Modern Algebra I Section 1 - Assignment 8

JOHN PERRY

Exercise 1. (pg. 95 Warm Upc) Find all the subrings of these rings: $\mathbb{Z}_{5}, \mathbb{Z}_{6}, \mathbb{Z}_{7}, \mathbb{Z}_{12}$.

Solution:

I list only the proper subrings.
\mathbb{Z}_{5} and \mathbb{Z}_{7} have no proper subrings. For any non-zero residue class of \mathbb{Z}_{5} (resp. \mathbb{Z}_{7}), its elements are relatively prime to 5 (resp. 7). Thus, the GCD identity means that there is a way to write 1 as an integer combination of any such element and 5 (resp. 7). Since 5 (resp. 7) is an element of the zero residue class, and zero must be an element of any subring, the residue class of 1 will also be an element of the subring, too. Once 1 is in there, we get everything in the set.
\mathbb{Z}_{6} has the proper subrings $\{0,2,4\}$ and $\{0,3\}$.
\mathbb{Z}_{12} has the proper subrings $\{0,2,4,6,8,10\},\{0,3,6,9\},\{0,4,8\}$, and $\{0,6\}$. \qquad
Exercise 2. (pg. 95 Warm Upd) Give examples of the following (or explain why they don't exist):
(a) A commutative subring of a non-commutative ring.
(b) A non-commutative subring of a commutative ring.
(c) A subring without unity, of a ring with unity. (See Exercise 22 for the converse possibility.)
(d) A ring (with more than one element) whose only subrings are itself, and the zero subring. Hint:

Look at an earlier Warm-up Exercise.

Solution:

(a) The only non-commutative ring we have encountered so far is a ring of $m \times n$ matrices. There are a number of commutative subrings, but the simplest is $\{0, I\}$ (where I is the identity matrix). You could expand this somewhat by going with the subring of diagonal matrices.
(b) This doesn't exist. By way of contradiction, assume that S is a non-commutative subring of the commutative ring R. Then there exist $a, b \in S$ such that $a b \neq b a$. But $S \subseteq R$ implies that $a, b \in R$, which contradicts the assumption that R is commutative.
(c) $2 \mathbb{Z} \subset \mathbb{Z}$.
(d) \mathbb{Z}_{p}, where p is a prime number. \qquad
Exercise 3. (pg. 95 Warm Upf) What is the unity of the ring $\mathbb{Z} \times \mathbb{Z}$? (See Example 6.9.) What about $R \times S$, where R and S are rings with unity? (See Example 6.10).

Solution:

$(1,1)$. \qquad \diamond

Exercise 4. (pg. 96 Exercise 1) Let $\mathbb{Z}[\sqrt{2}]=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[\sqrt{2}]$ is a commutative ring by showing it is a subring of \mathbb{R}.

Solution:

It is clear that $\mathbb{Z}[\sqrt{2}] \subset \mathbb{R}$. We apply Theorem 7.1 to show that it is a subring.
Let $x, y \in \mathbb{Z}[2]$. Then there exist, $a, b, c, d \in \mathbb{Z}$ such that $x=a+b \sqrt{2}$ and $y=c+d \sqrt{2}$.

Observe that

$$
x-y=(a+b i)-(c+d i)=(a-c)+(b-d) \sqrt{2}
$$

Since $a-c, b-d \in \mathbb{Z}, x-y \in \mathbb{Z}[2]$. Since x, y were arbitrary in $\mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{2}]$ is closed under subtraction.

Also,

$$
x y=(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2} .
$$

Since $a c+2 b d, a d+b c \in \mathbb{Z}, x y \in \mathbb{Z}[\sqrt{2}]$. Since x, y were arbitrary in $\mathbb{Z}[\sqrt{2}], \mathbb{Z}[\sqrt{2}]$ is closed under multiplication.

Since $\mathbb{Z}[\sqrt{2}]$ is closed under subtraction and multiplication, by Theorem 7.1 it is a subring of \mathbb{R}. Since \mathbb{R} is a commutative ring, $\mathbb{Z}[\sqrt{2}]$ is also a commutative ring. \qquad
Exercise 5. (pg. 96 Exercise 4) Show that $m \mathbb{Z}$ is a subring of $n \mathbb{Z}$ if and only if n divides m. (See Example 7.7.)

Solution:

Let $m, n \in \mathbb{Z}$ be arbitrary, but fixed.
(\Longrightarrow) Assume that $m \mathbb{Z}$ is a subring of $n \mathbb{Z}$. Then $m \mathbb{Z} \subseteq n \mathbb{Z}$. Now, $m \in m \mathbb{Z}$ since $m=m \cdot 1$, so by the definition of a subset $m \in n \mathbb{Z}$. By the definition of $n \mathbb{Z}$, there exists some $x \in \mathbb{Z}$ such that $m=n x$. By the definition of divisibility, n divides m.
(\Longleftarrow) Assume that n divides m. Then there exists $d \in \mathbb{Z}$ such that $m=d n$. Let $x, y \in m \mathbb{Z}$ be arbitrary, but fixed. We must show three things: (a) $x \in n \mathbb{Z}$ (so that $m \mathbb{Z} \subset n \mathbb{Z}$), (b) $x-y \in m \mathbb{Z}$, and (c) $x y \in m \mathbb{Z}$.

Since $x \in m \mathbb{Z}$, there exists $b \in \mathbb{Z}$ such that $x=b m$. Recall that $m=d n$; then $x=b(d n)=$ (bd) n. So $x \in n \mathbb{Z}$. Since x was arbitrary, $m \mathbb{Z} \subseteq n \mathbb{Z}$.

Since $y \in m \mathbb{Z}$, there exists $c \in \mathbb{Z}$ such that $y=c m$. Then $x-y=b m-c m=(b-c) m \in m \mathbb{Z}$. So $m \mathbb{Z}$ is closed under subtraction. Moreover, $x y=(b m)(c m)=(b c m) m \in m \mathbb{Z}$. So $m \mathbb{Z}$ is closed under multiplication. By Theorem 7.1, $m \mathbb{Z}$ is a subring of $n \mathbb{Z}$.
Exercise 6. (pg. 97 Exercise 9) Show that the intersection of any two rings is a subring.

Solution:

Let R_{1}, R_{2} be rings. Write $S=R_{1} \cap R_{2}$. By definition, $S \subseteq R_{1}$ and $S \subseteq R_{2}$.
Let $x, y \in S$ be arbitrary, but fixed. Then $x, y \in R_{1}$ and $x, y \in R_{2}$. Since R_{1} and R_{2} are both rings, $x-y, x y \in R_{1}$ and $x-y, x y \in R_{2}$. By definition of intersection, $x-y, x y \in R_{1} \cap R_{2}=S$. Since x and y are arbitrary in S, S is closed under subtraction and multiplication. Since S is closed under subtraction and multiplication, Theorem 7.1 tells us that S is a subring.
Exercise 7. (pg. 97 Exercise 10) Show by example that the union of any two subrings of a ring need not be a subring. Hint: You can certainly find such an example by working in \mathbb{Z}.

Solution:

Recall that $2 \mathbb{Z}$ and $3 \mathbb{Z}$ are subrings of \mathbb{Z}. Consider $S=2 \mathbb{Z} \cup 3 \mathbb{Z}$. Certainly $2 \in 2 \mathbb{Z}, 3 \in 3 \mathbb{Z}$, and $3-2=1$, but $1 \notin 2 \mathbb{Z} \cup 3 \mathbb{Z}$. Since S is not closed under subtraction, Theorem 7.1 tells us that it is not a subring of \mathbb{Z}.
Exercise 8. (pg. 98 Exercise 15)
(a) An element a of a ring is nilpotent if $a^{n}=0$ for some positive integer n. Given a ring R, denote by $N(R)$ the set of all nilpotent elements of R. (This subring is called the nilradical of the ring.) If R is any commutative ring, show that $N(R)$ is a subring.
(b) Determine $N\left(\mathbb{Z}_{10}\right)$, the nilradical of \mathbb{Z}_{10}.
(c) Determine $N\left(\mathbb{Z}_{8}\right)$, the nilradical of \mathbb{Z}_{8}.

Solution:

(a) Certainly $N(R)$ is a subset of R. We can use Theorem 7.1 to show that it is a subring.

Let $x, y \in N(R)$. By definition, there exist $m, n \in \mathbb{N}$ such that $x^{m}=y^{n}=0$.
We need to show that $x-y, x y \in N(R)$. That means we need positive integers i, j such that $(x-y)^{i}=(x y)^{j}=0$. What values should we choose for i, j ?

The problem is easier for multiplication. Since R is commutative, $(x y)^{j}=x^{j} y^{j}$. We need j to be large enough that either x^{j} or y^{j} will be zero (a previous exercise tells us that $a 0=0 a=0$ for all $a \in R)$. Let $j=\min (m, n)$. Without loss of generality, $j=m$. Then $(x y)^{j}=x^{j} y^{j}=0 y^{j}=0$.

For subtraction, consider that by the binomial theorem,

$$
(x-y)^{i}=\sum_{k=0}^{i}\binom{i}{k} x^{k} y^{i-k}
$$

Set $i=m+n$. Then

$$
\begin{aligned}
(x-y)^{m+n} & =\sum_{k=0}^{m+n}\binom{m+n}{k} x^{k} y^{m+n-k} \\
& =\sum_{k=0}^{m-1}\binom{m+n}{k} x^{k} y^{m+n-k}+\sum_{k=m}^{m+n}\binom{m+n}{k} x^{k} y^{m+n-k} \\
& =\sum_{k=0}^{m-1}\binom{m+n}{k} x^{k} \cdot 0+\sum_{k=m}^{m+n}\binom{m+n}{k} 0 \cdot y^{m+n-k} \\
& =0 .
\end{aligned}
$$

Since $N(R)$ is closed under subtraction and multiplication, Theorem 7.1 tells us that it is a subring of R.
(How on earth did I decide on a value for i ? Each term of the sum will be zero so long as $k \geq m$ or $i-k \geq n$. Since k increases from 0 to i, as long as $i \geq m, k$ will eventually be greater than m, too.

What do we do if $k<m$? Since $x^{k} \neq 0$ in this case, we need $i-k \geq n$. Since $k<m$, it follows that $i-k \geq i-m$. So we will be okay as long as we keep $i-m \geq n$. Thus $i-k \geq n$ if we set $i=m+n$.)
(b) $N\left(\mathbb{Z}_{10}\right)=\{0\}$. No other element, when powered up, gives a multiple of 10.
(c) $N\left(\mathbb{Z}_{8}\right)=\{0,2,4\}$ since $2^{3}=8$ and $4^{2}=2 \times 8$.

Exercise 9. (pg. 98 Exercise 17) Show that if a ring has unity, it is unique.

Solution:

Let R be an arbitrary ring. Suppose R has unity. Let $e, u \in R$ be two unities. Because e is a unity, then $e u=u$. Because u is a unity, $e u=e$. Thus $e=e u=u$. So unity, if it exists, is unique.

