Modern Algebra I Section 1 · Assignment 3

JOHN PERRY

Exercise 1. (pg. 27 Warm Up e) Give the prime factorizations of 92, 100, 101, 502, and 1002.

Solution:

 $92 = 4 \times 23 = 2^2 \times 23$ $100 = 4 \times 25 = 2^2 \times 5^2$ 101 is prime. $502 = 2 \times 251$ $1002 = 2 \times 501 = 2 \times 3 \times 167$ \sim

Exercise 2. (pg. 27 Exercise 6) Suppose that a and b are positive integers. If $a + b$ is prime, prove that $gcd(a, b) = 1$.

Solution:

Assume that $a + b$ is prime. Let $d = \gcd(a, b)$. By the definition of the gcd, d divides a and d divides b . Using the definition of divisibility, let $x, y \in \mathbb{Z}$ such that $dx = a$ and $dy = b$. Then

(1) $a + b = dx + dy = d(x + y)$

So d divides $a + b$.

Recall that $a + b$ is prime; by Theorem 2.7, it is irreducible. Since $a + b$ is irreducible and $a + b = d(x + y)$, by definition $d = 1$ or $x + y = 1$. If $d = 1$, then $gcd(a, b) = 1$, and we are done. Otherwise, $x + y = 1$. We show that this assumption gives a contradiction. Substituting into (1), we see that $a + b = d$. Recall that $d = \gcd(a, b)$. Since a and b are positive, $d \le a$ and $d \le b$. By substitution, $d = a + b \ge d + d = 2d$. So $d \ge 2d$. But d is a gcd, hence a positive integer, so d *<* 2d. We have a contradiction. The assumption that $x + y = 1$ produced a contradiction, so $x + y \neq 1$. Thus $d = 1$, so $gcd(a, b) = 1$.

Exercise 3. (pg. 27 Exercise 7) (a) A natural number greater than 1 that is not prime is called composite. Show that for any n, there is a run of n consecutive composite numbers. Hint: think factorial.

(b) Therefore, there is a string of 5 consecutive composite numbers starting where?

Solution:

(a) Let $n \in \mathbb{N}$ be arbitrary, but fixed. Consider $c_2 = (n + 1)! + 2$, $c_3 = (n + 1)! + 3$, ..., $c_{n+1} = (n + 1)! + (n + 1)!$. Let *i* be arbitrary, but fixed. Assume $2 \le i \le n + 1$. By definition of factorial, $i | (n+1)!$.

By definition of divisibility, $(n + 1)! = id$ for some $d \in \mathbb{Z}$. Thus $c_i = (n + 1)! + i = i (d + 1)$. By definition of divisibility, $i | c_i$. Since $i > 1$ and $d + 1 > 1$, c_i is not irreducible by definition. By Theorem 2.7, c_i is not prime. Since *i* was arbitrary, none of $c_2, c_3, \ldots, c_{n+1}$ is prime, so they are all composite. We have found $(n + 1) - 2 + 1 = n$ consecutive composite numbers. (b) A string of 5 consecutive composite numbers starts with $6! + 2 = 722$.

Exercise 4. Show that if a, d, x are integers such that dx divides ad, then x divides a.

Solution:

Assume that a, d, x are integers such that dx divides ad . By definition, there exists $\gamma \in \mathbb{Z}$ such that $(dx)\gamma = ad$. Thus $x\gamma = a$. By definition, x divides a. \triangle

Exercise 5. Show $gcd(ad, bd) = d gcd(a, b)$.

Solution:

By Theorem 2.4, there exist $x, y \in \mathbb{Z}$ such that

$$
(2) \t\t\t \gcd(a,b) = ax + by.
$$

By Corollary 2.5, equation (2) gives the smallest positive linear combination of a and b . Multiply both sides of equation (2) by d to obtain

$$
d \gcd(a, b) = d (ax + by).
$$

Distribute the d and regroup to obtain

(3)
$$
d \gcd(a, b) = x (ad) + y (bd).
$$

Equation (3) is a linear combination of *ad* and bd .

By Theorem 2.4, we know that there exist $u, v \in \mathbb{Z}$ such that

(4)
$$
\gcd(ad, bd) = u(ad) + v(bd).
$$

By Corollary 2.5, equation (4) gives the smallest positive linear combination of *ad* and bd . Since equation (3) gives another linear combination of ad and bd , it must be that

 $u(ad)+v(bd)\leq x(ad)+y(bd).$

Divide by d and we have

(5) au + b v ≤ ax + b y.

Recall equation (2) gives the smallest linear combination of a and b. Since $au + bv$ is another linear combination of a and b , it must be that

(6)
$$
au + bv \ge ax + by.
$$

Equations (5) and (6) imply that $au + bv = ax + bv$. Multiply by d to get $u(ad) + v(bd) = x(ad) + y(bd)$. Substituting from equations (4) and (3), we have

$$
\gcd(ad, bd) = d \gcd(a, b).
$$

◊

Exercise 6. (pg. 28 Exercise 10) Suppose that two integers a and b have been factored into primes as follows:

and

$$
a=p_1^{n_1}p_2^{n_2}\cdots p_r^{n_r}
$$

$$
b=p_1^{m_1}p_2^{m_2}\cdots p_r^{n_r},
$$

where the $\,p_i$'s are primes, and the exponents m_i and n_i are nonnegative integers. It is the case that

$$
\gcd(a, b) = p_1^{s_1} p_2^{s_2} \cdots p_r^{s_r},
$$

where s_i is the smaller of n_i and m_i . Show this with a $=$ 360 $=$ 2 33^2 5 and b $=$ 900 $=$ 2 2 3 2 5 2 . Now prove this fact in general.

Solution:

We can use the Euclidean algorithm to find gcd (360, 900):

$$
900 = 2 \times 360 + 180
$$

$$
360 = 2 \times 180 + 0.
$$

So $gcd(360, 900) = 180$. Observe that

$$
900 = 223252
$$

360 = 2³3²5
180 = 2²3²5 = 2^{min(2,3)}3^{min(2,2)}5^{min(1,2)}.

To prove this fact in general, let $d = p_1^{s_1} p_2^{s_2} \cdots p_r^{s_r}$ where $s_i = \min(m_i, n_i)$. It is clear that d is a divisor of a and d is a divisor of b , since

$$
a = dx \quad \text{and} \quad b = dy
$$

where

$$
x = p_1^{n_1 - s_1} p_2^{n_2 - s_2} \cdots p_r^{n_r - s_r} \text{ and } y = p_1^{m_1 - s_1} p_2^{m_2 - s_2} \cdots p_r^{m_r - s_r}.
$$

It remains to show that d is the greatest common divisor.

Applying the previous exercise, $gcd(a, b) = gcd(d, x, dy) = d gcd(x, y)$. If $d = \gcd(a, b)$, then $\gcd(x, y) = 1$. So by way of contradiction, assume that $\gcd(x, y) \neq 1$. Let p be one of the prime divisors of $gcd(x, y)$. Then p divides x and p divides y. By unique factorization, $p = p_i$ for some $i : 1 \le i \le r$. Either min $(m_i, n_i) = m_i$ or min $(m_i, n_i) = n_i$. If min $(m_i, n_i) = m_i$, then $s_i = m_i$, so $m_i - s_i = 0$. So $p_i \nmid y$. If min $(m_i, n_i) = n_i$, then $s_i = n_i$, so $n_i - s_i = 0$. So $p_i \nmid x$. So $p \nmid x$ or $p \nmid y$. Thus $p \nmid gcd(x, y)$. This contradicts the assumption that p was a divisor of $gcd(x, y)$. The assumption that $gcd(x, y) \neq 1$ leads to a contradiction. Hence $gcd(x, y) = 1$.

Thus $d = \gcd(a, b)$.

By definition of d ,

$$
\gcd(a, b) = p_1^{s_1} p_2^{s_2} \cdots p_r^{s_r}.
$$

◊