Modern Algebra I Section 1 • Assignment 2

JOHN PERRY

Exercise 1. (pg. 26 Warm Up a) Find the quotient and remainder, as guaranteed by the Division Theorem 2.1, for 13 and -120, -13 and 120, and -13 and -120.

Solution:

We presume that the first number given is a, and the second b.
For 13 and -120 , consider that $120=9 \times 13+3$, so $-120=-9 \times 13-3$. Since the remainder must be positive, $-120=-8 \times 13+10$.

Use the same reasoning to obtain $120=9 \times(-13)+3$ and $-120=8 \times(-13)+10$. \qquad
Exercise 2. (pg. 26 Warm Up b) What are the possible remainders when you divide by 3, using Division Theorem 2.1? Choose one such remainder, and make a list describing all integers that give this remainder, when divided by 3.

Solution:

All possible remainders for division by 3 are $0,1,2$. For 0 , we obtain the list

$$
\ldots,-6,-3,0,3,6, \ldots
$$

Exercise 3. (pg. 26 Warm Upd) Let m be a fixed integer. Describe succinctly the integers a where

$$
\operatorname{gcd}(a, m)=m
$$

Solution:
The integers are precisely the multiples of m; that is, any integer that m divides with zero remainder.

Exercise 4. (pg. 27 Exercise 1) (a) Find the greatest common divisor of 34 and 21, using Euclid's Algorithm. Then express this gcd as a linear combination of 34 and 21.
(b) Now do the same for 2424 and 772.

Solution:

(a) We get:

$$
\begin{aligned}
34 & =21 \times 1+13, \\
21 & =13 \times 1+8, \\
13 & =8 \times 1+5, \\
8 & =5 \times 1+3, \\
5 & =3 \times 1+2, \\
3 & =2 \times 1+1, \\
2 & =1 \times 2+0
\end{aligned}
$$

Thus, the greatest common divisor of 34 and 21 is 1.

To obtain the linear combination, reverse the process:

$$
\begin{aligned}
1 & =3-2 \times 1 \\
1 & =3-(5-3 \times 1) \times 1 \\
& =3 \times 2-5 \times 1 \\
1 & =(8-5 \times 1) \times 2-5 \times 1 \\
& =8 \times 2-5 \times 3 \\
1 & =8 \times 2-(13-8 \times 1) \times 3 \\
& =8 \times 5-13 \times 3 \\
1 & =(21-13 \times 1) \times 5-13 \times 3 \\
& =21 \times 5-13 \times 8 \\
1 & =21 \times 5-(34-21 \times 1) \times 8 \\
& =21 \times 13-34 \times 8 .
\end{aligned}
$$

(b) For 2424 and 772, Euclid's Algorithm shows the gcd to be 4:

$$
\begin{aligned}
2424 & =3 \times 772+108 \\
772 & =7 \times 108+16 \\
108 & =6 \times 16+12 \\
16 & =1 \times 12+4 \\
12 & =3 \times 4+0 .
\end{aligned}
$$

Reversing the process obtains a linear combination:

$$
\begin{aligned}
4 & =16-12 \times 1 \\
4 & =16-(108-16 \times 6) \times 1 \\
& =16 \times 7-108 \times 1 \\
4 & =(772-108 \times 7) \times 7-108 \times 1 \\
& =772 \times 7-108 \times 50 \\
4 & =772 \times 7-(2424-772 \times 3) \times 50 \\
& =772 \times 157-2424 \times 50
\end{aligned}
$$

Exercise 5. (pg. 27 Exercise 2) Prove that $\operatorname{gcd}(a, b)$ divides $a-b$. This sometimes provides a short cut in finding gcds. Use this to find $\operatorname{gcd}(1962,1965)$. Now find $\operatorname{gcd}(1961,1965)$.

Solution:

Let $a, b \in \mathbb{Z}$ be arbitrary, but fixed.
Write $d=\operatorname{gcd}(a, b)$.
Since $d \mid a$, there exists $x \in \mathbb{Z}$ such that $d x=a$. Likewise, since $d \mid b$, there exists $y \in \mathbb{Z}$ such that $d y=b$. Then

$$
a-b=d x-d y=d(x-y)
$$

so d divides $a-b$.
Since $1965-1962=3$, the gcd of those two numbers is either 1 or 3 . Inspection shows that it is 3 .

Since $1965-1961=4$, the gcd of those two numbers is 1,2 , or 4 . Since both numbers are odd, the gcd cannot be 4 or 2 , so it must be 1 .

Exercise 6. (pg. 27 Exercise 4) Two numbers are said to be relatively prime if their gcd is 1. Prove that a and b are relatively prime if and only if every integer can be written as a linear combination of a and b.

Solution:

Let $a, b \in \mathbb{Z}$ be arbitrary. Assume that a and b are relatively prime. Then $\operatorname{gcd}(a, b)=1$. By the gcd identity (Theorem 2.4), $1=a x+b y$ for some $x, y \in \mathbb{Z}$. Let n be an arbitrary integer. Then

$$
\begin{aligned}
n & =n(a x+b y) \\
& =a(n x)+n(n y) .
\end{aligned}
$$

So n can be written as a linear combination of a and b. Since n was arbitrary, this holds for all integers.

Conversely, assume that any integer can be written as a linear combination of a and b. Certainly $1 \in \mathbb{Z}$ so $1=a x+b y$ for some $x, y \in \mathbb{Z}$. Also, 1 is the smallest positive integer possible, so it is the smallest positive integer that can be written as a linear combination of a and b. By Corollary 2.5, 1 is the gcd of a and b.

Another solution: Using the previous exercise in the book, we know that a and b are relatively prime if and only if 1 can be written as a linear combination of a and b. Let n be an arbitrary integer. Using the last fact, a and b are relatively prime if and only if there exist $x, y \in \mathbb{Z}$ such that

$$
\begin{aligned}
1 & =a x+b y \\
n & =a(n x)+b(n y)
\end{aligned}
$$

that is, if and only if n can be written as a linear combination of a, b. (You can't really use this one, since I didn't assign the previous exercise in the book.) \qquad
Exercise 7. (pg. 28 Exercise 8) Prove that two consecutive integers of the Fibonacci sequence are relatively prime.

Solution:

We proceed by induction on n.
For the inductive base, assume $n=1$.
By definition, $a_{1}=1$ and its successor $a_{2}=1$ have gcd 1, and so are relatively prime.
Assume $n>2$, and that a_{k} and a_{k+1} are relatively prime for all $k: 1 \leq k<n$.
By definition, $a_{n}=a_{n-1}+a_{n-2}$.
Then

$$
\begin{equation*}
a_{n}-a_{n-1}=a_{n-2} \tag{1}
\end{equation*}
$$

Let d be the greatest common divisor of a_{n} and a_{n-1}.
It is clear that d divides the left hand side of equation (1).
So d also divides the right hand side of equation (1).
So d divides a_{n-2}.
Since d is a common divisor of both a_{n-1} and a_{n-2}, it divides their greatest common divisor, 1.

The only positive integer that divides 1 is 1 itself. Hence $d=1$.
Hence a_{n} and a_{n-1} are relatively prime.

