
Modern Algebra 1 Section 1 · Assignment 5

JOHN PERRY

Exercise 1. (pg. 52 Warm Up a) Compute the sum, difference, and product of the polynomials

1− 2x + x3−
2

3
x4 and 2+ 2x2−

3

2
x3

inQ[x].

Solution:
Sum: 3− 2x + 2x2− (1/2) x2− (2/3) x4

Difference: −1− 2x − 2x2+(5/2) x3− (2/3) x4

Product:
�

2+ 2x2− (3/2) x3�+
�

−4x − 4x3+ 3x4�

+
�

2x3+ 2x5− (3/2) x6�+
�

− (4/3) x4− (4/3) x6+ x7�= 2− 4x + 2x2

− (7/2) x3+(8/3) x4

+ 2x5− (17/6) x6+ x7

◊

Exercise 2. (pg. 52 Warm Up b) Give the quotient and remainder when the polynomial 2+ 4x −
x3+ 3x4 is divided by 2x + 1.

Solution:
The quotient is (3/2) x3− (5/4) x2+(5/8) x − (27/16); the remainder is 5/16. ◊

Exercise 3. (pg. 53 Warm Up c) Give two polynomials f and g , where the degree of f + g is strictly
less than either the degree of f or the degree of g .

Solution:
Answers may vary. What matters is that deg f = deg g and the leading coefficients have the

opposite sign; for example, f = 1 and g =−1. ◊

Exercise 4. (pg. 53 Warm Up d) Use the Root Theorem 4.3 to answer the following for polynomials
in Q[x]. Does x − 2 divide x5− 4x4− 4x3− x2+ 4? Does x + 1 divide x6+ 2x5+ x4− x3+ x?
Does x + 5 divide 2x3+ 10x2− 2x − 10? Does 2x − 1 divide x5+ 2x4− 3x2+ 1?

Solution:
Yes, yes, yes, no. (I used synthetic division with x = 2,−1,−5,1/2. ◊

Exercise 5. (pg. 53 Exercise 3) By Corollary 4.4 we know that a third-degree polynomial in Q[x]
has at most three roots. Give four examples of third-degree polynomials in Q[x] that have 0, 1, 2,
and 3 roots, respectively; justify your assertions. (Recall that here a root must be a rational number!)

1



Modern Algebra 1 Section 1 · Assignment 5 · John Perry 2

Solution:
For 0 roots, take x3+ 2. This has no rational roots, only real and imaginary ones.
For 1 root, take

�

x2+ 2
�

(x + 1). This has the rational root 1, and two irrational roots.
For 2 roots, take (x − 1) (x − 2)2. This has the rational roots 1 and 2.
For 3 roots, take (x − 1) (x − 2) (x − 3). This has the rational roots 1, 2, and 3. ◊

Exercise 6. (pg. 53 Exercise 5) Let n be an odd integer and consider the polynomial

Φn = xn + xn−1+ · · ·+ x + 1.

Use the Root Theorem 4.3 to argue that Φn has a linear factor. We call Φn a cyclotomic polynomial;
see Exercise 5.17 for more information.

Solution:
Since n is odd, n = 2k + 1 for some k ∈ Z. So Φn has 2k + 2 terms xn, xn−1, . . . , x1, x0. This is

2 (k + 1) terms, which gives us an even number of terms.
Since Φn has an even number of terms, we can pair consecutive terms into k + 1 groups, like

so:
Φn =
�

xn + xn−1�+
�

xn−2+ xn−3�+ · · ·+
�

x1+ x0� .
Each group is a pair of consecutive terms, so each group has one term of odd degree and one term
of even degree. Recall that (−1)a =−1 if a is odd, and (−1)a = 1 if a is even. Thus

Φn (−1) =
�

(−1)n +(−1)n−1
�

+
�

(−1)n−2+(−1)n−3
�

+ · · ·+
�

(−1)1+(−1)0
�

= (−1+ 1)+ (−1+ 1)+ · · ·+(−1+ 1)
= 0+ 0+ · · ·+ 0
= 0.

By the Root Theorem 4.3, x + 1 is a linear factor of Φn. ◊

Exercise 7. (pg. 54 Exercise 6) Suppose that f ∈Q[x], q ∈Q, and deg f > 0. Use the Root Theorem
4.3 to prove that the equation f (x) = q has at most finitely many solutions.

Solution:
We show that f has at most finitely many roots by induction on n. Let n ∈ N be arbitrary,

but fixed.
For the inductive base, assume that n = 1. Then f has the form mx + b , for some m, b ∈Q,

and m 6= 0. So

f (x) = q ⇐⇒ mx + b = q ⇐⇒ x =
q − b

m
.

We see that f has at most one solution.
Now assume that n > 1, and that g has at most finitely many roots, for every g ∈Q[x]where

1 ≤ deg g < n = deg f . Assume that the equation f (x) = q has at least one solution. Write
p = f − q . By closure, p ∈Q[x]. Also,

p (x) = 0 ⇐⇒ f (x)− q = 0 ⇐⇒ f (x) = q ,

so every a ∈ Q is a solution to f (x) = q iff it is also a root of p. Recall that we assumed that
f (x) = q had at least one solution, and let a designate such a solution. So a is a root of p. By the
Root Theorem 4.3, x − a is a factor of p. Thus

p = q (x − a)
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where q ∈ Q[x]. By Theorem 4.1, deg q = deg p − deg (x − a) = n − 1. Since deg q < n, the
inductive hypothesis implies that q (x) = 0 has at most finitely many solutions. So q has finitely
many roots. Since q has finitely many roots, and p has exactly one more root, p has finitely
many roots. Recall that roots of p are solutions of the equation f (x) = q . Since p has finitely
many roots, the equation f (x) = q has at most finitely many solutions. ◊

Exercise 8. (pg. 54 Exercise 13) Find a non-zero polynomial in Z4 [x] for which f (a) = 0, for all
a ∈Z4.

Solution:
If f (a) = 0 for all a ∈ Z4, then every element a ∈ Z4 is a root of f . By the Root Theorem

4.3, x − a is a factor of f for every a ∈ Z4. It is useful that there are only four elements of Z4:
[0] ,[1] ,[2] ,[3]. Thus the solution is

f = x (x − [1]) (x − [2]) (x − [3]) .
◊


