Modern Algebra 1 Section 1 - Assignment 4

JOHN PERRY

Exercise 1. (pg. 39 Warm Up b) Does $\{47,100,-3,29,-9\}$ contain a representative from every residue class of \mathbb{Z}_{5} ? Does $\{-14,-21,-10,-3,-2\}$? Does $\{10,21,32,43,54\}$?

Solution:

The first one does not; both 47 and -3 are in [2]. The second and third do. \qquad
Exercise 2. (pg. 39 Warm Up c) What is the additive inverse of $[13]$ in \mathbb{Z}_{28} ?
Solution:

$$
[15]+[13]=[0]
$$

\qquad \checkmark
Exercise 3. (pg. 39 Warm Up d) What is the relationship between 'clock arithmetic' and modular arithmetic?

Solution:

'Clock arithmetic' is a special case of modular arithmetic. It takes place in \mathbb{Z}_{12}. \qquad Δ
Exercise 4. (pg. 39 Warm Up e) (a) What time is it 100 hours after 3 o'clock?
(b) What day of the week is it 100 days after Monday?

Solution:

(a) There are twenty-four hours in a day, and $100=4 \cdot 24+4$. By adding four hours to 3 o'clock, we see that 100 hours after 3 o'clock is 7 o'clock.
(b) There are seven days in a week, and $100=14 \cdot 7+2$. Two days after Monday is Wednesday, so 100 days after Monday is Wednesday. \qquad
Exercise 5. (pg. 39 Warm $U p f$) Solve the following equations, or else argue that they bave no solutions:
(a) $[4]+X=[3]$, in \mathbb{Z}_{6}.
(b) $[4] X=[3]$, in \mathbb{Z}_{6}.
(c) $[4]+X=[3]$, in \mathbb{Z}_{9}.
(d) $[4] X=[3]$, in \mathbb{Z}_{9}.

Solution:

(a) Since $3-4=-1$ and $[-1]=[5], X=[5]$.
(b) No solution. The multiples of [4] in \mathbb{Z}_{6} are [4], [8] $=[2]$, and [12] $=[0]$. All other multiples appear in those residue classes. Better explanation: [4] $X=[3]$ iff $[4 X]=[3]$ iff (by Theorem 3.2) $4 X-3=6 k$ for some $k \in \mathbb{Z}$ iff $4 X-6 k=3$ for some $k \in \mathbb{Z}$. By a previous exercise, 3 must be a multiple of the gcd of 4 and 6 . Unfortunately, $\operatorname{gcd}(4,6)=2$, and 3 is not a multiple of 2 . Hence there is no solution to this equation.
(c) Since $3-4=-1$ and $[-1]=[8], X=8$.
(d) Since $4 \times 3=12$ and [12] $=[3], X=3$.

Exercise 6. (pg. 39 Exercise 3) In Exercise c you determined the additive inverse of [13] in \mathbb{Z}_{28}. Now determine its multiplicative inverse.

Solution:

We need x such that $[13] x=[1]$. The multiples of [13] are

$$
\begin{array}{r}
{[13],[26],[39]=[11],[24],[37]=[9],[22],[35]=[7],} \\
{[20],[33]=[5],[18],[31]=[3],[16],[29]=[1] .}
\end{array}
$$

The thirteenth multiple is [1]. Thus [13] is its own multiplicative inverse. \qquad \checkmark

Exercise 7. (pg. 39 Exercise 4) Find an example in \mathbb{Z}_{6} where $[a][b]=[a][c]$, but $[b] \neq[c]$. How is this example related to the existence of multiplicative inverses in \mathbb{Z}_{6} ?

Solution:

If $a=2, b=3$, and $c=6$, then $[a][b]=[a][c]=[0]$. This is related to multiplicative inverses because if $[a]$ had a multiplicative inverse, then we could multiply it to both sides of the equation and show that $[b]=[c]$.

Exercise 8. (pg. 40 Exercise 5) If $\operatorname{gcd}(a, m)=1$, then the $G C D$ identity 2.4 guarantees that there exist integers u and v such that $1=a u+m v$. Show that in this case, $[u]$ is the multiplicative inverse of $[a]$ in \mathbb{Z}_{m}.

Solution:

Let $a, m \in \mathbb{Z}$ be arbitrary, but fixed. Assume that $\operatorname{gcd}(a b)=1$. Then there exist $u, v \in \mathbb{Z}$ such that

$$
\begin{aligned}
1 & =a u+m v \\
1-a u & =m v .
\end{aligned}
$$

By Theorem 3.2 and the definition of modular multiplication, $[a][u]=[a u]=[1]$, showing that $[u]$ is the multiplicative inverse of $[a]$ in \mathbb{Z}_{m}.
Exercise 9. (pg. 40 Exercise 6) Now use essentially the reverse of the argument from Exercise 5 to show that if [a] bas a multiplicative inverse in \mathbb{Z}_{m}, then $\operatorname{gcd}(a, m)=1$.

Solution:

Let $a, m \in \mathbb{Z}$ be arbitrary, but fixed. Assume that [a] has a multiplicative inverse in \mathbb{Z}_{m}. This means that there exists $[u] \in \mathbb{Z}_{m}$ such that $[a u]=[a][u]=[1]$. By Theorem 3.2, $1-a u=k m$ for some $k \in \mathbb{Z}$. Thus

$$
1=a u+k m
$$

for some $u, k \in \mathbb{Z}$. Thus 1 is a linear combination of a and m. Since no smaller positive integer exists, 1 is the smallest positive linear combination of a and m. By Corollary $2.5, \operatorname{gcd}(a, m)=1$. \diamond
Exercise 10. (pg. 40 Exercise 7) According to what you have shown in Exercises 5 and 6, which elements of \mathbb{Z}_{24} have multiplicative inverses? What are the inverses of each of those elements? (The answer is somewhat surprising.)

Solution:

The elements that have multiplicative inverses are [1], [5], [7], [11], [13], [17], [19], and [23]. The "surprise" is that each invertible element is its own inverse.
Exercise 11. (pg. 40 Exercise 9) Prove that the multiplication on \mathbb{Z}_{m} as defined in the text is welldefined, as claimed in Section 3.2.

Solution:

Let $[a],[b] \in \mathbb{Z}_{m}$ be arbitrary, but fixed. By definition, $[a][b]=[a b]$. We must show that if $[x]=[a]$, then $[x][b]=[a][b]$. That is, the fact that a residue class has two different representations does not affect the product

Since $[x]=[a]$, Theorem 3.2 tells us that

$$
\begin{equation*}
x-a=k m \tag{1}
\end{equation*}
$$

for some $k \in \mathbb{Z}$. We want to show that $[x][b]=[a][b]$. It would suffice to show that $[x b]=$ $[a b]$, since the definition of modular arithmetic would then imply $[x][b]=[a][b]$. We could apply Theorem 3.2 to get $[x b]=[a b]$ if we could find some integer j such that $x b-a b=j m$. Recalling equation (1),

$$
\begin{aligned}
x-a & =k m \\
(x-a) b & =(k m) b \\
x b-a b & =(k b) m .
\end{aligned}
$$

By closure, $k b \in \mathbb{Z}$. As hoped, Theorem 3.2 applies: $[x][b]=[x b]=[a b]=[a][b]$. \qquad Δ

