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JOHN PERRY

Exercise 1. (pg. 95 Warm Up c) Find all the subrings of these rings: Z5, Z6, Z7, Z12.

Solution:
I list only the proper subrings.
Z5 andZ7 have no proper subrings. For any non-zero residue class ofZ5 (resp. Z7), its elements

are relatively prime to 5 (resp. 7). Thus, the GCD identity means that there is a way to write 1
as an integer combination of any such element and 5 (resp. 7). Since 5 (resp. 7) is an element of
the zero residue class, and zero must be an element of any subring, the residue class of 1 will also
be an element of the subring, too. Once 1 is in there, we get everything in the set.
Z6 has the proper subrings {0,2,4} and {0,3}.
Z12 has the proper subrings {0,2,4,6,8,10}, {0,3,6,9}, {0,4,8}, and {0,6}. ◊

Exercise 2. (pg. 95 Warm Up d) Give examples of the following (or explain why they don’t exist):
(a) A commutative subring of a non-commutative ring.
(b) A non-commutative subring of a commutative ring.
(c) A subring without unity, of a ring with unity. (See Exercise 22 for the converse possibility.)
(d) A ring (with more than one element) whose only subrings are itself, and the zero subring. Hint:

Look at an earlier Warm-up Exercise.

Solution:
(a) The only non-commutative ring we have encountered so far is a ring of m × n matrices.

There are a number of commutative subrings, but the simplest is {0, I } (where I is the identity
matrix). You could expand this somewhat by going with the subring of diagonal matrices.

(b) This doesn’t exist. By way of contradiction, assume that S is a non-commutative subring
of the commutative ring R. Then there exist a, b ∈ S such that ab 6= ba. But S ⊆ R implies that
a, b ∈ R, which contradicts the assumption that R is commutative.

(c) 2Z⊂Z.
(d) Zp , where p is a prime number. ◊

Exercise 3. (pg. 95 Warm Up f) What is the unity of the ring Z×Z? (See Example 6.9.) What about
R× S, where R and S are rings with unity? (See Example 6.10).

Solution:
(1,1). ◊

Exercise 4. (pg. 96 Exercise 1) Let Z
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Solution:
It is clear that Z
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⊂R. We apply Theorem 7.1 to show that it is a subring.

Let x, y ∈Z[2]. Then there exist, a, b , c , d ∈Z such that x = a+ b
p

2 and y = c + d
p

2.
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Observe that
x − y = (a+ b i)− (c + d i) = (a− c)+ (b − d )

p
2.

Since a − c , b − d ∈ Z, x − y ∈ Z[2]. Since x, y were arbitrary in Z
�p

2
�

, Z
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2
�

is closed
under subtraction.

Also,
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= (ac + 2b d )+ (ad + b c)
p

2.

Since ac + 2b d ,ad + b c ∈ Z, xy ∈ Z
�p
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�

. Since x, y were arbitrary in Z
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, Z
�p

2
�

is
closed under multiplication.

Since Z
�p

2
�

is closed under subtraction and multiplication, by Theorem 7.1 it is a subring

of R. Since R is a commutative ring, Z
�p

2
�

is also a commutative ring. ◊

Exercise 5. (pg. 96 Exercise 4) Show that mZ is a subring of nZ if and only if n divides m. (See
Example 7.7.)

Solution:
Let m, n ∈Z be arbitrary, but fixed.
(=⇒) Assume that mZ is a subring of nZ. Then mZ ⊆ nZ. Now, m ∈ mZ since m = m · 1,

so by the definition of a subset m ∈ nZ. By the definition of nZ, there exists some x ∈ Z such
that m = nx. By the definition of divisibility, n divides m.

(⇐=) Assume that n divides m. Then there exists d ∈ Z such that m = d n. Let x, y ∈ mZ be
arbitrary, but fixed. We must show three things: (a) x ∈ nZ (so that mZ⊂ nZ), (b) x − y ∈ mZ,
and (c) xy ∈ mZ.

Since x ∈ mZ, there exists b ∈ Z such that x = b m. Recall that m = d n; then x = b (d n) =
(b d )n. So x ∈ nZ. Since x was arbitrary, mZ⊆ nZ.

Since y ∈ mZ, there exists c ∈Z such that y = c m. Then x−y = b m−c m = (b − c)m ∈ mZ.
So mZ is closed under subtraction. Moreover, xy = (b m) (c m) = (b c m)m ∈ mZ. So mZ is
closed under multiplication. By Theorem 7.1, mZ is a subring of nZ. ◊
Exercise 6. (pg. 97 Exercise 9) Show that the intersection of any two rings is a subring.

Solution:
Let R1, R2 be rings. Write S = R1 ∩R2. By definition, S ⊆ R1 and S ⊆ R2.
Let x, y ∈ S be arbitrary, but fixed. Then x, y ∈ R1 and x, y ∈ R2. Since R1 and R2 are both

rings, x − y, xy ∈ R1 and x − y, xy ∈ R2. By definition of intersection, x − y, xy ∈ R1 ∩R2 = S.
Since x and y are arbitrary in S, S is closed under subtraction and multiplication. Since S is
closed under subtraction and multiplication, Theorem 7.1 tells us that S is a subring. ◊
Exercise 7. (pg. 97 Exercise 10) Show by example that the union of any two subrings of a ring need
not be a subring. Hint: You can certainly find such an example by working in Z.

Solution:
Recall that 2Z and 3Z are subrings of Z. Consider S = 2Z∪3Z. Certainly 2 ∈ 2Z, 3 ∈ 3Z, and

3-2=1, but 1 6∈ 2Z∪ 3Z. Since S is not closed under subtraction, Theorem 7.1 tells us that it is
not a subring of Z. ◊
Exercise 8. (pg. 98 Exercise 15)

(a) An element a of a ring is nilpotent if an = 0 for some positive integer n. Given a ring R,
denote by N (R) the set of all nilpotent elements of R. (This subring is called the nilradical of the
ring.) If R is any commutative ring, show that N (R) is a subring.
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(b) Determine N (Z10), the nilradical of Z10.
(c) Determine N (Z8), the nilradical of Z8.

Solution:
(a) Certainly N (R) is a subset of R. We can use Theorem 7.1 to show that it is a subring.
Let x, y ∈N (R). By definition, there exist m, n ∈N such that x m = yn = 0.
We need to show that x − y, xy ∈ N (R). That means we need positive integers i , j such that

(x − y)i = (xy) j = 0. What values should we choose for i , j ?
The problem is easier for multiplication. Since R is commutative, (xy) j = x j y j . We need j to

be large enough that either x j or y j will be zero (a previous exercise tells us that a0= 0a = 0 for
all a ∈ R). Let j =min (m, n). Without loss of generality, j = m. Then (xy) j = x j y j = 0y j = 0.

For subtraction, consider that by the binomial theorem,
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i
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Set i = m+ n. Then
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= 0.

Since N (R) is closed under subtraction and multiplication, Theorem 7.1 tells us that it is a
subring of R.

(How on earth did I decide on a value for i? Each term of the sum will be zero so long as
k ≥ m or i − k ≥ n. Since k increases from 0 to i , as long as i ≥ m, k will eventually be greater
than m, too.

What do we do if k < m? Since xk 6= 0 in this case, we need i − k ≥ n. Since k < m, it follows
that i − k ≥ i −m. So we will be okay as long as we keep i −m ≥ n. Thus i − k ≥ n if we set
i = m+ n.)

(b) N (Z10) = {0}. No other element, when powered up, gives a multiple of 10.
(c) N (Z8) = {0,2,4} since 23 = 8 and 42 = 2× 8. ◊

Exercise 9. (pg. 98 Exercise 17) Show that if a ring has unity, it is unique.

Solution:
Let R be an arbitrary ring. Suppose R has unity. Let e , u ∈ R be two unities. Because e is

a unity, then e u = u. Because u is a unity, e u = e . Thus e = e u = u. So unity, if it exists, is
unique. ◊


