. Real numbers can represent
objects that we measure, such as the length of the hypotenuse of a right triangle.

For each set, you have studied elementary operations with elements in the set, and properties
of these operations. The operations in each set represent real-world activities that are fundamen-
tally different.

EXAMPLE 1.1. The natural number 2 can represent a basket of 2 tomatoes; the natural number
10 can represent a basket of ten tomatoes. Adding the two numbers represents counting how
many tomatoes are in both baskets: 10+2=12.

Adding two polynomials is somewhat similar, but requires a different method for simplifica-
tion. The polynomial f = 2x + 3y can represent the amount of money earned when tomatoes
(x) and cucumbers (y) are sold on a day where their respective prices are $2 and $3 apiece. On
another day, the prices may change to $1 and $2.50, respectively, so the polynomial g = x +2.5y
represents the amount of money earned on that day. Adding the two polynomials gives f + g ,
which represents the amount of money earned if we sell the same number of tomatoes and cu-
cumbers on both days. We don’t count objects in baskets to determine a simplified representation
of f + g ; instead we apply the distributive property. Then

f + g = (2x + 3y)+ (x + 2.5y) = (2 + 1) x +(3 + 2.5) y = 3x + 5.5y.

Adding two rational numbers is quite a bit different. Let x, y ∈ Q. Then x = a/b and
y = c/d for certain integers a, b , c , d where b , d 6= 0. We have

x + y =
a

b
+

c

d
=

ad

b d
+

b c

b d
=

ad + b c

b d
.

Here we had to compute a common denominator in order to add the two rational numbers. This
is conceptually different from adding integers or adding polynomials, which is why students who
memorize a process instead of a meaning dislike fractions and want instead to add

a

b
+

c

d
=

a + c

b + d
.

Someone might decide to define the addition of fractions this way, and there would be no problem
with it! As long as the operation is defined this way, and corresponds to the real-world phenom-
ena that it models, there is no problem.

Mathematicians do consider this second version of addition wrong, but only because it does not
correspond to the real-world phenomena that fractions usually represent. Make sure you understand
this point: adding fractions in the second way described above is wrong because of what fractions
represent. 4

Despite the fact that the operations behave differently on objects in each set, we still observe
some common properties. These properties have nothing to do with the choice of how to simplify
a given operation, but are intrinsic to the operation itself, or to the structure of the objects of the
set.

For example:
(1) Addition is always commutative. That is, x + y = y + x no matter which set contains

x, y.
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(2) Multiplication is not always commutative. Matrices misbehave on this point:
�

1 1
1 0

��

2 0
0 3

�

=
�

2 3
2 0

�

6=
�

2 2
3 0

�

=
�

2 0
0 3

��

1 1
1 0

�

.

(3) Both operations are always associative. That is, x +(y + z) = (x + y)+ z and x (y z) =
(xy) z no matter which set contains x, y, z.

(4) Multiplication is distributive over addition. That is, x (y + z) = xy + x z no matter
which set contains x, y, z.

(5) Each set has additive and multiplicative identities. That is, each set has two special
elements, written 0 and 1, such that 0 + x = x and 1 · x = x · 1 = x, for every value of
x.2

(6) Each set has additive inverses. That is, for any set and for any x in that set, we can
identify an element y such that x + y = 0. Usually we write −x instead of y, so that
x +(−x) = 0.

(7) Not every set contains multiplicative inverses for all its elements. To begin with, the
zero element never has a multiplicative inverse. For polynomials, only non-zero con-
stant polynomials like 4 or -8 have multiplicative inverses. Polynomials such as x2 do
not have inverses that are also polynomial. With matrices the situation is even worse;
many matrices have no inverse at all.

(8) In every set specified, −1× x = −x and 0× x = 0. But not every set obeys the zero
product property,

if xy = 0 then x = 0 or y = 0.
Here again it is the matrices that misbehave:

�

1 0
0 0

��

0 0
0 1

�

= 0.

(9) In some sets you have learned how to divide with remainder. Even though non-constant
polynomials don’t have multiplicative inverses, you can still divide by them. In other
sets you have never seen a division, as with matrices, for example.

There are many others, but these will do.
Not very long ago,3 mathematicians set about asking themselves how they could organize the

common principles of these sets and operations as abstractly, simply, and generically as possible.
You might wonder why someone would want to do that. It’s a good question, because it isn’t

very easy to think abstractly. Most people think algebra is abstract enough with polynomials
and matrices; why make it any more abstract?

As you will learn from this book, mathematicians have found this abstraction to be enor-
mously useful. If I prove some property about the integers, then I only have a result about
integers. If someone comes and asks whether that property is also true about matrices, the only
answer I have without further effort is, “I don’t know.” It might be easy to show that the prop-
erty is true, but it might be hard to show that the property is true.

If, on the other hand, I prove something about any set that shares certain properties with the
integers, and if the matrices also share those properties, then I can answer without any further
effort, “Yes!”

2For square matrices we actually write In , where n is the dimension of the matrix.
3Depending on one’s point of view. Certainly more than five minutes ago. In fact, more than one hundred

years ago. But, less than one thousand years ago.
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This is the beauty of abstract algebra.

EXERCISES.

EXERCISE 1.2. For each set S listed below, find a real-world phenomenon that the elements of S
represent.
(a) Z

(b) Q

(c) R [x, y ]

EXERCISE 1.3. Give a detailed example of a real-world phenomenon where
a

b
+

c

d
6=

a + c

b + d
.

By “real-world phenomenon”, I mean that you should not merely add two fractions in the ordi-
nary manner, but describe the problem using objects that you use every day (or at least once a
month).

1.3. THEORY OF ARITHMETIC

You will need to use a number of topics that were once covered in high-school algebra, but
that you have likely forgotten. Even if you haven’t forgotten them, you may not have seen them
in a context where the emphasis was on trying to understand why something is true.

We start with the absolute basics. We already mentioned N; we will also make use of

N>0 = N+ = N\{0}= {1,2,3, . . .} .
One of the nice aspects of R is that we can order its elements linearly: for any a, b ∈ R

exactly one of the following holds: a < b , a = b , or a > b . This ordering extends to all subsets of
R, in particular the elements of N+, N, Z, and Q as well. This is different from C and Rm×m ,
where it is impossible to order the elements linearly.

Something that distinguishes N from the sets Z, Q, R, C, and Rm×m is the well-ordering
property:

Every nonempty subset of N has a smallest element.
This looks obvious, but it is very important, and what is remarkable is that no one can prove it.
It is an assumption about the natural numbers. This is why we state it as an axiom.

A consequence of the well-ordering property is the principle of mathematical induction:

THEOREM 1.4 (Mathematical Induction). Let P be a subset of N>0. If P satisfies (IB) and (IS)
where
(IB) 1 ∈ P;
(IS) for every i ∈ P, we know that i + 1 is also in P ;
then P = N.

PROOF. Let S = N\P . We will prove the contrapositive, so assume that P 6= N. Thus
S 6= ;. Note that S ⊆N. By the well-ordering principle, S has a smallest element; call it n. If
n = 1, then P does not satisfy (IB). If n > 1, then n− 1 6∈ S, so n− 1 ∈ P . Let i = n− 1; then
i ∈ P and i + 1 = n 6∈ P . Then P does not satisfy (IS), since i = n−1 ∈ P and i + 1 = n 6∈ P .
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We have shown that if P 6= N, then P fails to satisfy at least one of (IB) or (IS). This is the
contrapositive of the theorem. �

Induction is an enormously useful tool, and we will make use of it from time to time.
We will also need the following important fact.

THEOREM 1.5 (The Division Theorem). Let n, d ∈Z. There exist unique q , r ∈Z satisfying (D1)
and (D2) where
(D1) n = qd + r ;
(D2) 0≤ r < d .

We call n the dividend, d the divisor, q the quotient, and r the remainder.

PROOF. We must show two things: first, that q and r exist; second, that r is unique.
Existence of q and r : First we show the existence of q and r that satisfy (D1). Let S =

{n− qd : q ∈Z} and M = S ∩N. By the well-ordering of N, M has a smallest element; call it
r . By definition of S, there exists q ∈Z such that n− qd = r . It follows that n = qd + r .

Does r satisfy (D2)? By way of contradiction, assume that it does not; then 0 ≤ r − d < r .
We can rewrite

n = qd + r
= qd + d +(r − d )
= (q + 1) d +(r − d ) .

Hence r − d = n− (q + 1) d . This form of r − d shows that r − d ∈ S. Since r − d ≥ 0,
r − d ∈M . This contradicts the choice of r as the smallest element of M .

Hence n = qd + r and 0≤ r < d ; q and r satisfy (D1) and (D2).
Uniqueness of q and r : Suppose that there exist q ′, r ′ ∈ Z such that n = q ′d + r ′ and 0 ≤

r ′ ≤ r < d . Then r ′ = n− q ′d ∈ S. Since r is the smallest element of S, r ′ = r . Setting
n− q ′d = n− qd yields q = q ′. �

DEFINITION 1.6. Let n, d ∈Z and suppose that the Division Theorem gives us n = qd + r . If
r = 0, then n = qd . We say in this case that d divides n, and write d | n. We also say that n
is divisible by d . If on the other hand r 6= 0, then we say that d does not divide n, and write
d - n.

EXERCISES.

EXERCISE 1.7. Identify the quotient and remainder when dividing:
(a) 10 by −5;
(b) −5 by 10;
(c) −10 by −5.

EXERCISE 1.8. Let a, b ∈ Z, and assume that both a ≤ b and b ≤ a . Prove that a = b . Hint:
There are several ways to prove this; one way is to look for a contradiction.

EXERCISE 1.9. Let S ⊂ N. We know from the well-ordering property that S has a smallest
element. Prove that this smallest element is unique. Hint: Let m, n be two smallest elements of
S. Since m is a smallest element of S, what do you know about m and n? Likewise, since n is a
smallest element of S, what do you know about m and n? Then. . .
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EXERCISE 1.10. Let x, d ∈Z, where d > 0. Define M = {x− qd : q ∈Z}. Prove that M ∩N 6=
;. Hint: If x > 0 then you can pretty easily identify a q that finds an element of the intersection
M ∩N. Otherwise x ≤ 0. You know that d > 0. What happens when you divide x by d ?
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Elementary group theory



CHAPTER 2

Additive, multiplicative, and general groups

2.1. COMMON STRUCTURES FOR ADDITION

Many sets in mathematics, such as those listed in Chapter 1.2, allow addition of their ele-
ments; others allow multiplication. Some allow both. We saw that while addition was commu-
tative for all the examples listed, multiplication was not.

We will use some of the properties we associate with addition to define a common structure
for addition. We consider multiplication in the following section.

DEFINITION 2.1. Let G be a set, and + an addition. The pair (G,+) is an additive group if
(G,+) satisfies the following properties.
(AG1) Addition is closed; that is, x + y ∈G for all x, y ∈G.
(AG2) Addition is associative; that is, x +(y + z) = (x + y)+ z for all x, y, z ∈G.
(AG3) There exists an element z ∈G such that x + z = x for all x ∈G. We call this element the

zero element or the additive identity, and generally write 0 to represent it.
(AG4) For every x ∈ G there exists an element y ∈ G such that x + y = 0. Normally we write

−x for this element and call it the additive inverse.
(AG5) Addition is commutative; that is, x + y = y + x for all x, y ∈G. 4

We may also refer to an additive group as a group under addition. The operation is usually
understood from context, so we usually write G rather than (G,+). We will sometimes write
(G,+) when we want to emphasize the operation, especially if the operation does not fit the
normal intuition of addition (see Exercises 2.10 and 2.11 below) and when we discuss groups
under multiplication later.

EXAMPLE 2.2. Certainly Z is an additive group. Why?
(AG1) Adding two integers gives another integer.
(AG2) Addition of integers is associative.
(AG3) The additive identity is the number 0.
(AG4) Every integer has an additive inverse.
(AG5) Addition of integers is commutative. 4

The same holds true for many of the sets we identified in Chapter 1.2, using the ordinary
definition of addition in that set. However, N is not an additive group. Why not? Although
N is closed, and addition of natural numbers is associative and commutative, no positive natural
number has an additive inverse in N.

Our definition of additive groups now allows us to investigate arbitrary additive groups, and
to formulate conclusions based on these arbitrary groups. Mathematicians of the 20th century
invested substantial effort in an attempt to classify all finite simple groups. (You will learn later
what makes a group “simple”.) We won’t replicate their achievement in this book, but we do
want to to take a few steps in this area. First we need a definition.

16
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DEFINITION 2.3. Let S be any set. If there is a finite number of elements in S, then |S | denotes
that number, and we say that S has size . If there is an infinite number of elements in S, then
we write |S | =∞. We also write |S | <∞ to indicate that |S | is finite, without stating a precise
number.

For any additive group (G,+) the order of G is the size of G. A group has finite order if
|G|<∞ and infinite order if |G|=∞. 4

We now have enough information to completely classify all finite groups of order two. We
will show this by building the addition table for an arbitrary group of order two, and show in
the process that it can only have one possible addition table.1

EXAMPLE 2.4. Every additive group of order two has the same addition table. To see this, let
G be an arbitrary additive group of order two. Then G = {0,a} where 0 represents the zero
element. As we build the addition table, we observe that we have to assign a + a = 0. Why?

• To satisfy (AG3), we must have 0 + 0 = 0, 0 + a = a, and a + 0 = a.
• To satisfy (AG4), a must have an additive inverse. The inverse isn’t 0, so it must be a

itself! That is, −a = a. (Read that as, “the additive inverse of a is a.”) So a + (−a) =
a + a = 0.

This leads to the following table.
+ 0 a
0 0 a
a a 0

The only assumption we made about G is that it was a group of order two. That means that
we have completely determined the addition table of all groups of order two! 4
NOTATION. Because it is tiresome to write x +(−y) all the time, we write x− y instead.

The following fact looks obvious–but remember, we’re talking about elements of any addi-
tive group, not only the numbers you have always used.

LEMMA 2.5. Let G be an additive group and x ∈G. Then − (−x) = x.

Lemma 2.5 is saying that the additive inverse of the additive inverse of x is x itself; that is, if
y is the additive inverse of x, then x is the additive inverse of y.

PROOF. You prove it! See Exercise 2.7. �

We observed in Example 2.4 that the structure of a group compels certain assignments for
addition. We can distill this into an important conclusion for additive groups of finite order.

THEOREM 2.6. Let G be an additive group of finite order, and let a, b ∈G. Then a appears exactly
once in any row or column of the addition table that is headed by b .

PROOF. The element a appears in a row of the addition table headed by b any time there
exists c ∈G such that b + c = a. Let c , d ∈G such that b + c = a and b + d = a. Substitution
gives us b + c = b + d . Properties (AG1), (AG4), and (AG3) give us

−b +(b + d ) = (−b + b )+ d = 0 + d = d .

Along with substitution, they also give us

−b +(b + d ) =−b +(b + c) = (−b + b )+ c = 0 + c = c .

1Later in this chapter we refer to this phenomenon as an isomorphism of groups.
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By the transitive property of equality, c = d . This shows that if a appears in one row of the
addition table, then it does not appear in a different row.

We still have to show that a appears in at least one row of the addition table headed by b . This
follows from the fact that the row headed by b has |G| elements. Each element of G can appear
at most once. The pigeonhole principle requires that each element appear exactly once. �

EXERCISES.

EXERCISE 2.7. Explain why − (−x) = x. Hint: Remember that − means the additive inverse.
So, you have to show that the additive inverse of −x is x.

EXERCISE 2.8. Let G be an additive group, and x, y, z ∈ G. Show that if x = y, then x + a =
y + a. Hint: Use substitution.

EXERCISE 2.9. Show in detail that R2×2 is an additive group. Hint: Work with arbitrary ele-
ments of R2×2. The structure of such elements is

A =
�

a11 a12
a21 a22

�

where a11,a12,a21,a22 ∈R.

EXERCISE 2.10. Consider the set B = {F ,T } with the operation ∨ where

F ∨ F = F
F ∨T = T
T ∨ F = T
T ∨T = T .

This operation is called Boolean or.
Is (B ,∨) an additive group? If it is, identify the zero element, and for each non-zero element

identify its additive inverse. If it is not, explain why not.

EXERCISE 2.11. Consider the set B from Exercise 2.10 with the operation ⊕ where

F ⊕ F = F
F ⊕T = T
T ⊕ F = T
T ⊕T = F .

This operation is called Boolean exclusive or, or xor for short.
Is (B ,⊕) an additive group? If it is, identify the zero element, and for each non-zero element

identify its additive inverse. If it is not, explain why not.
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EXERCISE 2.12. Define Z×Z to be the set of all ordered pairs whose elements are integers; that
is,

Z×Z := {(a, b ) : a, b ∈Z} .
Addition in Z×Z works in the following way. For any x, y ∈ Z×Z, write x = (a, b ) and
y = (c , d ) and then

x + y = (a + c , b + d ) .

Show that Z×Z is an additive group.

EXERCISE 2.13. Let G and H be additive groups, and define

G×H = {(a, b ) : a ∈G, b ∈H} .
Addition in G×H works in the following way. For any x, y ∈ G×H , write x = (a, b ) and
y = (c , d ) and then

x + y = (a + c , b + d ) .
Show that G×H is an additive group.

Note: The symbol + may have different meanings for G and H . For example, the first group
might be Z while the second group might be Rm×m .

EXERCISE 2.14. Let n ∈N+. Let G1, G2, . . . , Gn be additive groups, and define
n
∏

i=1

Gi := G1×G2×· · ·×Gn = {(a1,a2, . . . ,an) : ai ∈Gi ∀i = 1,2, . . . , n} .

Addition in this set works in the following way. For any x, y ∈
∏n

i=1 Gi , write x = (a1,a2, . . . ,an)
and y = (b1, b2, . . . , bn) and then

x + y = (a1 + b1,a2 + b2, . . . ,an + bn) .

Show that
∏n

i=1 Gi is an additive group.

EXERCISE 2.15. Let m ∈N+. Show in detail that Rm×m is a group under addition. Hint: You
probably did this in linear algebra, or saw it done. Work with arbitrary elements of Rm×m ,
which have the structure

A =
�

ai , j

�

i=1...m, j=1...m
.

EXERCISE 2.16. Show that every additive group of order 3 has the same structure.

EXERCISE 2.17. Not every additive group of order 4 has the same structure, because there are
two addition tables with different structures. One of these groups is the Klein four-group,
where each element is its own inverse; the other is called a cyclic group of order 4, where not
every element is its own inverse. Determine addition tables for each group.
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2.2. ELLIPTIC CURVES

An excellent example of how additive groups can appear in places that you might not expect
is in elliptic curves. These functions have many applications, partly due to an elegant group
structure.

DEFINITION 2.18. Let a, b ∈R such that 16a3 6= 27b 2. We say that E ⊂R2 is an elliptic curve
if

E =
¦

(x, y) ∈R2 : y2 = x3 + ax + b
©

∪{P∞} ,
where P∞ denotes a point at infinity.

What is meant by a point at infinity? If different branches of a curve extend toward infinity,
we imagine that they meet at a point, called the point at infinity.

There are different ways of visualizing a point at infinity. One is to imagine the real plane as
if it were wrapped onto a sphere. The scale on the axes changes at a rate inversely proportional
to one’s distance from the origin; in this way, no finite number of steps bring one to the point
on the sphere that lies opposite to the origin. On the other hand, this point would be a limit as
x or y approaches ±∞. Think of the line y = x. If you start at the origin, you can travel either
northeast or southwest on the line. Any finite distance in either direction takes you short of the
point opposite the origin, but the limit of both directions meets at the point opposite the origin.
This point is the point at infinity.

EXAMPLE 2.19. Let
E =

¦

(x, y) ∈R2 : y2 = x3− x
©

∪{P∞} .
Here a =−1 and b = 0. Figure 2.1 gives a diagram of E .

It turns out that E is an additive group. Given P ,Q ∈ E , we can define addition by:
• If Q = P∞, then define P + Q = P .
• If P = (p1, p2) and Q = (p1,−p2), then define P + Q = P∞.
• If P = Q, then construct the tangent line ` at P . It turns out that ` intersects E at

another point S = (s1, s2) in R2. Define P + Q = (s1,−s2)
• Otherwise, construct the line ` determined by P and Q. It turns out that ` intersects E

at another point S = (s1, s2) in R2. Define P + Q = (s1,−s2).
The last two statements require us to ensure that, given two distinct and finite points P ,Q ∈
E , a line connecting them intersects E at a third point S. Figure 2.2 shows the addition of
P =

�

2,−
p

6
�

and Q = (0,0); the line intersects E at S =
�

−1/2,
p

6/4
�

, so P + Q =
�

−1/2,−
p

6/4
�

. 4

EXERCISES.

EXERCISE 2.20. Let E be an arbitrary elliptic curve. Show that
�

∂ f
∂ x , ∂ f

∂ y

�

6= (0,0) for any point

on E . Hint: You will need the condition that 16a3 = 27c2.
This shows that E is “smooth”, and that tangent lines exist at each point in R2. (This includes

vertical lines, where ∂ f
∂ x = 0 and ∂ f

∂ y 6= 0.)

EXERCISE 2.21. Show that E is an additive group under the addition defined above, with
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FIGURE 2.1. A plot of the elliptic curve y2 = x3− x.
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FIGURE 2.2. Addition on an elliptic curve
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• P∞ as the zero element; and
• for any P = (p1, p2) ∈ E , then −P = (p1,−p2) ∈ E .

Hint: For closure, it suffices to show that each line intersects the curve three times, possibly at
P∞.

EXERCISE 2.22. Choose different values for a and b to generate another elliptic curve. Graph
it, and illustrate each kind of addition.
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2.3. COMMON STRUCTURES FOR MULTIPLICATION

Unlike addition, multiplication is not always commutative. In order to work with that, we
will define a structure similar to additive groups, but lacking the requirement that the operation
be commutative.

DEFINITION 2.23. Let G be a set, and × a multiplication. The pair (G,×) is a multiplicative
group if (G,×) satisfies the following properties.
(MG1) Multiplication is closed; that is, xy ∈G for all x, y ∈G.
(MG2) Multiplication is associative; that is, x (y z) = (xy) z for all x, y, z ∈G.
(MG3) There exists an element 1 ∈G such that x · 1 = x for all x ∈G. We call this element the

identity.
(MG4) For every x ∈G there exists an element y ∈G such that xy = e . Normally we write x−1

for this element, and call it the multiplicative inverse. 4
We may also refer to a multiplicative group as a group under multiplication.

Even with this more restricted idea of multiplication, Rm×m is not a group. However, we
can now construct a group using a large subset of Rm×m .

DEFINITION 2.24. Define GLm (R) to be the set of invertible matrices, also called the general
linear group.

EXAMPLE 2.25. GLm (R) is a multiplicative group. We leave much of the proof to the exercises,
but point out that (MG1) and (MG2) are known from linear algebra.

EXAMPLE 2.26. Every multiplicative group of order 2 has the same multiplication table. To see
this, let G be an arbitrary multiplicative group of order two. Then G = {1,a}. We build the
multiplication table, being careful to follow properties (MG3) and (MG4):

× 1 a
1 1 a
a a 1

Notice that the properties compelled us to assign a× a = 1, for the same reason that they
compelled us to assign a + a = 0 in the multiplication table of Example 2.4 on page 17.

The only assumption we made about G is that it was a multiplicative group of order two.
That means that we have completely determined the addition table of all multiplicative groups
of order two! 4

The reader may notice from the example that the structure of the multiplication table is
identical to the structure of the addition table in Example 2.4. This suggests that there is no
meaningful difference between additive and multiplicative groups of size two. Likewise, you
will find in Exercises 2.36 and 2.37 that the multiplication tables for groups of order 3 and 4 are
identical to the structure of the addition tables in Exercises 2.16 and 2.17: even the multiplication
is commutative.

At this point a question arises:
Although multiplication was not commutative in GLm (R),
could it be commutative in every finite multiplicative group?
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The answer is no. In Exercise 2.38, you will study a group of order 8 whose multiplication is not
commutative.

Since multiplicative groups of orders 2, 3, and 4 must be commutative, but multiplicative
groups of order 8 need not be commutative, a new question arises:

Is multiplication necessarily commutative
in multiplicative groups of order 5, 6, or 7?

The answer is, “it depends on the order”. We delay the details until later.
You have now encountered additive and multiplicative groups. The only difference we have

seen between them so far is that multiplication need not be commutative. Both Lemma 2.5 and
Theorem 2.6 have parallels for multiplicative groups, and we could state them, but it is time to
exploit the power of abstraction a little further.

Until now, we have defined groups using arbitrary sets, but specific operations. We now gen-
eralize the notion of a group to both arbitrary sets and arbitrary operations. The new definition
will incorporate the principles of additive and multiplicative groups without forcing either into
the mold of the other.

DEFINITION 2.27. Let G be a set, and ◦ an operation. For convenience denote x ◦ y as xy. The
pair (G,◦) is a group under the operation ◦ if (G,◦) satisfies the following properties.
(G1) The operation is closed; that is, xy ∈G for all x, y ∈G.
(G2) The operation is associative; that is, x (y z) = (xy) z for all x, y, z ∈G.
(G3) There exists an element e ∈ G such xe = e x = x for all x ∈ G. We call this element the

identity.
(G4) For every x ∈G there exists an element y ∈G such that xy = y x = e . Normally we write

x−1 for this element.
We say that (G,◦) is an abelian group2 if in addition
(G5) The operation is commutative; that is, xy = y x for all x, y ∈G. 4

NOTATION. In Definition 2.27, the symbol ◦ is a placeholder for any operation. It can stand for
addition, for multiplication, or for other operations that we have not yet considered. We adopt
the following conventions:

• If all we know is that G is a group under some operation, we write × for the operation
and proceed as if the group were multiplicative, writing xy.
• If we know that G is a group and a symbol is provided for its operation, we usually (but

not always) proceed as if the group were multiplicative, writing xy. In the definition, for
example, the symbol ◦ is provided for the operation, but we wrote xy instead of x ◦ y.
• We reserve the symbol + for those cases where G is an abelian group.
• However, in some abelian groups we use multiplicative notation, and write xy.

You can see that the conventions are somewhat loose. As with any language, it takes some time
to grow accustomed to the usage.

Definition 2.27 allows us to classify both additive and multiplicative groups as generic groups.
Additive groups are guaranteed to be abelian, while multiplicative groups are sometimes abelian,
but sometimes not. For this reason, from now on we generally abandon the designation “addi-
tive” group, preferring instead the terminology “abelian” group.

2Named after Niels Abel, a Norwegian high school mathematics teacher who helped found group theory.
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We can now generalize Lemma 2.5 and Theorem 2.6 as promised. The proofs are very easy—
one needs merely rewrite them using the notation for a general group—so we leave that to the
exercises.

Notice that we change the name of the operation from “addition” in Theorem 2.6 to the
generic term “operation” in Theorem 2.29.

LEMMA 2.28. Let G be a group and x ∈G. Then
�

x−1�−1 = x.

THEOREM 2.29. Let G be a group of finite order, and let a, b ∈G. Then a appears exactly once in
any row or column of the operation table that is headed by b .

The following lemma may look obviously true, but its proof isn’t, and the result is impor-
tant. It’s better to make sure “obvious” things are true than to assume that they are, so we’ll
make sure of that now.

THEOREM 2.30. The identity of a group is unique; that is, every group has exactly one identity.
Also, the inverse of an element is unique; that is, every element has exactly one inverse element.

PROOF. Let G be a group, and suppose that e and i are both identity elements. Since i is an
identity, we know that

e = e i .
Since e is an identity, we know that

e i = e .
Combining the two equations, we conclude that

e = i .

We chose two arbitrary identity elements of G and showed that they were the same element.
Hence there is only one identity element.

A similar strategy shows that the inverse of an element is unique. Let x ∈G and suppose that
y, z ∈G are both inverses of x. Since y is an inverse of x,

xy = e .

Since z is an inverse of x,
x z = e .

By substitution,
xy = x z.

Multiply both sides of this equation on the left by y to obtain

y (xy) = y (x z) .

Apply the associative property of G to obtain

(y x) y = (y x) z.

Since y is an inverse of x,
e y = e z.

Since e is the identity of G,
y = z.

We chose two arbitrary inverses of of x, and showed that they were the same element. Hence
the inverse of x is unique. �
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EXERCISES.

EXERCISE 2.31. Explain why GLm (R) satisfies properties (MG3) and (MG4) of the definition
of a multiplicative group.

EXERCISE 2.32.

(a) Show that if G = GLm (R), there exist a, b ∈ G such that (ab )−1 6= a−1b−1. Hint: Try
m = 2, and find two invertible matrices A,B such that (AB)

�

A−1B−1� 6= I2.
(b) Show that for any a, b ∈GLm (R), (ab )−1 = b−1a−1. Hint: Use the associative property to

help simplify the expression (ab )
�

b−1a−1�.
(c) Now suppose that G is an arbitrary group. Explain why we cannot assume that (ab )−1 =

a−1b−1, but we can assume that (ab )−1 = b−1a−1.

EXERCISE 2.33. Let R+ = {x ∈R : x > 0}, and × the ordinary multiplication of real numbers.
Show that R+ is a multiplicative group by explaining why

�

R+,×
�

satisfies properties (MG1)–
(MG4).

EXERCISE 2.34. Define Q∗ to be the set of non-zero rational numbers; that is,

Q∗ =
§ a

b
: a, b ∈Z where a 6= 0 and b 6= 0

ª

.

Show that Q∗ is a multiplicative group.

EXERCISE 2.35. Explain why Z is not a multiplicative group.

EXERCISE 2.36. Show that every multiplicative group of order 3 has the same multiplication
table, and that this structure is in fact identical to that of an additive group of order 3.

EXERCISE 2.37. Show that there are only two possible multiplication tables for multiplicative
groups of order 4, and that these correspond to the groups found in Exercise 2.17.

EXERCISE 2.38. Let Q8 be the set of quaternions, defined by the matrices
�

±1,±i,±j,±k
	

where

1 =
�

1 0
0 1

�

, i =
�

i 0
0 −i

�

, j =
�

0 1
−1 0

�

, k =
�

0 i
i 0

�

.

(a) Show that i2 = j2 = k2 =−1.
(b) Show that ij = k, jk = i, and ik =−j
(c) Show that Q8 is a group under matrix multiplication.
(d) Explain why Q8 is not an abelian group.
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EXERCISE 2.39. Prove Lemma 2.28.

EXERCISE 2.40. Prove Theorem 2.29.

EXERCISE 2.41. Show that Q∗×Q∗ is a multiplicative group, where for all x, y ∈ Q∗×Q∗ we
have

xy = (x1y1, x2y2) .

EXERCISE 2.42. Let G1, G2, . . . , Gnbe groups. Show that G = G1×G2×· · ·×Gn is also a group,
where for all x, y ∈G we have

xy = (x1y1, x2y2, . . . , xnyn) .

2.4. CYCLIC GROUPS

At this point you can make an acquaintance with an important class of groups. Groups in
this class have a nice, appealing structure.

NOTATION. Let G be a group, and x ∈G. If we want to perform the operation on x ten times,
we could write

x · x · x · x · x · x · x · x · x · x
but this grows tiresome. Instead we will adapt notation from high-school algebra and write

x10

instead. We likewise define x−10 to represent

x−1 · x−1 · x−1 · x−1 · x−1 · x−1 · x−1 · x−1 · x−1 · x−1.

For consistency we need
x0 = x10x−10 = e .

For any n ∈N+ and any g ∈G we adopt the following convention:
• xn means to perform the operation on n copies of x;
• x−n means to perform the operation on n copies of x−1;
• x0 = e .

In abelian groups we write nx, (−n) x, and 0x for the same.

DEFINITION 2.43. Let G be a group. If there exists g ∈ G such that every element x ∈ G has
the form x = g n for some n ∈Z, then G is a cyclic group and we write G = 〈g 〉. We call g a
generator of G. 4

In other words, a cyclic group has the form
�

. . . , g−2, g−1, e , g 1, g 2, . . .
	

where g 0 = e .

NOTATION. An abelian group is cyclic if for every x ∈G there exists n ∈Z such that x = n g .

EXAMPLE 2.44. Z is cyclic, since any n ∈Z has the form n ·1. Thus Z = 〈1〉. In addition, n has
the form (−n) · (−1), so Z = 〈−1〉 as well. You will show in the exercises that Q is not cyclic.
4
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Notice that in Definition 2.43 we referred to g as a generator of G, not as the generator. There
could in fact be more than one generator; we see this in Example 2.44 from Z = 〈1〉 = 〈−1〉.
Here is another example from GLm (R).

EXAMPLE 2.45. Let

G =
��

1 0
0 1

�

,
�

0 −1
1 0

�

,
�

0 1
−1 0

�

,
�

−1 0
0 −1

��

.

It turns out that G is a group, and that the second and third matrices both generate the group.
For example,

�

0 −1
1 0

�2
=
�

−1 0
0 −1

�

�

0 −1
1 0

�3
=
�

0 1
−1 0

�

�

0 −1
1 0

�4
=
�

1 0
0 1

�

.

4

The notion of the size of a cyclic group generated by an element is sufficiently important
that we describe it with its own terminology.

DEFINITION 2.46. Let G be a group, and x ∈G. We say that the order of x is ord (x) = |〈x〉|.
If ord (x) =∞, we say that x has infinite order. 4

If the order of a group is finite, then we have many different ways to represent the same
element. Taking the matrix we examined in Example 2.45, we can write

�

1 0
0 1

�

=
�

0 −1
1 0

�0
=
�

0 −1
1 0

�4
=
�

0 −1
1 0

�8
= · · ·

and
�

1 0
0 1

�

=
�

0 −1
1 0

�−4
=
�

0 −1
1 0

�−8
= · · · .

In addition,
�

0 1
−1 0

�

=
�

0 −1
1 0

�3
and

�

0 1
−1 0

�

=
�

0 −1
1 0

�−1
.

So it would seem that if the order of an element G is n ∈N, then we can write

G =
¦

e , g , g 2, . . . , g n−1
©

.

The examples we have looked at so far suggest this. To prove it in general, we have to show that
for a generic cyclic group 〈g 〉 with ord (g ) = n,

• g n = e , and
• if a, b ∈Z and n | (a− b ), then g a = g b .

We prove this in the following Theorem.

THEOREM 2.47. Suppose that G is a group, g ∈G, and ord (g ) = d , where d 6=∞. Then
• g n = e, and
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• if a, b ∈Z and n | (a− b ), then g a = g b .

The following lemma will prove useful when attacking the theorem, and is a good rule in
general .

LEMMA 2.48. Let G be a group, g ∈G, and ord (g ) = n. If 0≤ a < b < n, then g a 6= g b .

PROOF. Let H = 〈g 〉. By hypothesis, ord (g ) = n, so |H |= n.
By way of contradiction, suppose that there exist a, b such that 0≤ a < b < n and g a = g b ;

then e = (g a)−1 g b . By Exercise 2.51, we can write

e = g−a g b = g−a+b .

Write d =−a + b . Recall that b > a; this implies that d > 0. Use the well-ordering property of
N to choose the smallest d such that g d = e and n > b > d . We can now identify the following
distinct elements of H :

g , g 2, g 3, . . . , g d = e .

Now d < n implies that this list omits d − n elements of H . Let x be one such element. Since
H = 〈g 〉, we can express x = g c for some c ∈Z. We already listed c = 0 with g d = e , so c 6= 0.
If c < 0 then either g−c is already listed, or it is not.

• In the first case, Exercise 2.51 tells us that g c =
�

g−c�−1. This implies that g c =
�

g−c�−1 is already listed as g d−(−c)! (Note 0 < d − (−c) < d .) Hence the first case
is impossible.
• In the second case, let q , r be the result from applying the Division Theorem to division

of −c by d . Then g−c = g qd+r . By Exercise 2.51,

g−c =
�

g d
�q · g r = eq · g r = e · g r = g r .

Since 0≤ r < d , we have already listed g r . This contradicts the assumption that g−c =
g r was not listed, so the second case is impossible.

Neither of the two cases is possible, but they are the logical conclusion of assuming the existence
of a, b such that 0≤ a < b < n and g a = g b . Hence if 0≤ a < b < n, then g a 6= g b . �

Now we prove Theorem 2.47.

PROOF OF THEOREM 2.47. Let H = 〈g 〉. By hypothesis, ord (g ) = n, so |H |= n.
If n = 1 then H = {e}= 〈e〉, and the theorem is trivial. Assume therefore that n > 1.
Since H is a group, e ∈ H ; since H = 〈g 〉, some power of g generates e . Let d ∈N>0 such

that g d = e ; since H only contains n elements, 1 < d ≤ n. We cannot have d < n: this would
contradict Lemma 2.48 (with a = 0 and b = d ). Hence d = n, and g n = e .

Let a, b ∈Z. Assume that n | (a− b ). Let q ∈Z such that nq = a− b . Then

g b = g b · e = g b · eq = g b ·
�

g d
�q

= g b · g d q = g b · g a−b = g b+(a−b ) = g a ,

as desired. �
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EXERCISES.

EXERCISE 2.49. In Exercise 2.38 you showed that the quaternions form a group under matrix
multiplication. Verify that H = {1,−1, i,−i} is a cyclic group. What elements generate H ?

EXERCISE 2.50. Recall from Section 2.2 the elliptic curve E determined by the equation y2 =
x3− x.
(a) Compute the cyclic group generated by (0,0) in E .
(b) Verify that

�p
2 + 1,

p
2 + 2

�

is a point on E .

(c) Compute the cyclic group generated by
�p

2 + 1,
p

2 + 2
�

in E . Hint: This goes a lot faster
if you work with approximate numbers.

EXERCISE 2.51. Let G be a group, and x ∈G. Explain why for all m, n ∈Z,
(a) x mn = (x m)n ;
(b) x−m = (x m)−1;
(c) x−(mn) = (x m)−n ;
(d) x−(mn) =

�

x−m�n .
Hint: Once you show (a), you can use it to explain the rest.

EXERCISE 2.52. Let G be a group, g ∈G, and d ∈N+. Show that ord (g ) = d if and only if d
is the smallest positive integer such that g d = e . Hint: Use the Division Theorem.

EXERCISE 2.53. Let G be a group, and g ∈ G. Assume ord (g ) = d . Show that g n = e for all
integer multiples n of d . Hint: Use Exercise 2.52.

EXERCISE 2.54. Show that any group of 3 elements is cyclic. Hint: Look back at Exercise 2.16
on page 19.

EXERCISE 2.55. Is the Klein 4-group (Exercise 2.17 on page 19) cyclic? What about the other
group of order 4?

EXERCISE 2.56. Show that Q8 is not cyclic.

EXERCISE 2.57. Show that Q is not cyclic. Hint: Show that no matter what you choose for
x ∈Q, there is some y ∈Q such that y 6∈ 〈x〉. Use denominators to do this.

EXERCISE 2.58. Use a fact from linear algebra to explain why Rm×m is not cyclic.

EXERCISE 2.59. Explain why every cyclic group is abelian.
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2.5. THE SYMMETRIES OF A TRIANGLE

Here we introduce a very important group, called D3. It derives from the symmetries of a
triangle. What is interesting about this group is that it is not abelian. You already know that
groups of order 2, 3, and 4 are abelian; in Section 3.3 you will see that a group of order 5 is also
abelian. Thus D3 is the smallest non-abelian group.

Draw an equilateral triangle in R2, with its center at the origin. What distance-preserving
functions map R2 to itself, while mapping points on the triangle back onto the triangle? To
answer this question, we divide it into two parts.

(1) What are the distance-preserving functions that map R2 to itself, without moving the
origin?

(2) Which of these functions map points on the triangle back onto the triangle?
Lemma 2.60 answers the first question. The assumption that we not move the origin makes sense
in the context of the triangle, because if we preserve distances, the origin will have to stay fixed
as well.

LEMMA 2.60. Let α : R2→R2. If
• α (0,0) = (0,0), and
• the distance between α (P ) and α (R) is the same as the distance between P and R for every

P , R ∈R2,
then α has one of the following two forms:

ρ=
�

cos t − sin t
sin t cos t

�

∃t ∈R

or

ϕ =
�

cos t sin t
sin t −cos t

�

∃t ∈R.

The values of t might not be the same for ρ and ϕ; we will see this later.

PROOF. Assume that α (0,0) = (0,0) and for every P , R ∈ R2 the distance between α (P )
and α (R) is the same as the Euclidean distance between P and R. It turns out that we can
determine α merely by considering how it acts on two points in the plane!

First, let P = (1,0). Write α (P ) = Q = (q1, q2); this is the point where α moves Q. The
distance between P and the origin is 1. Since α (0,0) = (0,0), the distance between Q and the
origin is

Æ

q2
1 + q2

2 . Because α preserves distance,

1 =
q

q2
1 + q2

2 ,

or
q2

1 + q2
2 = 1.

The only values for Q that satisfy this equation are those points that lie on the circle whose
center is the origin. Any point on this circle can be parametrized as

(cos t , sin t )

where t ∈R represents an angle. Hence, α (P ) = (cos t , sin t ).
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Let R = (0,1). Write α (R) = S = (s1, s2). An argument similar to the one above shows that
S also lies on the circle whose center is the origin. Moreover, the distance between P and R isp

2, so the distance between Q and S is also
p

2. That is,
Æ

(cos t − s1)
2 +(sin t − s2)

2 =
p

2,

or

(2.5.1) (cos t − s1)
2 +(sin t − s2)

2 = 2.

We can simplify (2.5.1) to obtain

(2.5.2) −2 (s1 cos t + s2 sin t )+
�

s2
1 + s2

2

�

= 1.

To solve this, recall that the distance from S to the origin must be the same as the distance from
R to the origin, which is 1. Hence

q

s2
1 + s2

2 = 1

s2
1 + s2

2 = 1.

Substituting this into (2.5.2), we find that

−2 (s1 cos t + s2 sin t )+ s2
1 + s2

2 = 1

−2 (s1 cos t + s2 sin t )+ 1 = 1

−2 (s1 cos t + s2 sin t ) = 0
s1 cos t =−s2 sin t .(2.5.3)

At this point we can see that s1 = sin t and s2 = cos t would solve the problem. Are there any
other solutions?

Recall that s2
1 + s2

2 = 1, so s2 =±
Æ

1− s2
1 . Likewise sin t =±

p

1− cos2 t . Substituting into
equation (2.5.3), we find that

s1 cos t =−
q

1− s2
1 ·
Æ

1− cos2 t

s2
1 cos2 t =

�

1− s2
1

��

1− cos2 t
�

s2
1 cos2 t = 1− cos2 t − s2

1 + s2
1 cos2 t

s2
1 = 1− cos2 t

s2
1 = sin2 t
∴ s1 =± sin t .

Along with equation (2.5.3), this implies that s2 =∓cos t . Thus there are two possible values of
s1 and s2.

It can be shown (see Exercise 2.65) that α is a linear transformation on the vector space R2

with the basis
¦

~P , ~R
©

= {(0,1) , (1,0)}. We can thus describe it by a matrix. If s = (sin t ,−cos t )
then

α=
�

cos t sin t
sin t −cos t

�

;
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otherwise

α=
�

cos t − sin t
sin t cos t

�

.

The lemma names the first of these forms ϕ and the second ρ. �

Before answering the second question, let’s consider an example of what the two basic forms
of α do to the points in the plane.

EXAMPLE 2.61. Consider the set of points S = {(0,2) , (±2,1) , (±1,−2)}; these form a (non-
regular) pentagon in the plane. See Figure . Let t = π/4; then

ρ=

 p
2

2 −
p

2
2p

2
2

p
2

2

!

and ϕ =

 p
2

2

p
2

2p
2

2 −
p

2
2

!

.

If we apply ρ to every point in the plane, then the points of S move to

ρ (S ) = {ρ (0,2) ,ρ (−2,1) ,ρ (2,1) ,ρ (−1,−2) ,ρ (1,−2)}

=

( p
2

2 −
p

2
2p

2
2

p
2

2

!

�

0
2

�

,

 p
2

2 −
p

2
2p

2
2

p
2

2

!

�

−2
1

�

,

 p
2

2 −
p

2
2p

2
2

p
2

2

!

�

2
1

�

,

 p
2

2 −
p

2
2p

2
2

p
2

2

!

�

−1
−2

�

,

 p
2

2 −
p

2
2p

2
2

p
2

2

!

�

1
−2

�

)

=

(

�

−
p

2,
p

2
�

,

 

−
p

2−
p

2

2
,−
p

2 +

p
2

2

!

,

 

p
2−
p

2

2
,
p

2 +

p
2

2

!

,

 

−
p

2

2
+
p

2,−
p

2

2
−
p

2

!

,

 p
2

2
+
p

2,

p
2

2
−
p

2

!)

≈ {(−1.4,1.4) , (−2.1,−0.7) , (0.7,2.1) , (0.7,−2.1) , (2.1,−0.7)} .

If we apply ϕ to every point in the plane, then the points of S move to

ϕ (S ) = {ϕ (0,2) ,ϕ (−2,1) ,ϕ (2,1) ,ϕ (−1,−2) ,ϕ (1,−2)}
≈ {(1.4,−1.4) , (−0.7,−2.1) , (2.1,0.7) , (−2.1,0.7) , (−0.7,2.1)} .

This is shown in Figure 2.1 . The line of reflection for ϕ has slope
�

1− cos π4
�

/ sin π
4 . (You will

show this in Exercise 2.67) 4

The second questions asks which of the matrices described by Lemma 2.60 also preserve the
triangle. To answer this, let’s draw a diagram of an equilateral triangle at the origin.

• The first solution (ρ) corresponds to a rotation of degree t of the plane. To preserve the
triangle, we can only have t = 0,2π/3,4π/3 (0◦, 120◦, 240◦). (See Figure 2.3(a).) Let ι
correspond to t = 0, the identity rotation; notice that

ι=
�

cos0 − sin0
sin0 cos0

�

=
�

1 0
0 1

�

,
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FIGURE 2.1. Actions of ρ and ϕ on a pentagon, with t = π/4

ρ ϕ

FIGURE 2.2. An equilateral triangle at the origin

32

1

FIGURE 2.3. Rotation and reflection of the triangle

32

1

ρ

(a)

32

1

ϕ

π

(b)

which is what we would expect for the identity. We can let ρ correspond to a counter-
clockwise rotation of 120◦, so

ρ=
�

cos 2π
3 − sin 2π

3
sin 2π

3 cos 2π
3

�

=

 

−1
2 −

p
3

2p
3

2 −1
2

!

.



2.5. THE SYMMETRIES OF A TRIANGLE 34

A rotation of 240◦ is the same as rotating 120◦ twice. We can write that as ρ ◦ρ or ρ2;
matrix multiplication gives us

ρ2 =

 

−1
2 −

p
3

2p
3

2 −1
2

! 

−1
2 −

p
3

2p
3

2 −1
2

!

=

 

−1
2

p
3

2

−
p

3
2 −1

2

!

.

• The second solution (ϕ) corresponds to a flip along the line whose slope is

m = (1− cos t )/ sin t .

One way to do this would be to flip across the y-axis (see Figure 2.3(b)). For this we need
the slope to be undefined, so the denominator needs to be zero and the numerator needs
to be non-zero. One possibility for t is t = π (but not t = 0). Any flip is its own inverse;
that is ϕ2 = ϕ ◦ϕ = ι. To preserve the triangle, we can only have t = π/3,π, 5π/3
(60◦, 180◦, 300◦). We can let ϕ correspond to a flip t = π so

ϕ =
�

cosπ sinπ
sinπ −cosπ

�

=
�

−1 0
0 1

�

.

There are two other flips, but we can actually ignore them, because they are combina-
tions of ϕ and ρ. (Why? See Exercise 2.64.)

We have the following interesting consequence.

COROLLARY 2.62. In D3, ϕρ= ρ2ϕ.

PROOF. Compare

ϕρ=
�

−1 0
0 1

�

 

−1
2 −

p
3

2p
3

2 −1
2

!

=

 

1
2

p
3

2p
3

2 −1
2

!

and

ρ2ϕ =

 

−1
2 −

p
3

2p
3

2 −1
2

! 

−1
2 −

p
3

2p
3

2 −1
2

!

�

−1 0
0 1

�

=

 

−1
2

p
3

2

−
p

3
2 −1

2

!

�

−1 0
0 1

�

=

 

1
2

p
3

2p
3

2 −1
2

!

.

�

Did you notice something interesting about Corollary 2.62? It implies that multiplication in
D3 is non-commutative! We have ϕρ= ρ2ϕ, and a little logic (or an explicit computation) shows
that ρ2ϕ 6= ρϕ: thus ϕρ 6= ρϕ.

Let D3 =
�

ι,ϕ,ρ,ρ2,ρϕ,ρ2ϕ
	

. These are matrices, and we denote the multiplication of these
matrices by ◦. We can start to fill in a multiplication table for D3 using everything that we have
studied so far:
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◦ ι ϕ ρ ρ2 ρϕ ρ2ϕ
ι ι ϕ ρ ρ2 ρϕ ρ2ϕ
ϕ ϕ ι ρ2ϕ
ρ ρ ρϕ ι
ρ2 ρ2

ρϕ ρϕ
ρ2ϕ ρ2ϕ

You will complete the table in the exercises, and explain why D3 is a group.

EXERCISES.

EXERCISE 2.63. Complete the multiplication table for D3. Explain how D3 satisfies the proper-
ties of a group. Hint: To show that D3 satisfies the properties of a group, you may use the fact
that D3 is a subset of GL (2), the multiplicative group of 2× 2 invertiable matrices. Thus D3
“inherits” certain properties of GL (2), but which ones? For the others, simple inspection of the
multiplication table should suffice.

EXERCISE 2.64. There are two other values of t that allow us to define flips. Find these values
of t , and explain why their matrices are equivalent to the matrices ρϕ and ρ2ϕ.

EXERCISE 2.65. Show that any function α satisfying the requirements of Theorem 2.60 is a linear
transformation; that is, for all P ,Q ∈R2 and for all a, b ∈R, α (aP + bQ) = aα (P )+ bα (Q).
Use the following steps.
(a) Prove that α (P ) ·α (Q) = P ·Q, where · denotes the usual dot product (or inner product)

on R2. Hint: You may use the property that |P −Q|2 = |P |2 + |Q|2− 2P ·Q, where |X |
indicates the distance of X from the origin, and |X −Y | indicates the distance between X
and Y .

(b) Show that α (1,0) ·α (0,1) = 0.
(c) Show that α ((a, 0)+ (0, b )) = aα (1,0)+ bα (0,1). Hint: Use the hint from part (a), along

with the result in part (a), to show that the distance between the vectors is zero. Also use the
property of dot products that for any vector X , X ·X = |X |2. Don’t use part (b).

(d) Show that α (aP ) = aα (P ).
(e) Show that α (P + Q) = α (P )+α (Q).

EXERCISE 2.66. Show that the only point in R2 left stationary by ρ is the origin. That is, if
ρ (P ) = P , then P = (0,0). Hint: Let P = (p1, p2) be an arbitrary point in R2, and assume
that ρ leaves it stationary. You can represent P by a vector. The equation ρ · ~P = ~P gives you a
system of two linear equations in two variables; you can solve this system for p1 and p2.

EXERCISE 2.67. Show that the only points in R2 left stationary by ϕ lie along the line whose
slope is (1− cos t )/ sin t . Hint: Repeat what you did in Exercise 2.66. This time the system of
linear equations will have infinitely many solutions. You know from linear algebra that in R2

this describes a line. Solve one of the equations for p2 to obtain the equation of this line.



CHAPTER 3

Subgroups

3.1. SUBGROUPS

Subgroups play an important role in group theory and its applications.

DEFINITION 3.1. Let G be a group and H ⊆ G a nonempty subset. If H is also a group under
the same operation as G, then H is a subgroup of G. If {e} ( H ( G then H is a proper
subgroup of G. 4

NOTATION. If H is a subgroup of G then we write H <G.

EXAMPLE 3.2. Check that the following statements are true by verifying that properties (G1)–
(G4) are satisfied.
(a) Z is an abelian subgroup of Q.
(b) 4Z := {4m : m ∈Z}= {. . . ,−4,0,4,8, . . .} is an abelian subgroup of Z.
(c) Let d ∈Z. Then dZ := {d m : m ∈Z} is an abelian subgroup of Z.
(d) 〈i〉 is a subgroup of Q8. 4

Checking all of properties (G1)–(G5) is burdensome. If we can verify that a set is a subgroup
by checking fewer properties, that would be lovely. From the start we can eliminate (G2) and
(G5) from consideration: if H ⊆ G, then the operation remains associative and commutative
even when H is not a subgroup.

LEMMA 3.3. Let G be a group and H ⊆G. Then H satisfies the associative property (G2) of a group.
In addition, if G is abelian, then H satisfies the commutative property (G5) of an abelian group.

We are not saying that H is a group. Any one of the other three properties may not be
satisfied: it may not be closed; it may lack an identity; or some element may lack an inverse. We
are merely pointing out that H satisfies two important properties of a group.

PROOF. If H = ; then the lemma is true trivially.
Otherwise H 6= ;. Let a, b , c ∈ H . Since H ⊆G, we have a, b , c ∈G. Since the operation is

associative in G, a (b c) = (ab ) c . If G is abelian, then ab = ba. �

The upshot of Lemma 3.3 is that whenever we want to prove that a subset of a group is also
a subgroup, we do not have to prove the associative and commutative properties, (G2) and (G5).
We need to prove only that the subsets have an identity, have inverses, and are closed under the
operation.

LEMMA 3.4. Let H ⊆G be nonempty. The following are equivalent:
(A) H <G;
(B) H satisfies (G1), (G3), and (G4).

36
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PROOF. By definition of a group, (A) implies (B). It remains to show that (B) implies (A).
Assume (B). Then H satisfies (G1), (G3), and (G4). Lemma 3.3 shows us that H also satisfies

(G2). Hence H is a group, from which we have (A). �

Lemma 3.4 has reduced the number of requirements for a subgroup. However, three is still
too many; it turns out that we can simplify the process by checking only one criterion.

THEOREM 3.5 (The Subgroup Theorem). Let H ⊆ G be nonempty. The following are equiva-
lent:
(A) H <G;
(B) for every x, y ∈H , we have xy−1 ∈H .

PROOF. Assume (A). Let x, y ∈ H . By (A), H is a group; from (G4) we have y−1 ∈ H , and
from (G1) we have xy−1 ∈H . Thus (A) implies (B).

Conversely, assume (B). By Lemma 3.4, we need to show only that H satisfies (G1), (G3), and
(G4). We do this slightly out of order:
(G3): Let x ∈H . By (B), e = x · x−1 ∈H .1

(G4): Let x ∈H . Since H satisfies (G3), e ∈H . By (B), x−1 = e · x−1 ∈H .
(G1): Let x, y ∈H . Since H satisfies (G4), y−1 ∈H . By (B), xy = x ·

�

y−1�−1 ∈H .
Since H satisfies (G1), (G3), and (G4), H <G. �

The Subgroup Theorem makes it much easier to decide whether a subset of a group is a
subgroup, because we need to consider only the one criterion given. Our first example is from
Z. Remember that if G is abelian, we generally write x− y instead of xy−1 in (B).

EXAMPLE 3.6. Let d ∈Z. We claim that dZ<Z. Why? Let’s use the Subgroup Theorem.
Let x, y ∈ dZ. By definition, x = d m and y = d n for some m, n ∈ Z. Note that −y =

− (d n) = d (−n). Then

x− y = x +(−y) = d m + d (−n) = d (m +(−n)) = d (m−n) .

Now m−n ∈Z, so x− y = d (m−n) ∈ dZ. By the Subgroup Theorem, dZ<Z. 4

The following geometric example gives a visual image of what a subgroup “looks” like.

EXAMPLE 3.7. Let G be the set of points in the x-y plane. Define an addition for elements of G
in the following way. For P1 = (x1, y1) and P2 = (x2, y2), define

P1 + P2 = (x1 + y1, x2 + y2) .

You showed in Exercise 2.13 that this makes G a group. (Actually you proved it for G×H where
G and H were groups. Here G = H = R.)

Let H = {x ∈G : x = (a, 0) ∃a ∈R}. We claim that H < G. Why? We use the subgroup
theorem. Let P ,Q ∈H . Write P = (p, 0) and Q = (q , 0) where p, q ∈R. Then

P −Q = P +(−Q) = (p, 0)+ (−q , 0) = (p− q , 0) .

Membership in H requires the second ordinate to be zero. The second ordinate of P −Q is in
fact zero, so P −Q ∈H . The Subgroup Theorem implies that H <G.

1Notice that here we are replacing the y in (B) with x. This is fine, since nothing in (B) requires x and y to be
distinct.
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FIGURE 3.1. H and K from Example 3.7

H

K

K4 4

K4

4

Let K = {x ∈G : x = (a, 1) ∃a ∈R}. We claim that K 6< G. Why not? Again we use the
Subgroup Theorem. Let P ,Q ∈K . Write P = (p, 1) and Q = (q , 1) where p, q ∈R. Then

P −Q = P +(−Q) = (p, 1)+ (−q ,−1) = (p− q , 0) .

Membership in K requires the second ordinate to be one, but the second ordinate of P −Q is
zero, not one. Since P −Q 6∈K , the Subgroup Theorem tells us that K is not a subgroup of G.

We have diagrammed H and K in Figure 3.1. You will diagram another subgroup of G in
Exercise 3.13. 4

Examples 3.6 and 3.7 give us examples of how the Subgroup Theorem verifies subgroups of
abelian groups. Two interesting examples of nonabelian subgroups appear in D3.

EXAMPLE 3.8. Recall D3 from Section 2.5. Both H = {ι,ϕ} and K =
�

ι,ρ,ρ2	 are subgroups of
D3. Why? We verify each using the Subgroup Theorem, exploiting the fact that both H and K
are cyclic groups: H = 〈ϕ〉 and K = 〈ρ〉.

For H : Let x, y ∈ H . Since H = 〈ϕ〉, x = ϕm and y = ϕn for some m, n ∈ Z. Applying
Exercise 2.51 on page 29, xy−1 = ϕmϕ−n = ϕm−n ∈ 〈ϕ〉 = H . By the Subgroups Theorem,
H <D3.

For K : Repeat the argument for H , using ρ instead of ϕ. 4

If a group satisfies a given property, a natural question to ask is whether its subgroups also
satisfy this property. Cyclic groups are a good example: is every subgroup of a cyclic group also
cyclic? The answer relies on the Division Theorem (Theorem 1.5 on page 13).

THEOREM 3.9. Subgroups of cyclic groups are also cyclic.

PROOF. Let G be a cyclic group, and H < G. From the fact that G is cyclic, choose g ∈ G
such that G = 〈g 〉.

First we must find a candidate generator of H . Because H ⊆ G, every element x ∈ H can
be written in the form x = g i for some i ∈Z. A good candidate would be the smallest positive
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power of g in H , if one exists. Let S be the set of all positive integers i such that g i ∈ H . From
the well-ordering of the integers, there exists a smallest element of S; call it d , and assign h = g d .

We have found a candidate; we claim that H = 〈h〉. Let x ∈H ; then x ∈G. By hypothesis G
is cyclic, so x = g a for some a ∈Z. By the Division Theorem we know that there exist unique
q , r ∈Z such that

• a = qd + r , and
• 0≤ r < d .

Let y = g r ; by Exercise 2.51 we can rewrite this as

y = g r = g a−qd = g a g−(qd ) = x ·
�

g d
�−q

= x · h−q .

Now x ∈ H by definition, and h−q ∈ H by closure (G1) and the existence of inverses (G4), so
by closure y = x · h−q ∈ H as well. We chose d as the smallest positive power of g in H , and
we just showed that g r ∈ H . Recall that 0 ≤ r < d . If 0 < r ; then g r ∈ H , contradicting the
choice of d as the smallest power of g in H . Hence r cannot be positive; instead, r = 0 and
x = g a = g qd = hq ∈ 〈h〉.

Since x was arbitrary in H , every element of H is in 〈h〉; that is, H ⊆ 〈h〉. Since h ∈ H and
H is a group, closure implies that H ⊇ 〈h〉, so H = 〈h〉. In other words, H is cyclic. �

We again look to Z for an example.

EXAMPLE 3.10. Recall from Example 2.44 on page 26 that Z is cyclic; in fact Z = 〈1〉. By
Theorem 3.9, dZ is cyclic. In fact, dZ = 〈d 〉. Can you find another generator of dZ? 4

EXERCISES.

EXERCISE 3.11. Show that even though the Klein 4-group is not cyclic, each of its proper sub-
groups is cyclic (see Exercises 2.17 on page 19 and 2.55 on page 29). Hint: Start with the smallest
possible subgroup, then add elements one at a time. Don’t forget the adjective “proper” sub-
group.

EXERCISE 3.12.

(a) Let Dn (R) = {aIn : a ∈R} ⊆Rn×n ; that is, Dn (R) is the set of all diagonal matrices
whose values along the diagonal is constant. Show that Dn (R)<Rn×n .

(b) Let D∗n (R) = {aIn : a ∈R\{0}} ⊆GLn (R); that is, D∗n (R) is the set of all non-zero
diagonal matrices whose values along the diagonal is constant. Show that D∗n (R) <
GLn (R).

EXERCISE 3.13. Let G = R2 := R×R, with addition defined as in Exercise 2.13 and Exam-
ple 3.7.
(a) Let L = {x ∈G : x = (a,a) ∃a ∈R}. Show that L<G.
(b) Describe L geometrically.
(c) Suppose ` ⊆ G is any line. Identify as general a criterion as possible that decides whether

` <G. Justify your answer. Hint: Look at what H from Example 3.7 and L have in common.
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EXERCISE 3.14. Let G be an abelian group. Let H , K be abelian subgroups of G. Let H + K =
{x + y : x ∈H , y ∈K}. Show that H + K <G.

EXERCISE 3.15. Let H = {ι,ϕ}; recall that H <D3.
(a) Find a different subgroup K of D3 with only two elements.
(b) Let H K = {xy : x ∈H , y ∈K}. Show that H K 6<D3.
(c) Why does the result of (b) not contradict the result of Exercise 3.14?

EXERCISE 3.16. Explain why R cannot be cyclic. Hint: Use Exercise 2.57 on page 29.

3.2. COSETS

Recall the Division Theorem (Theorem 1.5 on page 13). Normally, we think of division of
n by d as dividing n into q parts, each containing d elements, with r elements left over. For
example, n = 23 apples divided among d = 6 bags gives q = 3 apples per bag and r = 5 apples
left over.

Another way to look at division by d is that it divides Z into d sets of integers. Each integer
falls into a set according to its remainder after division. An illustration using n = 4:

Z: . . . -2 -1 0 1 2 3 4 5 6 7 8 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

division by 4: . . . 2 3 0 1 2 3 0 1 2 3 0 . . .

Here Z is divided into four sets

(3.2.1)

A = {. . . ,−4,0,4,8, . . .}
B = {. . . ,−3,1,5,9, . . .}
C = {. . . ,−2,2,6,10, . . .}
D = {. . . ,−1,3,7,11, . . .} .

Observe two important facts:
• the sets A, B , C , and D cover Z; that is,

Z = A∪B ∪C ∪D ;

and
• the sets A, B , C , and D are disjoint; that is,

A∩B = A∩C = A∩D = B ∩C = B ∩D = C ∩D = ;.
We can diagram this:

Z

A
B
C
D

This phenomenon, where a set is the union of smaller, disjoint sets, is important enough to
highlight with a definition.
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DEFINITION 3.17. Suppose that A is a set andB = {Bλ} a family of subsets of A, called classes.
We say thatB is a partition of A if

• the classes cover A: that is, A =
⋃

Bλ; and
• the classes are disjoint: that is, if B1,B2 ∈B are unequal, then B1∩B2 = ;. 4

EXAMPLE 3.18. LetB = {A,B ,C , D} where A, B , C , and D are defined as in (3.18). ThenB is
a partition of Z. 4

Two aspects of division allow us to use it to partition Z into sets:
• existence of a remainder, which implies that every integer belongs to at least one class,

which in turn implies that the union of the classes covers Z; and
• uniqueness of the remainder, which implies that every integer ends up in only one set, so

that the classes are disjoint.
Re-examine this phenomenon using the vocabulary of groups. In the example above, you might
have noticed that A = 4Z. (If not, look back at the definition of 4Z on page 3.2.) So, A< Z.
Meanwhile, all the elements of B have the form 1 + x for some x ∈ A. For example, −3 =
1 + (−4). Likewise, all the elements of C have the form 2 + x for some x ∈ A, and all the
elements of D have the form 3 + x for some x ∈A. Define

1 + A := {1 + x : x ∈A} ,
then set

B = 1 + A.
Likewise, set C = 2 + A and D = 3 + A.

What about 0 + A? Clearly 0 + A = A; in fact x + A = A for every x ∈ A. Pursuing this
further,

· · ·=−4 + A = A = 0 + A = 4 + A = 8 + A = · · ·
and for that matter

· · ·=−3 + A = B = 1 + A = 5 + A = 9 + A = · · ·
and so forth. Interestingly, B = 1 + A, and B = 5 + A. Notice that 1−5 =−4 ∈A. We could do
the same with C : C = 2+A and C = 10+A, and 2−10 =−8 ∈A. This relationship will prove
important at the end of the section.

So the partition by remainders is related to the subgroup A. This will become very important
in Chapter 6, and it is important in general.

Mathematicians love to generalize any phenomena they observe, and this is no exception.
How can we generalize this to arbitrary subgroups?

DEFINITION 3.19. Let G be a group and A<G. Let g ∈G. We define the left coset of A with
g as

gA = {ga : a ∈A}
and the right coset of A with g as

Ag = {a g : a ∈A} .
If A is an abelian subgroup, we write the coset of A with g as

g + A := {g + a : a ∈A} .
4
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In general, left cosets and right cosets are not equal, partly because the operation might not
commute. Example 3.20 illustrates this.

EXAMPLE 3.20. Recall the group D3 from Section (2.5) and the subgroup H = {ι,ϕ} from
Example 3.8. In this case,

ρH = {ρ,ρϕ} and Hρ= {ρ,ϕρ} .
Since ϕρ= ρ2ϕ 6= ρϕ, we see that ρH 6= Hρ. 4

Sometimes, the left coset and the right coset are equal. This is always true in abelian groups,
as illustrated by Example 3.21.

EXAMPLE 3.21. Consider the subgroup H = {(a, 0) : a ∈R} of R2 from Exercise 3.13 on
page 39. Let p = (3,−1) ∈R2. The coset of H with p is

p + H = {(3,−1)+ q : q ∈H}
= {(3,−1)+ (a, 0) : a ∈R}
= {(3 + a,−1) : a ∈R} .

Sketch some of the points in p + H , and compare them to your sketch of H in Exercise 3.13.
How does the coset compare to the subgroup?

Generalizing this further, every coset of H has the form p + H where p ∈R2. Elements of
R2 are points, so p = (x, y) for some x, y ∈R. The coset of H with p is

p + H = {(x + a, y) : a ∈R} .
Sketch several more cosets. How would you describe the set of all cosets of H in R2? 4

The group does not have to be abelian in order to have the left and right cosets equal. When
deciding if gA = Ag , we are not deciding whether elements commute, but whether sets are equal.
Returning to D3, we can find a subgroup whose left and right cosets are equal even though the
group is not abelian and the operation is not commutative.

EXAMPLE 3.22. Let K =
�

ι,ρ,ρ2	; certainly K <D3. In this case, αK = Kα for all α ∈D3:

α αK Kα
ι K K
ϕ

�

ϕ,ϕρ,ϕρ2	=
�

ϕ,ρϕ,ρ2ϕ
	 �

ϕ,ρϕ,ρ2ϕ
	

ρ K K
ρ2 K K
ρϕ

�

ρϕ, (ρϕ)ρ, (ρϕ)ρ2	=
�

ρϕ,ϕ,ρ2ϕ
	 �

ρϕ,ϕ,ρ2ϕ
	

ρ2ϕ
�

ρ2ϕ,
�

ρ2ϕ
�

ρ,
�

ρ2ϕ
�

ρ2	=
�

ρ2ϕ,ρϕ,ϕ
	 �

ρ2ϕ,ρϕ,ϕ
	

In each case, the sets ϕK and Kϕ are equal, even though ϕ does not commute with ρ. (You
should verify these computations by hand.) 4

We can now explain why cosets of a subgroup partition a group.

THEOREM 3.23. The cosets of a subgroup partition the group.

PROOF. Let G be a group, and A<G. We have to show two things:

(CP1) distinct cosets of A are disjoint, and
(CP2) their union is G.



3.2. COSETS 43

We show (CP2) first. Let g ∈ G. The definition of a group tells us that g = g e . Since e ∈ A by
definition of subgroup, g = g e ∈ gA. Since g was arbitrary, every element of G is in some coset
of A. Hence the union of all the cosets is G (CP2).

For (CP1), let x, y ∈ G. We proceed by the contrapositive: suppose that (xA)∩ (yA) 6= ;.
We want to show that xA = yA. This requires us to show that two sets are equal, so we will
show that xA⊆ yA and then xA⊇ yA.

Let g ∈ xA and h ∈ (xA)∩ (yA). Then g = xa1, and h = xa2 = ya3 for some a1,a2,a3 ∈ A.
From the latter equations we obtain x = y

�

a3a−1
2

�

. Thus

g = xa1 =
�

y
�

a3a−1
2

��

a1 = y
��

a3a−1
2

�

a1

�

∈ yA.

Since g was arbitrary in xA, we have shown xA⊆ yA.
A similar argument shows that xA⊇ yA. Thus xA = yA. We have shown that if xA and yA

have an intersection, then they are equal. The contrapositive of this statement is precisely (CP1).
Having shown (CP1) and (CP2), we have shown that the cosets of A partition G. �

Before we finish, we should observe two facts about cosets that parallel facts about A in the
example at the beginning of the section. These facts allow us to decide when two cosets are equal.
They have enormous consequences later on.

LEMMA 3.24 (Equality of cosets). Let G be a group and H <G. Then (CE1), (CE2), and (CE2) are
always true, where:
(CE1) eH = H .
(CE2) For all a ∈G, a ∈H iff aH = H .
(CE3) For all a, b ∈G, aH = b H if and only if a−1b ∈H .

As usual, you should keep in mind that in additive groups these conditions translate to
(CE1) 0 + H = H .
(CE2) For all a ∈G, if a ∈H then a + H = H .
(CE3) For all a, b ∈H , a + H = b + G if and only if a− b ∈H .

PROOF. You do it! See Exercise 3.30, which gives a substantial hint. �

Cosets can seem like an odd thing to study, but they lie at the foundation of many applications
of algebra. You will see this in later chapters.

EXERCISES.

EXERCISE 3.25. Let {e ,a, b ,a + b} be the Klein 4-group. (See Exercises 2.17 on page 19, 2.55 on
page 29, and 3.11 on page 39.) Compute the cosets of 〈a〉.

EXERCISE 3.26. In Exercise 3.15 on page 40, you found another subgroup K of order 2 in D3.
Does K satisfy the property αK = Kα for all α ∈D3?

EXERCISE 3.27. Recall the subgroup L of R2 from Exercise 3.13 on page 39.
(a) Give a geometric interpretation of the coset (3,−1)+ L.
(b) Give an algebraic expression that describes p + L, for arbitrary p ∈R2.
(c) Give a geometric interpretation of the cosets of L in R2.
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(d) Use your geometric interpretation of the cosets of L in R2 to explain why the cosets of L
partition R2.

EXERCISE 3.28. Recall Dn (R) from Exercise 3.12 on page 39. Give a description in set notation
for

�

0 3
0 0

�

+ D2 (R) .

List some elements of the coset.

EXERCISE 3.29. In the proof of Theorem 3.23 on page 42, we stated that “A similar argument
shows that xA⊇ yA.” Give this argument.

EXERCISE 3.30. Prove Lemma 3.24 on the preceding page. Hint: For (CE1), you have to show
that two sets are equal. Follow the structure of the proof for Theorem 3.23 on page 42. Take an
arbitrary element of eH , and show that it also an element of H ; that gives eH ⊆ H . Then take
an arbitrary element of H , and show that it is an element of eH ; that gives eH ⊇ H . The two
inclusions give eH = H .

As for (CE2) and (CE3), you can prove them in a manner similar to that of (CE1), or you can
explain how they are actually consequences of (CE1).

3.3. LAGRANGE’S THEOREM AND THE ORDER OF AN ELEMENT OF A
GROUP

NOTATION. Let G be a group, and A<G. We write G/A for the set of all left cosets of A. That
is,

G/A = {gA : g ∈G} .
We also write G\A for the set of all right cosets of A (but not as often):

G\A = {Ag : g ∈G} .
EXAMPLE 3.31. Let G = Z and A = 4Z. We saw in Example 3.18 that

G/A = Z/4Z = {A, 1 + A, 2 + A, 3 + A} .
We actually “waved our hands” in Example 3.18, without providing a very detailed argument, so
let’s show the details here. Recall that 4Z is the set of multiples of Z, so x ∈A iff x is a multiple
of 4. What about the remaining elements of Z?

Let x ∈Z; then
x + A = {x + z : z ∈A}= {x + 4n : n ∈Z} .

Use the Division Theorem to write
x = 4q + r

for unique q , r ∈Z, where 0≤ r < 4. Then

x + A = {(4q + r )+ 4n : n ∈Z}= {r + 4 (q + n) : n ∈Z} .
Given any integer n, let m = q + n; by closure, m ∈Z. Thus

x + A = {r + 4m : m ∈Z}= {r + z : z ∈ 4Z}= r + 4Z.
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The distinct cosets of A are thus determined by the distinct remainders from division by 4. Since
the remainders from division by 4 are 0, 1, 2, and 3, we conclude that

Z/A = {A, 1 + A, 2 + A, 3 + A}
as claimed above. 4

EXAMPLE 3.32. Let G = D3 and H = {ι,ϕ} as in Example 3.22. Then

G/K = D3/ 〈ϕ〉=
¦

K ,ρA,ρ2A
©

.

Likewise, if K =
�

ι,ρ,ρ2	 as in Example 3.22, then

G/K = D3/ 〈ρ〉= {K ,ϕA} .
4

EXAMPLE 3.33. Let H <R2 be as in Example 3.7 on page 37; that is,

H =
¦

(a, 0) ∈R2 : a ∈R
©

.

Then
R2/H =

¦

r + H : r ∈R2
©

.

It is not possible to list all the elements of G/A, but some examples would be

(1,1)+ H , (4,−2)+ H .

Speaking geometrically, what do the elements of G/A look like? 4

It is important to keep in mind that G/A is a set whose elements are also sets. As a result,
showing equality of two elements of G/A requires one to show that two sets are equal.

When G is finite, a simple formula gives us the size of G/A.

THEOREM 3.34 (Lagrange’s Theorem). Let G be a group of finite order, and A<G. Then

|G/A|=
|G|
|A|

.

It is important to note that Lagrange’s Theorem is not obvious, regardless of what the nota-
tion suggests. The formula is saying that the size of the set of cosets is the same as the quotient
of the order of G by the order of A. Since G/A is not a number, we cannot move the absolute
value bars “inside” the fraction without some sort of explanation.

PROOF. From Theorem 3.23 we know that the cosets of A partition G. There are |G/A|
cosets of A. Each of them has the same size, |A|. The number of elements of G is thus the product
of the number of elements in each coset and the number of cosets. That is, |G/A| · |A| = |G|.
This implies the theorem. �

The next-to-last sentence of the proof contains the statement |G/A| · |A| = |G|. Since |A| is
the order of the group A, and |G/A| is an integer, we conclude that:

COROLLARY 3.35. The order of a subgroup divides the order of a group.
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EXAMPLE 3.36. Let G be the Klein 4-group (see Exercises 2.17 on page 19, 2.55 on page 29,
and 3.11 on page 39). Every subgroup of the Klein 4-group is cyclic, and has order 1, 2, or 4. No-
tice that the orders of the subgroups divide the order of the group, as predicted by Corollary 3.35
on the preceding page.

Likewise, the order of {ι,ϕ} divides the order of D3.
By contrast, the subset H K of D3 that you computed in Exercise 3.15 on page 40 has four

elements. Since 4 - 6, the contrapositive of Lagrange’s Theorem implies that H K cannot be a
subgroup of D3. 4

Using the fact that every element g generates a cyclic subgroup 〈g 〉<G, Lagrange’s Theorem
also implies an important consequence about the order of any element of any finite group.

COROLLARY 3.37. In a finite group G, the order of any element divides the order of a group.

PROOF. You do it! See Exercise 3.38. �

EXERCISES.

EXERCISE 3.38. Prove Corollary 3.37.

EXERCISE 3.39. Suppose that a group G has order 8, but is not cyclic. Show that g 4 = e for all
g ∈G.

EXERCISE 3.40. Suppose that a group has five elements. Will it be cyclic? Hint: Use Corol-
lary 3.37.

EXERCISE 3.41. Find a sufficient (but not necessary) condition on the order of a group that
guarantees that the group is cyclic. Hint: See Exercises 2.54 on page 29 and 3.40.

3.4. QUOTIENT GROUPS

Let A<G and suppose that we try to define an operation on the left cosets of A by

(gA) (hA) = (g h)A.

Will this give us a group?
Even before thinking about the question, we have to ensure that the operation is well-defined.

What does that mean? A coset can have different representations. The procedure defined above
would not be an operation if two different representations of gA gave us two different answers.

EXAMPLE 3.42. Recall the subgroup A = 4Z of Z. Let B ,C , D ∈ Z/A, so B = b + Z, C =
c + Z, and D = d + Z for some b , c , d ∈Z.

Our concern is rooted in the possibility that B = D but B +C 6= D +C . From Lemma 3.24,
we know that B = D iff b − d ∈ A = 4Z. That is, b − d = 4m for some m ∈ Z. Let x ∈
B + C ; then x = (b + c)+ 4n for some n ∈Z; we have x = ((d + 4m)+ c)+ 4n = (d + c)+
4 (m + n) ∈ D + C . Since x was arbitrary in B + C , we have B + C ⊆ D + C . A similar
argument shows that B + C ⊇D + C , so B + C = D + C . 4



3.4. QUOTIENT GROUPS 47

So the operation was well-defined here. This procedure looks promising, doesn’t it? How-
ever, when we rewrote

((d + 4m)+ c)+ 4n = (d + c)+ 4 (m + n)

we relied on the fact that addition commutes in an abelian group. Without that fact, we could
not have swapped c and 4m. Example 3.43 shows how it can go wrong.

EXAMPLE 3.43. Recall A = 〈ϕ〉 from Example 3.32; again, A < D3. By the definition of the
operation, we have

(ρA)
�

ρ2A
�

=
�

ρ◦ρ2
�

A = ρ3A = ιA = A.

Another representation of ρA =
�

ρϕ,ρϕ2	 is (ρϕ)A. If the operation is well-defined, then
we should have ((ρϕ)A)

�

ρ2A
�

= (ρA)
�

ρ2A
�

= A. That is not the case:

((ρϕ)A)
�

ρ2A
�

=
�

(ρϕ)ρ2
�

A =
�

ρ
�

ϕρ2
��

A = (ρ (ρϕ))A =
�

ρ2ϕ
�

A 6= A.

4

The procedure described at the beginning of this section does not always result in an oper-
ation on cosets of non-abelian groups. Can we identify a condition on a subgroup that would
guarantee that the procedure results in an operation?

The key in Example 3.42 was not really that Z is abelian. Rather, the key was that we could
swap 4m and c in the expression ((d + 4m)+ c)+4m. In a general group setting where A<G,
for every c ∈ G and for every a ∈ A we would need to find a′ ∈ A to replace ac with ca′. The
abelian property makes it easy to do that, but we don’t need G to be abelian; we need A to satisfy
this property.

Think about this again: for every c ∈ G and for every a ∈ A, we want a′ ∈ A such that
ac = ca′. That makes cA ⊆ Ac . The other direction must also be true, so cA ⊇ Ac . In other
words,

The operation defined above is well-defined
iff cA = Ac for all c ∈G.

This property merits a definition.

DEFINITION 3.44. Let A<G. If
gA = Ag

for every g ∈G, then A is a normal subgroup of G.

NOTATION. We write A/G to indicate that A is a normal subgroup of G.

An easy generalization of the argument of Example 3.42 shows the following Theorem.

THEOREM 3.45. Let G be an abelian group, and H <G. Then H /G.

PROOF. You do it! See Exercise 3.52. �

We now present our first non-abelian normal subgroup.

EXAMPLE 3.46. Let
A3 =

¦

ι,ρ,ρ2
©

<D3.

We call A3 the alternating group on three elements. We claim that A3 /D3. Indeed,
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σ σA3 A3σ
ι A3 A3
ρ A3 A3
ρ2 A3 A3
ϕ ϕA3 =

�

ϕ,ϕρ,ϕρ2	=
�

ϕ,ρ2ϕ,ρϕ
	

= A3ϕ A3ϕ = ϕA3
ρϕ

�

ρϕ, (ρϕ)ρ, (ρϕ)ρ2	=
�

ρϕ,ϕ,ρ2ϕ
	

= ϕA3 ϕA3
ρ2ϕ

�

ρ2ϕ,
�

ρ2ϕ
�

ρ,
�

ρ2ϕ
�

ρ2	=
�

ρ2ϕ,ρϕ,ϕ
	

= ϕA3 ϕA3

(We have left out some details of the computation. You should check the computations very
carefully, using extensively the fact that ϕρ= ρ2ϕ.) Since A3 is a normal subgroup of D3, D3/A3
is a group. By Lagrange’s Theorem, it has 6/3 = 2 elements. The composition table is

◦ A3 ϕA3
A3 A3 ϕA3
ϕA3 ϕA3 A3

Compare the operation table of D3/A3 to those of Examples 2.4 on page 17 and 2.26 on page 22.)
4

Normal subgroups allow us to turn the set of cosets into a group G/A.

THEOREM 3.47. Let G be a group. If A/G, then G/A is a group.

PROOF. We show that G/A satisfies properties (G1)–(G4) of a group.
(G1): Closure follows from the fact that multiplication of cosets is well-defined when A/G, as

discussed earlier in this section: Let X ,Y ∈G/A, and choose g1, g2 ∈G such that X = g1A
and Y = g2A. Then X Y = (g1A) (g2A) = (g1 g2)A∈G/A.

(G2): The associative property follows from the associative property of the elements of the
group. Let X ,Y ,Z ∈ G/A; choose g1, g2, g3 ∈ G such that X = g1A, Y = g2A, and
Z = g3A. Then

(X Y )Z = [(g1A) (g2A)] (g3A)
= ((g1 g2)A) (g3A)
= ((g1 g2) g3)A
= (g1 (g2 g3))A
= (g1A) ((g2 g3)A)
= (g1A) [(g2A) (g3A)]
= X (Y Z) .

(G3): The identity element is A itself. For any X ∈G/A, choose g ∈G such that X = gA. Since
e ∈A, Lemma 3.24 on page 43 implies that A = eA, so

X A = (gA) (eA) = (g e)A = gA = X .

(G4): Let X ∈G/A. Choose g ∈G such that X = gA; then

X ·
�

g−1A
�

= (gA)
�

g−1A
�

=
�

g g−1
�

A = eA = A.

Hence X has an inverse in G/A.
�
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Theorem 3.47 tells us that the set of cosets of a normal subgroup is itself a group. This leads
to a definition for a new kind of group.

DEFINITION 3.48. Let G be a group, and A/G. Then G/A is the quotient group of G with
respect to A, also called G mod A.

Normally we simply say “the quotient group” rather than “the quotient group of G with
respect to A.” We meet a very interesting and important quotient group in Section 3.5.

EXERCISES.

EXERCISE 3.49. Let H = 〈i〉<Q8.
(a) Show that H /Q8 by computing all the cosets of H .
(b) Compute the multiplication table of Q8/H .

EXERCISE 3.50. Let H = 〈−1〉<Q8.
(a) Show that H /Q8 by computing all the cosets of H .
(b) Compute the multiplication table of Q8/H .
(c) With which well-known group does Q8/H have the same structure?

EXERCISE 3.51. Recall the subgroup L of R2 from Exercises 3.13 on page 39 and 3.27 on
page 43.
(a) Explain why L/R2.
(b) Sketch two elements of R2/L and show their addition.

EXERCISE 3.52. Let G be an abelian subgroup. Explain why for any H < G we know that
H /G.

EXERCISE 3.53. Explain why every subgroup of Dm (R) is normal. (Hint: Theorem 3.45 tells
us that the subgroup of an abelian group is normal. If you can show that Dm (R) is abelian, then
you are finished.)

EXERCISE 3.54. Show that Q8 is not a normal subgroup of GLm (R).

EXERCISE 3.55. Let G be a group. Define the centralizer of G as

Z (G) = {g ∈G : x g = g x ∀x ∈G} .
Show that Z (G) /G. Hint: It is self-evident that Z (G)⊆G. You must show first that Z (G)<
G. Then you must show that Z (G)/G. Make sure that you separate these steps and justify each
one carefully!
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EXERCISE 3.56. Let G be a group, and H <G. Define the normalizer of H as

NG (H ) = {g ∈G : g H = H g} .

Show that H /NG (H ). Hint: First you must show that H ⊆ NG (H ). Then you must show
that H < NG (H ). Finally you must show that H /NG (H ). Make sure that you separate these
steps and justify each one carefully!

EXERCISE 3.57. Let G be a group, and A<G. Suppose that |G/A|= 2; that is, the subgroup A
partitions G into precisely two left cosets. Show that A/G. Hint: List the two left cosets, then
the two right cosets. What does a partition mean? Given that, what sets must be equal?

3.5. A NEW GROUP

By Theorem 3.45, every subgroiup H of Z is normal. Let n ∈Z; since nZ < Z, it follows
that nZ/Z. Thus Z/nZ is a quotient group.

We have made a lot of use of the subgroup nZ of Z. One reason is that you are accustomed
to working with Z, so it is conceptually easy for you. Another part of it is that the quotient
group Z/nZ has important applications in number theory and computer science. You will see
some of these applications in Chapters 6 and ??. Because this group is so important, we give it
several special names.

DEFINITION 3.58. Let n ∈Z. We call the quotient group Z/nZ

• Z mod nZ, or
• Z mod n, or
• the linear residues modulo n.

NOTATION. It is common to write Zn instead of Z/nZ.

This group has several different properties that are both interesting and powerful.

THEOREM 3.59. Zn is a finite group for every n ∈Z. In fact Zn has n elements corresponding to
the remainders from division by n: 0, 1, 2, . . . , n−1.

Theorem 3.59 tells us not only show that Zn is finite; it tells us how many elements are in
Zn . It should not surprise you that the proof relies on the Division Theorem, since we said that
the elements of Zn correspond to the remainders from division by n. The structure of the proof
is similar to the discussion in Example 3.31 on page 44, so you might want to go back and reread
it.

PROOF. Let n ∈Z. To show that Zn is finite, we will list its elements. Since Zn is the set of
cosets of nZ, any element of Zn has the form a + nZ for some a ∈Z.
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Let A∈ nZ and choose a such that A = a + nZ. Use the Division Theorem to find q , r ∈Z

such that a = qn + r and 0≤ r < n. Then

A = a + nZ

= {a + nz : z ∈Z}
= {(qn + r )+ nz : z ∈Z}
= {r + n (q + z) : z ∈Z}
= {r + nm : m ∈Z}
= r + nZ.

Thus A corresponds to a coset r + nZ, where r is a remainder from division by n. Since A
was arbitrary, every element of Zn corresponds to a coset r + nZ, where r is a remainder from
division by n. How many remainders are there? The possible values are 0, 1, . . . , n−1, so all the
elements of Zn are nZ, 1 + nZ, 2 + nZ, . . . , (n−1)+ nZ. It follows that Zn is finite. �

It is burdensome to write a + nZ whenever we want to discuss an element of Zn , so mathe-
maticians usually adopt the following convention.

NOTATION. Let A∈Zn and choose r such that A = r + nZ and 0≤ r < n.

• If it is clear from context that A is an element of Zn , then we simply write r instead of
r + nZ.
• If we want to emphasize that A is an element of Zn (perhaps there are a lot of integers

hanging about) then we write [r ] instead of r + nZ.

To help you grow accustomed to the second notation [r ], we use it for the rest of this chapter,
even when it is mind-bogglingly clear that we are talking about elements of Zn .

Since Zn is finite, we can create the addition table for every n ∈Z. Since the representation
of elements of Zn is the remainder on division by n, we want [a] + [b ] = [r ] where 0≤ r < n.
For small numbers this isn’t too hard. In Z3 for example,

[1] + [1] = (1 + 3Z)+ (1 + 3Z) = (1 + 1)+ 3Z = [2] .

But what should we do with larger sums, such as [1]+ [2]? We don’t want to write [3], because 3
is not a valid remainder when we divide by 3.

LEMMA 3.60. Let n ∈ Z and [a] , [b ] ∈ Zn . Use the Division Theorem to find q , r ∈ Z such that
a + b = qn + r and 0≤ r < n. Then

[a] + [b ] = [r ] .
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PROOF.

[a] + [b ] = (a + nZ)+ (b + nZ)
= (a + b )+ nZ

= {(a + b )+ nz : z ∈Z}
= {(qn + r )+ nz : z ∈Z}
= {r + n (q + z) : z ∈Z}
= {r + nm : m ∈Z}
= r + nZ

= [r ] .

�

We can use Lemma 3.60 to build addition tables for Zn easily.
It should be clear from Examples 2.4 on page 17 and 2.26 on page 22 as well as Exercises 2.16

on page 19 and 2.36 on page 25 that we learn nothing particularly insightful from the addition
tables from Z2 and Z3, since the groups of order 2 and 3 are completely determined.

On the other hand, we saw in Exercises 2.17 on page 19 and 2.37 on page 25 that there are
two possible structures for a group of order 4: the Klein 4-group, and a cyclic group. Which one
is Z4?

EXAMPLE 3.61. Before building the table for Z4, we recall that it is abelian. Use Lemma 3.60
on the preceding page to observe that

[1] + [3] = [0]
[2] + [2] = [0]
[2] + [3] = [1]
[3] + [1] = [0]
[3] + [2] = [1]
[3] + [3] = [2] .

The addition table is thus
+ [0] [1] [2] [3]
[0] [0] [1] [2] [3]
[1] [1] [2] [3] [0]
[2] [2] [3] [0] [1]
[3] [3] [0] [1] [2]

This is certainly not the Klein 4-group, since not every element is its own inverse. It must be
the cyclic group of four elements, and in fact

〈[1]〉= {[1] , [2] , [3] , [0]}= Z4

〈[3]〉= {[3] , [2] , [1] , [0]}= Z4.

Not every non-zero element generates Z4, however, since

〈[2]〉= {[2] , [0]} .
4
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The fact that Z4 was cyclic makes one wonder: is Zn always cyclic? Yes!

THEOREM 3.62. Zn is cyclic for every n ∈Z.

PROOF. Let n ∈Z. We claim that Zn = 〈[1]〉. Why? Let x ∈Zn . Looking at Definition 2.43
on page 26, we need to show that x = m [1] for some m ∈Z.

We can write x = [r ] for some 0≤ r < n. We proceed by induction on r .
Inductive base: If r = 0, then x = [0] = 0 · [1], so x ∈ 〈[1]〉.
Inductive hypothesis: Assume that for every i = 0,1,2, . . . , r −1 we know that if x = [i ] then

x = i [1] ∈ 〈[1]〉.
Inductive step: Since r < n, it follows from Lemma 3.60 that

[r ] = [r −1] + [1] = (r −1) [1] + [1] = r [1] ∈ 〈[1]〉 .
By induction, x = [r ] ∈ 〈[1]〉. �

We saw in Example 3.61 that not every non-zero element necessarily generates Zn . A natural
and interesting followup question to ask is, which non-zero elements do generate Zn? You need a
bit more background in number theory before you can answer that question, but in the exercises
you will build some more addition tables and use them to formulate a hypothesis.

EXERCISES.

EXERCISE 3.63. As discussed in the text, we know already that Z2 and Z3 are not very interest-
ing, because their addition tables are predetermined. Since their addition tables should be easy
to determine, go ahead and write out the addition tables for these groups.

EXERCISE 3.64. Write down the addition table for Z5. Which elements generate Z5?

EXERCISE 3.65. Write down the addition table for Z6. Which elements generate Z6?

EXERCISE 3.66. Compare the results of Example 3.61 and Exercises 3.63, 3.64, and 3.65. For-
mulate a conjecture as to which elements generate Zn . Do not try to prove your example.



CHAPTER 4

Isomorphisms

4.1. FROM FUNCTIONS TO ISOMORPHISMS

We have on occasion observed that different groups have the same addition or multiplica-
tion table. We have also talked about different groups having the same structure: regardless of
whether a group of order two is additive or multiplicative, its elements behave in exactly the same
fashion. The groups may look superficially different because of their elements and operations,
but the “group behavior” is identical.

Group theorists describe such a relationship between two groups as isomorphic. We aren’t
ready to give a precise definition of the term, but we can provide an intuitive definition:

If two groups G and H have identical group structure,
we say that G and H are isomorphic.

To define isomorphism precisely, we need to reconsider another topic that you studied in the
past, functions.

Let G and H be groups. A mapping f : G → H is a function if for every input x ∈ G the
output f (x) has precisely one value. In high school algera, you learned that this means that f
passes the “vertical line test.” The reader might suspect at this point—one could hardly blame
you—that we are going to generalize the notion of function to something more general, just as
we generalized Z, GLm (R), etc. to groups. To the contrary; we will specialize the notion of a
function in a way that tells us important information about the group.

We want a function that preserves the action of the operation between the domain G and the
range H . What does that mean? Let x, y ∈ G and suppose that f (x) = a and f (y) = b .
Consider z = xy and suppose that f (z) = c . If we are to preserve the operation:

• since xy = z,
• we want ab = c , or f (x) f (y) = f (z).

Substituting xy = z suggests that we should be interested in the property

f (x) f (y) = f (xy) .

DEFINITION 4.1. Let G, H be groups and f : G → H a function. We say that f is a group
homomorphism1 from G to H if it satisfies the property that f (x) f (y) = f (xy) for every
x, y ∈G.

NOTATION. You have to be careful with the fact that different groups have different operations.
Depending on the context, the proper way to describe the homomorphism property may be

• f (xy) = f (x)+ f (y);
• f (x + y) = f (x) f (y);

1The word comes Greek words that mean common change. Here the change that stays common is the effect of
the operation on the elements of the group. The function shows that the group operation behaves the same way on
elements of the range as on elements of the domain.

54
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• f (x ◦ y) = f (x)� f (y);
• etc.

EXAMPLE 4.2. Let f : Z→ 2Z by f (x) = 4x. Then f is a group homomorphism, since for
any x ∈Z we have

f (x)+ f (y) = 4x + 4y = 4 (x + y) = f (x + y) .

4

The homomorphism property should remind you of certain special functions and operations
that you have studied in Linear Algebra or Calculus. Recall from Exercise 2.33 that R+, the set
of all positive real numbers, is a multiplicative group.

EXAMPLE 4.3. Let f : (GLm (R) ,×)→
�

R+,×
�

by f (A) = |detA|. An important fact from
Linear Algebra tells us that for any two square matrices A and B , detAdetB = detAB . Thus

f (A) · f (B) = |detA| · |detB |= |detA ·detB |= |detAB |= f (AB) ,

implying that f is a homomorphism of groups. 4

Let’s look at the new group that we studied in the previous section.

EXAMPLE 4.4. Let n ∈ Z such that n 6= 0, and let f : (Z,+) → (Zn ,+) by the assignment
f (x) = [r ], where r is the remainder of the division of x by n. We claim that f is a homomor-
phism.

Why? Before giving a detailed, general explanation, let’s look at an example. Suppse n = 6;
then f (−3) = [3] and f (22) = [4]. The operation in both the domain and the range is addition,
so if f is a homomorphism, then we should observe the homomorphism property f (x) f (y) =
f (xy). In the context of these additive sets, that becomes f (−3 + 22) = f (−3) + f (22). In
fact,

f (−3 + 22) = f (19) = [1]
f (−3)+ f (22) = [3] + [4] = [7] = [1] .

This doesn’t prove that f is a homomorphism, but it does give a good sign. It also gives us a hint
at the general case: we will have to argue that congruence classes such as [7] and [1] are equal.

In general, let x, y ∈ Z. Write [a] = f (x) and [b ] = f (y). By definition of a and b , there
exist qx , qy ∈ Z such that x = qx n + a, y = qy n + b , and 0 ≤ a, b < n. We need to show that
f (x + y) = [a + b ] = [a] + [b ] = f (x)+ f (y).

Let [r ] ∈ Zn such that [a] + [b ] = [r ]. By notation, (a + nZ) + (b + nZ) = r + nZ.
By definition of the quotient group, (a + b ) + nZ = r + nZ. By Lemma 3.24 on page 43,
(a + b )− r ∈ nZ. By definition of nZ, n divides (a + b )− r . Let d ∈ Z such that nd =
(a + b )− r .

Again, we want to show that f (x + y) = [a] + [b ] = [r ]. That is, we want to show that
two cosets are equal. We will try to apply Lemma 3.24 using the fact that nd = (a + b )− r ,
x = qx n + a, and y = qy n + b . Observe that

nd = (a + b )− r

=
�

(x− qx n)+
�

y− qy n
��

− r

= ((x + y)− r )−
�

qx + qy

�

n.
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Thus
n
�

d + qx + qy

�

= (x + y)− r ,

and by Lemma 3.24 [x + y ] = [r ]. Thus r = [x + y ] is the remainder after division of x + y by
n; hence [r ] = f (x + y), giving us f (x + y) = [r ] = f (x)+ f (y).

We conclude that f is a homomorphism. 4
The homomorphism property of preserving the operation guarantees that a homomorphism

tells us an enormous amount of information about a group. The fact that they preserve the
behavior of the operation shows that elements of the image of a group G act the same way as
their preimages act in G.

On the other hand, it doesn’t mean that the group structure is the same. In Example 4.4,
for example, f is a homomorphism from an infinite group to a finite group; even if the group
operations behave in a similar way, the groups themselves are inherently different. If we can
show that the groups have the same “size” in addition to a similar operation, then the groups are,
for all intents and purposes, identical. How do we decide that two groups have the same size?
For finite groups, it is easy: count the elements. We can’t do that for infinite groups, so we need
something a little more general.

DEFINITION 4.5. Let f : G→ H be a homomorphism of groups. If f is one-to-one and onto,
then f is an isomorphism2 and the groups G and H are isomorphic.3 4
NOTATION. If the groups G and H are isomorphic, we write G ∼= H .

You may not remember the definitions of one-to-one and onto, or you may not understand
how to prove them, so we provide them here as a reference, along with two examples.

DEFINITION 4.6. Let f : S→U be a mapping of sets.
• We say that f is one-to-one when for every a, b ∈ S, if f (a) = f (b ) then a = b .
• We say that f is onto when for every x ∈U , there exists an a ∈ S such that f (a) = x.

Another way of saying that a function f : S → U is onto is to say that f (S) = U . Here,
f (S) is the image of the function f ; that is, the set of all values in U that correspond via f to
some element of S:

f (S) =
�

u ∈U : ∃s ∈ S such that f (s) = u
	

.
Thus the statement f (S) = U means that every element of U corresponds via f to some element
of S.

EXAMPLE 4.7. Recall the homomorphism of Example 4.2,

f : Z→ 2Z by f (x) = 4x.

We show that f is one-to-one, but not onto.
That f is one-to-one: Let a, b ∈Z. Assume that f (a) = f (b ). By definition of f , 4a = 4b .

Then 4 (a− b ) = 0; by the zero product property of the integers, 4 = 0 or a− b = 0. Since
4 6= 0, we must have a− b = 0, or a = b .

We assumed f (a) = f (b ) and showed that a = b . Since a and b were arbitrary, f is one-to-
one.

2The word comes Greek words that mean identical change.
3The standard method in set theory of showing that two sets are the same “size” is to show that there exists a

one-to-one, onto function between the sets. For example, one can use this definition to show that Z and Q are the
same size, but Z and R are not.
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That f is not onto: There is no element a ∈Z such that f (a) = 2. If there were, 4a = 2. The
only possible solution to this equation is a = 1/2 6∈Z. 4

EXAMPLE 4.8. Recall the homomorphism of Example 4.3,

f : GLm (R)→R+ by f (A) = |detA| .
We claim that f is onto, but not one-to-one.

That f is not one-to-one: Observe that f maps each of the following two diagonal matrices to
0, even though the matrices are unequal:

A = 0 =













0
0

0
...













and B =













0
1

1
...













.

(Unmarked entries are zeroes.)
That f is onto: Let x ∈R+; then f (A) = x where A is the diagonal matrix

A =













x
1

1
...













.

(Again, unmarked entries are zeroes.) 4

We cannot conclude from these examples that Z 6∼= 2Z and that R+ 6∼= Rm×n . Why not? In
each case, we were considering only one of (possibly many) homomorphisms. It is quite possible
that a different homomorphism would show that Z ∼= 2Z and that R+ ∼= Rm×n . You will show
in the exercises that the first assertion is in fact true, while the second is not.

We conclude this chapter with three important properties of homomorphisms. This result
lays the groundwork for important results in later sections, and is generally useful.

THEOREM 4.9. Let f : G→H be a homomorphism of groups. Denote the identity of G by eG , and
the identity of H by eH . Then f
preserves identities: f (eG) = eH ; and
preserves inverses: for every x ∈G, f

�

x−1�= f (x)−1.

Theorem 4.9 applies of course to isomorphisms as well. It should not surprise you that, if the
operation’s behavior is preserved, the identity is mapped to the identity, and inverses are mapped
to inverses.

PROOF. That f preserves identities: Let x ∈G. By the property of homomorphisms,

eH f (x) = f (x) = f (eG x) = f (eG) f (x) .

Thus

eH f (x) = f (eG) f (x) .

Multiply both sides of the equation on the right by f (x)−1 to obtain

eH = f (eG) .
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That f preserves inverses: Let x ∈G. By the property of homomorphisms and by the fact that
f preserves identity,

eH = f (eG) = f
�

x · x−1
�

= f (x) · f
�

x−1
�

.

Thus
eH = f (x) · f

�

x−1
�

.

Pay careful attention to what this equation says! Since the product of f (x) and f
�

x−1� is the
identity, those two elements must be inverses! Hence f

�

x−1� is the inverse of f (x), which we
write as

f
�

x−1
�

= f (x)−1 .
�

COROLLARY 4.10. Let f : G → H be a homomorphism of groups. Then f
�

x−1�−1 = f (x) for
every x ∈G.

PROOF. You do it! See Exercise 4.17. �

The following theorem is similar to the previous one, but has a different proof.

THEOREM 4.11. Let f : G → H be a homomorphism of groups. Then f preserves powers of
elements of G. That is, if f (g ) = h, then f (g n) = f (g )n = hn .

PROOF. You do it! See Exercise 4.19. �

COROLLARY 4.12. Let f : G → H be a homomorphism of groups. If G = 〈g 〉 is a cyclic group,
then f (g ) determines f completely. In other words, the image f (G) is a cyclic group, and f (G) =
〈 f (g )〉.

PROOF. Since G is cyclic, for any g ′ ∈ G there exists n ∈N+ such that g ′ = g n , and thus
f
�

g ′
�

= f (g n) = f (g )n . �

EXERCISES.

EXERCISE 4.13.
(a) Show that f : Z→ 2Z by f (x) = 2x is an isomorphism. Hence Z ∼= 2Z.
(b) Show that Z ∼= nZ for every nonzero integer n. Hint: Generalize the isomorphism of (a).

EXERCISE 4.14. Show that Z2 is isomorphic to the group of order two from Example 2.26 on
page 22. Caution! Notice that the first group is usually written using addition, but the second
group is multiplicative. Your proof should observe these distinctions.

EXERCISE 4.15. Show that Z2 is isomorphic to the Boolean xor group of Exercise 2.11 on
page 18. Caution! Remember to denote the operation in the Boolean xor group correctly.

EXERCISE 4.16. Recall the subgroup L of R2 from Exercises 3.13 on page 39, 3.27 on page 43,
and 3.51 on page 49. Show that L ∼= R. Hint: For a homomorphism function, think about the
equation that describes the points on L.
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EXERCISE 4.17. Prove Corollary 4.10. Hint: Since it’s a corollary to Theorem 4.9, you should
use that theorem.

EXERCISE 4.18. Let f : G→H be an isomorphism. Isomorphisms are by definition one-to-one
functions, so f has an inverse function f −1. Show that f −1 : H →G is also an isomorphism.

EXERCISE 4.19. Prove Theorem 4.11. Hint: Use induction on the positive powers of g ; use a
theorem for the nonpositive powers of g .

EXERCISE 4.20. Let f : G→H be a homomorphism of groups. Assume that G is abelian.
(a) Show that f (G) is abelian.
(b) Is H abelian? Explain why or why not. Hint: Let G = Z2 and H = D3; find a homomor-

phism from G to H .

EXERCISE 4.21. Let f : G→H be a homomorphism of groups. Let A<G. Show that f (A)<
H . Hint: Recall that

f (A) = {y ∈H : f (x) = y ∃x ∈A} ,
and use the Subgroup Theorem.

EXERCISE 4.22. Let f : G→H be a homomorphism of groups. Let A/G.
(a) Show that f (A) / f (G).
(b) Do you think that f (A) /H ? Justify your answer. Hint: See the last part of Exercise 4.20.

4.2. CONSEQUENCES OF ISOMORPHISM

In this section we provide a sequence of theorems that show that if two groups are isomor-
phic, then they are indistinguishable as groups. It may be that the elements of the sets are differ-
ent, and the operation may be defined differently, but as groups the two are identical.

Our strategy will be to follow the general outline of the chapter to this point. Suppose that
two groups G and H are isomorphic. We will show that

• G is abelian iff H is abelian;
• G is cyclic iff H is cyclic;
• every subgroup A of G corresponds to a unique subgroup A′ of H (in particular, if A is

of order n, so is A′);
• every normal subgroup N of G corresponds to a unique normal subgroup N ′ of H ;
• the quotient group G/N corresponds to a quotient group H /N ′.

All of these depend on the fact that if G ∼= H then there exists an isomorphism f : G → H .
In particular, uniqueness is guaranteed only for any one isomorphism; if two different isomor-
phisms f , f ′ exist between G and H , then a subgroup A of G may very well correspond to two
different subgroups B and B ′ of H .
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THEOREM 4.23. Suppose that G ∼= H as groups. Then G is abelian iff H is abelian.

PROOF. Let f : G→ H be an isomorphism. Assume that G is abelian. We must show that
H is abelian. By Exercise 4.20, f (G) is abelian. Since f is an isomorphism, and therefore onto,
f (G) = H . Hence H is abelian.

A similar argument shows that if H is abelian, so is G. Hence G is abelian iff H is. �

THEOREM 4.24. Suppose G ∼= H as groups. Then G is cyclic iff H is cyclic.

PROOF. Let f : G→H be an isomorphism. Assume that G is cyclic. We must show that H
is cyclic; that is, we must show that every element of H is generated by a fixed element of H .

Since G is cyclic, by definition G = 〈g 〉 for some g ∈ G. Let h = f (g ); then h ∈ H . We
claim that H = 〈h〉.

Let x ∈ H . Since f is an isomorphism, it is onto, so there exists a ∈ G such that f (a) = x.
Since G is cyclic, there exists n ∈Z such that a = g n . By Theorem 4.11,

x = f (a) = f (g n) = f (g )n = hn .

Since x was an arbitrary element of H and x is generated by h, all elements of H are generated
by h. Hence H = 〈h〉 is cyclic.

A similar proof shows that if H is cyclic, then so is G. �

THEOREM 4.25. Suppose G ∼= H as groups. Every subgroup A of G corresponds to a subgroup A′ of
H . This correspondence is unique up to isomorphism. Moreover:
(A) A is of finite order n iff A′ is of finite order n.
(B) A is normal iff A′ is normal.

PROOF. Let f : G → H be an isomorphism. Let A be a subgroup of G. By Exercise 4.21,
f (A)<H . Let A′ = f (A); then A′ <H . Uniqueness follows from the fact that f is one-to-one.

(A) follows from the fact that f is one-to-one.
For (B), assume A/G. We want to show that A′ /H ; that is, xA′ = A′x for every x ∈ H . So

let x ∈H and y ∈A′; since f is an isomorphism, it is onto, so f (g ) = x and f (a) = y for some
g ∈G and some a ∈A. Then

xy = f (g ) f (a) = f (ga) .

Since A/G, gA = Ag , so there exists a′ ∈A such that ga = a′ g . Let y ′ = f
�

a′
�

. Thus

xy = f
�

a′ g
�

= f
�

a′
�

f (g ) = y ′x.

Notice that y ′ ∈ f (A) = A′, so xy = y ′x ∈A′x.
We have shown that for arbitrary x ∈ H and arbitrary y ∈ A′, there exists y ′ ∈ A′ such that

xy = y ′x. Hence xA′ ⊆ A′x. A similar argument shows that xA′ ⊇ A′x, so xA′ = A′x. This is
the definition of a normal subgroup, so A′ /H .

A similar argument shows that if A′ /H , then its preimage A = f −1 �A′
�

is normal in G, as
claimed. �

THEOREM 4.26. Suppose G ∼= H as groups. Every quotient group of G is isomorphic to a quotient
group of H .

We use Lemma 3.24(CE3) on page 43 on coset equality heavily in this proof; you may want
to go back and review it.
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PROOF. Let f : G → H be an isomorphism. Let X be a quotient group of G defined by
G/A, where A/G. Let A′ = f (A); by Theorem 4.25 A′ /H , so H /A′ is a quotient group. We
want to show that G/A∼= H /A′.

Let fA : G/A→H /A′ by

fA (X ) = f (g )A′ where gA = X ∈G/A.

We claim that fA is a well-defined homomorphism, and is one-to-one and onto.
That fA is well-defined: Let X ∈ G/A and consider two representations g1A and g2A of X .

Then
fA (g1A) = f (g1)A′ and fA (g2A) = f (g2)A′.

We must show that the cosets fA (g1)A′ and fA (g2)A′ are equal in H /A′. By hypothesis,
g1A = g2A. Lemma 3.24(CE3) implies that g−1

2 g1 ∈ A. Recall that f (A) = A′; this implies that
f
�

g−1
2 g1

�

∈A′. The homomorphism property implies that f (g2)
−1 f (g1) = f

�

g−1
2

�

f (g1) ∈
A′. Lemma 3.24(CE3) again implies that f (g1)A′ = f (g2)A′. In other words,

fA (X ) = f (g1)A′ = f (g2)A′

so there is no ambiguity in the definition of fA as to the image of X in H /A′; the function is
well-defined.

That fA is a homomorphism: Let X ,Y ∈G/A and consider write X = g1A and Y = g2A for
appropriate g1, g2 ∈G. Now

fA (X Y ) = fA ((g1A) · (g2A))
= fA (g1 g2 ·A)

= f (g1 g2)A′

= f (g1) f (g2) ·A
′

= f (g1)A′ · f (g2)A′

= fA (g1A) · fA (g2A)
= fA (X ) · fA (Y )

where each equality is justified by (respectively) the definitions of X and Y ; the definition of coset
multiplication in G/A; the definition of fA; the homomorphism property of f ; the definition
of coset multiplication in H /A′; the definition of fA; and the definitions of X and Y . The chain
of equalities shows clearly that fA is a homomorphism.

That fA is one-to-one: Let X ,Y ∈G/A and assume that fA (X ) = fA (Y ). Let g1, g2 ∈G such
that X = g1A and Y = g2A. The definition of fA implies that

f (g1)A′ = fA (X ) = fA (Y ) = f (g2)A′,

so by Lemma 3.24(CE3) f (g2)
−1 f (g1) ∈ A′. Recall that A′ = f (A), so there exists a ∈ A such

that f (a) = f (g2)
−1 f (g1). The homomorphism property implies that

f (a) = f
�

g−1
2

�

f (g1) = f
�

g−1
2 g1

�

.

Recall that f is an isomorphism, hence one-to-one. The definition of one-to-one implies that

g−1
2 g1 = a ∈A.
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Applying Lemma 3.24(CE3) again gives us g1A = g2A, and

X = g1A = g2A = Y .

We took arbitrary X ,Y ∈G/A and showed that if fA (X ) = fA (Y ), then X = Y . It follows that
fA is one-to-one.

That fA is onto: You do it! See Exercise 4.27. �

EXERCISES.

EXERCISE 4.27. Show that the function fA defined in the proof of Theorem 4.26 is onto. Hint:
It’s quite a bit easier than the proof that fA is one-to-one.

EXERCISE 4.28. Recall from Exercise 2.49 on page 29 that 〈i〉 is a cyclic group of Q8.
(a) Show that 〈i〉 ∼= Z4 by giving an explicit isomorphism.
(b) Let A be a proper subgroup of 〈i〉. Find the corresponding subgroup of Z4.
(c) Use the proof of Theorem 4.26 to determine the quotient group of Z4 to which 〈i〉/A is

isomorphic.

EXERCISE 4.29. Recall from Exercise 4.16 on page 58 that the set

L =
¦

x ∈R2 : x = (a,a) ∃a ∈R
©

defined in Exercise 3.13 on page 39 is isomorphic to R.
(a) Show that Z/R.
(b) Give the precise definition of R/Z.
(c) Explain why we can think of R/Z as the set of classes [a] such that a ∈ [0,1). Choose one

such [a] and describe the elements of this class.
(c) Find the subgroup A of L that corresponds to Z<R. What do this section’s theorems imply

that you can conclude about A and L/A? Hint: Use the isomorphism you developed in
Exercise 4.16 on page 58.

(d) Use the answer to (c) to describe L/A intuitively. Choose an element of L/A and describe
the elements of this class.

4.3. THE ISOMORPHISM THEOREM

Because quotient groups provide imporant information about a group, algebraists study them
extensively. However, the nature of cosets makes quotient groups difficult to grasp intuitively.
To get a better handle on them, algebraists try to identify other groups that are isomorphic to
the quotient group of interest.

EXAMPLE 4.30. Recall A3 =
�

ι,ρ,ρ2	/D3 from Example 3.46. We saw that D3/A3 has only two
elements, so it must be isomorphic to the group of two elements. First we show this explicitly:
Let µ : D3/A3→Z2 by

µ (X ) =
¨

0, X = A3;
1, otherwise.

Is µ a homomorphism? Recall that A3 is the identity element of D3/A3, so for any X ∈D3/A3

µ (X ·A3) = µ (X ) = µ (X )+ 0 = µ (X )+µ (A3) .
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This verifies the homomorphism property for all products in the operation table of D3/A3
except (ϕA3,ϕA3), which is easy to check:

µ ((ϕA3) · (ϕA3)) = µ (A3) = 0 = 1 + 1 = µ (ϕA3)+µ (ϕA3) .

Hence µ is a homomorphism. The property of isomorphism follows from the facts that
• µ (A3) 6= µ (ϕA3), so µ is one-to-one, and
• both 0 and 1 have preimages, so µ is onto.

Something subtle is at work here. Let f : D3→Z2 by

f (x) =
¨

0, x ∈A3;
1, otherwise.

Is f a homomorphism? The elements of A3 are ι, ρ, and ρ2; f maps these elements to zero, and
the other three elements of S3 to 1. Let x, y ∈D3 and consider the various cases:

Case 1. x, y ∈A3.
Since A3 is a group, closure implies that xy ∈A3. Thus

f (xy) = 0 = 0 + 0 = f (x)+ f (y) .

Case 2. x ∈A3 and y 6∈A3.
Since A3 is a group, closure implies that xy 6∈ A3. (Otherwise xy = z for some z ∈ A3, and

multiplication by the inverse implies that y = x−1z ∈A3, a contradiction.) Thus

f (xy) = 1 = 0 + 1 = f (x)+ f (y) .

Case 3. x 6∈A3 and y ∈A3.
An argument similar to the case above shows that f (xy) = f (x)+ f (y).

Case 4. x, y 6∈A3.
Inspection of the operation table of D3 (Exercise 2.63 on page 35) shows that xy ∈A3. Hence

f (xy) = 0 = 1 + 1 = f (x)+ f (y) .

We have shown that f is a homomorphism from D3 to Z2.
In addition, consider the function η : D3→D3/A3 by

η (x) =
¨

A3, x ∈A3;
ϕ+ A3, otherwise.

It is easy to show that this is a homomorphism; we do so presently.
Now comes the important observation: Look at the composition function η ◦µ whose do-

main is D3 and whose range is Z2:

(µ◦η) (ι) = µ (η (ι)) = µ (A3) = 0;

(µ◦η) (ρ) = µ (η (ρ)) = µ (A3) = 0;

(µ◦η)
�

ρ2
�

= µ
�

η
�

ρ2
��

= µ (A3) = 0;

(µ◦η) (ϕ) = µ (η (ϕ)) = µ (ϕ+ A3) = 1;

(µ◦η) (ρϕ) = µ (η (ρϕ)) = µ (ϕ+ A3) = 1;

(µ◦η)
�

ρ2ϕ
�

= µ
�

η
�

ρ2ϕ
��

= µ (ϕ+ A3) = 1.
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We have

(µ◦η) (x) =
¨

0, x ∈A3;
1, otherwise,

or in other words
µ◦η= f .

4

This remarkable correspondence makes it easier to study quotient groups G/A:
• find a group H that is “easy” to work with; and
• find a homomorphism f : G→H such that
◦ f (g ) = eH for all g ∈A, and
◦ f (g ) 6= eH for all g 6∈A.

If we can do this, then H ∼= G/A, and as we saw in Section 4.2 studying G/A is equivalent to
studying H .

The reverse is also true: a group G and its quotient groups are relatively easy to study,
whereas another group H is difficult. The isomorphism theorem helps us identify a quotient
group G/A that is isomorphic to H , making it easier to study.

We need to formalize this observation in a theorem, but first we have to confirm something
that we claimed earlier:

LEMMA 4.31. Let G be a group and A/G. The function η : G→A by

η (g ) = gA

is a homomorphism.

PROOF. You do it! See Exercise 4.35. �

DEFINITION 4.32. We call the homomorphism η of Lemma 4.31 the natural homomorphism.

We need another definition, which you might remember from linear algebra. It will prove
important in subsequent sections and chapters.

DEFINITION 4.33. Let G and H be groups, and f : G → H a homomorphism. Let Z =
{g ∈G : f (g ) = eH }; that is, Z is the set of all elements of G that f maps to the identity of H .
We call Z the kernel of f , written ker f .

We now formalize the observation of Example 4.30.

THEOREM 4.34 (The Isomorphism Theorem). Let G and H be groups, and A/G. Let η : G→A
be the natural homomorphism. If there exists a homomorphism f : G→ H such that f is onto and
ker f = A, then G/A∼= H . Moreover, the isomorphism µ : G/A→H satisfies f = µ◦η.

We can illustrate Theorem 4.34 with the following diagram:

G
f
−→ H

η

↘
µ

↗
G/A

The idea is that “the diagram commutes”, or f = µ◦η.
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PROOF. We are given G, H ,A, and η. Assume that there exists a homomorphism f : G→H
such that ker f = A. Define µ : G/A→H in the following way:

µ (x) =
¨

eH , x = A;
f (g ) , x = gA ∃g 6∈A.

We claim that µ is an isomorphism from G/A to H , and moreover that f = µ◦η.
Since the domain of µ consists of cosets which may have different representations, we must

show first that µ is well-defined. Suppose that X ∈G/A has two different representations X =
gA = g ′A where g , g ′ ∈ G and g 6= g ′. We need to show that µ (gA) = µ

�

g ′A
�

. From
Lemma 3.24(CE3), we know that g−1 g ′ ∈ A, so there exists a ∈ A such that g−1 g ′ = a, so
g ′ = ga. Applying the homomorphism property,

µ
�

g ′A
�

= f
�

g ′
�

= f (ga) = f (g ) f (a) .

Recall that a ∈A = ker f , so

µ
�

g ′A
�

= f (g ) · eH = f (g ) = µ (gA) .

Hence µ
�

g ′A
�

= µ (gA) and µ (X ) is well-defined.
Is µ a homomorphism? Let X ,Y ∈G/A; we can represent X = gA and Y = g ′A for some

g , g ′ ∈G. Applying the homomorphism property of f , we see that

µ (X Y ) = µ
�

(gA)
�

g ′A
��

= µ
��

g g ′
�

A
�

= f
�

g g ′
�

= f (g ) f
�

g ′
�

= µ (gA)µ
�

g ′A
�

.

Thus µ is a homomorphism.
Is µ one-to-one? Let X ,Y ∈ G/A and assume that µ (X ) = µ (Y ). Represent X = gA and

Y = g ′A for some g , g ′ ∈G; by the homomorphism property of f , we see that

f
�

g−1 g ′
�

= f
�

g−1
�

f
�

g ′
�

= f (g )−1 f
�

g ′
�

= µ (gA)−1µ
�

g ′A
�

= µ (X )−1µ (Y )

= µ (Y )−1µ (Y )
= eH ,

so g−1 g ′ ∈ ker f . It is given that ker f = A, so g−1 g ′ ∈ A. Lemma 3.24(CE3) now tells us that
gA = g ′A, so X = Y . Thus µ is one-to-one.

Is µ onto? Let h ∈ H ; we need to find an element X ∈G/A such that µ (X ) = h. It is given
that f is onto, so there exists g ∈G such that f (g ) = h. Then

µ (gA) = f (g ) = h,

so µ is onto.
We have shown that µ is an isomorphism; we still have to show that f = µ ◦ η, but the

definition of µmakes this trivial: for any g ∈G,

(µ◦η) (g ) = µ (η (g )) = µ (gA) = f (g ) .

�
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EXERCISES.

EXERCISE 4.35. Prove Lemma 4.31.

EXERCISE 4.36. Recall the normal subgroup L of R2 from Exercises 3.13 on page 39, 3.27 on
page 43, and 3.51 on page 49. In Exercise 4.16 on page 58 you found an explicit isomorphism
L ∼= R.
(a) Use the Isomorphism Theorem to find an isomorphism R2/L ∼= R. Hint: Consider f :

R2→R by f (a) = b where the point a = (a1,a2) lies on the line y = x + b .
(b) Describe geometrically how the cosets of L are mapped to elements of R.

EXERCISE 4.37. Recall the normal subgroup 〈−1〉 of Q8 from Exercises 2.38 on page 25 and 3.50
on page 49.
(a) Use Lagrange’s Theorem to explain why Q8/ 〈−1〉 has order 4.
(b) We know from Exercise 2.17 on page 19 that there are only two groups of order 4, the Klein

4-group and the cyclic group of order 4, which we can represent by Z4. Use the Isomorphism
Theorem to determine which of these groups is isomorphic to Q8/ 〈−1〉. Hint: You already
know the answer from Exercise 3.50 on page 49; find a homomorphism f from Q8 to that
group such that ker f = 〈−1〉.

4.4. AUTOMORPHISMS AND GROUPS OF AUTOMORPHISMS

In this final section of Chapter 4, we use a special kind isomorphism to build a new group.

DEFINITION 4.38. Let G be a group. If f : G → G is an isomorphism, then we call f an
automorphism.4

An automorphism is an isomorphism whose domain and range are the same set. Thus, to
show that some function f is an automorphism, you must show first that the domain and the
range of f are the same set. Afterwards, you show that f satisfies the homomorphism property,
and then that it is both one-to-one and onto.

EXAMPLE 4.39.
(a) An easy automorphism for any group G is the identity isomorphism ι (g ) = g :

• its range is by definition G;
• it is a homomorphism because ι

�

g · g ′
�

= g · g ′ = ι (g ) · ι
�

g ′
�

;
• it is one-to-one because ι (g ) = ι

�

g ′
�

implies (by evaluation of the function) that g = g ′;
and
• it is onto because for any g ∈G we have ι (g ) = g .

(b) An automorphism in (Z,+) is f (x) =−x:
• its range is Z because of closure;
• it is a homomorphism because f (x + y) =− (x + y) =−x− y = f (x)+ f (y);
• it is one-to-one because f (x) = f (y) implies that −x =−y, so x = y; and
• it is onto because for any x ∈Z we have f (−x) = x.

(c) An automorphism in D3 is f (x) = ρ2xρ:

4The word comes Greek words that mean self and change.
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• its range is D3 because of closure;
• it is a homomorphism because f (xy) = ρ2 (xy)ρ = ρ2 (x · ι · y)ρ = ρ2 �x ·ρ3 · y

�

ρ =
�

ρ2xρ
�

·
�

ρ2yρ
�

= f (x) · f (y);
• it is one-to-one because f (x) = f (y) implies that ρ2xρ = ρ2yρ, and multiplication on

the left by ρ and on the right by ρ2 gives us x = y; and
• it is onto because for any y ∈ D3, choose x = ρyρ2 and then f (x) = ρ2 �ρyρ2�ρ =
�

ρ2ρ
�

· y ·
�

ρ2ρ
�

= ι · y · ι= y. 4

The automorphism of Example 4.39(c) generalizes to an important automorphism.

DEFINITION 4.40. Let G be a group and a ∈G. Define the function of conjugation by a to be
conja (x) = a−1xa. 4

In Example 4.39(c), we had a = ρ and conja (x) = a−1xa = ρ2xρ.

LEMMA 4.41. Let G be a group, and a ∈G. Then conja is an automorphism. Moreover,
�

conja (g ) : g ∈G
	

<G.

PROOF. You do it! See Exercise 4.49. �

The subgroup
�

conja (g ) : g ∈G
	

is important enough to identify by a special name.

DEFINITION 4.42. We say that
�

conja (g ) : g ∈G
	

is the group of conjugations of G by a,
and denote it by Conja (G). 4

Conjugation of subgroups is not necessarily an automorphism; it is quite possible that for
some H < G and for some a ∈ G\H we do not have H =

�

conja (h) : h ∈H
	

. On the other
hand, if H is a normal subgroup of G then we do have H =

�

conja (h) : h ∈H
	

. You will
explore this in the exercises.

Now it is time to identify the new group that we promised at the beginning of the chapter.

NOTATION. Write Aut (G) for the set of all automorphisms of G. In addition, we typically
denote automorphisms by Greek letters, rather than Latin letters.

EXAMPLE 4.43. We compute Aut (Z4). Let α ∈Aut (Z4) be arbitrary; what do we know about
α? We know by definition that its range is Z4, and by Theorem 4.9 on page 57 we know that
α (0) = 0. Aside from that, we consider all the possibilities that preserve the isomorphism
properties.

Recall from Theorem 3.62 on page 53 that Z4 is a cyclic group; in fact Z4 = 〈1〉. Corol-
lary 4.12 on page 58 tells us that α (1) will tell us everything we want to know about α. So, what
can α (1) be?

Case 1. Can we have α (1) = 0? If so, then α (n) = 0 for all n ∈Z4. This is not one-to-one,
so we cannot have α (1) = 0.

Case 2. Can we have α (1) = 1? Certainly α (1) = 1 if α is the identity homomorphism ι, so
we can have α (1) = 1.

Case 3. Can we have α (1) = 2? If so, then the homomorphism property implies that

α (2) = α (1 + 1) = α (1)+α (1) = 4 = 0.

An automorphism must be a homomorphism, but if α (1) = 2 then α is not one-to-one: by
Theorem 4.9 on page 57, α (0) = 0 = α (2)! So we cannot have α (1) = 2.
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Case 4. Can we have α (1) = 3? If so, then the homomorphism property implies that

α (2) = α (1 + 1) = α (1)+α (1) = 3 + 3 = 6 = 2; and

α (3) = α (2 + 1) = α (2)+α (1) = 2 + 3 = 5 = 1.

In this case, α is both one-to-one and onto. We were careful to observe the homomorphism
property when determining α, so we know that α is a homomorphism. So we can have α (1) = 2.

We found only two possible elements of Aut (Z4): the identity automorphism and the automor-
phism determined by α (1) = 3. 4

It turns out that Aut (G) is itself a group!

LEMMA 4.44. For any group G, Aut (G) is a group under the operation of composition of functions.

PROOF. Let G be any group. We show that Aut (G) satisfies each of the group properties
from Definition 2.27.
(G1) Let α,θ ∈Aut (G). We must show that α ◦θ ∈Aut (G) as well:

• the domain and range of α ◦θ are both G because the domain and range of both α and
θ are both G;
• α ◦θ is a homomorphism because for any g , g ′ ∈ G we can apply the homomorphism

property that applies to α and θ to obtain

(α ◦θ)
�

g · g ′
�

= α
�

θ
�

g · g ′
��

= α
�

θ (g ) ·θ
�

g ′
��

= α (θ (g )) ·α
�

θ
�

g ′
��

= (α ◦θ) (g ) · (α ◦θ)
�

g ′
�

;

• α◦θ is one-to-one because (α ◦θ) (g ) = (α ◦θ)
�

g ′
�

implies that α (θ (g )) = α
�

θ
�

g ′
��

;
since α is one-to-one we infer that θ (g ) = θ

�

g ′
�

; since θ is one-to-one we conclude
that g = g ′; and
• α ◦θ is onto because for any z ∈G,

◦ α is onto, so there exists y ∈G such that α (y) = z, and
◦ θ is onto, so there exists x ∈G such that θ (x) = y, so
◦ (α ◦θ) (x) = α (θ (x)) = α (y) = z.

We have shown that α ◦ θ satisfies the properties of an automorphism; hence, α ◦ θ ∈
Aut (G), and Aut (G) is closed under the composition of functions.

(G2) The associative property is sastisfied because the operation is composition of functions,
which is associative.

(G3) Denote by ι the identity homomorphism; that is, ι (g ) = g for all g ∈ G. We showed in
Example 4.39(a) that ι is an automorphism, so ι ∈Aut (G). Let f ∈Aut (G); we claim that
ι◦ f = f ◦ ι= f . Let x ∈G and write f (x) = y. We have

(ι◦ f ) (x) = ι ( f (x)) = ι (y) = y = f (x) ,

and likewise ( f ◦ ι) (x) = f (x). Since x was arbitrary in G, we have ι◦ f = f ◦ ι= f .
(G2) Let α ∈ Aut (G). Since α is an automorphism, it is an isomorphism. You showed in

Exercise 4.18 that α−1 is also an isomorphism. The domain and range of α are both G, so
the domain and range of α−1 are also both G. Hence α−1 ∈Aut (G).

�
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Since Aut (G) is a group, we can compute Aut (Aut (G)). For finite groups, |Aut (G)|< |G|
(we do not prove this here) so any chain of automorphism groups must eventually stop. In the
exercises you will compute Aut (G) for some other groups.

EXAMPLE 4.45. Recall from Example 4.43 on page 67 that Aut (Z4) has only two elements. We
saw early on that there is only one group of two elements, so Aut (Z4) ∼= Z2. 4

EXERCISES.

EXERCISE 4.46. Show that f (x) = x2 is an automorphism on the group
�

R+,×
�

.

EXERCISE 4.47.
(a) List the elements of Conjρ (D3).
(b) List the elements of Conjϕ (D3).
(c) Will Conja (G) always be a normal subgroup of G?

EXERCISE 4.48. List the elements of Conji (Q8).

EXERCISE 4.49. Prove Lemma 4.41 on page 67 in two parts:
(a) Show first that conjg is an automorphism.
(b) Show that

�

conja (g ) : g ∈G
	

is a group.
Hint: Use some of the ideas from Example 4.39 on page 66(c).

EXERCISE 4.50. Determine the automorphism group of the Klein 4-group.

EXERCISE 4.51. Determine the automorphism group of D3. Hint: We can think of D3 as gen-
erated by the elements ρ and ϕ, and each of these generates a non-trivial cyclic subgroup. Any
automorphism α is therefore determined by these generators, so you can find all automorphisms
α by finding all possible results for α (ρ) and α (ϕ), then examining that carefully.

EXERCISE 4.52. Let G be a group, g ∈ G, and H < G. Write g−1H g =
¦

conjg (h) : h ∈H
©

.
Show that H /G iff for every g ∈G we have H = g−1H g . Hint: This problem requires you to
show twice that two sets are equal.



CHAPTER 5

Groups of permutations

5.1. PERMUTATIONS; TABULAR NOTATION; CYCLE NOTATION

Certain applications of mathematics involve the rearrangement of a list of n elements. It is
common to refer to such rearrangements as permutations.
DEFINITION 5.1. Let V be any finite list. A permutation is a one-to-one function whose do-
main and range are both V .

We say that V is a list rather than a set, because the order of the elements matters: (a, d , k, r ) 6=
(a, k, d , r ) even though {a, d , k, r } = {a, k, d , r }. For the sake of convenience we usually write
V as a list of integers between 1 and |V |, but it can be any finite list.

EXAMPLE 5.2. Let S = (a, d , k, r ). To denote the i th element of the list, we write si . So s1 = a,
s2 = d , etc. Define a permutation on the elements of S by

f (x) =















r , x = a;
a, x = d ;
k, x = k;
d , x = r .

Notice that f is one-to-one, and f (S) = (r ,a, k, d ).
We can represent the same permutation on a generic list of four elements V = (1,2,3,4).

Define a permutation on the elements of V by

π (i) =















2, i = 1;
4, i = 2;
3, i = 3;
1, i = 4.

Here π is one-to-one, and π (i) = j is interpreted as “the j th element of the permuted list is the
i th element of the original list.” You could visualize this as

position in original list i position in permuted list j
1 → 2
2 → 4
3 → 3
4 → 1

Thus π (V ) = (4,1,3,2). If you look back at f (S), you will see that in fact the first element
of the permuted list, f (S), is the fourth element of the original list, S. 4

In Section 5.2 we show that the set of all permutations of a set of n elements is a group. In this
section we go over the necessary prelimiaries of this study, considering especially the question of
how to write them. We need the following lemma.

70
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LEMMA 5.3. The composition of two permutations is a permutation.

PROOF. Let V be a set of n elements, and α,β permutations of V . Let γ = α ◦β. We claim
that γ is a permutation. To show this, we must show that γ is a one-to-one function whose
domain and range are both V . From the definition of α and β, it follows that the domain and
range of γ are both V ; it remains to show that γ is one-to-one. Let x, y ∈ V and assume that
γ (x) = γ (y); by definition of γ ,

α (β (x)) = α (β (y)) .

As permutations, α and β are one-to-one functions, and as such have inverse functions. Thus

β−1
�

α−1 (α (β (x)))
�

=β−1
�

α−1 (α (β (y)))
�

x = y.

Hence γ is a one-to-one function whose domain and range are both V ; in other words, a permu-
tation. �

In Example 5.2, we wrote a permutation as a piecewise function. This is burdensome; we
would like a more efficient way to denote permutations.

NOTATION. The tabular notation for a permutation on a list of n elements is a 2×n matrix

α=
�

1 2 · · · n
α1 α2 · · · αn

�

denoting that α (1) = α1, α (2) = α2, . . . , α (n) = αn . Again, α (i) = j indicates that the j th
element of the permuted list is the i th element of the original list.

EXAMPLE 5.4. Recall V and π from Example 5.2. We can also write

π=
�

1 2 3 4
2 4 3 1

�

because π moves
• the element in the first position to the second position;
• the element in the second position to the fourth position;
• the element in the third position nowhere; and
• the element in the fourth position to the first position.

Then
π (1,2,3,4) = (4,1,3,2) .

Notice that the tabular notation for π looks similar to the table in Example 5.2.
We can also use π to permute different lists, so long as the new lists have four elements:

π (3,2,1,4) = (4,3,1,2) ;

π (2,4,3,1) = (1,2,3,4) ;

π (a, b , c , d ) = (d ,a, c , b ) .

4

Permutations are frequently used to anyalyze problems that involves lists. Indeed they are
used so frequently that even the tabular notation is considered burdensome; we need a simpler
notation.
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DEFINITION 5.5. A cycle is a vector

α=
�

α1 α2 · · · αn
�

that corresponds to the permutation where the entry in position α1 is moved to position α2; the
entry in position α2 is moved to position α3, . . . and the element in position αn is moved to
position α1. If a position is not listed in α, then the entry in that position is not moved. We call
such positions stationary. For the identity cycle where no entry is moved, we write

ι= (1) .

The fact that the permutation α moves the entry in position αn to position α1 is the reason
that this is called a cycle; applying it repeatedly cycles the list of elements around, and on the nth
application we have returned to the original list.

EXAMPLE 5.6. We can write π from Example 5.4 as a cycle. In tabular notation,

π=
�

1 2 3 4
2 4 3 1

�

.

To write it as a cycle, we can start with any position we like. However, the convention is to start
with the smallest position that changes. Since π moves elements out of position 1, we start with

π=
�

1 ?
�

.

The second entry in cycle notation tells us where π moves the element whose position is that
of the first entry. The first entry indicates position 1. From the tabular notation, we see that π
moves the element in position 1 to position 2, so

π=
�

1 2 ?
�

.

The third entry of cycle notation tells us where π moves the element whose position is that of
the second entry. The second entry indicates position 2. From the tabular notation, we see that
π moves the element in position 2 to position 4, so

π=
�

1 2 4 ?
�

.

The fourth entry of cycle notation tells us where π moves the element whose position is that of
the third entry. The third element indicates position 4. From the tabular notation, we see that
π moves the element in position 4 to position 1, so you might feel the temptation to write

π=
�

1 2 4 1 ?
�

,

but there is no need. At this point we take advantage of the cycle notation to close the cycle:

π=
�

1 2 4
�

.

Here the first cycle in π,
�

1 2 4
�

, indicates that
• the element in position 1 of a list moves to the position 2;
• the element in position 2 of a list moves to position 4;
• the element in position 4 of a list moves to position 1.

What about the element in position 3? According to the piecewise and tabular notations for π, it
doesn’t move anywhere. This is reflected by the fact that 3 does not appear in the cycle notation
for π. 4

Not all permutations can be written as one cycle.
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EXAMPLE 5.7. Consider the permutation in tabular notation

α=
�

1 2 3 4
2 1 4 3

�

.

We can easily start the cycle with α =
�

1 2
�

, and this captures the behavior on the elements
in the first and second positions of a list, but what about the third and fourth? This presents a
temporary difficulty. 4

To solve this problem, we need to develop some simple arithmetic of cycles. Cycles represent
permutations; permutations are one-to-one functions; functions can be composed.

EXAMPLE 5.8. Consider the two cycles

β=
�

2 3 4
�

and γ =
�

1 2 4
�

.

What is the cycle notation for

β◦γ =
�

2 3 4
�

◦
�

1 2 4
�

?

We can answer this by considering an example list; let V = (1,2,3,4) and compute (β◦γ ) (V ).
Since (β◦γ ) (x) =β (γ (x)), first we apply γ :

γ (V ) = (4,1,3,2) ,

followed by β:
β (γ (V )) = (4,2,1,3) .

Thus
• the element in position 1 eventually moved to position 3;
• the element in position 3 eventually moved to position 4;
• the element in position 4 eventually moved to position 1;
• the element in position 2 did not move.

In cycle notation, we write this as

β◦γ =
�

1 3 4
�

.

4

Another phenomenon occurs when each permutation moves elements that the other does
not.

EXAMPLE 5.9. Consider the two cycles

β=
�

1 3
�

and γ =
�

2 4
�

.

There is no way to simplify β ◦ γ into a single cycle, because β operates only on the first and
third elements of a list, and γ operates only on the second and fourth elements of a list. The only
way to write them is as the composition of two cycles,

β◦γ =
�

1 3
�

◦
�

2 4
�

.

4

This motivates the following.

DEFINITION 5.10. We say that two cycles are disjoint if none of their entries are common.

Disjoint cycles enjoy an important property.
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LEMMA 5.11. Let α,β be two disjoint cycles. Then α ◦β=β◦α.

PROOF. Let n ∈N+ be the largest entry in α or β. Let V = (1,2, . . . , n). Let i ∈ V . We
consider the following cases:

Case 1. α (i) 6= i .
Let j = α (i). The definition of cycle notation implies that j appears immediately after i in

the cycle α. Recall that α andβ are disjoint. Since i and j are entries of α, they cannot be entries
of β. By definition of cycle notation, β (i) = i and β ( j ) = j . Hence

(α ◦β) (i) = α (β (i)) = α (i) = j =β ( j ) =β (α (i)) = (β◦α) (i) .

Case 2. α (i) = i .

Subcase (a): β (i) = i .
We have (α ◦β) (i) = i = (β◦α) (i).

Subcase (b): β (i) 6= i .
Let j =β (i). We have

(β◦α) (i) =β (α (i)) =β (i) = j .

The definition of cycle notation implies that j appears immediately after i in the cycleβ. Recall
that α and β are disjoint. Since j is an entry of β, it cannot be an entry of α. By definition of
cycle notation, α ( j ) = j . Hence

(α ◦β) (i) = α ( j ) = j = (β◦α) (i) .

In both cases, we had (α ◦β) (i) = (β◦α) (i). Since i was arbitrary, α ◦β=β◦α. �

NOTATION. Since the composition of two disjoint cycles α ◦β cannot be simplified, we nor-
mally write them consecutively, without the circle that indicates composition, for example

�

1 2
��

3 4
�

.

By Lemma 5.11, we can also write this as
�

3 4
��

1 2
�

.

That said, the usual convention for cycles is to write the smallest entry first, and to write cycles
with smaller first entries before cycles with larger first entries. Thus we prefer

�

1 4
��

2 3
�

to either of
�

1 4
��

3 2
�

or
�

2 3
��

1 4
�

.

Beyond that, the convention for writing a permutation in cycle form is the following:

(1) Rotate each cycle so that the first entry is the smallest entry in each cycle.
(2) Simplify the permutation by computing the composition of cycles that are not disjoint.

Discard all cycles of length 1.
(3) The remaining cycles will be disjoint. From Lemma 5.11, we know that they commute;

write them in order from smallest first entry to largest first entry.
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EXAMPLE 5.12. We return to Example 5.7, with

α=
�

1 2 3 4
2 1 4 3

�

.

To write this permutation in cycle notation, we begin again with

α=
�

1 2
�

. . .?

Since α also moves entries in positions 3 and 4, we need to add a second cycle. We start with the
smallest position whose entry changes position, 3:

α=
�

1 2
��

3 ?
�

.

Since α moves the element in position 3 to position 4, we write

α=
�

1 2
��

3 4 ?
�

.

Now α moves the element in position 4 to position 3, so we can close the second cycle:

α=
�

1 2
��

3 4
�

.

Now α moves no more entries, so the cycle notation is complete. 4

We now come to the main goal of this section.

THEOREM 5.13. Every permutation can be written as a composition of cycles.

The proof is constructive.

PROOF. Let π be a permutation; denote its domain by V . Without loss of generality, we
write V = (1,2, . . . , n).

Let i1 be the smallest element of V such that π (i1) 6= i1. Recall that the range of π has at
most n elements; since π is one-to-one, eventually πk (i1) = i1 for some k ≤ n. Let α(1) be the
cycle

�

i1 π (i1) π (π (i1)) · · · πk (i1)
�

where πk+1 (i1) = i1.
At this point, either every element of V that is not stationary with respect to π appears in

α(1), or it does not. If there is some i2 ∈ V such that i2 is not stationary with respect to π
and i2 6∈ α(1), then generate the cycle α(2) by

�

i2 π (i2) π (π (i2)) · · · π` (i2)
�

where as

before π` (i2) = i2.
Repeat this process until every non-stationary element of V corresponds to a cycle, generat-

ing α(3), . . . , α(m) for non-stationary i3 6∈ α(1),α(2), i4 6∈ α(1),α(2),α(3), . . . , im 6∈ α(1), . . . ,α(m−1).
The remainder of the proof consists of two claims.
Claim 1: α(i) and α( j ) are disjoint for any i 6= j .
Suppose to the contrary that there exists an integer r such that r ∈ α(i) and r ∈ α( j ). By def-

inition, the next entry of both α(i) and α( j ) is π (r ). The subsequent entry of both is π (π (r )),
and so forth. This cycles through both α(i) and α( j ) until we reach πλ (r ) = r for some λ ∈N.
Hence α(i) = α( j ).

Claim 2: π= α(1)α(2) · · ·α(m).
Let i ∈ V . If π (i) = i , then by definition α( j ) (i) = i for all j = 1,2, . . . , m. Otherwise, i

appears in α( j ) for some j = 1,2, . . . , m. By definition, α( j ) (i) = π (i). By claim 1, both i and
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π (i) appear in only one of the α. Hence
�

α(1)α(2) · · ·α(m)
�

(i) = α(1)
�

α(2)
�

· · ·α(m−1)
�

α(m) (i)
���

= α(1)
�

α(2)
�

· · ·α( j−1)
�

α( j ) (i)
���

= α(1)
�

α(2)
�

· · ·α( j−1) (π (i))
��

= π (i) .

�

EXAMPLE 5.14. Consider the permutation

π=
�

1 2 3 4 5 6 7 8
7 5 3 2 4 8 1 6

�

.

Using the proof of Theorem 5.13, we define the cycles

α(1) =
�

1 7
�

α(2) =
�

2 5 4
�

α(3) =
�

6 8
�

.

Notice that the α are all disjoint. In addition, the only element of V = (1,2, . . . , 8) that does not
appear in an α is 3, because π (3) = 3. Inspection verifies that

π= α(1)α(2)α(3).

4

We conclude with some examples where two permutations are composed.

EXAMPLE 5.15. Let α =
�

1 3
��

2 4
�

and β =
�

1 3 2 4
�

. Notice that α 6= β; check
this on V = (1,2,3,4) if this isn’t clear. In addition, α and β are not disjoint.

(1) We compute the cycle notation for γ = α ◦β. We start with the smallest entry moved
by either α or β:

γ =
�

1 ?
�

.
The notation α ◦β means to apply β first, then α. What does β do with the entry in
position 1? It moves it to position 3. Subsequently, αmoves the entry in position 3 back
to the entry in position 1. The next entry in the first cycle of γ should thus be 1, but
that’s also the first entry in the cycle, so we close the cycle. So far, we have

γ =
�

1
�

. . .?

We aren’t finished, since α and β also move other entries around. The next smallest
entry moved by either α or β is 2, so

γ =
�

1
��

2 ?
�

.

Now βmoves the entry in position 2 to the entry in position 4, and α moves the entry
in position 4 to the entry in position 2. The next entry in the second cycle of γ should
thus be 2, but that’s also the first entry in the second cycle, so we close the cycle. So far,
we have

γ =
�

1
��

2
�

. . .?
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Next, βmoves the entry in position 3, so

γ =
�

1
��

2
��

3 ?
�

.

Where does β move the entry in position 3? To the entry in position 2. Subsequently,
α moves the entry in position 2 to the entry in position 4. We now have

γ =
�

1
��

2
��

3 4 ?
�

.

You can probably guess that 4, as the largest possible entry, will close the cycle, but to
be safe we’ll check: β moves the entry in position 4 to the entry in position 1, and α
moves the entry in position 1 to the entry in position 3. The next entry of the third
cycle will be 3, but this is also the first entry of the third cycle, so we close the third
cycle and

γ =
�

1
��

2
��

3 4
�

.

Finally, we simplify γ by not writing cycles of length 1, so

γ =
�

3 4
�

.

Hence
��

1 3
��

2 4
��

◦
�

1 3 2 4
�

=
�

3 4
�

.

(2) Now we compute the cycle notation for β ◦ α, but with less detail. Again we start
with 1, which α moves to 3, and β then moves to 2. So we start with

β◦α=
�

1 2 ?
�

.

Next, α moves 2 to 4, and βmoves 4 to 1. This closes the first cycle:

β◦α=
�

1 2
�

. . .?

We start the next cycle with position 3: α moves it to position 1, which β moves back
to position 3. This generates a length-one cycle, so there is no need to add anything.
Likewise, the element in position 4 is also stable under β ◦α. Hence we need write no
more cycles;

β◦α=
�

1 2
�

.

(3) Let’s look also at β ◦ γ where γ =
�

1 4
�

. We start with 1, which γ moves to 4, and
then β moves to 1. Since β ◦ γ moves 1 to itself, we don’t have to write 1 in the cycle.
The next smallest number that appears is 2: γ doesn’t move it, and β moves 2 to 4. We
start with

β◦γ =
�

2 4 ?
�

.

Next, γ moves 4 to 1, and βmoves 1 to 3. This adds another element to the cycle:

β◦γ =
�

2 4 3 ?
�

.

We already know that 1 won’t appear in the cycle, so you might guess that we should
not close the cycle. To be certain, we consider what β ◦ γ does to 3: γ doesn’t move it,
and βmoves 3 to 2. The cycle is now complete:

β◦γ =
�

2 4 3
�

.
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EXERCISES.

EXERCISE 5.16. For the permutation

α=
�

1 2 3 4 5 6
1 5 2 4 6 3

�

,

(a) Evaluate α (1,2,3,4,5,6).
(b) Evaluate α (1,5,2,4,6,3).
(c) Evaluate α (6,3,5,2,1,4).
(d) Write α in cycle notation.
(e) Write α as a piecewise function.

EXERCISE 5.17. For the permutation

α=
�

1 3 4 2
�

,

(a) Evaluate α (1,2,3,4).
(b) Evaluate α (1,4,3,1).
(c) Evaluate α (3,1,4,2).
(d) Write α in tabular notation.
(e) Write α as a piecewise function.

EXERCISE 5.18. Let α =
�

1 2 3 4
�

, β =
�

1 4 3 2
�

, and γ =
�

1 3
�

. Compute
α ◦β, α ◦ γ , β ◦ γ , β ◦α, γ ◦α, γ ◦β, α2, β2, and γ 2. (Here α2 = α ◦α.) What is the inverse of
each permutation?

EXERCISE 5.19. Construct the cyclic group generated by the permutation

α=
�

1 2 3 4
3 1 4 2

�

.

Hint: Life will probably be easier if you convert it to cycle notation first.

5.2. GROUPS OF PERMUTATIONS

In Section 5.1 we introduced permutations. For n ≥ 2, denote by Sn the set of all permuta-
tions of a list of n elements. In this section we show that Sn is a group for all n ≥ 2.

EXAMPLE 5.20. For n = 2,3 we have

S2 =
�

(1) ,
�

1 2
�	

S3 =
�

(1) ,
�

1 2
�

,
�

1 3
�

,
�

2 3
�

,
�

1 2 3
�

,
�

1 3 2
�	

.

4

A counting argument based on the multiplication principle shows that Sn has

|Sn |= n! = n · (n−1) · (n−2) · · ·3 ·2 ·1
elements: given any list of n elements,
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• we have n positions to move the first element, including its current position;
• we have n−1 positions to move the second element, since the first element has already

taken one spot;
• we have n− 2 positions to move the third element, since the first and second elements

have already take two spots;
• etc.

We observed in Section 5.1 that any permutation is really a one-to-one function; naturally, one
can ask whether the set of all permutations on n elements behaves as a group under the operation
of composition of functions.

THEOREM 5.21. For all n ≥ 2 (Sn ,◦) is a group.

NOTATION. Normally we just write Sn , understanding from context that the operation is com-
position of functions. It is common to refer to Sn as the symmetric group of n elements.

PROOF. Let n ≥ 2. We have to show that Sn satisfies (G1)–(G4) under the operation of
composition of functions:
(G1): For closure, we must show that the composition of two permutations is a permutation.

This is the statement of Lemma 5.3 on page 71.
(G2): The associative property follows from the fact that permutations are functions, and func-

tions are associative.
(G3): The identity function ι such that ι (x) = x for all x ∈ {1,2, . . . , n} is also the identity of Sn

under composition: for any α ∈ Sn and for any x ∈ {1,2, . . . , n} we have

(ι◦α) (x) = ι (α (x)) = α (x) ;

since x was arbitrary, ι◦α= α.
(G4): Every one-to-one function has an inverse function, so every element of Sn has an inverse

element under composition.
�

In Section 5.38 on page 84 we will show that all finite groups are isomorphic to a subgroup
of a symmetric group.

EXERCISES.

EXERCISE 5.22. Show that all the elements of S3 can be written as compositions of α=
�

1 2 3
�

and β=
�

2 3
�

.

EXERCISE 5.23. For α and β as defined in Exercise 5.22, show that β◦α= α2 ◦β. (Notice that
α,β ∈ Sn for all n > 2, so as a consequence of this exercise Sn is not abelian for n > 2.)

EXERCISE 5.24. Write the composition table for S3. Hint: List the six elements of S3 as
�

1
�

,
α, α2, β, αβ, α2β, using the previous exercises both to justify and to simplify this task.

EXERCISE 5.25. Show that D3
∼= S3 by showing that the function f : D3→ S3 by f

�

ρaϕb
�

=
αaβb is an isomorphism.
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FIGURE 5.1. Rotation and reflection of an equilateral triangle centered at the origin

32

1

ρ

(a)

32

1

ϕ

π

(b)

EXERCISE 5.26. How many elements are there of S4? List them all using cycle notation.

EXERCISE 5.27. Compute the cyclic subgroup of S4 generated by α=
�

1 3 4 2
�

. Compare
your answer to that of Exercise 5.19.

EXERCISE 5.28. Let α=
�

α1 α2 · · · αn
�

∈ Sn . Show that we can write α−1 as

β=
�

α1 αn αn−1 · · · α2
�

.

For example, if α =
�

2 5 3 6
�

, α−1 =
�

2 6 3 5
�

. Hint: Try computing α ◦β and
β◦α.

5.3. DIHEDRAL GROUPS

In Section 2.5 we studied the symmetries of a triangle; we represented the group as the prod-
ucts of matrices ρ and ϕ, derived from the symmetries of rotation and reflection about the y-axis.
Figure 5.1, a copy of Figure 2.3 on page 33, shows how ρ and ϕ correspond to the symmetries of
an equilateral triangle centered at the origin. In Exercises 5.22–5.25 you showed that D3 and S3
are isomorphic.

We can develop matrices to reflect the symmetries of a regular n-sided polygon as well (the
regular n-gon), motivating the definition of the set Dn of symmetries of the n-gon.

DEFINITION 5.29. The dihedral set Dn is the set of symmetries of a regular polygon with n
sides.

Is Dn always a group?

THEOREM 5.30. Let n ∈ N and n ≥ 3. Then (Dn ,◦) is a group with 2n elements, called the
dihedral group.

The proof of Theorem 5.30 depends on the following proposition, which we accept without
proof. We could prove it using an argument from matrices as in Chapter 2.5, but proving it
requires more energy than is appropriate for this section.
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PROPOSITION 5.31. All the symmetries of a regular n-sided polygon can be generated by a com-
position of a power of the rotation ρ of angle 2π/n and a power of the flip ϕ across the y-axis. In
addition, ϕ2 = ρn = ι (the identity symmetry) and ϕρ= ρn−1ϕ.

PROOF. We must show that properties (G1)–(G4) are satisfied.
(G1): Closure follows from Proposition 5.31.
(G2): The associative property follows from the fact that permutations are functions, and the

associative property applies to functions.
(G3): Certainly there exists an identity element ι ∈ Dn , which corresponds to the identity sym-

metry where no vertex is moved.
(G4): It is obvious that the inverse of a symmetry of the regular n-gon is also a symmetry of the

regular n-gon.
It remains to show that Dn has 2n elements. From the properties of ρ and ϕ in Proposition 5.31,
all other symmetries are combinations of these two, which means that all symmetries are of the
form ρaϕb for some a ∈ {0, . . . , n−1} and b ∈ {0,1}. Since ϕ2 = ρn = ι, a can have n values and
b can have 2 values. Hence there are 2n possible elements altogether. �

We have two goals in introducing the dihedral group: first, to give you another concrete and
interesting group; and second, to serve as a bridge to Section 5.4. The next example starts to lead
in the latter direction.

EXAMPLE 5.32. Another way to represent the elements of D3 is to consider how they re-arrange
the vertices of the triangle. We can represent the vertices of a triangle as the list V = (1,2,3).
Application of ρ to the triangle moves

• vertex 1 to vertex 2;
• vertex 2 to vertex 3; and
• vertex 3 to vertex 1.

This is equivalent to the permutation
�

1 2 3
�

.
Application of ϕ to the triangle moves
• vertex 1 to itself—that is, vertex 1 does not move;
• vertex 2 to vertex 3; and
• vertex 3 to vertex 2.

This is equivalent to the permutation
�

2 3
�

.
In the context of the symmetries of the triangle, it looks as if we can say that ρ=

�

1 2 3
�

and ϕ =
�

2 3
�

. Recall that ρ and ϕ generate all the symmetries of a triangle; likewise, these
two cycles generate all the permutations of a list of three elements! (See Example 5.20 on page 78
and Exercise 2.63 on page 35.) 4

Of course, we can do this with D4 and S4 as well.

EXAMPLE 5.33. Using the tabular notation for permutations, we identify some elements of D4,
the set of symmetries of a square. Of course we have an identity permutation

ι=
�

1 2 3 4
1 2 3 4

�

and a 90◦ rotation

ρ=
�

1 2 3 4
2 3 4 1

�

.
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FIGURE 5.2. Rotation and reflection of a square centered at the origin
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We can imagine three kinds of flips: one across the y-axis,

ϕ =
�

1 2 3 4
2 1 4 3

�

;

one across the x-axis,

ϑ =
�

1 2 3 4
4 3 2 1

�

;

and one across a diagonal,

ψ=
�

1 2 3 4
1 4 3 2

�

.

See Figure 5.2. We can also imagine other diagonals; but they can be shown to be superfluous,
just as we show shortly that ϑ and ψ are superflulous. There may be other symmetries of the
square, but we’ll stop here for the time being.

Is it possible to write ψ as a composition of ϕ and ρ? It turns out that ψ = ϕ ◦ρ. To show
this, we consider them as permutations of the vertices of the square, as we did with the triangle
above, rather than repeat the agony of computing the matrices of isometries as in Section 2.5.

• Geometrically, ρ moves (1,2,3,4) to (4,1,2,3); subsequently ϕ moves (4,1,2,3) to
(1,4,3,2); see Figure 5.3.
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FIGURE 5.3. Rotation and reflection of a square centered at the origin
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• We can use the tabular notation for ψ, ϕ, and ρ to show that the composition of the
functions is the same. Starting with the list (1,2,3,4) we see form the tabular notation
above that

ψ (1,2,3,4) = (1,4,3,2) .

On the other hand,
ρ (1,2,3,4) = (4,1,2,3) .

Things get a little tricky here; we want to evaluate ϕ ◦ρ, and

(ϕ ◦ρ) (1,2,3,4) = ϕ (ρ (1,2,3,4))
= ϕ (4,1,2,3)
= (1,4,3,2) .

How did we get that last step? Look back at the tabular notation for ϕ: the element in
the first entry is moved to the second. In the next-to-last line above, the element in the
first entry is 4; it gets moved to the second entry in the last line:

4, 1, 2, 3
↘

?, 4, ?, ?

The tabular notation for ϕ also tells us to move the element in the second entry (1) to
the first. Thus

4, 1, 2, 3
↙↘

1, 4, ?, ?
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Likewise, ϕ moves the element in the third entry (2) to the fourth, and vice-versa, giving
us

4, 1, 2, 3
↙↘ ↙↘

1, 4, 3, 2

In both cases, we see that ψ= ϕ ◦ρ. A similar argument shows that ϑ = ϕ ◦ρ2, so it looks as if
we need only ϕ and ρ to generate D4. The reflection and the rotation have a property similar to
that in S3:

ϕ ◦ρ= ρ3 ◦ϕ,
so unless there is some symmetry of the square that cannot be described by rotation or reflection
on the y-axis, we can list all the elements of D4 using a composition of some power of ρ after
some power of ϕ. There are four unique 90◦ rotations and two unique reflections on the y-axis,
implying that D4 has at least eight elements:

D4 ⊇
¦

ι,ρ,ρ2,ρ3,ϕ,ρϕ,ρ2ϕ,ρ3ϕ
©

.

Can D4 have other elements? There are in fact |S4| = 4! = 24 possible permutations of the
vertices, but are they all symmetries of a square? Consider the permutation from (1,2,3,4) to
(2,1,3,4): in the basic square, the distance between vertices 1 and 3 is

p
2, but in the configu-

ration (2,1,3,4) vertices 1 and 3 are adjacent on the square, so the distance between them has
diminished to 1. Meanwhile, vertices 2 and 3 are no longer adjacent, so the distance between
them has increased from 1 to

p
2. Since the distances between points on the square was not

preserved, the permutation described, which we can write in tabular notation as
�

1 2 3 4
2 1 3 4

�

,

is not an element of D4. The same can be shown for the other fifteen permutations of four
elements.

Hence D4 has eight elements, making it smaller than S4, which has 4! = 24. 4

COROLLARY 5.34. For any n ≥ 2 we have Dn < Sn , with equality only when n = 2.

EXERCISES.

EXERCISE 5.35. Write all eight elements of D4 in cycle notation.

EXERCISE 5.36. Construct the composition table of D4.

EXERCISE 5.37. Show that the symmetries of any n-gon can be described as a power of ρ and ϕ,
where ϕ is a flip about the y-axis and ρ is a rotation of 2π/n radians.

5.4. CAYLEY’S REMARKABLE RESULT

The mathematician Arthur Cayley discovered a lovely fact about the permutation groups.

THEOREM 5.38 (Cayley’s Theorem). Every finite group of n elements is isomorphic to a subgroup
of Sn .
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We’re going to give an example before we give the proof. Hopefully the example will help
explain how the proof of the theorem works.

EXAMPLE 5.39. Consider the Klein 4-group; this group has four elements, so it must be isomor-
phic to a subgroup of S4. We will build the isomorphism by looking at the multiplication table
for the Klein 4-group:

× e a b ab
e e a b ab
a a e ab b
b b ab e a

ab ab b a e
To find a permutation appropriate to each element, we’ll do the following. First, we label

each element with a certain number:

e¡ 1,
a¡ 2,

b¡ 3,

ab¡ 4.

We will use this along with tabular notation to determine the isomorphism. Define a map f
from the Klein 4-group to S4 by

(5.4.1) f (x) =
�

1 2 3 4
` (x · e) ` (x · a) ` (x · b ) ` (x · ab )

�

,

where ` (y) is the label that corresponds to y.
First let’s compute f (a):

f (a) =
�

1 2 3 4
? ? ? ?

�

.

The first entry has the value ` (a · e) = ` (a) = 2, telling us that

f (a) =
�

1 2 3 4
2 ? ? ?

�

.

The next entry has the value ` (a · a) = `
�

a2�= ` (e) = 1, telling us that

f (a) =
�

1 2 3 4
2 1 ? ?

�

.

The third entry has the value ` (a · b ) = ` (ab ) = 4, telling us that

f (a) =
�

1 2 3 4
2 1 4 ?

�

.

The final entry has the value ` (a · ab ) = `
�

a2b
�

= ` (b ) = 3, telling us that

f (a) =
�

1 2 3 4
2 1 4 3

�

.

So applying the formula in equation (5.4.1) definitely gives us a permutation.
In fact, we could have filled out the bottom row of the permutation by looking above at the

multiplication table for the Klein 4-group, locating the row for the multiples of a (the third row
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of the multiplication table), and filling in the labels for the entries in that row! Doing this or
applying equation (5.4.1) to the other elements of the Klein 4-group tells us that

f (e) =
�

1 2 3 4
1 2 3 4

�

f (b ) =
�

1 2 3 4
3 4 1 2

�

f (ab ) =
�

1 2 3 4
4 3 2 1

�

.

We now have a subset of S4; written in cycle notation, it is

W = { f (e) , f (a) , f (b ) , f (ab )}
=
�

(1) ,
�

1 2
��

3 4
�

,
�

1 3
��

2 4
�

,
�

1 4
��

2 3
�	

.

Verifying that W is a group, and therefore a subgroup of S4, is straightforward; you will do
so in the homework. What we need to ensure is that f is indeed an isomorphism. Inspection
shows that f is one-to-one and onto; the hard part is the homomorphism property. We will use
a little cleverness for this. Let x, y in the Klein 4-group.

• Recall that f (x), f (y), and f (xy) are permutations, and by definition one-to-one,
onto functions on a list of four elements.
• Notice that ` is also a one-to-one function, and it has an inverse.
• Let m ∈ (1,2,3,4). For any z in the Klein 4-group, ` (z) = m if we listed z as the mth

entry of the group. Thus `−1 (m) indicates the element of the Klein four-group that is
labeled by m. For instance, `−1 (b ) = 3.
• Since f (x) is a permutation of a list of four elements, we can look at ( f (x)) (m) as the

place where f (x) moves m.
• By definition, f (x) moves m to ` (z) where z = x · `−1 (m). Similar statement hold

for how f (y) and f (xy) move m.
• Applying these facts, we observe that

( f (x) ◦ f (y)) (m) = ( f (x)) ( f (y) (m))

= f (x)
�

`
�

y ·`−1 (m)
��

= `
�

x ·`−1
�

`
�

y ·`−1 (m)
���

= `
�

x ·
�

y ·`−1 (m)
��

= `
�

xy ·`−1 (m)
�

= f (xy) (m) .

• Since m was arbitrary in {1,2,3,4}, f (xy) and f (x) ◦ f (y) are identical functions.
• Since x, y were arbitrary in the Klein 4-gorup, f (xy) = f (x) f (y).

We conclude that f is a homomorphism; since it is one-to-one and onto, f is an isomorphism.
4

You should read through Example 5.39 carefully two or three times, and make sure you
understand it, since in the homework you will construct a similar isomorphism for a different
group, and also because we do the same thing now in the proof of Cayley’s Theorem.
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PROOF OF CAYLEY’S THEOREM. Let G be a finite group of n elements. Label the elements
in any order G = {g1, g2, . . . , gn} and for any x ∈G denote ` (x) = i such that x = gi . Define a
relation

f : G→ Sn by f (gi ) =
�

1 2 · · · n
` (gi · g1) ` (gi · g2) · · · ` (gi · gn)

�

.

As we explained in Example 5.39 for the Klein 4-group, this assigns to each g ∈G the permuta-
tion that, in tabular notation, has the labels for each entry in the row corresponding to g of the
operation table for G. By this fact we know that f is one-to-one and onto (see also Theorem 2.29
on page 24). The proof that f is a homomorphism is identical to the proof for Example 5.39:
nothing in that argument required x, y, or z to be elements of the Klein 4-group; the proof was
for a general group! Hence f is an isomorphism, and G ∼= f (G)< Sn . �

What’s so remarkable about this result? One way of looking at it is the following: since
every finite group is isomorphic to a subgroup of a group of permutations, everything you need
to know about finite groups can be learned from studying the groups of permutations! A more
flippant summary is that the theory of finite groups is all about studying how to rearrange lists.

In theory, I could go back and rewrite these notes, introducing the reader first to lists, then
to permutations, then to S2, to S3, to the subgroups of S4 that correspond to the cyclic group of
order 4 and the Klein 4-group, and so forth, making no reference to these other groups, nor to
the diherdral group, nor to any other finite group that we have studied.

In reality, it is inconvenient to work only with the symmetric group; it is usually more
natural to think in terms other than permutations (geometry for Dn is helpful); and it can be
tedious to work only with permutations. While Cayley’s Theorem has its uses, it does not
suggest that we should always consider groups of permutations in place of the more natural
representations.

EXERCISES.

EXERCISE 5.40. In Example 5.39 we found W , a subgroup of S4 that is isomorphic to the Klein
4-group. It turns out that W <D4 as well. Draw the geometric representations for each element
of W , using a square and writing labels in the appropriate places, as we did in Figures 2.3 on
page 33 and 5.2.

EXERCISE 5.41. Apply Cayley’s Theorem to find a subgroup of S4 that is isomorphic to Z4.
Write the permutations in both tabular and cycle notations.

EXERCISE 5.42. The subgroup of S4 that you identified in Exercise 5.41 is also a subgroup of
D4. Draw the geometric representations for each element of this subgroup, using a square and
writing labels in the appropriate places.

EXERCISE 5.43. Since S3 has six elements, we know it is isomorphic to a subgroup of S6. Can you
identify this subgroup without using the isomorphism used in the proof of Cayley’s Theorem?
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5.5. ALTERNATING GROUPS

We close this chapter with a special kind of symmetry group that has very important impli-
cations for later topics: the alternating groups. To define the alternating group, we need to study
permutations a little more closely, in particular the cycle notation.

DEFINITION 5.44. Let n ∈N+. An n-cycle is a permutation that can be written as one cycle
with n entries. A transposition is a 2-cycle.

EXAMPLE 5.45. The permutation
�

1 2 3
�

∈ S3 is a 3-cycle. The permutation
�

2 3
�

∈ S3
is a transposition. The permutation

�

1 3
��

2 4
�

∈ S4 cannot be written as only one n-cycle
for any n ∈N+: it is the composition of two disjoint transpositions, and any cycle must move 1
to 3, so it would start as

�

1 3 ?
�

. If we fill in the blank with anything besides 1, we have a
different permutation. So we must close the cycle before noting that 2 moves to 4. 4

Thanks to 1-cycles, any permutation can be written with many different numbers of cycles:
for example,

�

1 2 3
�

=
�

1 2 3
�

(1) =
�

1 2 3
�

(1) (3) =
�

1 2 3
�

(1) (3) (1) = · · · .
In addition, a neat trick allows us to write every permutation as a composition of transitions.

EXAMPLE 5.46.
�

1 2 3
�

=
�

1 3
��

1 2
�

. Also
�

1 4 8 2 3
�

=
�

1 3
��

1 2
��

1 8
��

1 4
�

.

Also (1) =
�

1 2
��

1 2
�

. 4

LEMMA 5.47. Any permutation can be written as a composition of transitions.

PROOF. You do it! See Exercise (5.57). �

At this point it is worth looking at Example 5.46 and the discussion before it. Can we write
ρ with many different numbers of transpositions? Yes:

�

1 2 3
�

=
�

1 3
��

1 2
�

=
�

1 3
��

1 2
��

2 3
��

2 3
�

=
�

1 3
��

1 2
��

1 3
��

1 3
�

= · · · .

Notice something special about the representation of
�

1 2 3
�

. No matter how you write it,
it always has an even number of transitions. By contrast, consider

�

2 3
�

=
�

2 3
��

2 3
��

2 3
�

=
�

2 3
��

1 2
��

1 3
��

1 3
��

1 2
�

= · · · .

No matter how you write it, you always represent
�

2 3
�

with an odd number of transposi-
tions.

Is this always the case?

THEOREM 5.48. Let α be a cycle.
• If α can be written as the composition of an even number of transpositions, then it cannot

be written as the composition of an odd number of transpositions.
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• If α can be written as the composition of an odd number of transpositions, then it cannot be
written as the composition of an even number of transpositions.

PROOF. Suppose that α ∈ Sn . Consider the polynomials

g =
∏

1≤i< j≤n

�

xi − x j

�

and gα :=
∏

1≤i< j≤n

�

xα(i)− xα( j )

�

.

Is gα = g ? Not always: If for example α =
�

1 2
�

then g = x1− x2 and gα = x2− x1 6= g .
Likewise if α=

�

1 3 2
�

then

g = (x1− x2) (x1− x3) (x2− x3)
whereas

(5.5.1) gα = (x3− x1) (x3− x2) (x1− x2) .

Failing this, can we write gα in terms of g ? Try the following. If α (i) < α ( j ), then the
binomial xα(i)− xα( j ) appears in g , so we’ll leave it alone. (An example would be (x1− x2) in
equation (5.5.1).) Otherwise α (i) > α ( j ) and the binomial xα(i)− xα( j ) does not appear in g .
(An example would be (x3− x1) in equation (5.5.1).) However, the binomial xα( j )− xα(i) does

appear in g , so rewrite gα by replacing xα(i)− xα( j ) as
�

−
�

xα( j )− xα(i)

��

.
Recall that α is a one-to-one function: for each i , xi is mapped to one unique xα(i). In

addition, each binomial xi − x j in g is unique, so for each i , j , the binomial xi − x j is mapped
to a binomial xα(i)− xα( j ) where the subscripts are unique; that is, in gα there is are no k,` such
that the binomial xα(k)− xα(`) has the same pair of subscripts as xα(i)− xα( j ). Thus, factoring
the constant -1 multiples from the product gives us

gα = (−1)swp α g ,

where swp α ∈N is an integer representing the number of swapped indices that α provoked in
the binomials of g .

Consider two different representations of α with transpositions. If the first representation
has an even number of transpositions, then an even number of binomials in g swapped indices
to get gα, so swp α is even. Hence gα = g . If the second representation had an odd number of
transpositions, there would be an odd number of swaps from g to gα, , and swp α would be odd
and gα = −g . However, the value of gα depends on the permutation α, not on the choice of
representation of α. So we cannot have gα = g and gα =−g . It follows that both representations
must have the same number of transpositions.

The statement of the theorem follows: no matter how we choose the representation of α, it
will always have either an even or an odd number of transpositions. �

Theorem 5.48 motivates the following. Any permutation can be written as a composition of
cycles, and any cycle can be written as either an even or odd number of transpositions. Thus,
any permutation can be written as either an even or an odd number of transpositions.

DEFINITION 5.49. If a permutation can be written with an even number of permutations, then
we say that the permutation is even. Otherwise, we say that the permutation is odd.

EXAMPLE 5.50. The permutation ρ =
�

1 2 3
�

∈ S3 is even, since as we saw earlier ρ =
�

1 3
��

1 2
�

. So is the permutation ι = (1) =
�

1 2
��

1 2
�

. The permutation ϕ =
�

2 3
�

is odd. 4
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At this point we are ready to define a new group.

DEFINITION 5.51. Let n ∈N+ and n ≥ 2. Let An = {α ∈ Sn : α is even}. We call An the set of
alternating permutations.

EXAMPLE 5.52. We briefly mentioned the alternating group A3 in Example 3.46 on page 47.

THEOREM 5.53. For all n ≥ 2, An is a group under the operation of composition of functions.

PROOF. Let n ≥ 2. We show that An satisfies properties (G1)–(G4) of a group.
(G1): For closure, let α,β ∈ An . Both α and β can be written as the composition of an even

number of transpositions. The sum of two even numbers is also even, so α ◦β is also the
composition of an even number of transpositions.

(G2): The associative property is inherited from Sn , or more generally from the associative prop-
erty of the composition of functions.

(G3): The identity element is ι= (1), which Example 5.46 shows is even.
(G4): Let α ∈An . Write α as a composition of transpositions, denoted by

α= τ1τ2 · · ·τm

for some m ∈N+. Since α ∈An , m is even. Let

β= τmτm−1 · · ·τ1.

You will show in Exercise 5.58 that any transposition is its own inverse, so

αβ= (τ1τ2 · · ·τm)
�

τmτm−1 · · ·τ1
�

=
�

τ1τ2 · · ·τm−1
�

(τmτm)
�

τm−1τm−1 · · ·τ1
�

=
�

τ1τ2 · · ·τm−1
�

ι
�

τm−1τm−2 · · ·τ1
�

=
�

τ1τ2 · · ·τm−2
��

τm−1τm−1
��

τm−2τm−3 · · ·τ1
�

=
�

τ1τ2 · · ·τm−2
�

ι
�

τm−2τm−3 · · ·τ1
�

...
= τ1τ1

= ι.

Hence αβ =
�

1
�

. A similar argument shows that βα =
�

1
�

, so β = α−1. We have
written β with m transpositions. Recall that m is even, so α−1 =β ∈An .

�

How large is An , relative to Sn? Before we answer this, we need to an interesting and useful
fact about the function swp α that we defined in Theorem 5.48.

THEOREM 5.54. For any n ≥ 2, there are half as many even permutations as there are permutations.
That is, |An |= |Sn |/2.

PROOF. We use Lagrange’s Theorem from page 45, and show that there are two cosets of
An < Sn .

Let X ∈ Sn/An . Let α ∈ Sn such that X = αAn . If α is an even permutation, then X =
An . Otherwise, α is odd. Let β be any other odd permutation. Write out the odd number of
transpositions of α−1, followed by the odd number of transpositions ofβ, to see that α−1β is an
even permutation. Hence α−1β ∈An , and by Lemma 3.24 on page 43 αAn =βAn .
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Thus there are only two cosets of An in Sn : An itself, and the coset of odd permutations. By
Lagrange’s Theorem,

|Sn |
|An |

= |Sn/An |= 2,

and a little algebra rewrites this equation to |An |= |Sn |/2. �

COROLLARY 5.55. For any n ≥ 2, An / Sn .

PROOF. You do it! See Exercise 5.60. �

Unfortunately, we have only shown a few rather dull facts regarding An . —I say that, but
these facts are quite striking really: An is half the size of Sn , and it is a normal subgroup of Sn . If
I call these facts “rather dull”, that tells you that some very interesting things are in store for the
future.

EXERCISES.

EXERCISE 5.56. List the elements of A2, A3, and A4 in cycle notation.

EXERCISE 5.57. Show that any permutation can be written as a product of transpositions. Hint:
You know that any permutation can be written as a product of cycles, so it will suffice to show
that any cycle can be written as a product of transpositions. For that, take an arbitrary cycle α=
�

α1 α2 · · · αn
�

and write it as a product of transpositions, as suggested by Example 5.46.
Be sure to explain why this product does in fact equal α.

EXERCISE 5.58. Show that the inverse of any transposition is a transposition. Hint: You can
do this by showing that any transposition is its own inverse. Take an arbitrary transposition
α=

�

α1 α2
�

and show that α2 = ι.

EXERCISE 5.59. Show that the function swp α defined in Theorem 5.48 satisfies the property
that for any two cycles α,β we have (−1)swp (αβ) = (−1)swp α (−1)swpβ. Hint: Let α and β be
arbitrary cycles. Consider the four possible cases where α and β are even or odd.

EXERCISE 5.60. Show that for any n ≥ 2, An / Sn . Hint: See a previous exercise about subgroups
or cosets.

5.6. THE 15-PUZZLE

The 15-puzzle is similar to a toy you probably played with as a child. It looks like a 4× 4
square, with all the squares numbered except one. The numbering starts in the upper left and
proceeds consecutively until the lower right; the only squares that aren’t in order are the last two
numbers squares, which are swapped:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14
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The challenge is to find a way to rearrange the squares so that they are in order, like so:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

The only permissible moves are those where one “slides” a square left, right, above, or below the
empty square. Given the starting position above, the following moves are permissible:

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

or

1 2 3 4
5 6 7 8
9 10 11
13 15 14 12

but the following moves are not permissible:
1 2 3 4
5 6 7 8
9 10 12
13 15 14 11

or

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

.

We will use groups of permutations to show that that the challenge is impossible.
How can we do this? Since the problem is one of rearranging a list of elements, it is a problem

of permutations. Every permissible move consists of transpositions τ in S16 where:
• τ =

�

x y
�

where
◦ x < y;
◦ [x ] = [0] in Z4 implies [y ] = [0] in Z4;
◦ one of x or y is the position of the empty square in the current list; and
◦ legal moves imply that either

? y = x + 1; or
? y = x + 4.

EXAMPLE 5.61. The legal moves illustrated above correspond to the transpositions
•
�

15 16
�

, because square 14 was in position 15, and the empty space was in position
16: notice that 16 = 15 + 1; and
•
�

12 16
�

, because square 12 was in position 12, and the empty space was in position
16: notice that 16 = 12 + 4 and since [12] = [0] in Z4, [16] = [0] in Z4.

The illegal moves illustrated above correspond to the transpositions
•
�

11 16
�

, because square 11 was in position 11, and the empty space was in position
16: notice that 16 = 11 + 5; and
•
�

13 14
�

, because in the original configuration, neither 13 nor 14 contains the empty
square.

Likewise
�

12 13
�

would be an illegal move in any configuration, because it crosses rows:
notice that even though y = x + 1, [12] = [0] in Z4 but [13] 6= [0] in Z4. 4

How can we use this to show that it is impossible to solve 15-puzzle? Answering this requires
several steps. The first shows that if there is a solution, it must belong to a particular group.

LEMMA 5.62. If there is a solution to the 15-puzzle, it is a permutation σ ∈ A16, where A16 is the
alternating group.
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PROOF. Any permissible move corresponds to a transposition τ as described above. Now
any solution contains the empty square in the lower right hand corner. As a consequence, we
must have the following: For any move

�

x y
�

, there must eventually be a corresponding
move

�

x ′ y ′
�

where
�

x ′
�

= [x ] in Z4 and
�

y ′
�

= [y ] in Z4. If not:
• for above-below moves, the empty square could never return to the bottom row; and
• for left-right moves, the empty square could never return to the rightmost row unless

we had some
�

x y
�

where [x ] = [0] and [y ] 6= [0], a contradiction.
Thus moves come in pairs, and the solution is a permutation σ consisting of an even number of
transpositions. By Theorem 5.48 on page 88 and Definitions 5.49 and 5.51, σ ∈A16. �

We can now show that there is no solution to the 15-puzzle.

THEOREM 5.63. The 15-puzzle has no solution.

PROOF. By way of contradiction, assume that it has a solution σ . Then σ ∈ A16. Because
A16 is a subgroup of S16, and hence a group in its own right, σ−1 ∈ A16. Notice σ−1σ = ι, the
permutation which corresponds to the configuration of the solution.

Now σ−1 is a permutation corresponding to the moves that change the arrangement

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15

into the arrangement

1 2 3 4
5 6 7 8
9 10 11 12
13 15 14

which corresponds to
�

14 15
�

. So regardless of the transpositions used in the representation
of σ−1 , the composition must simplify to σ−1 =

�

14 15
�

6∈A16, a contradiction. �

As a historical note, the 15-puzzle was developed in 1878 by an American puzzlemaker, who
promised a $1,000 reward to the first person to solve it. Most probably, the puzzlemaker knew
that no one would ever solve it: if we account for inflation, the reward would correspond to
$22,265 in 2008 dollars.1

EXERCISES.

EXERCISE 5.64. Determine which of these configurations, if any, is solvable by the same rules
as the 15-puzzle:

1 2 3 4
5 6 11 7
9 10 8
13 14 15 12

,

3 4 8
1 5 2 7
6 9 11 12
13 10 14 15

,

2 5 4
1 6 3 8
9 10 7 12
11 13 14 15

.

1According to the website http://www.measuringworth.com/ppowerus/result.php.
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Hint: Use the same strategy as that of the proof of Theorem 5.63: find the permutation σ−1

that corresponds to the current confiuration, and decide whether σ−1 ∈ A16. If not, you know
the answer is no. If so, you must still check that it can be written as a product of transpositions
that satisfy the rules of the puzzle.



CHAPTER 6

Some elementary number theory

6.1. THE GREATEST COMMON DIVISOR AND THE EUCLIDEAN
ALGORITHM

In grade school, you learned how to compute the greatest common divisor of two integers.
For example, given the integers 36 and 210, you should be able to determine that the greatest
common divisor is 6.

Computing greatest common divisors—not only of integers, but of other objects as well—
turns out to be one of the most interesting problems in mathematics, with a large number of
important applications. Besides, many of the concepts underlying greatest common divisors
turn out to be deeply interesting topics on their own. Because of this, we review them as well,
starting with a definition which you probably don’t expect.

DEFINITION 6.1. Let n ∈Z and assume n > 1. We say that n is irreducible if the only integers
that divide n are ±1 and ±n.

You may read this and think, “Oh, he’s talking about prime numbers.” Well, yes and no.
More on that in the next section.

EXAMPLE 6.2. The integer 36 is not irreducible, because 36 = 6×6. The integer 7 is irreducible,
because the only integers that divide 7 are ±1 and ±7. 4

DEFINITION 6.3. Let m, n ∈Z. We say that d ∈Z is a common divisor of m and n if d | m
and d | n. The greatest common divisor of m and n, written gcd (m, n), is the largest of the
common divisors of m and n.

EXAMPLE 6.4. Common divisors of 36 and 210 are 1, 2, 3, and 6. 4

One way to compute the list of common divisors is to list all possible divisors of both in-
tegers, and identify the largest possible positive divisor. In practice, this takes a Very Long
TimeTM, so it would be nice to have a different method. One such method was described by the
Greek mathematician Euclid many centuries ago.

THEOREM 6.5 (The Euclidean Algorithm). Let m, n ∈Z. One can compute the greatest common
divisor of m, n in the following way:

(1) Let s = max (m, n) and t = min (m, n).
(2) Repeat the following steps until t = 0:

(a) Let q be the quotient and r the remainder after dividing s by t .
(b) Assign s the current value of t .
(c) Assign t the current value of r .

The final value of s is gcd (m, n).

Before proving that the Euclidean algorithm gives us a correct answer, let’s do an example.
95
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EXAMPLE 6.6. We compute gcd (36,210) using the Euclidean algorithm. Start by setting s = 210
and t = 36. Subsequently:

(1) Dividing 210 by 36 gives q = 5 and r = 30. Set s = 36 and t = 30.
(2) Dividing 36 by 30 gives q = 1 and r = 6. Set s = 30 and t = 6.
(3) Dividing 30 by 6 gives q = 5 and r = 0. Set s = 6 and t = 0.

Now that t = 0, we stop, and conclude that gcd (36,210) = s = 6. 4

When we prove that the Euclidean algorithm generates a correct answer, we will argue that
it computes gcd (m, n) by claiming

gcd (m, n) = gcd (m, r1) = gcd (r1, r2) = · · ·= gcd
�

rk−1, 0
�

where ri is the remainder from division of the previous two integers in the chain and rk−1 is the
final non-zero remainder from division. Lemma 6.7 proves this claim.

LEMMA 6.7. Let s , t ∈Z. Let q and r be the quotient and remainder, respectively, of division of s
by t , as per the Division Theorem from page 13. Then gcd (s , t ) = gcd (s , r ).

PROOF. Let d = gcd (s , t ). First we show that d is a divisor of r . From Definition 13,
there exist a, b ∈ Z such that s = ad and t = b d . From the Division Theorem, we know that
s = q t + r . Substitution gives us ad = q (b d )+ r ; rewriting the equation, we have

r = (a− q b ) d .

Hence d | r .
Since d is a common divisor of s , t , and r , it is a common divisor of t and r . Now we

show that d = gcd (t , r ). Let d ′ = gcd (t , r ); since d is also a common divisor of t and r , the
definition of greatest common divisior implies that d ≤ d ′. Since d ′ is a common divisor of t
and r , Definition 13 again implies that there exist x, y ∈ Z such that t = d ′x and r = d ′y.
Substituting into the equation s = q t + r , we have s = q

�

d ′x
�

+ d ′y; rewriting the equation,
we have

s = (q x + y) d ′.

So d ′ | s . We already knew that d ′ | t , so d ′ is a common divisor of s and t .
Recall that d = gcd (s , t ); since d ′ is also a common divisor of t and r , the definition of

greatest common divisor implies that d ′ ≤ d . Earlier, we showed that d ≤ d ′. Hence d ≤ d ′ ≤ d ,
which implies that d = d ′.

Substitution gives the desired conclusion: gcd (s , t ) = gcd (t , r ). �

We can now finally prove that the Euclidean algorithm gives us a correct answer. This re-
quires two stages, necessary for proving that any algorithm terminates correctly.

(1) Termination. To prove that any algorithm provides a correct answer, you must prove
that it gives some answer. How can this be a problem? If you look at the Euclidean
algorithm, you see that one of its instructions asks us to “repeat” some steps “until
t = 0.” What if t never attains the value of zero? It’s conceivable that its values remain
positive at all times, or jump over zero from positive to negative values. That would
mean that we never receive any answer from the algorithm, let alone a correct one.

(2) Correctness. Even if the algorithm terminates, we have to guarantee that it terminates
with the correct answer.
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We will identify both stages of the proof clearly. In addition, we will refer back to the the
Division Theorem as well as the well-ordering property of the integers from Section 1.3; you
may wish to review those.

PROOF OF THE EUCLIDEAN ALGORITHM. First we show that the algorithm terminates.
The only repetition in the algorithm occurs in step 2. The first time we compute step 2(a), we
compute the quotient q and remainder r of division of s by t . By the Division Theorem,

(6.1.1) 0≤ r < t .

Denote this value of r by r1. In step 2(b) we set s to t , and in step 2(c) we set the value of t to
r1 = r . Thanks to equation (6.1.1), the value of tnew = r is smaller than snew = told. If t 6= 0,
then we return to 2(a) and divide s by t , again obtaining a new remainder r . Denote this value
of r by r2; by the Division Theorem r2 = r < t , so

0≤ r2 < r1.

As long as we repeat step 2, we generate a set of integers R = {r1, r2, . . .} ⊂ N≥0. The well-
ordering property of the integers implies that R has a smallest element ri ; this implies in turn
that after i repetitions, step 2 of the algorithm must stop repeating; otherwise, we would generate
ri+1 < ri , contradicting the fact that ri is the smallest element of R. Since step 2 of the algorithm
terminates, the algorithm itself terminates.

Now we show that the algorithm terminates with the correct answer. If step 2 of the algorithm
repeated k times, then applying Lemma 6.7 repeatedly to the remainders of the divisions gives
us the chain of equalities

gcd
�

rk−1, rk−2
�

= gcd
�

rk−2, rk−3
�

= gcd
�

rk−3, rk−4
�

...

= gcd (r2, r1)
= gcd (r1, s)
= gcd (t , s)
= gcd (m, n) .

What is gcd
�

rk−1, rk−2
�

? The final division of s by t is the division of rk−1 by rk−2; since
the algorithm terminates after the kth repetition, rk = 0. By Definition 1.6, rk−1 | rk−2, making
rk−1 a common divisor of rk−1 and rk−2. No integer larger than rk−1 divides rk−1, so the greatest
common divisor of rk−1 and rk−2 is rk−1. Following the chain of equalities, we conclude that
gcd (m, n) = rk−1: the Euclidean Algorithm terminates with the correct answer. �

EXERCISES.

EXERCISE 6.8. Compute the greatest common divisor of 100 and 140 by (a) listing all divisors,
then identifying the largest; and (b) the Euclidean Algorithm.

EXERCISE 6.9. Compute the greatest common divisor of 4343 and 4429 by using the Euclidean
Algorithm.
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EXERCISE 6.10. In Lemma 6.7 we showed that gcd (m, n) = gcd (m, r ) where r is the remain-
der after division of m by n. Prove the following more general statement: for all m, n, q ∈ Z

gcd (m, n) = gcd (m− qn).

6.2. THE CHINESE REMAINDER THEOREM; THE CARD TRICK EXPLAINED

Go back and reread the card trick from Section 1.1. In this section we explain how the card
trick works. The result is based on an old, old Chinese observation.

THEOREM 6.11 (The Chinese Remainder Theorem, simple version). Let m, n ∈ Z such that
gcd (m, n) = 1. Let α,β ∈Z. There exists a solution x ∈Z to the system of linear congruences

¨

[x ] = [α] in Zm ;
[x ] = [β] in Zn ;

and x is unique in ZN where N = mn.

Before giving the proof, let’s look at an example.

EXAMPLE 6.12 (The card trick). In the card trick, we took twelve cards and arranged them
• once in groups of three; and
• once in groups of four.

Each time, the player identified the column in which the mystery card lay. This gave the re-
mainders α from division by three and β from division by four, leading to the system of linear
congruences

¨

[x ] = [α] in Z3;
[x ] = [β] in Zm ;

where x is the location of the mystery card. The simple version of the Chinese Remainder
Theorem guarantees us that there is a solution for x, and that this solution is unique in Z12.
Since there are only twelve cards, the solution is unique in the game: as long as the dealer can
compute x, s/he can identify the card infallibly. 4

The reader may be thinking, “Well, and good, but knowing only the existence of a solution
seems rather pointless. I also need to know how to compute x, so that I can pinpoint the location
of the card. How does the Chinese Remainder Theorem help with that?” This emerges from the
proof. However, the proof requires us to revisit our friend, the Euclidean Algorithm.

THEOREM 6.13 (The Extended Euclidean Algorithm). Let m, n ∈ Z. There exist a, b ∈ Z such
that am + b n = gcd (m, n). Both a and b can be found by reverse-substituting the chain of equations
obtained by the repeated division in the Euclidean algorithm.

EXAMPLE 6.14. Recall Example 6.6 the computation of gcd (210,36). The divisions gave us a
series of equations:

210 = 5 ·36 + 30(6.2.1)
36 = 1 ·30 + 6(6.2.2)
30 = 5 ·6 + 0.
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We concluded from the Euclidean Algorithm that gcd (210,36) = 6. We start by rewriting the
equation 6.2.1:

(6.2.3) 36−1 ·30 = 6.

This looks a little like what we want, but we need 210 instead of 30. Equation 6.2.2 allows us to
rewrite 30 in terms of 210 and 36:

(6.2.4) 30 = 210−5 ·36.

Substituting this result into equation 6.2.3, we have

36− (210−5 ·36) = 6 =⇒ 6 ·36 +(−1) ·210 = 6.

We have found integers m = 6 and n =−1 such that for a = 36 and b = 210, gcd (a, b ) = 6. 4

PROOF OF THE EXTENDED EUCLIDEAN ALGORITHM. Recall that the Euclidean algorithm
computes a chain of k quotients {qi} and remainders {ri} such that

m = q1n + r1

n = q2 r1 + r2

r1 = q3 r2 + r3
...

rk−3 = qk−1 rk−2 + rk−1(6.2.5)
rk−2 = qk rk−1 + rk(6.2.6)
rk−1 = qk+1 rk + 0

and rk = gcd (m, n) .

Using the last equation, we can rewrite equation 6.2.6 as

rk−2 = qk rk−1 + gcd (m, n) .

Solving for gcd (m, n), we have

(6.2.7) rk−2− qk rk−1 = gcd (m, n) .

Now solve equation 6.2.5 for rk−1 to obtain

rk−3− qk−1 rk−2 = rk−1.

Substitute this into equation 6.2.7 to obtain

rk−2− qk
�

rk−3− qk−1 rk−2
�

= gcd (m, n)
�

qk−1 + 1
�

rk−2− qk rk−3 = gcd (m, n) .

Proceeding in this fashion, we can exhaust the list of equations, concluding by solving the first
equation in the chain for m, and substituting for r1 to obtain am + b n = gcd (m, n) for some
integers a, b . �

This ability to write gcd (m, n) as a sum of integer multiples of m and n is the key to un-
locking the Chinese Remainder Theorem. Before doing so, we need an important lemma about
numbers whose gcd is 1.

LEMMA 6.15. Let d , m, n ∈Z. If m | nd and gcd (m, n) = 1, then m | d .
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PROOF. Assume that m | nd and gcd (m, n) = 1. By definition, there exists q ∈Z such that
q m = nd . Use the Extended Euclidean Algorithm to choose a, b ∈ Z such that am + b n =
gcd (m, n) = 1. Then

amd + b nd = d
ad m + b q m = d

(ad + b q) m = d .

Hence m | d . �

We finally prove the Chinese Remainder Theorem.

PROOF OF THE CHINESE REMAINDER THEOREM, SIMPLE VERSION. Recall that the sys-
tem is

¨

[x ] = [α] in Zm ; and
[x ] = [β] in Zn .

We have to prove two things: first, that a solution x exists; second, that [x ] is unique in Z12.
Existence: Because gcd (m, n) = 1, the Extended Euclidean Algorithm tells us that there

exist a, b ∈ Z such that am + b n = 1. Rewriting this equation two different ways, we have
b n = 1 + (−a) m ∈ 1 + 〈m〉 and am = 1 + (−b ) n ∈ 1 + 〈n〉. Hence [b n] = [1] in Zm and
[am] = [1] in Zn . Hence [αb n] = [α] in Zm and [βam] = [β] in Zn . Moreover, [αb n] = [0]
in Zn and [βam] = [0] in Zm . Hence

¨

[αb n +βam] = [α] in Zm ; and
[αb n +βam] = [β] in Zn .

Thus x = αb n +βam satisfies the requirements of the system.
Uniqueness: Suppose that there exist [x ] , [y ] ∈ZN that both satisfy the system. Since [x ] =

[y ] in Zm , [x− y ] = [0], so m | (x− y). By definition of divisibility, there exists q ∈ Z such
that mq = (x− y). Since [x ] = [y ] in Zn , [x− y ] = [0], so n | (x− y). By substitution, n | mq .
By Lemma 6.15, n | q . By definition of divisibility, there exists q ′ ∈ Z such that q = nq ′. By
substitution,

x− y = mq = mnq ′ = N q ′.
Hence N | (x− y), so that [x− y ] = [0] in ZN , so that [x ] = [y ] in ZN , as desired. �

The existence part of the proof gives us an algorithm to solve problems involving the Chinese
Remainder Theorem:

COROLLARY 6.16 (Chinese Remainder Theorem Algorithm, simple version). Let m, n ∈Z such
that gcd (m, n) = 1. Let α,β ∈Z. Write N = mn. We can solve the system of linear congruences

¨

[x ] = [α] in Zm ;
[x ] = [β] in Zn ;

for [x ] ∈ZN by the following steps:
(1) Use the Extended Euclidean Algorithm to find a, b ∈Z such that am + b n = 1.
(2) The solution is [αb n +βam] in ZN .

PROOF. The proof follows immediately from the existence proof of Theorem 6.11. �
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EXAMPLE 6.17. The algorithm of Corollary 6.16 finally explains the method of the card trick.
We have m = 3, n = 4, and N = 12. Suppose that the player indicates that his card is in the first
column when they are grouped by threes, and in the third column when they are grouped by
fours; then α= 1 and β= 3.

The Extended Euclidean Algorithm tells us that a = 1 and b = −1 give us us am + b n = 1;
hence am = 4 and b n =−3. We can therefore find the mystery card by computing

x = 1 ·4 + 3 · (−3) =−5;

but this isn’t helpful. By adding 12, we obtain another representation for [x ] in Z12:

[x ] = [−5 + 12] = [7] ,

which implies that the player chose the 7th card. In fact, [7] = [1] in Z3, and [7] = [3] in Z4,
which agrees with the information given. 4

The Chinese Remainder Theorem can be generalized to larger systems with more than two
equations under certain circumstances.

THEOREM 6.18 (Chinese Remainder Theorem on Z). Let m1, m2, . . . , mn ∈Z such that gcd
�

mi , m j

�

=
1 for all 1 ≤ i < j ≤ n. Let α1,α2, . . .αn ∈Z. There exists a solution x ∈Z to the system of linear
congruences



















[x ] = [α1] in Zm1
;

[x ] = [α2] in Zm2
;

...
[x ] = [αn ] in Zmn

;

and x is unique in ZN where N = m1m2 · · ·mn .

Before we can prove this version of the Chinese Remainder Theorem, we need to make an
observation of m1, m2, . . . , mn .

LEMMA 6.19. Let m1, m2, . . . , mn ∈Z such that gcd
�

mi , m j

�

= 1 for all 1≤ i < j ≤ n. For each
i = 1,2, . . . , n define Ni = N /mi where N = m1m2 · · ·mn ; that is, Ni is the product of all the m’s
except mi . Then gcd (mi ,Ni ) = 1.

PROOF. We show that gcd (m1,N1) = 1; for i = 2, . . . , n the proof is similar.
Use the Extended Euclidean Algorithm to choose a, b ∈Z such that am1 + b m2 = 1. Use it

again to choose c , d ∈Z such that c m1 + d m3 = 1. Then

1 = (am1 + b m2) (c m1 + d m3)
= (ac m1 + ad m3 + b c m2) m1 +(b d ) (m2m3) .

Let x = gcd (m1, m2m3); the previous equation shows that x is also a divisor of 1. However, the
only divisors of 1 are ±1; hence x = 1. We have shown that gcd (m1, m2m3) = 1.

Rewrite the equation above as 1 = a′m1 + b ′m2m3; notice that a′, b ′ ∈Z. Use the Extended
Euclidean Algorithm to choose e , f ∈Z such that e m1 + f m4 = 1. Then

1 =
�

a′m1 + b ′m2m3
�

(e m1 + f m4)

=
�

a′e m1 + a′ f m4 + b ′e m2me
�

m1 +
�

b ′ f
�

(m2m3m4) .

An argument similar to the one above shows that gcd (m1, m2m3m4) = 1.
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Repeating this process with each mi , we obtain gcd (m1, m2m3 · · ·mn) = 1. Since N1 =
m2m3 · · ·mn , we have gcd (m1,N1) = 1. �

We can now prove the Chinese Remainder Theorem for integers.

PROOF. Existence: Write Ni = N /mi for i = 1,2, . . . , n. By Lemma 6.19, gcd (mi ,Ni ) = 1.
Use the Extended Euclidean Algorithm to compute a1, b1,a2, b2, . . . ,an , bn such that

a1m1 + b1N1 = 1

a2m2 + b2N2 = 1
...

an mn + bnNn = 1.

Put x = α1b1N1 +α2b2N2 + · · ·+αn bnNn . Now b1N1 = 1 +(−a1) m1 so [b1N1] = [1] in Zm1
,

so [α1b1N1] = [α1] in Zm1
. Moreover, for i = 2,3, . . . , n inspection of Ni verifies that m1 | Ni ,

so αi bi Ni = qi m1 for some qi ∈Z, implying that [αi bi Ni ] = [0]. Hence

[x ] = [α1b1N1 +α2b2N2 + · · ·+αn bnNn ]
= [α1] + [0] + · · ·+ [0]

in Zm1
, as desired. A similar argument shows that [x ] = [αi ] in Zmi

for i = 2,3, . . . , n.
Uniqueness: As in the previous case, let [x ] , [y ] be two solutions to the system in ZN . Then

[x− y ] = [0] in Zmi
for i = 1,2, . . . , n, implying that mi | (x− y) for i = 1,2, . . . , n.

Since m1 | (x− y), the definition of divisibility implies that there exists q1 ∈ Z such that
x− y = m1q1.

Since m2 | (x− y), substitution implies m2 | m1q1, and Lemma 6.15 implies that m2 | q1.
The definition of divisibility implies that there exists q2 ∈Z such that q1 = m2q2. Substitution
implies that x− y = m1m2q2.

Since m3 | (x− y), substitution implies m3 | m1m2q2. Lemma 6.19 implies that gcd (m1m2, m3) =
1, and Lemma 6.15 implies that m3 | q2. The definition of divisibility implies that there exists
q3 ∈Z such that q2 = m3q3. Substitution implies that x− y = m1m2m3q3.

Continuing in this fashion, we show that x − y = m1m2 · · ·mnqn for some qn ∈ Z. By
substition, x− y = N qn , so [x− y ] = [0] in ZN , so [x ] = [y ] in Zn . That is, the solution to the
system is unique in ZN . �

The algorithm to solve such systems is similar to that given for the simple version, in that it
can be obtained from the proof of existence of a solution.

EXERCISES.

EXERCISE 6.20. Solve the system of linear congruences
¨

[x ] = [2] in Z4;
[x ] = [2] in Z9.

Express your answer so that 0≤ x < 36.
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EXERCISE 6.21. Solve the system of linear congruences






[x ] = [2] in Z5;
[x ] = [2] in Z6;
[x ] = [2] in Z7.

EXERCISE 6.22. Solve the system of linear congruences






[x ] = [33] in Z16;
[x ] = [−4] in Z33;
[x ] = [17] in Z504.

Hint: This problem is a little tougher, since gcd (16,504) 6= 1 and gcd (33,504). At least gcd (16,33) =
1, so you can apply the Chinese Remainder Theorem to the first two equations and find a solu-
tion in Z16·33. Now you have to extend your solution so that it also solves the third equation;
use your knowledge of cosets to do that.

EXERCISE 6.23. Give directions for a similar card trick on all 52 cards, where the cards are
grouped first by 4’s, then by 13’s. Do you think this would be a practical card trick?

EXERCISE 6.24. Is it possible to modify the card trick to work with only ten cards instead of 12?
If so, how; if not, why not?

EXERCISE 6.25. Is it possible to modify the card trick to work with only eight cards instead of
12? If so, how; if not, why not?

6.3. A NEW GROUP

In this section we find a subset of Zn that we can turn into a multiplicative group. Before
that, we need a little more number theory.

Before finishing that, we need some more technical details from number theory. Warning:
the following definition is guaranteed to offend your sensibilities.

DEFINITION 6.26. Let p ∈Z and assume p > 1. We say that p is prime if for any two integers
a, b

p | ab =⇒ p | a or p | b .

EXAMPLE 6.27. Let a = 68 and b = 25. It is easy to recognize that 10 divides ab = 1700.
However, 10 divides neither a nor b , so 10 is not a prime number.

It is also easy to recognize that 17 divides ab = 1700. Here, 17 must divide one of a or b ,
because it is prime. In fact, 17×4 = 68 = a. 4

The definition of a prime number may surprise you, since ordinarily people think of a prime
number as being irreducible. In fact, you will prove for homework:

THEOREM 6.28. A positive integer is irreducible if and only if it is prime.
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If the two definitions are equivalent, why would we give a different definition? It turns
out that the concepts are equivalent only for the integers, and not for some other sets; you will
encounter one such set later in the course.

Primes are useful because every integer has a unique factorization into primes:

THEOREM 6.29. Let n ∈Z and assume n > 1. We can write

n = pα1
1 pα2

2 · · · p
αr
r

where p1, p2, . . . , pr are irreducible (hence, prime) and α1,α2, . . . ,αr ∈N≥0. Moreover, this repre-
sentation is unique.

PROOF. The proof has two parts: a proof of existence and a proof of uniqueness.
Existence: We proceed by induction on the integers larger than or equal to two.
Inductive base: If n = 2, n is irreducible, and we are finished.
Inductive hypothesis: The integers 2, 3, . . . , n−1 satisfy the theorem, although each may have

its own factorization.
Inductive step: If n is irreducible, then we are finished. Otherwise, n is not irreducible, so

there exists an integer p1 such that p1 | n and p 6= ±1, n. Choose the largest α1 ∈ N≥0 such
that pα1

1 | n. Use the definition of divisibility (Definition 1.6 on page 13) to find q ∈ Z such
that n = q p1. By the definition of irreducible, we know that p1 6= 1, so q < n. Since p1 is not
negative, q > 1. Thus q satisfies the inductive hypothesis, and we can write q = pα2

2 pα3
3 · · · p

αr
r .

Thus
n = q p1 = pα1

1 pα2
2 · · · p

αr
r

as claimed.
Uniqueness: Suppose that there exist α1, . . . ,αr and β1, . . . ,βr such that

n = pα1
1 pα2

2 · · · p
αr
r = pβ1

1 pβ2
2 · · · p

βr
r .

Without loss of generality, we may assume that α1 ≤β1. It follows that

pα2
2 pα3

3 · · · p
αr
r = pβ1−α1

1 pβ2
2 pβ3

3 · · · p
βr
r .

This equation implies that pβ1−α1
1 divides the expression on the left hand side of the equation.

Since p1 is irreducible, hence prime, β1−α1 > 0 implies that p1 divides one of p2, p3, . . . , pr .
This contradicts the irreducibility of p2, p3, . . . , pr . Hence β1−α1 = 0. A similar argument
shows thatβi = αi for all i = 1,2, . . . , r ; hence the representation of n as a product of irreducible
integers is unique. �

To turn Zn into a multiplicative group, we would like to define multiplication in an “intu-
itive” way. By “intuitive”, we mean that we would like to say

[2] · [3] = [2 ·3] = [6] = [1] .

Before we can address the questions of whether Zn can become a group under this operation,
we have to remember that cosets can have various representations, and different representations
may lead to different results: is this operation well-defined?

LEMMA 6.30. The proposed multiplication of elements of Zn as

[a] [b ] = [ab ]
is well-defined.
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PROOF. Let x, y ∈Zn and represent x = [a] = [c ] and y = [b ]. Then

xy = [a] [b ] = [ab ] and xy = [c ] [b ] = [c b ] .

We need to show that [ab ] = [c b ]. Since these are sets, we have to show that each is a subset of
the other.

By assumption, [a] = [c ]; this notation means that a + nZ = c + nZ. Lemma 3.24 on
page 43 tells us that a− c ∈ nZ. Hence a− c = nt for some t ∈Z. Now (a− c) b = nu where
u = t b ∈ Z, so ab − c b ∈ nZ. Lemma 3.24 again tells us that [ab ] = [c b ] as desired, so the
proposed multiplication of elements in Zn is well-defined. �

EXAMPLE 6.31. Recall that Z5 = Z/ 〈5〉= {[0] , [1] , [2] , [3] , [4]}. The elements of Z5 are cosets;
since Z is an additive group, we were able to define easily an addition on Z5 that turns it into an
additive group in its own right.

Can we also turn it into a multiplicative group?In that case, we need to identify an identity,
and inverses. Certainly [0] won’t have a multiplicative inverse, but what about Z∗5 = Z5\{[0]}?
This generates a multiplication table that satisfies the properties of an abelian (but non-additive)
group:

× 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

In fact, Z∗5
∼= Z4; they are both the cyclic group of four elements. In Z∗5, however, the

operation is multiplication, whereas in Z4 the operation is addition. 4

You might think that this trick of dropping zero and building a multiplication table always
works, but it doesn’t.

EXAMPLE 6.32. Recall that Z4 = Z/ 〈4〉 = {[0] , [1] , [2] , [3]}. Consider the set Z4\{[0]} =
{[1] , [2] , [3]}. The multiplication table for this set is not closed because

[2] · [2] = [4] = [0] 6∈Z4\{[0]} .
The next natural question: Is any subset of Z4 a multiplicative group? Try to fix the problem
by removing [2] as well: set Z∗4 = Z4\{[0] , [2]} = {[1] , [3]}. This time the multiplication table
works out:

× 1 3
1 1 3
3 3 1

In fact, Z∗4
∼= Z2; they are both the cyclic group of two elements. In Z∗4, however, the

operation is multiplication, whereas in Z2, the operation is addition. 4

You can determine for yourself that Z∗2 = {[1]} and Z∗3 = {[1] , [2]} are also multiplicative
groups. In this case, as in Z∗5, we need remove only 0. For Z∗6 = {[1] , [5]}, however, we have to
remove nearly all the elements!

Why do we need to remove more numbers from Zn for certain values of n than for others?
Aside from zero, which clearly has no inverse under the operation specified, the elements we’ve
had to remove are invariably those elements whose multiplication tries to re-introduce zero into
the group. That already seems strange: we have non-zero elements that, when multiplied by
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other non-zero elements, produce a product of zero. Here is an instance where Zn superficially
behaves very differently from the integers. Can we find a criterion to detect this?

LEMMA 6.33. Let x ∈Zn , with x 6= [0]. The following are equivalent:
(A) There exists y ∈Zn , y 6= [0], such that xy = [0].
(B) For any representation [a] of x, there exists a common divisor d of a and n such that d 6=±1.

PROOF. That (B) implies (A): If a and n share a common divisor d , use the definition of
divisibility (Definition 1.6 on page 13) to choose q such that n = qd . Likewise choose t such
that a = t d . Then

q x = q [a] = q [t d ] .
Exercise 6.38 implies that

q [t d ] = [q t d ] = t [qd ] = t [n] = [0] .

Using the same Exercise6.38, we conclude that if y = [q ] then xy = [0].
That (A) implies (B): Let y ∈ Zn , and suppose that y 6= [0] but xy = [0]. Choose a, b ∈ Z

such that x = [a] and y = [b ]. Since xy = [0], we can find k ∈ Z such that ab = kn. Let p0
be any irreducible number that divides n. Then p0 also divides kn. Since kn = ab , we see that
p0 | ab . Since p0 is irreducible, hence prime, it must divide one of a or b . If it divides a, then a
and n have a common divisor p0 that is not ±1, and we are done; otherwise, it divides b . Use
the definition of divisibility to find n1, b1 ∈Z such that n = n1 p0 and a = b1 p0; it follows that
ab1 = kn1. Again, let p2 be any irreducible number that divides n2; the same logic implies that
p2 divides ab2; being prime, p2 must divide a or b2.

As long as we can find prime divisors of the ni that divide bi but not a, we repeat this process
to find triplets (n2, b2, p2) , (n3, b3, p3) , . . . satisfying for all i the properties

• abi = kni ; and
• bi−1 = pi bi and ni−1 = pi ni .

By the well-ordering property, the set {n, n1, n2, . . .} has a least element; since n > n1 > n2 · · · , we
cannot continue finding pairs indefinitely, and must terminate with the least element (nr , br ).
Observe that

b = p1b1 = p1 (p2b2) = · · ·= p1 (p2 (· · · (pr br )))(6.3.1)

and

n = p1n1 = p1 (p2n2) = · · ·= p1 (p2 (· · · (pr nr ))) .

Case 1. If nr > 1, then n and a must have a common divisor that is not ±1.

Case 2. If nr = 1, then n = p1 p2 · · · pr . By substitution into equation 6.3.1, b = nbr . By
the definition of divisibility, n | b . By the definition of Zn , y = [b ] = [0]. This contradicts the
hypothesis.

Hence n and a share a common divisor that is not ±1. �

Let’s try then to make a multiplicative group out of the set of elements of Zn that do not
violate the zero product rule.

DEFINITION 6.34. Let n ∈Z. Let x, y ∈Zn , and represent x = [a] and y = [b ].
(1) Define a multiplication operation on Zn by xy = [ab ].
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(2) We say that a, b ∈Zn are zero divisors if ab = 0. (Of course, this is true also if aa = 0.)
That is, zero divisors are the elements of Zn that violate the zero-product property of
multiplication.

(3) Define the set to be the set of elements in Zn that are neither zero nor not zero divisors.
That is,

Z∗n := {x ∈Zn\{0} : ∀y ∈Zn ab 6= 0} .

By removing elements that share non-trivial common divisors with n, we have managed to
eliminate those elements that do not satisfy the zero-product rule, and would break closure by
trying to re-introduce zero in the multiplication table.

We claim that Z∗n is a group under multiplication. Note that while it is a subset of Zn , it is
not a subgroup: Zn is not a group under multiplication, and subgroups maintain the operation
of the parent group.

THEOREM 6.35. Z∗n is an abelian group under its multiplication.

PROOF. We showed in Lemma 6.30 that the operation is well-defined. We check each of the
requirements of a group:
(G1): Let x, y ∈ Z∗n ; represent x = [a] and y = [b ]. By definition of Z∗n , a and b have no

common divisors with n aside from±1; thus ab also has no common divisors with n aside
from ±1. As a result, xy = [ab ] ∈Z∗n .

(G2): Let x, y, z ∈Z∗n ; represent x = [a], y = [b ], and z = [c ]. Then

x (y z) = [a] [b c ] = [a (b c)] = [(ab ) c ] = [ab ] [c ] = (xy) z.

(G3): We claim that [1] is the identity of this group. Let x ∈Z∗n ; represent x = [a]. Then

x · [1] = [a ·1] = [a] = x;

a similar argument shows that [1] · x = x.
(G4): Let x ∈ Z∗n . By definition of Z∗n , x 6= 0 and x is not a zero divisor in Zn . Represent

x = [m]. Since x 6= 0, m 6∈ Zn , so n - m. From Lemma 6.33, m and n have no common
divisors except ±1; hence gcd (m, n) = 1. Using the Extended Euclidean Algorithm, find
a, b ∈Z such that am + b n = 1. Hence

am = 1 + n (−b )
∴ am ∈ 1 + nZ

∴ am + nZ = 1 + nZ

∴ [am] = [1]
∴ [a] [m] = [1]

by (respectively) the definition of the coset 1 + nZ, Lemma 3.24 on page 43, the notation
for cosets of subgroups of Zn , and the definition of multiplication in Z∗n given above. Let
y = [a]; by substitution, the last equation becomes

y x = [1]

as claimed.
(G5) Let x, y ∈Z∗n ; represent x = [a] and y = [b ]. Then

xy = [ab ] = [ba] = y x.
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�

EXERCISES.

EXERCISE 6.36. List the elements of Z7 using representations between 0 and 7, and construct
its multiplication table. Use the table to identify the inverse of each element.

EXERCISE 6.37. List the elements of Z15 using representations between 0 and 15, and construct
its multiplication table. Use the table to identify the inverse of each element.

EXERCISE 6.38. Show that for any a, x, n ∈Z, a [x ] = [ax ] in Zn . Hint: Remember that we are
talking about repeated addition of cosets. Prove this fact for a > 0 using induction; for a ≤ 0, it
follows from the notation for additive sets.

EXERCISE 6.39. Let p ∈Z, and p > 1. Show that p is irreducible iff p is prime. Hint:

6.4. EULER’S NUMBER, EULER’S THEOREM, AND FAST EXPONENTIATION

In Section 6.3 we defined the group Z∗n for all n ∈N>1. This group satisfies an important
property called Euler’s Theorem. Much of what follows is related to some work of Euler, pro-
nounced in a way that rhymes with “oiler”. Euler was a very influential mathematician: You
already know of Euler’s number e = limx→∞

�

1 + 1
x

�x ≈ 2.718; Euler is well-known for contri-
butions to Calculus, Differential Equations, and to Number Theory. He was extremely prolific,
and is said to have calculated the way “ordinary” men breathe. After losing his sight in one eye,
he expressed his happiness at being only half as distracted from his work as he was before. He
sired a large number of children, and used to work with one child sitting on one knee, and an-
other child sitting on the other knee. He is, in short, the kind of historical figure that greatly
lowers my self-esteem as a mathematician. Amazingly, Euler is well-known for his work in just
about every area of mathematics except algebra.

DEFINITION 6.40. Euler’s ϕ-function is ϕ (n) =
�

�

�Z∗n

�

�

�.

THEOREM 6.41 (Euler’s Theorem). For all x ∈Z∗n , xϕ(n) = 1.

Proofs of Euler’s Theorem based only on Number Theory are not very easy. They aren’t
particularly difficult, either: they just aren’t easy. See for example the proof on pages 18–19 of
the text, Concrete Abstract Algebra: from Numbers to Gröbner Bases by Niels Lauritzen.

On the other hand, a proof of Euler’s Theorem using algebra is trivial.

PROOF. Let x ∈Z∗n . By Corollary 3.37 to Lagrange’s Theorem, ordx |
�

�

�Z∗n

�

�

�. Hence ordx |
ϕ (n); use the definition of divisibility to write ϕ (n) = dordx for some d ∈Z. Hence

xϕ(n) = xdordx =
�

xordx
�d

= 1d = 1.

�
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COROLLARY 6.42. For all x ∈Z∗n , xϕ(n)−1 = x−1.

PROOF. You do it! See Exercise 6.51. �

It thus becomes an important computational question to ask, how large is this group? For
irreducible integers this is easy: if p is irreducible, ϕ (p) = p−1. For reducible integers, it is not
so easy: using Definitions 6.40 and 6.34, ϕ (n) is the number of positive integers smaller than n
and sharing no common divisors with n. Checking a few examples, no clear pattern emerges:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15
�

�

�Z∗n

�

�

� 1 2 2 4 2 6 4 6 4 10 4 12 6 8

Computing ϕ (n) turns out to be quite hard for arbitrary n ∈N>0. This difficulty is what makes
the RSA algorithm secure (see Section 6.5.

One way to do it would be to factor n and compute all the positive integers that do not share
any common factors. For example,

28 = 22 ·7,

so to compute ϕ (28), we could look at all the positive integers smaller than 28 that do not
have 2 or 7 as factors. However, this is unsatisfactory: it requires us to try two divisions on all
the positive integers between 2 and 28. That takes too long, and becomes even more burdensome
when dealing with large numbers. There has to be a better way! Unfortunately, no one knows
it.

One thing we can do is break n into its factors. Presumably, it would be easier to compute
ϕ (m) for these smaller integers m, but how to recombine them?

LEMMA 6.43. Let n ∈N>0. If n = pq and gcd (p, q) = 1, then ϕ (n) = ϕ (p)ϕ (q).

EXAMPLE 6.44. In the table above, we have ϕ (15) = 8. Notice that this satisfies

ϕ (15) = ϕ (5×3) = ϕ (5)ϕ (3) = 4×2 = 8.

4

PROOF. Recall from Exercise 2.42 on page 26 that Z∗p ×Z∗q is a group; a counting argument

shows that the size of this group is
�

�

�Z∗p

�

�

�×
�

�

�Z∗q

�

�

�= ϕ (p)ϕ (q). We show that Z∗n
∼= Z∗p ×Z∗q .

Let f : Z∗n → Z∗p ×Z∗q by f
�

[a]n
�

=
�

[a] p , [a]q

�

where [a]i denotes the congruence class
of a in Zi . First we show that f is a homomorphism: Let a, b ∈Z∗n ; then

f
�

[a]n [b ]n
�

= f
�

[ab ]n
�

=
�

[ab ] p , [ab ]q

�

=
�

[a] p [b ] p , [a]q [b ]q

�

=
�

[a] p , [a]q

��

[b ] p , [b ]q

�

= f
�

[a]n
�

f
�

[b ]n
�

(where Lemma 6.30 on page 104 and the definition of the operation in Z∗p×Z∗q justify the second
two equations).

It remains to show that f is one-to-one and onto. We claim that this follows from the simple
version of the Chinese Remainder Theorem, since the mapping f corresponds precisely to the
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system of linear congruences

[x ] = [a] in Z∗p ;

[x ] = [b ] in Z∗q .

That f is onto follows from the fact that any such x exists in Zn ; that f is one-to-one follows
from the fact that x is unique in Zn .

We are not quite done; we have shown that a solution x exists in Zn , but we must show that
more specifically x ∈Z∗n . To see that indeed x ∈Z∗n , let d by any common divisor of x and n.
Let c ∈ Z such that n = cd . Let r be an irreducible divisor of d ; then r | n. Now n = pq , so
r | pq , so r | p or r | q . Then d shares a common divisor with p or with q . However, x ∈Z∗p
implies that gcd (x, p) = 1; likewise, gcd (x, q) = 1. Since d is a common divisor of x and p or
q , d = 1. Since it was an arbitrary common divisor of x and n, gcd (x, n) = 1; hence x ∈ Z∗n
and f is one-to-one. �

Corollary 6.42 on the preceding page gives us an “easy” way to compute the inverse of any x ∈
Z∗n . However, it can take a long time to compute xϕ(n), so we conclude with a brief discussion of
how to compute exponents in this group. We will take two steps towards a fast exponentiation
in Z∗n .

LEMMA 6.45. For any n ∈N>1, [xa ] = [x ]a in Z∗n .

PROOF. You do it! See Exercise 6.53 on page 112. �

EXAMPLE 6.46. In Z∗15 we can easily determine that
�

420�= [4]20 =
�

[4]2
�10

= [16]10 = [1]10 =
[1]. Notice that this is a lot faster than computing 420 = 1099511627776 and dividing to compute
the remainder. 4
THEOREM 6.47. Let a ∈N and x ∈Z. We can compute xa in the following way:

(1) Let b be the largest integer such that 2b ≤ a.
(2) Use the Division Theorem to divide a repeatedly by 2b , 2b−1, . . . , 21, 20 in that order; let

the quotients of each division be qb , qb−1, . . . , q1, q0.
(3) Write a = qb 2b + qb−12b−1 + · · ·+ q121 + q020.
(4) Let y = 1, z = x and i = 0.
(5) Repeat the following until i > b :

(a) If qi 6= 0 then replace y with the product of y and z.
(b) Replace z with z2.
(c) Replace i with i + 1.

When the repetition stops, xa = y.

Theorem6.47 effectively computes the binary representation of a and uses this to square x
repeatedly, multiplying the result only by those powers that matter for the representation. Its
algorithm is especially effective on computers, whose mathematics is based on binary arithmetic.
Combining it with Lemma 6.45 gives an added bonus.

EXAMPLE 6.48. Since 10 = 23 + 21, we can compute

410 = 423+21

by following the algorithm of Theorem 6.47:
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(1) We have q3 = 1, q2 = 0, q1 = 1, q0 = 0.
(2) Let y = 1, z = 4 and i = 0.
(3) When i = 0:

(a) We do not change y because q0 = 0.
(b) Put z = 42 = 16.
(c) Put i = 1.

(4) When i = 1:
(a) Put y = 1 ·16 = 16.
(b) Put z = 162 = 256.
(c) Put i = 2.

(5) When i = 2:
(a) We do not change y because q2 = 0.
(b) Put z = 2562 = 65,536.
(c) Put i = 3.

(6) When i = 3:
(a) Put y = 16 ·65,536 = 1,048,576.
(b) Put z = 65,5362 = 4,294,967,296.
(c) Put i = 4.

We conclude that 410 = 1,048,576. Hand computation the long way, or a half-decent calculator,
will verify this. 4

PROOF OF FAST EXPONENTIATION. Termination: Termination follows from the fact that
b is a finite number, and the algorithm assigns to i the values 0,1, . . . , b + 1 in succession.

Correctness: Since b is the largest integer such that 2b ≤ a, qb ∈ {0,1}; otherwise, 2b+1 =
2 · 2b ≤ a, contradicting the choice of b . For i = b − 1, . . . , 1, 0, we have the remainder from
division by 2i+1 smaller than 2i , and we immediately divide by 2b = 2i−1, so that qi ∈ {0,1} as
well. Hence qi ∈ {0,1} for i = 0,1, . . . , b and if qi 6= 0 then qi = 1. The algorithm therefore
multiplies z = x2i

to y only if qi 6= 0, which agrees with the binary representation

xa = xqb 2b +qb−12b−1+···+q121+q020
.

�

EXERCISES.

EXERCISE 6.49. Compute 328 in Z using fast exponentiation. Show the steps of exponentiation.

EXERCISE 6.50. Compute 2428 in Z∗7 using fast exponentiation. Show the steps of exponentia-
tion.

EXERCISE 6.51. Prove that for all x ∈Z∗n , xϕ(n)−1 = x−1.

EXERCISE 6.52. Prove that for all x ∈ N>0, if x and n have no common divisors, then n |
�

xϕ(n)−1
�

.
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EXERCISE 6.53. Prove that for any n ∈N>1, [xa ] = [x ]a in Z∗n . Hint: Consider the factorization
of a into irreducibles, and Lemma 6.30 on page 104.

6.5. THE RSA ENCRYPTION ALGORITHM

From the viewpoint of practical applications, some of the most important results of group
theory and number theory are those that enable security in internet commerce. We described
this problem in Section 1.1: when you buy something online, you usually submit some private
information, in the form either of a credit card number or a bank account number. There is no
guarantee that, as this information passes through the internet, it passes through trustworthy
computers. In fact, it is quite likely that the information sometimes passes through a computer
run by at least one ill-intentioned hacker, and possibly even organized crime. Identity theft has
emerged in the last few decades as an extremely profitable pursuit.

Given the inherent insecurity of the internet, the solution is to disguise your private infor-
mation so that disreputable snoopers cannot understand it. Mathematicians discovered a long
time ago that mathematics provides a highly reliable method both of analyzing and of creating
methods of encryption. A common method in use today is the RSA encryption algorithm.1

First we describe the algorithms for encryption and decryption; afterwards we explain the ideas
behind each stage, illustrating with an example; finally we prove that it succesfully encrypts and
decrypts messages.

THEOREM 6.54 (RSA algorithm). Let M be a list of positive integers obtained by converting the
letters of a message. Let p, q be two irreducible integers that satisfy the following two criteria:

• gcd (p, q) = 1; and
• (p−1) (q−1)>max{m : m ∈M}.

Let N = pq, and let e ∈ Z∗
ϕ(N ), where ϕ is the Euler phi-function. If we apply the following

algorithm to M :
(1) Let C be a list of positive integers found by computing [me ] ∈ZN for each m ∈M .

and subsequently apply the following algorithm to C :

(1) Let d = e−1 ∈Z∗
ϕ(N ).

(2) Let D be a list of positive integers found by computing c d ∈ZN for each c ∈C .
then D = M .

EXAMPLE 6.55. Consider the text message
ALGEBRA RULZ.

We will convert the letters to integers in the fashion that you might expect: A=1, B=2, . . . ,
Z=26. We will also assign 0 to the space. Thus

M = (1,12,7,5,2,18,1,0,18,21,12,26) .

Let p = 5 and q = 11; then N = 55. Let e = 3; note that

gcd (3,ϕ (N )) = gcd (3,4×10) = gcd (3,40) = 1.

1RSA stands for Rivest, Shamir, and Adleman, three researchers at MIT.
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We encrypt by computing me for each m ∈M :

C =
�

13, 123, 73, 53, 23, 183, 13, 03, 183, 213, 123, 263
�

= (1,23,13,15,8,2,1,0,2,21,23,31) .

A snooper who intercepts C and tries to read it as a plain message would have a problem, since
it contains a number that does not fall in the range 0 and 26. If he gave that number the symbol
_, he would see

AWMOHBA BUW_
which is not an obvious encryption of ALGEBRA RULZ.
The inverse of 3 ∈ Z∗40 is d = 27 (since 3× 27 = 81 and [81] = [1] in Z∗40). We decrypt by

computing c d for each c ∈C :

D =
�

127, 2327, 1327, 1527, 827, 227, 127, 027, 227, 2127, 2327, 3127
�

= (1,12,7,5,2,18,1,0,18,21,12,26) .

Trying to read this as a plain message, we have
ALGEBRA RULZ.

It does, doesn’t it?. 4

A few observations are in order.
(1) Usually encryption is not done letter-by-letter; instead, letters are grouped together and

converted to integers that way. For example, the first four letters of the secret message
above are

ALGE
and we can convert this to a number using any of several methods; for example

ALGE → 1×263 + 12×262 + 7×26 + 5 = 25,785.

In order to encrypt this, we would need larger values for p and q . We give an example
of this in the homework.

(2) RSA is an example of a public-key cryptosystem. In effect that means that person A broad-
casts to the world, “Anyone who wants to send me a secret message can use the RSA
algorithm with values N = . . . and e = . . ..” Even the snooper knows N and e !

(3) If even the snooper knows N and e , what makes RSA safe? To decrypt, the snooper
needs to compute d = e−1 ∈ Z∗

ϕ(N ). This would be relatively easy if he knew ϕ (N ).

There is no known method of computing ϕ (N ) “quickly”. If p and q are small, of
course this isn’t hard: one simply tries to factor N ; Lemma 6.43 tells us that ϕ (N ) =
(p−1) (q−1). In practice, however, p and q are very large numbers (many digits long).
There is a careful science to choosing p and q in such a way that it is hard to determine
their values from N and e .

(4) It is time-consuming to perform these computations by hand; a computer algebra system
will do the trick nicely. At the end of this section, after the exercises, we list programs
that will help you perform these computations in the Sage and Maple computer algebra
systems. The programs are:
• scramble, which accepts as input a plaintext message like “ALGEBRA RULZ” and

turns it into a list of integers;
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• descramble, which accepts as input a list of integers and turns it into plaintext;
• en_de_crypt, which encrypts or decrypts a message, depending on whether you

feed it the encryption or decryption exponent.
Examples of usage:
• in Sage:

◦ to determine the list of integers M , type M = scramble("ALGEBRA RULZ")

◦ to encrypt M , type C = en_de_crypt(M,3,55)

◦ to decrypt C , type en_de_crypt(C,27,55)
• in Maple:

◦ to determine the list of integers M , type M := scramble("ALGEBRA RULZ");

◦ to encrypt M , type C := en_de_crypt(M,3,55);

◦ to decrypt C , type en_de_crypt(C,27,55);
Now, why does the RSA algorithm work?

PROOF OF THE RSA ALGORITHM. Let i ∈ {1,2, . . . , |C |}. Let c ∈ C . By definition of C ,
c = me ∈Z∗N for some m ∈M . We need to show that c d = (me)d = m.

Since gcd (e ,ϕ (N )) = 1, the Extended Euclidean Algorithm tells us that there exist a, b ∈Z

such that
1 = ae + bϕ (N ) .

Rearranging the equation, we see that

1− ae = bϕ (N ) ;

in other words, [1− ae ] = [0] ∈Zϕ(N ), so that [1] = [a] [e ] ∈Zϕ(N ). By definition of an inverse,
[a] = [e ]−1 = [d ] ∈Z∗

ϕ(N ). (Notice that we omitted the star previously, but now we include it.)

Without loss of generality, d , e > 0, which implies that b < 0. Let c = −b . Substitution
gives us

(me)d = med = mae = m1−bϕ(N ) = m1+cϕ(N ).

We claim that [m]1+cϕ(N ) = [m] ∈ZN . This requires us to show two subclaims.

CLAIM. [m]1+cϕ(N ) = [m] ∈Zp .

If p | m, then [m] = [0] ∈Zp , and

[m]1+cϕ(N ) = [0]1+cϕ(N ) = [0] = [m] ∈Zp .

Otherwise, recall that p is irreducible; then gcd (m, p) = 1 and by Euler’s Theorem on page 108

[m]ϕ(p) = [m] p−1 = [1] ∈Z∗p .

Thus
[m]1+cϕ(N ) = [m] · [m]cϕ(N ) = [m]

�

[m]ϕ(N )
�c

= [m] · [1]c = [m] ∈Z∗p .

What is true for Z∗p is also true in Zp , since the former is a subset of the latter. Hence

[m]1+cϕ(N ) = [m] ∈Zp .

CLAIM. [m]1+cϕ(N ) = [m] ∈Zq .
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The argument is similar to that of the first claim.
Since [m]1+cϕ(N ) = [m] in both Zp and Zq , properties of the quotient groups Zp and

Zq tell us that
�

m1+cϕ(N )−m
�

= [0] in both Zp and Zq as well. In other words, both p
and q divide m1+cϕ(N )−m. You will show in Exercise 115 that this implies that N divides
m1+cϕ(N )−m. �

EXERCISES.

EXERCISE 6.56. The phrase

[574,1,144,1060,1490,0,32,1001,574,243,533]

is the encryption of a message using the RSA algorithm with the numbers N = 1535 and e = 5.
You will decrypt this message.

(a) Factor N .
(b) Compute ϕ (N ).
(c) Find the appropriate decryption exponent. Hint: Using the Extended Euclidean Algorithm

might make this go faster. The proof of the RSA algorithm outlines how to use it.
(d) Decrypt the message.

EXERCISE 6.57. In this exercise, we encrypt a phrase using more than one letter in a number.

(a) Rewrite the phrase GOLDEN EAGLES as a list M of three positive integers, each of which
combines four consecutive letters of the phrase.

(b) Find two prime numbers whose product is larger than the largest number you would get
from four letters. Hint: That largest number should come from encrypting ZZZZ.

(c) Use those two prime numbers to compute an appropriate N and e to encrypt M using RSA.
(d) Find an appropriate d that will decrypt M using RSA. Hint: Using the Extended Euclidean

Algorithm might make this go faster. The proof of the RSA algorithm outlines how to use
it.

(e) Decrypt the message to verify that you did this correctly.

EXERCISE 6.58. Let m, p, q ∈Z and suppose that gcd (p, q) = 1. Show that if p | m and q | m,
then pq | m. Hint: There are a couple of ways to argue this. The best way for you is to explain
why there exist a, b such that a p + b q = 1. Next, explain why there exist integers d1, d2 such
that m = d1a and m = d2b . Observe that m = m ·1 = m ·(a p + b q). Put all these facts together
to show that ab | m.
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SAGE PROGRAMS. The following programs can be used in Sage to help make the amount of
computation involved in the exercises less burdensome:

def scramble(s):

result = []

for each in s:

if ord(each) >= ord("A") and ord(each) <= ord("Z"):

result.append(ord(each)-ord("A")+1)

else:

result.append(0)

return result

def descramble(M):

result = ""

for each in M:

if each == 0:

result = result + " "

else:

result = result + chr(each+ord("A") - 1)

return result

def en_de_crypt(M,p,N):

result = []

for each in M:

result.append((each^p).mod(N))

return result



6.5. THE RSA ENCRYPTION ALGORITHM 117

MAPLE PROGRAMS. The following programs can be used in Maple to help make the amount
of computation involved in the exercises less burdensome:

scramble := proc(s)

local result, each, ord;

ord := StringTools[Ord];

result := [];

for each in s do

if ord(each) >= ord("A") and ord(each) <= ord("Z") then

result := [op(result),

ord(each) - ord("A") + 1];

else

result := [op(result), 0];

end if;

end do;

return result;

end proc:

descramble := proc(M)

local result, each, char, ord;

char := StringTools[Char];

ord := StringTools[Ord];

result := "";

for each in M do

if each = 0 then

result := cat(result, " ");

else

result := cat(result, char(each + ord("A") - 1));

end if;

end do;

return result;

end proc:

en_de_crypt := proc(M,p,N)

local result, each;

result := [];

for each in M do

result := [op(result), (each^p) mod N];

end do;

return result;

end proc:
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Elementary ring theory



CHAPTER 7

Rings and ideals

7.1. RINGS

Groups are simple in the following respect: a group is defined by a set and one operation.
When we studied the set of matrices Rm×n as a group, for example, we considered only the
operation of addition. Likewise, when we studied Z as a group, we considered only the operation
of addition. With other groups, we studied other operations, but we only studied one operation
at a time.

Besides adding matrices or integers, one can also multiply matrices or integers. We can deal
with multiplication independently of addition by restricting the set in certain ways—using the
subset GLm (R), for example. In some cases, however, we want to analyze how both addition
and multiplication interact in a given set. This motivates the study of a structure that incorpo-
rates common properties of both operations.

DEFINITION 7.1. Let R be a set with at least two elements, and + and × two operations on that
set. We say that (R,+,×) is a ring if it satisfies the following properties:

(R1) (R,+) is an abelian group.
(R2) R is closed under multiplication: that is,

for all a, b ∈ R, ab ∈ R.
(R3) R is associative under multiplication: that is,

for all a, b , c ∈ R, (ab ) c = a (b c).
(R4) R satisfies the distributive property of addition over multiplication: that is,

for all a, b , c ∈ R, a (b + c) = ab + ac and (a + b ) c = ac + b c .

NOTATION. As with groups, we usually refer simply to R as a group, rather than (R,+,×).
Since (R,+) is an abelian group, the ring has an additive identity, 0. We sometimes write

0R to emphasize that it is the additive identity of a ring. Likewise, if there is a multiplicative
identity, we write 1 or 1R, not e .

Notice the following:

• While the addition is guaranteed to be commutative by (R1), we have not stated that
multiplication is commutative. Indeed, our first example ring has non-commutative for
multiplication.
• There is not requirement that a multiplicative identity exists.
• There is no requirement that multiplicative inverses exist.
• There is no guarantee (yet) that the additive identity satisfies any properties that you

remember from past experience: in particular, there is no guarantee that
◦ the zero-product rule holds; or even that
◦ 0R · a = 0R for any a ∈ R.

119
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EXAMPLE 7.2. Let R = Rm×m for some positive integer m. It turns out that R is a ring under
the usual addition and multiplication of matrices. We pass over the details, but they can be found
in any reputable linear algebra book.

We do want to emphasize the following. Let

A =
�

1 0
0 0

�

and B =
�

0 0
0 1

�

.

Routine computation shows that

AB =
�

0 0
0 0

�

even though A,B 6= 0. Hence
We can never assume in any ring R the zero product property that

∀a, b ∈ R ab = 0 =⇒ a = 0 or b = 0.
4

The previous observation motivates a definition that we will explore later:

DEFINITION 7.3. Let D be a ring. If the elements of D satisfy the zero product property, then
we call D a domain.

EXAMPLE 7.4. Although Rm×m is not a domain, GLm (R) is: Let A,B ∈ GLm (R). Assume
AB = 0 but A 6= 0. Thus A−1 exists and

AB = 0

A−1 (AB) = A−1 ·0
B = 0.

Since A,B were arbitrary in GLm (R), ∀A,B ∈GLm (R) if AB = 0 then one of A,B is also the
zero matrix. That is, GLm (R) is a domain. 4

Likewise, the following sets with which you are long familiar are also rings:
• Z, Q, R, C under their usual addition and multiplication;
• the sets of univariate polynomials Z [x ], Q [x ], R [x ], C [x ] under their usual addition

and multiplication;
• the sets of multivariate polynomials Z [x1, . . . , xn ], etc. under their usual addition and

multiplication.
You will study other example rings in the exercises. For now, we prove a familiar property of
the additive identity.

PROPOSITION 7.5. For all r ∈ R, r ·0R = 0R · r = 0R.
PROOF. Since (R,+) is an abelian group, we know that 0R + 0R = 0R. Let r ∈ R. By

substitution, r (0R + 0R) = r · 0R. By distribution, r · 0R + r · 0R = r · 0R. Since (R,+) is an
abelian group, r · 0R has an additive inverse; call it s . Substitution followed by the associative,
inverse, and identity properties implies that

s +(r ·0R + r ·0R) = s + r ·0R

(s + r ·0R)+ r ·0R = s + r ·0R

0R + r ·0R = 0R

r ·0R = 0R.
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A similar argument shows that 0R · r = 0R. �

We now turn our attention to two properties that, while pleasant, are not necessary for a
ring.

DEFINITION 7.6. Let R be a ring. If R has a multiplicative identity 1R such that

r ·1R = 1R · r = r ∀r ∈ R,

we say that R is a ring with unity. (Another name for the multiplicative identity is unity.)
If R is a ring and the multiplicative operation is commutative, so that

r s = s r ∀r ∈ R,

then we say that R is a commutative ring.

EXAMPLE 7.7. The set of matrices Rm×m is a ring with unity, with the identity matrix Im as the
multiplicative identity. However, it is not a commutative ring.

You will show in Exercise 7.9 that 2Z is a ring. It is also a commutative ring, but it is not a
ring with unity.

For a commutative ring with unity, we have Z. 4

We conclude this section by characterizing all rings with only two elements.

EXAMPLE 7.8. Let R be a ring with only two elements. There are two possible structures for R.
Why? Since (R,+) is an abelian group, by Section 2.1 the addition table of R has the form

+ 0R a
0R 0R a
a a 0R

.

By Proposition 7.5, we know that the multiplication table must have the form
× 0R a
0R 0R 0R
a 0R ?

where a · a is undetermined. Nothing in the properties of a ring tell us whether a · a = 0R or
a · a = a; in fact, rings exist with both properties:

• if R = Z∗2 (see Exercise 7.10 to see that this is a ring) then a = [1] and a · a = a; but
• if

R =
��

0 0
0 0

�

,a =
�

0 1
0 0

��

⊂
�

Z∗2

�2×2

(two-by-two matrices whose entries are elements of Z∗2), then a · a = 0 6= a. 4

EXERCISES.

EXERCISE 7.9. (a) Show that 2Z is a ring under the usual addition and multiplication of inte-
gers.

(b) Show that nZ is a ring for all n ∈Z under the usual addition and multiplication of integers.
Hint: The cases where n = 0 and n = 1 can be disposed of rather quickly; the case where
n 6= 0,1 is similar to (a).

(c) Is nZ a domain for all non-zero n ∈Z?
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EXERCISE 7.10. (a) Show that Z2 is a ring under the addition and multiplication of cosets de-
fined in Sections 3.5 and 6.3.

(b) Show that Zn is a ring for all n ∈Z where n > 1, under the addition and multiplication of
cosets defined in Sections 3.5 and 6.3.

(c) Is Zn a domain for all non-zero n ∈Z?

EXERCISE 7.11. Let R be a ring.
(a) Show that for all r , s ∈ R, (−r ) s = r (−s) = − (r s). Hint: This is short, but not trivial.

You need to show that (−r ) s + r s = 0R. Try using the distributive property.
(b) Suppose that R has unity. Show that −r = −1R · r for all r ∈ R. Hint: You need to show

that −1R · r + r = 0. Try using a proof similar to part (a), but work in the additive identity
as well.

EXERCISE 7.12. Let R be a ring with unity. Show that 1R 6= 0R. Hint: Proceed by contradiction.
Show that if r ∈ R and r 6= 0,1, then something goes terribly wrong with multiplication in the
ring.

EXERCISE 7.13. Consider the two possible ring structures from Example 7.8. Show that if a
ring R has only two elements, one of which is unity, then it can have only one of the structures.
Hint: Use the result of Exercise 7.12.

EXERCISE 7.14. Let R = {T , F } with the additive operation ⊕ (Boolean xor) where

F ⊕ F = F
F ⊕T = T
T ⊕ F = T
T ⊕T = F

and a multiplicative operation ∧ (Boolean and) where

F ∧ F = F
F ∧T = F
T ∧ F = F
T ∧T = T .

(see also Exercises 2.10 and 2.11 on page 18). Is (R,⊕,∧) a ring? If it is a ring, what is the zero
element? Is it a domain? Hint: You already know that (B ,⊕) is an additive group, so it remains
to decide whether ∧ satisfies the requirements of multiplication in a ring.

EXERCISE 7.15. Let R be a ring.
(a) Show that R [x ] is a ring.
(b) Show that R [x, y ] is a ring.
(c) Show that R [x1, x2, . . . , xn ] is a ring.
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7.2. IDEALS AND QUOTIENT RINGS

Just as groups have subgroups, rings have subrings:

DEFINITION 7.16. Let R be a ring, and S ⊂ R. If S is also a ring under the same operations as
R, then S is a subring of R.

EXAMPLE 7.17. Recall from Exercise 7.9 that 2Z is a ring. It is also a subset of Z, another ring.
Hence 2Z is a subring of Z.

To show that a subset of a ring is a subring, do we have to show all four ring properties? No:
as with subgroups, we can simplify the characterization, but to two properties:

THEOREM 7.18 (The Subring Theorem). Let R be a ring and S ⊂ R. The following are equiva-
lent:
(A) S is a subring of R.
(B) S is closed under subtraction and multiplication. That is, for all a, b ∈ S

(S1) a− b ∈ S, and
(S2) ab ∈ S.

PROOF. That (A) implies (B) is clear, so assume (B). From (B) we know that for any a, b ∈ S
we have (S1) and (S2). Now (S1) is essentially the Subgroup Theorem (Theorem 3.5 on page 37)
so S is an additive subgroup of the additive group R. On the other hand, (S2) only tells us that S
satisfies property (R2) of a ring, but any elements of S are elements of R, so that the associative
and distributive properties follow from inheritance. Thus S is a ring in its own right, which
makes it a subring of R. �

You might think that, just as we moved from subgroups to quotient groups via cosets, we will
move from subrings to “quotient rings” via the ring analogue of cosets. No, actually: although
we are moving to something called a “quotient ring”, and we will build an analogue of cosets, we
won’t do it with subrings! Instead, we will use a special class of subrings called ideals.

DEFINITION 7.19. Let A be a subring of R that satisfies the absorption property:

∀r ∈ R ∀a ∈A ra ∈A.

We say that A is an ideal subring of R, or simply, an ideal. We write .

EXAMPLE 7.20. Recall the subring 2Z of the ring Z. We show that 2Z /Z: let r ∈ Z, and
a ∈ 2Z. By definition of 2Z, there exists d ∈Z such that a = 2d . Substitution gives us

ra = r ·2d = 2 (r d ) ∈ 2Z,

so 2Z “absorbs” multiplication by Z. This makes 2Z an ideal of Z.
Naturally, we can generalize this proof to arbitrary n ∈Z: see Exercise . 4
The absorption property of ideals distinguishes them from other subrings, and makes them

useful for applications.

EXAMPLE 7.21. Let C [x, y ] be the set of all polynomials in x and y with complex coefficients.
You showed in Exercise 7.15 that this is a ring.

Now let f = x2 + y2−1, g = xy−1. Define A = {h f + k g : h, k ∈C [x, y ]}. We claim that
A is an ideal:

• For any a, b ∈ A, we can by definition of A write a = ha f + ka g and b = hb f + kb g
for some ha , hb , ka , kb ∈C [x, y ]. Thus
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◦ a− b = (ha f + ka g )− (hb f + kb g ) = (ha− hb ) f +(ka− kb ) g ∈A; and
◦ ab = (ha f + ka g ) (hb f + kb g ) = ha hb f 2 + hakb f g + hb ka f g +kakb g 2 = h ′ f +

k ′ g where

h ′ = ha hb f + hakb g + hb ka g and k ′ = kakb g ,

which shows that ab has the form of an element of A. Thus ab ∈A as well.
By the Subring Theorem, A is a subring of C [x, y ].
• For any a ∈A, r ∈C [x, y ], write a as before; then

ra = r (ha f + ka g ) = (r ha) f +(r ka) g = h ′ f + k ′ g

where h ′ = r ha and k ′ = r ka . This shows that ra has the form of an element of A, so
ra ∈A.

We have shown that A satisfies the subring and absorption properties; thus, A/C [x, y ].
What’s most interesting about A is the following algebraic fact: the common of f and g

are roots of any element of A. To see this, let (α,β) be a common root of f and g ; that is,
f (α,β) = g (α,β) = 0. Let p ∈ A; by definition of A we can write p = h f + k g for some
h, k ∈C [x, y ]. Substitution shows us that

p (α,β) = (h f + k g ) (α,β)
= h (α,β) · f (α,β)+ k (α,β) · g (α,β)
= h (α,β) ·0 + k (α,β) ·0
= 0;

that is, (α,β) is a root of p. 4

You should recall from linear algebra that vector spaces are an important tool for the study
of systems of linear equations: finding a triangular basis of the vector space spanned by a system
of linear polynomials allows us to analyze the solutions. Example 7.21 illustrates why ideals
are an important tool for the study of non-linear polynomial equations. If one can compute a
“triangular basis” of a polynomial ideal, then one can analyze the solutions in a method very
similar to methods for linear systems.

We conclude with a theorem that allows us to decide easily if a subset of a ring is an ideal.

THEOREM 7.22 (The Ideal Theorem). Let R be a ring and A⊂ R. The following are equivalent:
(A) A is an ideal subring of R.
(B) A is closed under subtraction and absorption. That is,

(I1) for all a, b ∈A, a− b ∈A; and
(I2) for all a ∈A, r ∈ R, a r ∈A.

PROOF. You do it! See Exercise . �

EXERCISES.

EXERCISE 7.23. Show that for any n ∈N+, nZ is an ideal of Z.

EXERCISE 7.24. Prove Theorem 7.22 (the Ideal Theorem).
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EXERCISE 7.25. Let R be a ring and A and I two ideals of R. Decide whether the following
subsets of R are also ideals, and explain your reasoning:
(a) A∩ I
(b) A∪ I
(c) A+ I = {x + y : x ∈A, y ∈ I }
(d) AI = {xy : x ∈A, y ∈ I }

7.3. PRIME AND MAXIMAL IDEALS

7.4. RING HOMOMORPHISMS

7.5. FIELDS AND DOMAINS

7.6. FINITE FIELDS
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