Modern Algebra I Section 1 · Assignment 3

JOHN PERRY

Exercise 1. (pg. 27 Warm Up e) Give the prime factorizations of 92, 100, 101, 502, and 1002.

Solution:

 $92 = 4 \times 23 = 2^{2} \times 23$ $100 = 4 \times 25 = 2^{2} \times 5^{2}$ 101 is prime. $502 = 2 \times 251$ $1002 = 2 \times 501 = 2 \times 3 \times 167$

Exercise 2. (pg. 27 Exercise 6) Suppose that a and b are positive integers. If a + b is prime, prove that gcd(a, b) = 1.

Solution:

Assume that a + b is prime. Let d = gcd(a, b). By the definition of the gcd, d divides a and d divides b. Using the definition of divisibility, let $x, y \in \mathbb{Z}$ such that dx = a and dy = b. Then

(1)

a+b = dx + dy = d(x+y)

So *d* divides a + b. Recall that a + b is prime; by Theorem 2.7, it is irreducible.

Since a + b is irreducible and a + b = d(x + y), by definition d = 1 or x + y = 1. If d = 1, then gcd(a, b) = 1, and we are done. Otherwise, x + y = 1. We show that this assumption gives a contradiction. Substituting into (1), we see that a + b = d. Recall that d = gcd(a, b). Since a and b are positive, $d \le a$ and $d \le b$. By substitution, $d = a + b \ge d + d = 2d$. So $d \ge 2d$. But d is a gcd, hence a positive integer, so d < 2d. We have a contradiction. The assumption that x + y = 1 produced a contradiction, so $x + y \ne 1$. Thus d = 1, so gcd(a, b) = 1.

Exercise 3. (pg. 27 Exercise 7) (a) A natural number greater than 1 that is not prime is called **composite**. Show that for any n, there is a run of n consecutive composite numbers. Hint: think factorial.

0

(b) Therefore, there is a string of 5 consecutive composite numbers starting where?

Solution:

(a) Let $n \in \mathbb{N}$ be arbitrary, but fixed. Consider $c_2 = (n+1)! + 2$, $c_3 = (n+1)! + 3$, ..., $c_{n+1} = (n+1)! + (n+1)$. Let *i* be arbitrary, but fixed. Assume $2 \le i \le n+1$. By definition of factorial, $i \mid (n+1)!$. By definition of divisibility, (n + 1)! = id for some $d \in \mathbb{Z}$. Thus $c_i = (n + 1)! + i = i(d + 1)$. By definition of divisibility, $i | c_i$. Since i > 1 and d + 1 > 1, c_i is not irreducible by definition. By Theorem 2.7, c_i is not prime. Since i was arbitrary, none of c_2, c_3, \dots, c_{n+1} is prime, so they are all composite. We have found (n + 1) - 2 + 1 = n consecutive composite numbers. (b) A string of 5 consecutive composite numbers starts with 6! + 2 = 722.

Exercise 4. Show that if a, d, x are integers such that d x divides ad, then x divides a.

Solution:

Assume that a, d, x are integers such that dx divides ad. By definition, there exists $y \in \mathbb{Z}$ such that (dx)y = ad. Thus xy = a. By definition, x divides a.

Exercise 5. Show gcd(ad, bd) = d gcd(a, b).

Solution:

By Theorem 2.4, there exist $x, y \in \mathbb{Z}$ such that

(2)
$$gcd(a,b) = ax + by$$

By Corollary 2.5, equation (2) gives the smallest positive linear combination of a and b. Multiply both sides of equation (2) by d to obtain

$$d \gcd(a, b) = d (ax + by).$$

Distribute the d and regroup to obtain

(3)
$$d \gcd(a, b) = x (ad) + y (bd).$$

Equation (3) is a linear combination of ad and bd.

By Theorem 2.4, we know that there exist $u, v \in \mathbb{Z}$ such that

(4)
$$\gcd(ad, bd) = u(ad) + v(bd)$$

By Corollary 2.5, equation (4) gives the smallest positive linear combination of ad and bd. Since equation (3) gives another linear combination of ad and bd, it must be that

 $u(ad) + v(bd) \le x(ad) + y(bd).$

Divide by d and we have

$$(5) au + bv \le ax + by.$$

Recall equation (2) gives the smallest linear combination of a and b. Since au + bv is another linear combination of a and b, it must be that

Equations (5) and (6) imply that au + bv = ax + by. Multiply by *d* to get u(ad) + v(bd) = x(ad) + y(bd). Substituting from equations (4) and (3), we have

$$gcd(ad, bd) = d gcd(a, b)$$

 \diamond

 \diamond

Exercise 6. (pg. 28 Exercise 10) Suppose that two integers a and b have been factored into primes as follows:

and

$$a = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$$

$$b = p_1^{m_1} p_2^{m_2} \cdots p_r^{n_r},$$

where the p_i 's are primes, and the exponents m_i and n_i are nonnegative integers. It is the case that

$$\gcd(a,b)=p_1^{s_1}p_2^{s_2}\cdots p_r^{s_r},$$

where s_i is the smaller of n_i and m_i . Show this with $a = 360 = 2^3 3^2 5$ and $b = 900 = 2^2 3^2 5^2$. Now prove this fact in general.

Solution:

We can use the Euclidean algorithm to find gcd (360, 900):

$$900 = 2 \times 360 + 180$$

 $360 = 2 \times 180 + 0.$

So gcd(360, 900) = 180. Observe that

$$900 = 2^{2}3^{2}5^{2}$$

$$360 = 2^{3}3^{2}5$$

$$180 = 2^{2}3^{2}5 = 2^{\min(2,3)}3^{\min(2,2)}5^{\min(1,2)}.$$

To prove this fact in general, let $d = p_1^{s_1} p_2^{s_2} \cdots p_r^{s_r}$ where $s_i = \min(m_i, n_i)$. It is clear that d is a divisor of a and d is a divisor of b, since

$$a = dx$$
 and $b = dy$

where

$$x = p_1^{n_1 - s_1} p_2^{n_2 - s_2} \cdots p_r^{n_r - s_r}$$
 and $y = p_1^{m_1 - s_1} p_2^{m_2 - s_2} \cdots p_r^{m_r - s_r}$

It remains to show that d is the greatest common divisor.

Applying the previous exercise, gcd(a, b) = gcd(dx, dy) = d gcd(x, y). If d = gcd(a, b), then gcd(x, y) = 1. So by way of contradiction, assume that $gcd(x, y) \neq 1$. Let p be one of the prime divisors of gcd(x, y). Then p divides x and p divides y. By unique factorization, $p = p_i$ for some $i : 1 \le i \le r$. Either min $(m_i, n_i) = m_i$ or min $(m_i, n_i) = n_i$. If min $(m_i, n_i) = m_i$, then $s_i = m_i$, so $m_i - s_i = 0$. So $p_i \nmid y$. If min $(m_i, n_i) = n_i$, then $s_i = n_i$, so $n_i - s_i = 0$. So $p_i \nmid x$. So $p \nmid x$ or $p \nmid y$. Thus $p \nmid gcd(x, y)$. This contradicts the assumption that p was a divisor of

gcd(x, y). The assumption that $gcd(x, y) \neq 1$ leads to a contradiction. Hence gcd(x, y) = 1. Thus d = gcd(a, b).

By definition of d,

$$gcd(a,b) = p_1^{s_1} p_2^{s_2} \cdots p_r^{s_r}.$$

₋♦