Modern Algebra 1 Section 1 • Assignment 5

JOHN PERRY

Exercise 1. (pg. 53 Exercise 1) Find the gcd of the polynomials $x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+2 x$ and $3 x^{6}+4 x^{5}-3 x^{3}-4 x^{2}$ in $\mathbb{Q}[x]$, and express them as af $+b g$, for some polynomials a, b.

Solution:

Apply Euclid's algorithm to obtain

$$
\begin{aligned}
3 x^{6}+4 x^{5}-3 x^{3}-4 x^{2} & =3\left(x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+2 x\right)+\left(x^{5}+6 x^{4}-x^{2}-6 x\right) \\
x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+2 x & =(x-5)\left(x^{5}+6 x^{4}-x^{2}-6 x\right)+\left(28 x^{4}-28 x\right) \\
x^{5}+6 x^{4}-x^{2}-6 x & =\frac{1}{28}(x+6)\left(28 x^{4}-28 x\right)+0 .
\end{aligned}
$$

So the greatest common divisor is $28 x^{4}-28 x$, or $28 x\left(x^{3}-1\right)$.
For the GCD identity,

$$
\begin{align*}
28 x^{4}-28 x= & \left(x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+2 x\right)-(x-5)\left(x^{5}+6 x^{4}-x^{2}-6 x\right) \\
= & \left(x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+2 x\right) \\
& -(x-5)\left(\left(3 x^{6}+4 x^{5}-3 x^{3}-4 x^{2}\right)-3\left(x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+2 x\right)\right) \\
= & (1+3(x-5))\left(x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+2 x\right) \\
& -(x-5)\left(3 x^{6}+4 x^{5}-3 x^{3}-4 x^{2}\right) \\
= & (3 x-14)\left(x^{6}+x^{5}-2 x^{4}-x^{3}-x^{2}+2 x\right) \\
& -(x-5)\left(3 x^{6}+4 x^{5}-3 x^{3}-4 x^{2}\right) .
\end{align*}
$$

So $a=3 x-14$ and $b=-(x-5)$.

