Modern Algebra 1 Section 1 - Assignment 5

JOHN PERRY

Exercise 1. (pg. 52 Warm Up a) Compute the sum, difference, and product of the polynomials
524 2 3.5
1—2x+x -3 and 2+ 2x -5

in Q[x].
Solution:
Sum: 3 — 2x +2x? — (1/2)x* — (2/3) x*
Difference: —1 —2x —2x*+(5/2) x> — (2/3) x*
Product:
(242x* = (3/2)x%) + (—4x — 4x’ + 3x%)
+ (20 +2x° = (3/2)x°%) + (— (4/3) x* — (4/3) x® + x7) =2 — 4x + 2x°
—(7/2)%’ +(8/3)x*
+2x° —(17/6) x° 4+ x’

%

Exercise 2. (pg. 52 Warm Up b) Give the guotient and remainder when the polynomial 2 + 4x —
x> +3x* is divided by 2x + 1.

Solution:
The quotient is (3/2) x> — (5/4) x* +(5/8) x — (27/16); the remainder is5/16.

Exercise 3. (pg. 53 Warm Up ¢) Give two polynomials | and g, where the degree of f + g is strictly
less than either the degree of | or the degree of g.

Solution:
Answers may vary. What matters is that deg f/ = deg g and the leading coefficients have the
opposite sign; for example, f =1and g =—1. 0

Exercise 4. (pg. 53 Warm Up d) Use the Root Theorem 4.3 to answer the following for polynomials
in Q[x]. Does x — 2 divide x> — 4x* — 4x> — x? + 42 Does x + 1 divide x® 4+ 2x° + x* — x> + x¢
Does x + 5 divide 2x> 4+ 10x? — 2x — 10?2 Does 2x — 1 divide x° + 2x* — 3x* + 1?2

Solution:
Yes, yes, yes, no. (I used synthetic division with x =2,—1,-5,1/2. O

Exercise 5. (pg. 53 Exercise 3) By Corollary 4.4 we know that a third-degree polynomial in Q[x]
has at most three roots. Give four examples of third-degree polynomials in Q[x] that have 0, 1, 2,

and 3 roots, respectively; justify your assertions. (Recall that here a root must be a rational numberl)
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Solution:
For 0 roots, take x’ + 2. This has no rational roots, only real and imaginary ones.
For 1 root, take (x2+2) (x + 1). This has the rational root 1, and two irrational roots.
For 2 roots, take (x — 1) (x — 2)*. This has the rational roots 1 and 2.
For 3 roots, take (x — 1)(x —2)(x — 3). This has the rational roots 1,2,and3. ¢

Exercise 6. (pg. 53 Exercise 5) Let n be an odd integer and consider the polynomial
® =x"+x"""+-+x+1.
Use the Root Theorem 4.3 to argue that @, has a linear factor. We call @, a cyclotomic polynomial;

see Exercise 5.17 for more information.

Solution:

Since 7 is odd, 7 =2k + 1 for some & € Z. So ®, has 2k + 2 terms x”,x" ..., x',x°. This is
2(k + 1) terms, which gives us an even number of terms.

Since ®, has an even number of terms, we can pair consecutive terms into k + 1 groups, like
so:

@, = (x"+x")+ (" P+ x"7) 4+ 4 (x' +x°).

Each group is a pair of consecutive terms, so each group has one term of odd degree and one term
of even degree. Recall that (—1)* = —1if 2 is odd, and (—1)* = 1 if a is even. Thus

2, (=1)= (1" +(=0"") + (U 7+ (=0"7) oo (D) +(=1))
=(—14+1)+(-1+1)+---+(-141)

=040+---+0
=0.
By the Root Theorem 4.3, x 4 1 is a linear factor of . 0

Exercise 7. (pg. 54 Exercise 6) Suppose that f € Q[x], g € Q, and deg f > 0. Use the Root Theorem
4.3 to prove that the equation f (x) = q has at most finitely many solutions.

Solution:

We show that f has at most finitely many roots by induction on n. Let n € N be arbitrary,
but fixed.

For the inductive base, assume that » = 1. Then f has the form mx + b, for some m, b € Q,
and m #0. So

qg—>b
fx)=q <= mx+b=q <= XS

We see that f has at most one solution.

Now assume that 7 > 1, and that g has at most finitely many roots, for every g € Q [x] where
1 <degg < n =degf. Assume that the equation f (x) = ¢ has at least one solution. Write

p =/ —q. By closure, p € Q[x]. Also,
p(x)=0 = [f(x)—¢=0 = [f(x)=q,
so every a € QQ is a solution to f (x) = ¢ iff it is also a root of p. Recall that we assumed that

f (x) = q had at least one solution, and let 2 designate such a solution. So 4 is a root of p. By the
Root Theorem 4.3, x — a is a factor of p. Thus

p=q(x—a)
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where g € Q[x]. By Theorem 4.1, degg = degp — deg(x —a) = n — 1. Since degq < 7, the
inductive hypothesis implies that g (x) = 0 has at most finitely many solutions. So g has finitely
many roots. Since ¢ has finitely many roots, and p has exactly one more root, p has finitely
many roots. Recall that roots of p are solutions of the equation f (x) = ¢. Since p has finitely
many roots, the equation f (x) = g has at most finitely many solutions. 0

Exercise 8. (pg. 54 Exercise 13) Find a non-zero polynomial in Z,[x] for which f (a) = 0, for all
a €Ly

Solution:
If f(a) =0 for all 2 € Z,, then every element a € Z, is a root of f. By the Root Theorem

4.3, x —a is a factor of f for every a € Z,. It is useful that there are only four elements of Z,:
[0],[1],[2],[3]- Thus the solution is

f=x(x-[1])&-[2D)(-[B].




