Modern Algebra 1 Section 1 - Assignment 9

JOHN PERRY

Exercise 1. (pg. 114 Warm Up a) Determine the units and the zero divisors in the following rings:

$$
\mathbb{Z} \times \mathbb{Z}, \quad \mathbb{Z}_{20}, \quad \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \quad \mathbb{Z}_{11}, \quad \mathbb{Z}[x]
$$

Solution:

For $\mathbb{Z} \times \mathbb{Z}$, the only units are $(1,1),(1,-1),(-1,1),(-1,-1)$. The zero divisors are all elements (a, b) such that $a=0$ or $b=0$, but not both. (For example, $(0, b) \cdot(1,0)=(0,0)$.)

For \mathbb{Z}_{20}, Theorem 8.6 tells us that the units are [1], [3], [7], [9], [11], [13], [17], [19]. The zero divisors are the remaining non-zero units.

For $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$, the units are $(1,1),(3,1)$. The zero divisors are $(1,0),(2,0),(3,0),(0,1),(2,1)$.
For \mathbb{Z}_{11}, Theorem 8.5 tells us that every non-zero element is a unit.
For $\mathbb{Z}[x]$, there are no units except 1 , and no zero divisors. \qquad
Exercise 2. (pg. 114 Warm Up b) Suppose that a is a unit in a ring. Is $-a$ a unit? Why or why not?

Solution:

If a is a unit in a ring R, then $1 / a \in R$. Certainly the additive inverse $-1 / a \in R$ also, and by a previous homework problem we can rewrite

$$
(-a)\left(-\frac{1}{a}\right)=a \cdot \frac{1}{a}=1 .
$$

Exercise 3. (pg. 115 Warm Up d) Find a non-zero matrix A in $M_{2}(\mathbb{Z})$ so that $A^{2}=0$. Then A is a zero divisor. (A ring element a so that $a^{n}=0$, for some positive integer n is called nilpotent. See Exercise 7.15.)

Solution:

Let

$$
A=\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right) .
$$

Then $A^{2}=0$ even though $A \neq 0$.
Another one that works is

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Exercise 4. (pg. 115 Warm Upe) Suppose that D is a domain. Show that the direct product $D \times D$ is not a domain.

Solution:

Since D is a domain, we know that $0,1 \in D$. Then $(1,0),(0,1) \in D \times D$ are non-zero and $(1,0) \cdot(0,1)=(0,0)$. Since $(1,0)$ and $(0,1)$ are zero divisors, $D \times D$ is not a domain. \qquad

Exercise 5. (pg. 115 Warm Upl) Give examples of the following, or explain why they don't exist:
(a) A finite field.
(b) A finite field that isn't a domain.
(c) A finite domain that isn't a field.
(d) An infinite field.
(e) An infinite domain that isn't a field.

Solution:

(a) \mathbb{Z}_{p} where p is a prime number.
(b) This is impossible. A field is a special kind of domain (a domain with the property that non-zero elements are units), so every field is a domain, including every finite field.
(c) This is impossible. Theorem 8.8 tells us that every finite domain is a field.
(d) \mathbb{R}.
(e) \mathbb{Z}.

Exercise 6. (pg. 116 Warm Upm) Does there exist an integer m for which \mathbb{Z}_{m} is a domain, but not a field? Explain.

Solution:

No. Let $m \in \mathbb{Z}$ be arbitrary, but fixed. Assume $m \geq 2$ (otherwise we can't talk about \mathbb{Z}_{m}.) If m is prime, then \mathbb{Z}_{m} is a field (Theorem 8.5). If m is not prime, then there exist $p, q \in \mathbb{Z}$ such that $0<p \leq q<m$ and $p q=m$. Then $[p][q]=[m]=[0]$ in \mathbb{Z}_{m}. Since \mathbb{Z}_{m} has zero divisors, it is not a domain.

So the only time \mathbb{Z}_{m} is a domain is when it is a field.
Alternately, one could use Theorem 8.8 ; since \mathbb{Z}_{m} is always finite, then any time it is a domain, it is also a field.

Exercise 7. (pg. 116 Warm Up n) Use Euclid's Algorithm to compute the multiplicative inverse of [2] in \mathbb{Z}_{9}.

Solution:

Applying Euclid's Algorithm, we see that

$$
\begin{aligned}
& 9=4 \times 2+1 \\
& 2=2 \times 1+0
\end{aligned}
$$

So $1=9+(-4) \cdot 2$. Hence the multiplicative inverse of $[2]$ in \mathbb{Z}_{9} is $[-4]=[5]$. \qquad
Exercise 8. (pg. 116 Warm Up o) Use Fermat's Little Theorem 8.7 to compute the multiplicative inverse of $[2]$ in \mathbb{Z}_{5}.
Solution:
$[2]^{5-2}=[2]^{3}=[8]=[3]$. Indeed, $[2][3]=[6]=[1]$. \qquad
Exercise 9. (pg. 116 Exercise 1) Prove that if R is a commutative ring and $a \in R$ is a zero divisor, then $a x$ is also a zero divisor or 0 , for all $x \in R$.

Solution:

Let R be a commutative ring. Let $a \in R$ be arbitrary, but fixed. Assume that a is a zero divisor. Let $x \in R$ be arbitrary, but fixed.

If $a x=0$, then we are done. So assume $a x \neq 0$. Recall that a is a zero divisor. Thus $a \neq 0$ and there exists $b \in R$ such that $b \neq 0$ and $a b=0$. Using the fact that R is a commutative ring, along
with Exercise 6.1,

$$
(a x) b=a(x b)=a(b x)=(a b) x=0 x=0
$$

Since $a x \neq 0$ and $b \neq 0, a x$ is a zero divisor.
Exercise 10. (pg. 116 Exercise 3) Find two non-commuting units A, B in $M_{2}(\mathbb{R})$, and check that $(A B)^{-1}=B^{-1} A^{-1}$ and $(A B)^{-1} \neq A^{-1} B^{-1}$.

Solution:

Two non-commuting units are

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

note that

$$
A B=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right) \quad \text { and } \quad B A=\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right)
$$

so $A \neq B$. Their inverses are

$$
A^{-1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right) \quad \text { and } \quad B^{-1}=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

So

$$
(A B)\left(B^{-1} A^{-1}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right)\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{rr}
1 & -\frac{1}{2} \\
0 & \frac{1}{2}
\end{array}\right)=I
$$

and

$$
\begin{aligned}
(A B)\left(A^{-1} B^{-1}\right) & =\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\left(\begin{array}{rr}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\right) \\
& =\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)\left(\begin{array}{rr}
1 & -1 \\
0 & \frac{1}{2}
\end{array}\right) \\
& =\left(\begin{array}{rr}
1 & -\frac{1}{2} \\
0 & 1
\end{array}\right) \\
& \neq I .
\end{aligned}
$$

Exercise 11. (pg. 117 Exercise 9) Suppose that $b \in R$, a non-commutative ring with unity. Suppose that $a b=b c=1$; that is, b has a right inverse c and a left inverse a. Prove that $a=c$ and that b is a unit.

Solution:

Let R be a non-commutative ring with unity. Let $a, b \in R$. Assume that $a b=b c=1$. Begin with

$$
a b=1
$$

Multiply both sides by c on the right hand side to obtain

$$
\begin{aligned}
(a b) c & =1 \cdot c \\
a(b c) & =c \\
a(1) & =c \\
a & =c
\end{aligned}
$$

where each step is justified by the associate and multiplicative identity properties, the multiplicative inverse property, and the multiplicative identity property. Hence $b a=b c=1$, so $a b=b a=1$. Thus b has a multiplicative inverse a. By definition of a unit, b is a unit. \qquad
Exercise 12. (pg. 118 Exercise 11) Let R be a commutative ring with unity. Suppose that n is the least positive integer for which we get 0 when we add 1 to itself n times; we the say R has characteristic n. If there exists no such n, we say that R has characteristic 0 . For example, the characteristic of \mathbb{Z}_{5} is 5 because $1+1+1+1+1=0$, whereas $1+1+1+1 \neq 0$. (Note that here we have suppressed '[' and '7.).
(a) Show that, if the characteristic of a commutative ring with unity R is n and a is any element of R, then $n a=0$.
(b) What are the characteristics of $\mathbb{Q}, \mathbb{R}, \mathbb{Z}_{17}$?
(c) Prove that if a field F has characteristic n, where $n>0$, then n is a prime integer.

Solution:

(a) Let $a \in R$, where R is any commutative ring. Apply the distributive property of R and Exercise 6.1 to see that $n a=a+a+\cdots+a=a \cdot 1+a \cdot 1+\cdots+a \cdot 1=a(1+1+\cdots+1)=a \cdot 0=0$.
(b) The characteristics of \mathbb{Q} and \mathbb{R} are both 0 . The characteristic of \mathbb{Z}_{17} is 17 , since (a) $17[1]=$ $[17]=[0]$ and (b) $0<n \cdot 1<17$ for all $n: 0<n<17$, so $n \cdot[1] \neq[17]$..
(c) Assume that F has characteristic $n>0$. Then $n \cdot 1=0$. Let p be the smallest prime number that divides n; say $n=p d$. Then $(p d) 1=0$, so $p(d \cdot 1)=0$. Now, $d \cdot 1 \in F$ by closure of addition. ${ }^{1}$ Since F is a field, $d \cdot 1$ has an inverse; write e for the inverse. Apply Exercise 6.1, the associative property, and the property of the multiplicative inverse to obtain ${ }^{2}$

$$
0=0 e=(p(d \cdot 1)) e=p((d \cdot 1) e)=p \cdot 1 .
$$

Recall that n is the characteristic of 1 , so it is the least positive integer such that $n \cdot 1=0$. So $n \leq p$. On the other hand, p divides n, so $p \leq n$. Since $n \leq p$ and $n \geq p$, it follows that $p=n$. \diamond

Exercise 13. (pg. 118 Exercise 13) Suppose that R is a commutative ring and a is a non-zero nilpotent element. (See Exercise 7.15; this means that $a^{n}=0$ for some positive integer n.) Prove that $1-a$ is a unit. Hint: You can actually obtain a formula for the inverse.

Solution:

Let $b=1+a+a^{2}+\cdots+a^{n-1}$. Then

$$
\begin{aligned}
(1-a) b & =(1-a)\left(1+a+a^{2}+\cdots+a^{n-1}\right) \\
& =\left(1+a+a^{2}+\cdots+a^{n-1}\right)-\left(a+a^{2}+a^{3}+\cdots+a^{n}\right) \\
& =1-a^{n} \\
& =1-0 \\
& =1
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Notice that I do not write $d \in F$. I cannot write $d \cdot 1=d$, because $d \in \mathbb{Z}$ and $1 \in F$ and $\mathbb{Z} \neq F$, so they are elements of different sets, which may be different objects. As a matter of fact, \mathbb{Z} is not even a field!
 ${ }^{2}$ Again, $p \cdot 1 \neq p$ because $p \in \mathbb{Z}$ and $1 \in F$.

