Modern Algebra 1 Section 1 · Assignment 4

JOHN PERRY

Exercise 1. (pg. 39 Warm Up b) Does $\{47, 100, -3, 29, -9\}$ contain a representative from every residue class of \mathbb{Z}_5 ? Does $\{-14, -21, -10, -3, -2\}$? Does $\{10, 21, 32, 43, 54\}$?

Solution:

The first one does not; both 47 and -3 are in [2]. The second and third do.

Exercise 2. (pg. 39 Warm Up c) What is the additive inverse of [13] in \mathbb{Z}_{28} ?

Solution:

[15] + [13] = [0].

Exercise 3. (pg. 39 Warm Up d) What is the relationship between 'clock arithmetic' and modular arithmetic?

 \diamond

₋◊

Solution:

'Clock arithmetic' is a special case of modular arithmetic. It takes place in \mathbb{Z}_{12} .

Exercise 4. (pg. 39 Warm Up e) (a) What time is it 100 hours after 3 o'clock? (b) What day of the week is it 100 days after Monday?

Solution:

(a) There are twenty-four hours in a day, and $100 = 4 \cdot 24 + 4$. By adding four hours to 3 o'clock, we see that 100 hours after 3 o'clock is 7 o'clock.

(b) There are seven days in a week, and $100 = 14 \cdot 7 + 2$. Two days after Monday is Wednesday, so 100 days after Monday is Wednesday.

Exercise 5. (pg. 39 Warm Up f) Solve the following equations, or else argue that they have no solutions:

(a) [4] + X = [3], in \mathbb{Z}_6 . (b) [4] X = [3], in \mathbb{Z}_6 . (c) [4] + X = [3], in \mathbb{Z}_9 . (d) [4] X = [3], in \mathbb{Z}_9 .

Solution:

(a) Since 3 - 4 = -1 and [-1] = [5], X = [5].

(b) No solution. The multiples of [4] in \mathbb{Z}_6 are [4], [8] = [2], and [12] = [0]. All other multiples appear in those residue classes. *Better explanation:* [4]X = [3] iff [4X] = [3] iff (by Theorem 3.2) 4X - 3 = 6k for some $k \in \mathbb{Z}$ iff 4X - 6k = 3 for some $k \in \mathbb{Z}$. By a previous exercise, 3 must be a multiple of the gcd of 4 and 6. Unfortunately, gcd(4,6) = 2, and 3 is not a multiple of 2. Hence there is no solution to this equation.

(c) Since 3 - 4 = -1 and [-1] = [8], X = 8.

(d) Since $4 \times 3 = 12$ and [12] = [3], X = 3.

Exercise 6. (pg. 39 Exercise 3) In Exercise c you determined the additive inverse of [13] in \mathbb{Z}_{28} . Now determine its multiplicative inverse.

Solution:

We need x such that [13] x = [1]. The multiples of [13] are

$$[13], [26], [39] = [11], [24], [37] = [9], [22], [35] = [7], [20], [33] = [5], [18], [31] = [3], [16], [29] = [1].$$

The thirteenth multiple is [1]. Thus [13] is its own multiplicative inverse.

Exercise 7. (pg. 39 Exercise 4) Find an example in \mathbb{Z}_6 where [a][b] = [a][c], but $[b] \neq [c]$. How is this example related to the existence of multiplicative inverses in \mathbb{Z}_6 ?

Solution:

If a = 2, b = 3, and c = 6, then [a][b] = [a][c] = [0]. This is related to multiplicative inverses because if [a] had a multiplicative inverse, then we could multiply it to both sides of the equation and show that [b] = [c].

Exercise 8. (pg. 40 Exercise 5) If gcd(a, m) = 1, then the GCD identity 2.4 guarantees that there exist integers u and v such that 1 = au + mv. Show that in this case, [u] is the multiplicative inverse of [a] in \mathbb{Z}_m .

Solution:

Let $a, m \in \mathbb{Z}$ be arbitrary, but fixed. Assume that gcd(ab) = 1. Then there exist $u, v \in \mathbb{Z}$ such that

$$1 = au + mv$$
$$1 - au = mv.$$

By Theorem 3.2 and the definition of modular multiplication, [a][u] = [au] = [1], showing that [u] is the multiplicative inverse of [a] in \mathbb{Z}_m .

Exercise 9. (pg. 40 Exercise 6) Now use essentially the reverse of the argument from Exercise 5 to show that if [a] has a multiplicative inverse in \mathbb{Z}_m , then gcd(a, m) = 1.

Solution:

Let $a, m \in \mathbb{Z}$ be arbitrary, but fixed. Assume that [a] has a multiplicative inverse in \mathbb{Z}_m . This means that there exists $[u] \in \mathbb{Z}_m$ such that [au] = [a] [u] = [1]. By Theorem 3.2, 1 - au = km for some $k \in \mathbb{Z}$. Thus

1 = au + km

for some $u, k \in \mathbb{Z}$. Thus 1 is a linear combination of *a* and *m*. Since no smaller positive integer exists, 1 is the smallest positive linear combination of *a* and *m*. By Corollary 2.5, gcd(a, m) = 1. \Diamond

Exercise 10. (pg. 40 Exercise 7) According to what you have shown in Exercises 5 and 6, which elements of \mathbb{Z}_{24} have multiplicative inverses? What are the inverses of each of those elements? (The answer is somewhat surprising.)

Solution:

The elements that have multiplicative inverses are [1], [5], [7], [11], [13], [17], [19], and [23]. The "surprise" is that each invertible element is its own inverse.

Exercise 11. (pg. 40 Exercise 9) Prove that the multiplication on \mathbb{Z}_m as defined in the text is well-defined, as claimed in Section 3.2.

₋⊘

Solution:

Let $[a], [b] \in \mathbb{Z}_m$ be arbitrary, but fixed. By definition, [a][b] = [ab]. We must show that if [x] = [a], then [x][b] = [a][b]. That is, the fact that a residue class has two different representations does not affect the product

Since [x] = [a], Theorem 3.2 tells us that

$$(1) x-a=km$$

for some $k \in \mathbb{Z}$. We want to show that [x][b] = [a][b]. It would suffice to show that [xb] = [ab], since the definition of modular arithmetic would then imply [x][b] = [a][b]. We could apply Theorem 3.2 to get [xb] = [ab] if we could find some integer j such that xb - ab = jm. Recalling equation (1),

$$x-a = km$$
$$(x-a)b = (km)b$$
$$xb-ab = (kb)m.$$

By closure, $kb \in \mathbb{Z}$. As hoped, Theorem 3.2 applies: [x][b] = [xb] = [ab] = [a][b].