Modern Algebra I Section 1 · Assignment 8

JOHN PERRY

Exercise 1. (pg. 95 Warm Up c) Find all the subrings of these rings: \mathbb{Z}_5 , \mathbb{Z}_6 , \mathbb{Z}_7 , \mathbb{Z}_{12} .

Solution:

I list only the proper subrings.

 \mathbb{Z}_5 and \mathbb{Z}_7 have no proper subrings. For any non-zero residue class of \mathbb{Z}_5 (resp. \mathbb{Z}_7), its elements are relatively prime to 5 (resp. 7). Thus, the GCD identity means that there is a way to write 1 as an integer combination of any such element and 5 (resp. 7). Since 5 (resp. 7) is an element of the zero residue class, and zero must be an element of any subring, the residue class of 1 will also be an element of the subring, too. Once 1 is in there, we get everything in the set.

 \mathbb{Z}_6 has the proper subrings $\{0, 2, 4\}$ and $\{0, 3\}$.

 \mathbb{Z}_{12} has the proper subrings {0,2,4,6,8,10}, {0,3,6,9}, {0,4,8}, and {0,6}. ₀⊘

Exercise 2. (pg. 95 Warm Up d) Give examples of the following (or explain why they don't exist): (a) A commutative subring of a non-commutative ring.

(b) A non-commutative subring of a commutative ring.

(c) A subring without unity, of a ring with unity. (See Exercise 22 for the converse possibility.)

(d) A ring (with more than one element) whose only subrings are itself, and the zero subring. Hint: Look at an earlier Warm-up Exercise.

Solution:

(a) The only non-commutative ring we have encountered so far is a ring of $m \times n$ matrices. There are a number of commutative subrings, but the simplest is $\{0, I\}$ (where I is the identity matrix). You could expand this somewhat by going with the subring of diagonal matrices.

(b) This doesn't exist. By way of contradiction, assume that S is a non-commutative subring of the commutative ring R. Then there exist $a, b \in S$ such that $ab \neq ba$. But $S \subseteq R$ implies that $a, b \in R$, which contradicts the assumption that R is commutative.

(c) $2\mathbb{Z} \subset \mathbb{Z}$.

(d) \mathbb{Z}_p , where *p* is a prime number. _ \diamond

Exercise 3. (pg. 95 Warm Up f) What is the unity of the ring $\mathbb{Z} \times \mathbb{Z}$? (See Example 6.9.) What about $R \times S$, where R and S are rings with unity? (See Example 6.10).

Solution:

(1, 1).

Exercise 4. (pg. 96 Exercise 1) Let $\mathbb{Z}\left[\sqrt{2}\right] = \left\{a + b\sqrt{2} : a, b \in \mathbb{Z}\right\}$. Show that $\mathbb{Z}\left[\sqrt{2}\right]$ is a commutative ring by showing it is a subring of \mathbb{R} .

Solution:

It is clear that $\mathbb{Z}\left[\sqrt{2}\right] \subset \mathbb{R}$. We apply Theorem 7.1 to show that it is a subring. Let $x, y \in \mathbb{Z}[2]$. Then there exist, $a, b, c, d \in \mathbb{Z}$ such that $x = a + b\sqrt{2}$ and $y = c + d\sqrt{2}$.

0.

Observe that

$$x - y = (a + bi) - (c + di) = (a - c) + (b - d)\sqrt{2}.$$

Since $a - c, b - d \in \mathbb{Z}$, $x - y \in \mathbb{Z}[2]$. Since x, y were arbitrary in $\mathbb{Z}\left[\sqrt{2}\right], \mathbb{Z}\left[\sqrt{2}\right]$ is closed under subtraction.

Also,

$$xy = (a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2}.$$

Since ac + 2bd, $ad + bc \in \mathbb{Z}$, $xy \in \mathbb{Z} \left[\sqrt{2}\right]$. Since x, y were arbitrary in $\mathbb{Z} \left[\sqrt{2}\right]$, $\mathbb{Z} \left[\sqrt{2}\right]$ is closed under multiplication.

Since $\mathbb{Z}\left[\sqrt{2}\right]$ is closed under subtraction and multiplication, by Theorem 7.1 it is a subring of \mathbb{R} . Since \mathbb{R} is a commutative ring, $\mathbb{Z}\left[\sqrt{2}\right]$ is also a commutative ring.

Exercise 5. (pg. 96 Exercise 4) Show that $m\mathbb{Z}$ is a subring of $n\mathbb{Z}$ if and only if n divides m. (See Example 7.7.)

Solution:

Let $m, n \in \mathbb{Z}$ be arbitrary, but fixed.

 (\Longrightarrow) Assume that $m\mathbb{Z}$ is a subring of $n\mathbb{Z}$. Then $m\mathbb{Z} \subseteq n\mathbb{Z}$. Now, $m \in m\mathbb{Z}$ since $m = m \cdot 1$, so by the definition of a subset $m \in n\mathbb{Z}$. By the definition of $n\mathbb{Z}$, there exists some $x \in \mathbb{Z}$ such that m = nx. By the definition of divisibility, n divides m.

(\Leftarrow) Assume that *n* divides *m*. Then there exists $d \in \mathbb{Z}$ such that m = dn. Let $x, y \in m\mathbb{Z}$ be arbitrary, but fixed. We must show three things: (a) $x \in n\mathbb{Z}$ (so that $m\mathbb{Z} \subset n\mathbb{Z}$), (b) $x - y \in m\mathbb{Z}$, and (c) $xy \in m\mathbb{Z}$.

Since $x \in m\mathbb{Z}$, there exists $b \in \mathbb{Z}$ such that x = bm. Recall that m = dn; then x = b(dn) = (bd)n. So $x \in n\mathbb{Z}$. Since x was arbitrary, $m\mathbb{Z} \subseteq n\mathbb{Z}$.

Since $y \in m\mathbb{Z}$, there exists $c \in \mathbb{Z}$ such that y = cm. Then $x - y = bm - cm = (b - c)m \in m\mathbb{Z}$. So $m\mathbb{Z}$ is closed under subtraction. Moreover, $xy = (bm)(cm) = (bcm)m \in m\mathbb{Z}$. So $m\mathbb{Z}$ is closed under multiplication. By Theorem 7.1, $m\mathbb{Z}$ is a subring of $n\mathbb{Z}$.

Exercise 6. (pg. 97 Exercise 9) Show that the intersection of any two rings is a subring.

Solution:

Let R_1, R_2 be rings. Write $S = R_1 \cap R_2$. By definition, $S \subseteq R_1$ and $S \subseteq R_2$.

Let $x, y \in S$ be arbitrary, but fixed. Then $x, y \in R_1$ and $x, y \in R_2$. Since R_1 and R_2 are both rings, $x - y, xy \in R_1$ and $x - y, xy \in R_2$. By definition of intersection, $x - y, xy \in R_1 \cap R_2 = S$. Since x and y are arbitrary in S, S is closed under subtraction and multiplication. Since S is closed under subtraction and multiplication. Since S is closed under subtraction and multiplication.

Exercise 7. (pg. 97 Exercise 10) Show by example that the union of any two subrings of a ring need not be a subring. Hint: You can certainly find such an example by working in Z.

Solution:

Recall that $2\mathbb{Z}$ and $3\mathbb{Z}$ are subrings of \mathbb{Z} . Consider $S = 2\mathbb{Z} \cup 3\mathbb{Z}$. Certainly $2 \in 2\mathbb{Z}$, $3 \in 3\mathbb{Z}$, and 3-2=1, but $1 \notin 2\mathbb{Z} \cup 3\mathbb{Z}$. Since *S* is not closed under subtraction, Theorem 7.1 tells us that it is not a subring of \mathbb{Z} .

Exercise 8. (pg. 98 Exercise 15)

(a) An element a of a ring is **nilpotent** if $a^n = 0$ for some positive integer n. Given a ring R, denote by N(R) the set of all nilpotent elements of R. (This subring is called the **nilradical** of the ring.) If R is any commutative ring, show that N(R) is a subring.

(b) Determine N(Z₁₀), the nilradical of Z₁₀.
(c) Determine N(Z₈), the nilradical of Z₈.

Solution:

(a) Certainly N(R) is a subset of R. We can use Theorem 7.1 to show that it is a subring.

Let $x, y \in N(R)$. By definition, there exist $m, n \in \mathbb{N}$ such that $x^m = y^n = 0$.

We need to show that $x - y, xy \in N(R)$. That means we need positive integers i, j such that $(x - y)^i = (xy)^j = 0$. What values should we choose for i, j?

The problem is easier for multiplication. Since R is commutative, $(xy)^j = x^j y^j$. We need j to be large enough that either x^j or y^j will be zero (a previous exercise tells us that a0 = 0a = 0 for all $a \in R$). Let $j = \min(m, n)$. Without loss of generality, j = m. Then $(xy)^j = x^j y^j = 0y^j = 0$.

For subtraction, consider that by the binomial theorem,

$$(x-y)^{i} = \sum_{k=0}^{i} \begin{pmatrix} i \\ k \end{pmatrix} x^{k} y^{i-k}.$$

Set i = m + n. Then

$$(x-y)^{m+n} = \sum_{k=0}^{m+n} {m+n \choose k} x^k y^{m+n-k}$$

= $\sum_{k=0}^{m-1} {m+n \choose k} x^k y^{m+n-k} + \sum_{k=m}^{m+n} {m+n \choose k} x^k y^{m+n-k}$
= $\sum_{k=0}^{m-1} {m+n \choose k} x^k \cdot 0 + \sum_{k=m}^{m+n} {m+n \choose k} 0 \cdot y^{m+n-k}$
= 0.

Since N(R) is closed under subtraction and multiplication, Theorem 7.1 tells us that it is a subring of R.

(How on earth did I decide on a value for *i*? Each term of the sum will be zero so long as $k \ge m$ or $i - k \ge n$. Since k increases from 0 to *i*, as long as $i \ge m$, k will eventually be greater than m, too.

What do we do if k < m? Since $x^k \neq 0$ in this case, we need $i - k \ge n$. Since k < m, it follows that $i - k \ge i - m$. So we will be okay as long as we keep $i - m \ge n$. Thus $i - k \ge n$ if we set i = m + n.)

(b) $N(\mathbb{Z}_{10}) = \{0\}$. No other element, when powered up, gives a multiple of 10. (c) $N(\mathbb{Z}_8) = \{0, 2, 4\}$ since $2^3 = 8$ and $4^2 = 2 \times 8$.

_0

Exercise 9. (pg. 98 Exercise 17) Show that if a ring has unity, it is unique.

Solution:

Let R be an arbitrary ring. Suppose R has unity. Let $e, u \in R$ be two unities. Because e is a unity, then eu = u. Because u is a unity, eu = e. Thus e = eu = u. So unity, if it exists, is unique.