Modern Algebra 1 Section 1 . Assignment 5

JOHN PERRY

Exercise 1. (pg. 52 Warm Up a) Compute the sum, difference, and product of the polynomials

$$
1-2 x+x^{3}-\frac{2}{3} x^{4} \text { and } 2+2 x^{2}-\frac{3}{2} x^{3}
$$

in $\mathbb{Q}[x]$.

Solution:

Sum: $3-2 x+2 x^{2}-(1 / 2) x^{2}-(2 / 3) x^{4}$
Difference: $-1-2 x-2 x^{2}+(5 / 2) x^{3}-(2 / 3) x^{4}$
Product:

$$
\begin{aligned}
&\left(2+2 x^{2}-(3 / 2) x^{3}\right)+\left(-4 x-4 x^{3}+3 x^{4}\right) \\
&+\left(2 x^{3}+2 x^{5}-(3 / 2) x^{6}\right)+\left(-(4 / 3) x^{4}-(4 / 3) x^{6}+x^{7}\right)=2-4 x+2 x^{2} \\
&-(7 / 2) x^{3}+(8 / 3) x^{4} \\
&+2 x^{5}-(17 / 6) x^{6}+x^{7}
\end{aligned}
$$

Exercise 2. (pg. $52 \mathrm{Warm} U p$ b) Give the quotient and remainder when the polynomial $2+4 x-$ $x^{3}+3 x^{4}$ is divided by $2 x+1$.

Solution:

The quotient is $(3 / 2) x^{3}-(5 / 4) x^{2}+(5 / 8) x-(27 / 16)$; the remainder is $5 / 16$. \qquad
Exercise 3. (pg. 53 Warm Up c) Give two polynomials f and g, where the degree of $f+g$ is strictly less than either the degree of f or the degree of g.

Solution:

Answers may vary. What matters is that $\operatorname{deg} f=\operatorname{deg} g$ and the leading coefficients have the opposite sign; for example, $f=1$ and $g=-1$. \qquad \diamond

Exercise 4. (pg. 53 Warm Up d) Use the Root Theorem 4.3 to answer the following for polynomials in $\mathbb{Q}[x]$. Does $x-2$ divide $x^{5}-4 x^{4}-4 x^{3}-x^{2}+4$? Does $x+1$ divide $x^{6}+2 x^{5}+x^{4}-x^{3}+x$? Does $x+5$ divide $2 x^{3}+10 x^{2}-2 x-10$? Does $2 x-1$ divide $x^{5}+2 x^{4}-3 x^{2}+1$?

Solution:

Yes, yes, yes, no. (I used synthetic division with $x=2,-1,-5,1 / 2$. \qquad \diamond

Exercise 5. (pg. 53 Exercise 3) By Corollary 4.4 we know that a third-degree polynomial in $\mathbb{Q}[x]$ has at most three roots. Give four examples of third-degree polynomials in $\mathbb{Q}[x]$ that have $0,1,2$, and 3 roots, respectively; justify your assertions. (Recall that here a root must be a rational number!)

Solution:

For 0 roots, take $x^{3}+2$. This has no rational roots, only real and imaginary ones.
For 1 root, take $\left(x^{2}+2\right)(x+1)$. This has the rational root 1 , and two irrational roots.
For 2 roots, take $(x-1)(x-2)^{2}$. This has the rational roots 1 and 2 .
For 3 roots, take $(x-1)(x-2)(x-3)$. This has the rational roots 1,2 , and 3 . \qquad
Exercise 6. (pg. 53 Exercise 5) Let n be an odd integer and consider the polynomial

$$
\Phi_{n}=x^{n}+x^{n-1}+\cdots+x+1 .
$$

Use the Root Theorem 4.3 to argue that Φ_{n} has a linear factor. We call Φ_{n} a cyclotomic polynomial; see Exercise 5.17 for more information.

Solution:

Since n is odd, $n=2 k+1$ for some $k \in \mathbb{Z}$. So Φ_{n} has $2 k+2$ terms $x^{n}, x^{n-1}, \ldots, x^{1}, x^{0}$. This is $2(k+1)$ terms, which gives us an even number of terms.

Since Φ_{n} has an even number of terms, we can pair consecutive terms into $k+1$ groups, like so:

$$
\Phi_{n}=\left(x^{n}+x^{n-1}\right)+\left(x^{n-2}+x^{n-3}\right)+\cdots+\left(x^{1}+x^{0}\right) .
$$

Each group is a pair of consecutive terms, so each group has one term of odd degree and one term of even degree. Recall that $(-1)^{a}=-1$ if a is odd, and $(-1)^{a}=1$ if a is even. Thus

$$
\begin{align*}
\Phi_{n}(-1) & =\left((-1)^{n}+(-1)^{n-1}\right)+\left((-1)^{n-2}+(-1)^{n-3}\right)+\cdots+\left((-1)^{1}+(-1)^{0}\right) \\
& =(-1+1)+(-1+1)+\cdots+(-1+1) \\
& =0+0+\cdots+0 \\
& =0 .
\end{align*}
$$

By the Root Theorem 4.3, $x+1$ is a linear factor of Φ_{n}. \qquad
Exercise 7. (pg. 54 Exercise 6) Suppose that $f \in \mathbb{Q}[x], q \in \mathbb{Q}$, and $\operatorname{deg} f>0$. Use the Root Theorem 4.3 to prove that the equation $f(x)=q$ bas at most finitely many solutions.

Solution:

We show that f has at most finitely many roots by induction on n. Let $n \in \mathbb{N}$ be arbitrary, but fixed.

For the inductive base, assume that $n=1$. Then f has the form $m x+b$, for some $m, b \in \mathbb{Q}$, and $m \neq 0$. So

$$
f(x)=q \quad \Longleftrightarrow \quad m x+b=q \quad \Longleftrightarrow \quad x=\frac{q-b}{m} .
$$

We see that f has at most one solution.
Now assume that $n>1$, and that g has at most finitely many roots, for every $g \in \mathbb{Q}[x]$ where $1 \leq \operatorname{deg} g<n=\operatorname{deg} f$. Assume that the equation $f(x)=q$ has at least one solution. Write $p=f-q$. By closure, $p \in \mathbb{Q}[x]$. Also,

$$
p(x)=0 \Longleftrightarrow f(x)-q=0 \Longleftrightarrow f(x)=q
$$

so every $a \in \mathbb{Q}$ is a solution to $f(x)=q$ iff it is also a root of p. Recall that we assumed that $f(x)=q$ had at least one solution, and let a designate such a solution. So a is a root of p. By the Root Theorem 4.3, $x-a$ is a factor of p. Thus

$$
p=q(x-a)
$$

where $q \in \mathbb{Q}[x]$. By Theorem 4.1, $\operatorname{deg} q=\operatorname{deg} p-\operatorname{deg}(x-a)=n-1$. Since $\operatorname{deg} q<n$, the inductive hypothesis implies that $q(x)=0$ has at most finitely many solutions. So q has finitely many roots. Since q has finitely many roots, and p has exactly one more root, p has finitely many roots. Recall that roots of p are solutions of the equation $f(x)=q$. Since p has finitely many roots, the equation $f(x)=q$ has at most finitely many solutions.
Exercise 8. (pg. 54 Exercise 13) Find a non-zero polynomial in $\mathbb{Z}_{4}[x]$ for which $f(a)=0$, for all $a \in \mathbb{Z}_{4}$.

Solution:

If $f(a)=0$ for all $a \in \mathbb{Z}_{4}$, then every element $a \in \mathbb{Z}_{4}$ is a root of f. By the Root Theorem 4.3, $x-a$ is a factor of f for every $a \in \mathbb{Z}_{4}$. It is useful that there are only four elements of \mathbb{Z}_{4} : [0], [1], [2], [3]. Thus the solution is

$$
f=x(x-[1])(x-[2])(x-[3]) .
$$

