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Chapter 1

Modular arithmetic

1.1 Sets and relations
The material in this section is fundamental! Much of mathematics depends entirely on the de�-
nitions.

Sets
A set is a collection of elements. From now until the end of the text, S is a set, unless we write
otherwise. We write s ∈ S to say that “s is an element of S ,” and we write t < S to say that “t is not
an element of S .” If S has �nitely many elements, then the size of S is the number of elements.
We write |S | for the size of S .

• If we only consider one or two elements of S , then we’ll start with s ∈ S , then consider
t ∈ S . Similarly we may start with a ∈ A, then consider b ∈ A.

• Sometimes, when we consider several elements of S , we’ll start with s, t ∈ S , then write
subsequent elements in a “decorated” fashion, as ŝ , s′, t̂ , t ′, and so forth. The hat and the
apostrophe have no special meaning. They just means that we’re looking at a di�erent
element of S . The apostrophe does not indicate a derivative! That said, s , ŝ , and s′ will
typically be related in some fashion.

• For a long sequence of elements, we’ll write the �rst one as s0, the next one as s1, the one
after that as s2, and so forth. We call the number a subscript and sometimes we’ll use a letter
when we don’t necessarily know which element of the sequence we mean; for instance, si
is the ith element in s1, s2, . . . .

Example 1.1. Suppose S = {1, 2, 3, 4, 5}. We see that1 ∈ S , but 0 < S . For any s, t ∈ S we know
that s + t ∈ {2, 3, . . . , 10} and s − t ∈ {−4,−3, . . . , 3, 4}.

The basic sets of school mathematics are1

• the positive numbers N+ = {1, 2, 3, . . .};
1This is not really important, but Z is from the German word for “number” and Q is from the Italian word for

“quotient.”
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• the natural numbers N = {0, 1, 2, . . .};

• the integers Z = {. . . ,−2,−1, 0, 1, 2, . . .};

• the rational numbers Q = {a/b : a,b ∈ Z and b , 0};

• the real numbers R, which we can describe intuitively as “any length of a line segment,”
written R for short.

Whenever every element a set S is also an element of a setT , we say that S is a subset of T , written
S ⊆ T for short. If S is not a subset of T , then we write S * T . We say that two sets are equal if
each is a subset of the other, written S = T for short. If we know that S ⊆ T but S , T , we write
S ( T .

Notice the di�erence between S ( T and S * T ; in the �rst case, S is a subset of T ; it’s just
not equal to it; in the second, S is not even a subset of T .

Example 1.2. Every natural number is an integer, allowing us to writeN ⊆ Z. The negatives are
not natural, so N ( Z.

Example 1.3. Every rational number of the form a/1 is in identi�ed with the integer a, so every
integer is a rational number, allowing us to write Z ⊆ Q. Some rationals, like 1/2, are not integers,
so Q ( Z and so Q , R.

Example 1.4. Is every rational number a real number? Let a/b ∈ Q, and take any line segment
you like. Copy it b times and lay the b copies end-to-end; we will say that the resulting line
segment has length “1 unit,” so that the original segment had length “1/b units.” Now copy the
original segment a times and lay the a copies end-to-end; the resulting line segment has length
“a/b units.” Thus, a/b is the length of a line segment, and hence it is a real number.

We placed no particular conditions on a/b, which means it was “arbitrary” in Q. By working
with an arbitrary element of Q, we have shown that every rational number corresponds to the
length of a line, allowing us to write Q ⊆ R.

Example 1.5. Is every real number a rational number? We won’t answer this question quite yet,
but propose a thought experiment instead.

Consider
√
2. You will show in Exercise 1.15 that

√
2 is the length of a line segment, so

√
2 is

de�nitely a real number. Can we also write
√
2 = a/b, where a and b are integers?

If so, and if we can do this for every real number, thenR ⊆ Q. This is a bit hard at the moment,
so we postpone it until Section 1.4.

We often de�ne sets using set-builder notation. For instance, we de�ned the rational num-
bers as

Q = {a/b : a,b ∈ Z and b , 0} .

This reads as, “Q is the set of all a/b such that a and b are integers and b is not 0.”
There are three common ways to build one set from two others.
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• The union of S and T is the set of elements that are members of S or T ,2 written S ∪T . In
set-builder notation,

S ∪T = {x : x ∈ S or x ∈ T } .

• The intersection of S and T is the set of elements that are members of S and T , written
S ∩T . In set-builder notation,

S ∩T = {x : x ∈ S and x ∈ T } .

• The di�erence of S andT is the set of elements that are members of S but not ofT ,3 written
S\T . In set-builder notation,

S\T = {x : x ∈ S and x < T } .

Example 1.6. Can we simplify the expression, N ∪ Z?
To answer this, consider an arbitrary element a ∈ N ∪ Z. By de�nition of union, a ∈ N or

a ∈ Z. If a ∈ N, then a ∈ Z, as well. Hence N ∪ Z ⊆ Z.
On the other hand, consider an arbitrary b ∈ Z. By de�nition of union, b ∈ N ∪ Z, as well.

Hence N ∪ Z ⊇ Z.
We said above that two sets are equal if each is a subset of the other. We have now shown

that N ∪ Z ⊆ Z and N ∪ Z ⊇ Z, so N ∪ Z = Z.

Example 1.7. Can we simplify the expression, N ∩ Z?
Again, consider an arbitrary element a ∈ N ∩ Z. By de�nition of intersection, a ∈ N and

a ∈ Z. If a ∈ N, then a ∈ Z, as well. Hence N ⊆ N ∩ Z.
On the other hand, consider anyb ∈ Z such thatb < N. By de�nition of intersection,b < N∩Z,

either. Hence N ⊇ N ∩ Z.
We said above that two sets are equal if each is a subset of the other. We have now shown

that N ∪ Z ⊆ Z and N ∪ Z ⊇ Z, so N ∪ Z = Z.

Example 1.8. Can we simplify the expression, Z\N?
Once again, consider an arbitrary element a ∈ Z\N. By de�nition of set di�erence, a ∈ Z but

a < N. The only numbers that satisfy that are negative numbers, so Z\N = {−1,−2,−3, . . .}.

You will generalize these results in Exercise 1.16.
2In common English, the word “or” typically means “either-or,” or “exclusive-or.” For example, most people would

understand the phrase, “Would you like cake or pie?” to mean choosing one or the other. In mathematics, however,
the word “or” is an “inclusive-or,” so that a mathematician understands that the only correct answer to, “Would you
like cake or pie?” is “Yes.”

3As the set-builder notation shows, “but” and “and” have the same logical meaning in mathematics, and one can
usually interchange them. In common English, “but” and “and” are not typically interchangeable: “You can have
cake and not pie” sounds wrong in far too many ways.
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Relations
From here until the end of the section, T is also a set.

TheCartesian product of S andT is the set of all ordered pairs whose �rst entry is an element
of S and whose second entry is an element of T . Written symbolically,

S ×T = {(s, t ) : s ∈ S, t ∈ T } .

Example 1.9. The Cartesian product of N with itself is

N × N = {(0, 0) , (0, 1) , (0, 2) , . . . , (1, 0) , (1, 1) , (1, 2) , . . .} .

In a case like this we will write N2 instead of N × N. We call N2 the lattice of natural numbers.
An interesting aspect of the lattice of natural numbers is that you can plot its elements rather

easily using the �rst quadrant of the real plane, typically drawn on a grid:

(0, 0)

(3, 1)

(2, 4)

The only points allowed on the lattice are the ones marked with dots. Unlike an ordinary graph,
no points lie between them! We have diagrammed the lattice points (0, 0), (2, 4), and (3, 1).

A relation R between S and T is a subset of S ×T . Given a relation R, we say that s ∈ S and
t ∈ T are related if (s, t ) ∈ R. However, it is more common to write relations di�erently: we
typically use symbols such as ≤, ∼, ≡, and write s ≤ t or s ∼ t or s ≡ t .

If S = T then we call R a relation on S .

Example 1.10. Consider the relation on N

R =
{
(a,b) ∈ N2 : b − a ∈ N+

}
.

Elements of this set include

(0, 1) , (0, 2) , (2, 4) , (8, 15)

but not elements of the form
(0, 0) , (2, 0) , (−3, 7) .

You are more likely to think of this as the less-than relation:

0 < 1, 0 < 2, . . . 1 < 2, 2 < 3, . . . 2 < 3, 3 < 4, . . . .

We can diagram this relation on the lattice: dots indicate points (a,b) that belong to the relation
because b − a ∈ N+ (that is, a < b); circles indicate points (a,b) that don’t belong to the relation
because b − a < N+.
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Example 1.11. Here’s another relation on N:

R = {(0, 0) , (1, 1) , (2, 2) , (3, 3) , . . .} .

What familiar relation are you looking at? How would you diagram it?

Many relations belong to an important class of relations called equivalence relations. Equiv-
alence relations satisfy three important properties. To describe them, we need a set S and a rela-
tion ∼ on S .

• The re�exive property states that s ∼ s for every s ∈ S .

• The symmetric property states that for every s, t ,u ∈ S if s ∼ t and t ∼ u, then s ∼ u.

• The transitive property states that for every s, t ,u ∈ S if s ∼ t and t ∼ u, then s ∼ u.

Example 1.12. Look back at Example 1.10. It does not satisfy the re�exive property, because
0 ≮ 0, or, (0, 0) < R. It is therefore not an equivalence relation. It also does not satisfy the
symmetric property, because 0 < 1 but 1 ≮ 0, or, (0, 1) ∈ R but (1, 0) < R. On the other hand, it
does satisfy the transitive property, because if a < b and b < c then a < c , or, if (a,b) , (b, c ) ∈ R
then (a, c ) ∈ R.

Example 1.13. Look back at Example 1.11. You hopefully noticed that R is really the equality
relation: every element of R has the form (a,b) where a = b. We rely on this to show that R is an
equivalence relation.

• Let a ∈ N. We see that (a,a) ∈ R, so R is symmetric.

• Let a,b ∈ N. If (a,b) ∈ R, then a = b, but we know that b = a, so (b,a) ∈ R.

• Let a,b, c ∈ N. If (a,b) , (b, c ) ∈ R, then a = b and b = c , so a = c , in which case (a, c ) ∈ R.
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Exercises
Exercise 1.14. For the sets S = {1, 2, 3} and T = {2, 3, 4}, compute the following sets.

(a) S ∪T

(b) S ∩T

(c) S\T

(d) S ×T

Exercise 1.15. Use the intuitive de�nition of real number as the “length of a line segment” to
explain how we know that

√
2 is a real number. The Pythagorean Theorem will help.

Exercise 1.16. Suppose S ⊆ T . Explain why S ∪T = T and S ∩T = S .
Hint: Use Examples 1.6 and 1.7 as your guide.

Exercise 1.17. Consider the relation R =
{
(a,b) ∈ N2 : ab = 12

}
. List the elements of R, and

diagram them on a lattice. Do you see a pattern?

Exercise 1.18. Consider the relation R =
{
(a,b) ∈ N2 : b − a < N

}
. List ten elements of R, and

diagram them on a lattice. Do you see a pattern? What familiar symbol does this relation repre-
sent?

Exercise 1.19. De�ne a relation on Q in the following way. For any a/b, c/d ∈ Q, we say that
a/b ∼ c/d if ad = bc .

(a) Show that 4/6 ∼ 6/9.

(b) Show that −2/5 ∼ 10/−25.

(c) Show that a/b ∼ a/b.

(d) Show that if a/b ∼ c/d, then c/d ∼ a/b.

(e) Show that if a/b ∼ c/d and c/d ∼ e/f , then a/b ∼ e/f .

(f) Is ∼ an equivalence relation?

(g) You have already used this equivalence relation many, many times before. Where?

Remember to use the de�nition of the relation in each part! If you aren’t rewriting fractions as
multiplication, then you aren’t doing it right!

Exercise 1.20. The Euclidean distance between (a,b) , (c,d ) ∈ N2 is the value determined by
the ordinary distance formula,

√
(a − c )2 + (b − d )2. Unfortunately, this is not usually a natural

number.
It is possible to compute distance a di�erent way, so that it is a natural number. In this case

we consider the distance from (a,b) to (c,d ) to be |(a − c ) | + |(b − d ) |. We’ll call this the sidewalk
distance between two points, because it indicates the number of sidewalks you’d have to travel
from point (a,b) to point (c,d ) when walking through a city laid out with perpendicular streets.
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(a) Compute the sidewalk distance between (0, 0) and (3, 4).

(b) Compute the sidewalk distance between (1, 5) and (7, 2).

(c) Make a lattice diagram of all the points whose sidewalk distance to (4, 5) is at most 4.

(d) Make a lattice diagram of all the points whose Euclidean distance to (4, 5) is at most 4.

(e) Comment on how the answers to (c) and (d) are di�erent.

Sage supplement
This section shows how to perform some elementary operations in Sage.

Some sets are already de�ned in Sage. For instance, you can type NN, ZZ, and QQ to obtain the
sets N, Z, and Q. If you type them into Sage, it will display a funny name:

sage: NN
Non negative integer semiring
sage: ZZ
Integer Ring
sage: QQ
Rational Field

Don’t worry too much about the names; we explain later what the names “ring” and “�eld” mean.
You can de�ne a set using either braces {} or the set() command.

sage: { 3, 5, 7 }
set([3, 5, 7])
sage: set( [ 7, 5, 3, 7, 7, 3, 5 ] )
set([3, 5, 7])

Notice how elements are automatically ordered, and no element can appear more than once.
It is also possible to de�ne a set using something akin to set-builder notation, making use of

for and if statements:

sage: { i^2 for i in { 3, 5, 7 } }
set([9, 49, 25])
sage: { i^2 for i in { 3, 4, 5, 6, 7 } if is_even( i ) }
set([16, 36])

Notice how all three numbers were squared in the �rst assignment, and how only the even num-
bers were taken and squared in the second assignment.

Another useful command for generating a set is range().
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• With just one integer between the parentheses, it returns a list of all the numbers that are
between 0 and the speci�ed number, including 0 but not the speci�ed number.

• With two integers between the parentheses, it returns a list of all the numbers between the
two, including the �rst but not the last.

sage: range( 8 )
[0, 1, 2, 3, 4, 5, 6, 7]
sage: range( 3, 8 )
[3, 4, 5, 6, 7]

You can assign a name to an object using the = operator. You can assign a name to any object
in this way. You can even assign several objects at a time.

sage: a, b = 3, 4
sage: a + b
7
sage: S = { a, b, 7, 3 }
sage: S
set([3, 4, 7])

Notice that Sage does not display any messages after a successful assignment.
You can test whether two objects are equal using the == operator. This is not the same as the

= operator; comparison uses two equality signs instead of one. Be careful when doing this; if you
type only one sign, you may accidentally overwrite an object. In other cases, Sage will report an
error. What happens depends on the context.

sage: 3 + 3 == 6
True
sage: 3 + 3 = 6
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/

smc_sagews/sage_server.py", line 1188, in execute
flags=compile_flags) in namespace, locals
File "<string>", line 1

SyntaxError: can’t assign to operator

Simple set operations are possible: use methods to accomplish them. Another name for
a method is a “dot command”, because you access them by typing an identi�er, followed by a
dot, follow by the method name. The example below demonstrates the use of .intersection,
.union, and .difference.
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sage: S = { i^2 for i in range(20) if is_even(i) }
sage: T = { 4*i for i in range(100) }
sage: S.intersection(T)
set([0, 64, 4, 16, 256, 144, 196, 324, 36, 100])
sage: S.union(T)
set([0, 256, 392, 4, 8, ... 252])
sage: S.difference(T)
set([])

That last output is how Sage indicates that it has computed an empty set.
You can often discover commands available for an object by typing the object’s name, adding

a period, then pressing the “tab” key. If you do this with S, the version of Sage I am using will
return 17 commands:

add, clear, copy, difference, difference_update, discard, intersection,
intersection_update, isdisjoint, issubset, issuperset, pop, remove,
symmetric_difference, symmetric_difference_update, union, update

You should see commands for union, intersection, and di�erence. To learn more about a com-
mand, you can continue by typing the command after the period, followed a question mark, then
executing the line, Sage will give you some help on the command. If I do this with pop, the version
of Sage I am using will display the following:

sage: S.pop?
File:
Docstring : Remove and return an arbitrary set element.
Raises KeyError if the set is empty.

This gives you an idea of what happens when you pop an element from a set.
You may have noticed that set objects lack a method for a Cartesian product. A command to

compute Cartesian products actually exists; it just isn’t a method. Try this:

sage: CP = cartesian_product((S,T))
sage: CP
The Cartesian product of ({0, 64, 4, 100, 324, 144, 256, 16,
196, 36}, {0, 256, 4, 8, ... 136, 252})

Notice that we used double parentheses; the cartesian_product command expects as input one
argument, which is a pair or list of sets. Here we used parentheses to give a pair.

It may not seem especially useful to have a “Cartesian product” that displays itself only as a
“Cartesian product” and not as a set of points, but trust us when we say that it is very useful.4 In
any case, we can use a set builder to transform CP into a set of ordered pairs: (that’s an x between
the S and the T below)

4Explaining why is beyond the scope of these notes.
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sage: SxT = { P for P in CP }
sage: SxT
set([(100, 36), (100, 324), (4, 264), ... (16, 328), (36,
76), (324, 352)])

(We omitted a lot of output this time.)
It is possible to de�ne new commands in Sage. This is not a textbook on programming; we

assume that if you are reading this, then you have some experience with programming, so we
won’t delve into the details of how various control structures work, but the following will de�ne
a command that computes the sidewalk distance between two points of the lattice, described in
Exercise 1.20.

sage: def sidewalk_dist(P, Q):
return abs(P[0] - Q[0]) + abs(P[1] - Q[1])

The def keyword de�nes a new command, in this case named sidewalk_dist. Parentheses
always follow, and contain arguments that sidewalk_dist requires. In this case, it requires two
arguments, P and Q.5 The �rst line ends with a colon, and subsequent lines are indented; these
two signals indicate that the indented lines depend on the line that ends with a colon. You will
see this in all Sage’s control structures.

The procedure then computes ��p0 − q0�� + ��p1 − q1��, where p0 is the �rst entry of P and p1 is its
second entry; we use abs(...) to compute the absolute value of whatever is in parentheses. The
return command indicates that whatever follows on that line is the result of sidewalk_dist.

Once we de�ne the command, we can use it as follows.

sage: sidewalk_dist((3,5),(7,2))
7

What just happened inside the computer? First it assigned the values (3, 5) to P and (7, 2) to Q. It
then computed

• abs( P[0] - Q[0] ) = |3 − 7| = 4;

• abs( P[1] - Q[1] ) = |5 − 2| = 3;

• the sum of these numbers, 7;

and then returned the result.
5Sage is like Python 2 or Perl, and unlike Python 3, in that it does not allow you to specify an argument’s type of

an argument. It is very much unlike C or Java, where you must specify the type.
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Exercises
Exercise 1.21. Use Sage to verify your answers in Exercise 1.14.

Exercise 1.22. Use Sage to verify your answers to Exercise 1.20.

1.2 Integer division
Division is a useful tool, but it is also rather strange. To understand why, we �rst need to make
some ideas precise.

A function from a set S to a setT is a relation F between S andT such that if (a,b) , (a, c ) ∈ F
thenb = c . That is, each “input” to F can have only one “output”. It is customary to write F (a) = b
instead of (a,b) ∈ F .

Operations and properties
An operation on a set S is a function from S2 to S . It is customary to give an operation a symbol
such as �, so that instead of saying ((s, t ) ,u) is in the operation, we say s � t = u.

Example 1.23. Given two integers, we add them to obtain a third integer. Addition of integers
is thus a function from Z2 to Z. For instance, if we start with 2 and −5, we add them to obtain −3.
This corresponds to the point ((2,−5) ,−3). However, we usually write 2 + (−5) = −3 instead.

The most useful operations satisfy certain properties that we often take for granted:

• An operation on S is closed if for every s, t ∈ S the operation’s result is some u ∈ S ; that is,
s � t = u.

• An operation on S is commutative if for every s, t ∈ S the order of the elements doesn’t
matter; that is, s � t = t � s .

• An operation on S is associative if for every three elements s, t ,u ∈ S it doesn’t matter
which two elements you �rst apply the operation to; that is, (s � t ) �u = s � (t �u).

• An operation on S has an identity if we can �nd some z ∈ S such that for every s ∈ S
s � z = s and z � s = S . In this case, we call z an identity of S .

• An operation on S is invertible if

– it has an identity z; and
– for any s ∈ S we can �nd t ∈ S such that s � t = z and t � s = z.

In this case, we call t the inverse of s .

Example 1.24.

• Addition is an operation on N, Z, Q, and R.

– In fact, it is closed on all four sets.
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– It is also both commutative and associative on all four sets.
– It has an identity on all four sets, written 0.
– It is invertible on all four sets: given x , we write its inverse as −x . (Read that as the

opposite of x , not as negative x . After all, − (−5) is not negative.)

• Subtraction is an operation on N, Z, Q, and R.

– However, it is not closed on N, since 3 − 4 < N. It is closed on Z, Q, and R.
– Subtraction is generally neither commutative nor associative.
– Subtraction does not have an identity! Even though 3− 0 = 3, we have 0− 3 , 3. The

identity property requires both arrangements.
– Since subtraction has no identity, the queston of whether it is invertible makes no

sense.

• Multiplication is an operation on N, Z, Q, and R.

– In fact, it is closed on all four sets.
– It is both commutative and associative on all four sets.
– It has an identity on all four sets. What is it?
– It is not invertible on any of the sets, as 0 has no inverse! Even if we exclude 0, the

�rst two sets remain un-invertible, since 2 has no multiplicative inverse in either N
or Z. However, multiplication is invertible on the nonzero rationals, Q\ {0}, and the
nonzero reals, R\ {0}.

• Division is an operation on Q and R. On Q, for instance, you know that a/b ÷ c/d = ad/bc so
long as b, c , 0. However, things are not so simple on N and Z. . . and that complication is
the point of the rest of this chapter.

A Division Algorithm
What is division, and how do we accomplish it? The basic idea is that, given a set of n elements,
we would like to divide it into subsets of d elements. We may not be able to do this perfectly,
in which case we’ll be greedy and take as many subsets as we can, and identify the number of
objects left over as the remainder .

Example 1.25. Given a set of n = 51 elements, we can divide it into 8 sets of d = 6 elements,
with a remainder of 3.

Be careful here. The de�nition of an operation is that it takes two inputs and returns one
output (to use our words above, “from S2 to S”). This worked �ne for addition, subtraction,
multiplication, and division on Q and R.

If division were an operation on N, we would map from N2 to N. But we just pointed out
that division on N has two results. It maps from N2 (the dividend n and the divisor d) to N2

(the quotient q and the remainder r ). So our �rst observation about division is that it is not an
operation, but merely a function on N2!
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How can we carry out division? One rather simplistic way is via the following algorithm.

Algorithm 1.1 Simplistic Division Algorithm
input

• n ∈ N

• d ∈ N+

output

• q, r ∈ N such that n = qd + r and r < d

do

1. let r = n, q = 0

2. while r ≥ d

(a) increment q by 1
(b) decrement r by d

3. return q and r

Let’s see how this algorithm produces the result of the previous example.

Example 1.26. We want to divide n = 51 by d = 6. Step 1 of the algorithm assigns r = 51 and
q = 0.

We proceed to step 2. A “while” statement means that as long as the condition is true, we
perform the steps indented underneath it. Since r = 51 and d = 6, we have r ≥ d . In step 2(a), we
increment q by 1, obtaining q = 1. In step 2(b), we decrement r by d , obtaining r = 45.

We remain in step 2 because r ≥ d . Increment q to 2 and decrement r to 39.
We remain in step 2 because r ≥ d . Increment q to 3 and decrement r to 33.
. . .
The algorithm continues until q rises to 8 and r falls to 3. At this point, r < d , so the “while”

statement’s condition is false, and the algorithm ends.

Whenever we describe a new algorithm, we have to verify two important properties.

1. Termination: The algorithm eventually produces some result.

2. Correctness: The algorithm’s result is the claimed result.

Unfortunately, we do not yet have enough theory to explain why Algorithm 1.1 terminates cor-
rectly. We need to consider the natural numbers a little more carefully.
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The Well-Ordering Property and some of its consequences
You are familiar with the natural ordering of numbers; in Example 1.10 we saw that for any
a,b ∈ N

a < b if and only if b − a ∈ N+ .

This characterization works for any a,b ∈ Z, as well.
An interesting property of Z is that it has no smallest element. After all, for any z ∈ Z we

know that z − 1 ∈ Z and then

z − 1 < z because z − (z − 1) = 1 ∈ N+.

What aboutZ’s subsets? Many of its sets do not have a smallest element. Consider S = {−3,−4, . . .};
the same argument we applied to Z applies to S .

On the other hand, N has 0 as a smallest element: for any nonzero n ∈ N, we have n − 0 =
n ∈ N+, so 0 < n. Let’s highlight this as an important and useful fact.

Lemma 1.27. Under the natural ordering, zero is the smallest element of N.

What about N’s subsets? Intuitively, this seems to be true, but it is not so easy to prove this
deductively. In fact, without assuming anything at all, one cannot prove that all ofN’s subsets have
smallest elements. So we take it “on faith” to be true.6

Axiom (The Well-Ordering Property). Every subset of N has a least element.

The Well-Ordering Property gives us a very useful technique that we will use repeatedly. A
non-increasing sequence of negative numbers like

−5,−9,−12,−14, . . .

might grow smaller and smaller for ever — or it might “stabilize” at a number and never go below
it. For instance, if the sequence is

−5,−9,−12,−14,−21,−24,−30,−30,−30,−30, . . .

then the sequence has “stabilitized.”
Without being able to check every element of the sequence, we can’t say whether a sequence

of integers stabilizes. But a sequence of natural numbers is di�erent; if you see

14, 12, 9, 5, . . .

then you feel fairly con�dent that the sequence will in fact stabilize. The Well-Ordering Property
allows us to prove that this is in fact the case.

Theorem 1.28. Every non-increasing sequence of natural numbers a1, a2, . . . eventually stabilizes
at a least element.

6This is something we try to avoid in mathematics if at all possible, but in some cases it’s unavoidable. This is
one of those cases.
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Proof. Let a1, a2, . . . be a non-increasing sequence of natural numbers. LetA = {a1,a2, . . .}. Every
ai ∈ N, so A ⊆ N. By the Well-Ordering property, A has a least element; call it â. By de�nition of
A, there exists i such that â = ai .

We claim that the sequence stabilizes at â. By hypothesis, the sequence is non-increasing, so
â = ai ≥ ai+1 ≥ ai+2 ≥ · · · . By the transitive property, â ≥ aj for every j ≥ i . On the other hand,
â is the least element of A, and by de�nition of A, aj ∈ A for every j ≥ i , so we also have â ≤ aj .
Now, if

â ≥ aj and â ≤ aj

then in fact
â = aj .

(You will prove this in Exercise 1.33.) This is true for all the j ≥ i , so the sequence has â = ai+1 =
ai+2 = · · · . In other words, the sequence has stabilized at â. �

Theorem 1.28 gives us the information we need to prove that our simplistic division algorithm
both produces output a result and produces the claimed result.

Corollary 1.29. Algorithm 1.1 terminates correctly.

Proof. First we show that the algorithm terminates. If the algorithm does not execute step 2
at all, then it certainly terminates, so suppose it continues to step 2. Enumerate each value of r
computed in step 2(b) as r1, r2, and so forth. By de�nition, ri+1 = ri−d . Rewrite this as ri−ri+1 = d ;
since d ∈ N+, we have ri > ri+1. The sequence of r ’s is thus a non-increasing sequence, and by
Theorem 1.28 it stabilizes at a least element, say rk . If rk ≥ d , the algorithm would perform step
2 again, creating a smaller rk+1, contradicting our observation that the sequence of r ’s has a least
element. Hence rk < d , in which case the algorithm has terminated.

Now we show that the algorithm’s �nal q and r are correct. As before, enumerate the r ’s of
step 2(b) as r1, r2, . . . , rk . Notice that the �nal r = rk , so the algorithm repeated step 2 exactly k
times. Put r0 = n. We consider the criteria slightly out of order.

• Is 0 ≤ r < d?

– Certainly r < d ; otherwise, the algorithm wouldn’t have terminated.
– If r < N, then r < 0. Since its initial value in step 1 is r0 = n, a natural number, the

algorithm must have performed step 2 at least once. In particular, it performed step 2
on rk−1, so

rk = rk−1 − d =⇒ rk−1 = rk + d = r + d < 0 + d = d .

The right hand side claims that rk−1 < d . But if the algorithm performed step 2 exactly
k times, then it performed step 2 on rk−1, which requires rk−1 ≥ d , a contradiction. So
0 ≤ r < d , as claimed.

• Is n = qd + r?

– If the algorithm does not perform step 2 at all, then
∗ r = n and q = 0, so qd + r = 0 × d + n = n, satisfying the claim that qd ≤ n; and
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∗ since the algorithm did not perform step 2, we must have r < d , and r = n ∈ N
implies that 0 ≤ r .

– Suppose that the algorithm continues to step 2. Observe that

r1 = n − d

r2 = r1 − d = n − 2d
...

rk = n − kd .

Meanwhile, q started at 0, and in step 2(a) increased to 1, then to 2, then to 3, . . . and
after the kth step, q = k . By substitution,

qd + r = kd + (n − kd ) = n.

We have shown that n = qd + r and 0 ≤ r < d , so the proof is complete. �

The Division Theorem
Algorithm 1.1 applies to natural numbers only. We can extend this fairly easily to all integers.

Theorem 1.30 (The Division Theorem). Let n,d ∈ Z with d , 0. There exist q, r ∈ Z such that

• n = qd + r , and

• 0 ≤ r < |d |.

In addition, q and r are uniquely determined by n and d .

Proof. If n,d ∈ N, then Corollary 1.29 proves existence of q, r ∈ Z; for uniqueness, see below.
Otherwise, at least one of n,d < 0. We consider this in three cases. For each case we consider an
example.

Case 1. Suppose n < 0 but d > 0.

Example. Suppose n = −51 and d = 6. Algorithm 1.1 requires nonnegative numbers,
so what happens if we consider 51 and 6? We get 51 = 8 × 6 + 3. If we multiply both
sides by −1, we have −51 = − (8 × 6 + 3) = (−8) × 6+ (−3). The theorem allows q < 0,
but not r < 0. Can we �x this somehow?
We can: add 0 = 6 + (−6) on the right hand side. We have −51 = [(−8) × 6 + (−3)] +
[6 + (−6)], which we can rewrite as −51 = (−8 − 1) × 6 + (−3 + 6) = −9 × 6 + 3. Now
we can set q = −9 and r = 3 and they satisfy the theorem!

This insight allows us to prove the theorem. If n < 0, then −n ∈ N. Divide that by d ;
Corollary 1.29 tells us that Algorithm 1.1 will give us q̂, r̂ ∈ N such that −n = q̂d + r̂
and r̂ < d . Multiply both sides by −1 and we have

n = − (q̂d + r̂ ) = (−q̂) d + (−r̂ ) .
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If we set q = −q̂ and r = r̂ , then we have n = qd + r , but r ≤ 0. This will work in the
theorem only if r̂ = 0. Otherwise, we try the workaround of the example: let q = −q̂−1
and r = d − r̂ . By substitution,

qd + r = (−q̂ − 1) × d + (d − r̂ )

= (−q̂d − d ) + (d − r̂ )

= −q̂d − r̂

= − (q̂d + r̂ )

= − (−n)

= n .

So n = qd + r , satisfying the �rst requirement.
As for the second, if r̂ , 0, then r̂ ∈ N+, so 0 < r̂ < d . Multiply through by −1 to obtain
0 > −r̂ > −d . Add d to every item to obtain 0+d > −r̂ +d > d + (−d ), or d > d − r̂ > 0.
Recall that r = d − r̂ , so 0 < r < d , satisfying the second requirement.

Case 2. Suppose n > 0 but d < 0.

Example. Suppose n = 51 and d = −6. Algorithm 1.1 requires nonnegative numbers,
so what happens if we consider 51 and 6? We getd = 8 and r = 3. We have 51 = 8×6+3,
but we need an expression for −6 rather than 6. Instead of multiplying both sides by
−1, however, we notice that 51 = (−8) × (−6) + 3. We satisfy the theorem with q = −8
and r = 3!

We leave the generalization of this example to a proof as an exercise for the reader.

Case 3. Suppose both n,d < 0.

Example. We leave the creation of an example as an exercise for the reader.

We leave the generalization of this example to a proof as an exercise for the reader.

The three cases listed cover all possibilities; in each case we can �nd q, r ∈ Z such that n = qd + r
and 0 ≤ r < d , proving the existence of q and r .

We still have to show that q and r are unique. To that end, suppose there exist q, q̂, r , r̂ ∈ Z
such that n = qd + r and n = q̂d + r̂ and 0 ≤ r , r̂ < |d |. By substitution, qd + r = q̂d + r̂ . Rewrite
this equation as (q − q̂) d = r̂ − r . Since d divides the left hand side, it also divides the right. On
the other hand, we can rewrite 0 ≤ r , r̂ < |d | as 0 − |d | < r − r̂ < |d | − 0, or − |d | < r − r̂ < |d |.
Recall that d divides r − r̂ ; the only multiple of d that lies between − |d | and |d | is 0, so r − r̂ = 0,
or r = r̂ . Substitute into (q − q̂) d = r̂ −r to see that (q − q̂) d = 0. This is possible only if q− q̂ = 0
or d = 0. By the theorem’s hypothesis, d , 0, so we must have q − q̂ = 0, or q = q̂, showing that
there is only one possible choice for q and r to satisfy the theorem. �
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Exercises
Exercise 1.31. When it comes to the natural numbers, the integers, and the real numbers, we
will accept “on faith” the four properties we listed for each operation at the beginning of this
section; that is, we will accept them without explanation in this text. However, it is not too hard
to prove these operations for the rational numbers. For instance, addition of rational numbers is
closed, since for any two rational numbers a/b and c/d, their sum is

a

b
+
c

d
=
ad + bc

bd
,

which is rational because bd,ad +bc ∈ Z and bd , 0. With this example, show that the following
properties are also true.

(a) The rational numbers are closed under multiplication.

(b) Multiplication of rational numbers is commutative.

(c) The rational numbers have an additive identity.
Hint: Be sure to state what the identity is, and show not only that it satis�es the identity
property, but also that it is a rational number!

(d) The rational numbers have a multiplicative identity.

(e) Every rational number has an inverse under addition.

(f) Every nonzero rational number has an inverse under multiplication.

Exercise 1.32. Show that the set S = {−3,−6,−9, . . .} has no smallest element.
Hint: We showed above that Z has no smallest element. Adapt that discussion to show that S has
no smallest element.

Exercise 1.33. Show that for any natural numbers a and b, if a ≤ b and b ≤ a then a = b.
Hint: Use the fact that a ≤ b implies b − a ∈ N, and b ≤ a implies a − b ∈ N. If both b − a and its
opposite are natural numbers, what does that tell you about b − a?

Exercise 1.34. Generalize the example for Case 2 of the proof of Theorem 1.30 to a proof for
arbitrary n > 0 and d < 0.

Exercise 1.35. Suppose n,d < 0.

(a) Explain how you can rewrite the expression 51 = 8 × 6 + 3 to �nd q, r such that −51 =
q × (−6) + r and 0 ≤ r < 6.

(b) Generalize your work in part (a) to a proof for arbitrary n < 0 and d < 0. This completes the
proof of Theorem 1.30.

Exercise 1.36. Prove the zero product property for the rational numbers: that is, show that if
ab = 0 then a = 0 or b = 0.
Hint: Assume that ab = 0 but a , 0. Then a has a multiplicative inverse in Q. Use a−1 to show
that b = 0.
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Exercise 1.37. The Well-Ordering Property is not true for the rational numbers. One reason is
that Z ⊆ Q, so if every subset of Q had a least element, then Z would, too, but it does not.

However, the Well-Ordering Property fails even if we consider only nonnegative rational
numbers. To see why, describe a sequence of rational numbers that does not have a least element.
Try to choose a sequence whose elements are all decreasing and never stabilizes. Be sure to prove
that the elements really are decreasing.

Hint: To show the elements are decreasing, it might help to consider that a/b < c/d if and only
if ad < bc .

Exercise 1.38. We have only considered the natural ordering of integers, but there are other
ways to order them. For instance, de�ne the relation

a l b if and only if



|a | < |b | , or
|a | = |b | and a < b .

(Remember that when we write a < b with no dot, we mean the natural ordering.)

(a) Order the integers −5, −3, −1, 2, 4, 9 according to l.

(b) Explain why Z has a smallest element according to the l ordering. (It will help to name it
explicitly.)

(c) Show that every subset of Z has a smallest element according to the l ordering.

In other words, Z satis�es the well-ordering property if you use the l ordering!

Exercise 1.39. Another way to prove the Division Theorem, albeit less algorithmically, is as
follows. Fill in the blanks to complete the proof.

• Let n,d ∈ Z and assume d , 0. Let S = {
n − qd : q ∈ Z}. Let T = S ∩ N.

• By ____, T has a least element; call it r .

• By ____, r = n − qd for some q ∈ Z.

• Rewrite to obtain ____, satisfying the theorem’s �rst criterion.

• It remains to show that 0 ≤ r < d .

– By ____, r ∈ N.
– By ____, 0 ≤ r .
– By way of contradiction, assume d ≤ r .

∗ Rewrite to obtain 0 ≤ ____.
∗ By ____, r − d ∈ T .
∗ On the other hand, r − d < r because ____ < ____.
∗ This contradicts ____.
∗ Hence, r < d .
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Exercise 1.40. Recall the lattice of natural numbers. Suppose we order its elements in the fol-
lowing way: for any (a,b) , (c,d ) ∈ N2 we have

(a,b) ≺ (c,d ) if and only if



a + b < c + d, or
a + b = c + d and a < c .

(a) Order the points (3, 7), (2, 5), (4, 1), (0, 0), (4, 6), (3, 2) according to ≺.

(b) Explain why N2 has a smallest element according to the ≺ ordering. (It will help to name it
explicitly.)

(c) Show that every subset of N2 has a smallest element according to the ≺ ordering.

In other words, N2 satis�es the well-ordering property if you use the ≺ ordering!

Sage supplement
You can divide integers using the / operator in Sage, but that gives you a rational number.

sage: 7 / 3
7/3
sage: type( _ )
<type ’sage.rings.rational.Rational’>

The _ symbol asks Sage for the result of the last statement. The type command gives us the type
of an object in Sage; here we get a long string that, for all practical purposes, means that the
result of 2 / 3 is something that Sage considers a rational number.

This works if you want rational division, but what if we’re interested in integer division, as
we were in this section? Sage o�ers a di�erent command for that, .quo_rem. From the dot that
precedes the command you would be right to conclude that it is a method, and is used accordingly.

sage: 7.quo_rem(3)
(2, 1)

This indicates that the quotient is 2 and the remainder is 1. You can assign names to these values
if you like.

sage: q, r = 7.quo_rem(3)

After this, q and r would have the values 2 and 1, respectively.
This command is perfectly �ne, but to illustrate some more aspects of Sage, we de�ne a new

command that implements the simplistic division algorithm (Algorithm 1.1).
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sage: def simplistic_division(n, d):
r, q = n, 0
while r >= d:

q += 1
r -= d

return q, r

Before trying it out, let’s consider what it should do when we execute it. First, you should
compare it to Algorithm 1.1 and verify that it looks extremely similar. Next, observe the use of
keywords you already know: def and return. As for the lines themselves:

• The �rst line de�nes the function and ends with a colon. Subsequent lines are indented.

• The second line assigns the values n and 0 to r and q, as in the �rst line of Algorithm 1.1’s
instructions.

• The third line begins a repetition of statements, called a loop. Sage o�ers several kinds of
loops; this one is called a while loop, and performs the indented statements only if, and as
long as, the stated condition remains true. Here, the condition is that r ≥ d .

• The fourth line is the �rst line repeated in the loop. The += symbol is an operator, and it
tells Sage to increment the value before it by the value after it. In this case, it increments q
by 1.

• The �fth line is the second line repeated in the loop. The -= symbol behaves just like the
+= symbol, except it decrements the value before it. In this case, it decrements r by d.

• The sixth line is indented but not as much as the ones before. It lines up with the while
statement. That means that it should be the �rst command performed after the while state-
ment terminates. In this case, it is a return statement, so it indicates that the procedure
simplistic_division should terminate and give the result q,r.

One aspect of Sage that it shares with its roots in Python is that you can return multiple values
from a procedure. Here; we return q and r.

Let’s go ahead and try this.

sage: simplistic_division(7, 3)
(2, 1)

We end up with the same result as the quo_rem command.
The simplistic_division command also reveals the importance of the Well-Ordering Prop-

erty. If we try to execute it with numbers that are not natural, strange things will result. For
instance:
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sage: simplistic_division(-7, 3)
(0, -7)

Here the result is q = 0 and r = −7. This is incorrect according to our de�nition of division,
because we require r ≥ 0, but it is true that −7 = 0 × 3 + (−7).

Things can get worse! If you apply simplistic_division with a negative divisor, an “in-
�nite loop” will result. The while loop’s condition never becomes false, because every time we
subtract d (which is negative) from r , the value of r increases. You can force the command to stop
either by holding control and pressing C (if you’re using Sage via a command line terminal), or
by pushing the Stop button (if you’re using it via a graphical interface). You will then encounter
an error message similar to the one shown. Go ahead and try it.

sage: simplistic_division(7, -3)
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/

smc_sagews/sage_server.py", line 1188, in execute
flags=compile_flags) in namespace, locals
File "", line 1, in <module> File "", line 4, in

simplistic_division
File "src/cysignals/signals.pyx", line 265, in

cysignals.signals.python_check_interrupt
File "src/cysignals/signals.pyx", line 98, in

cysignals.signals.sig_raise_exception
KeyboardInterrupt

The phenomenon of the in�nite loop illustrates why we must always prove that an algorithm
terminates. So long as the algorithm is described properly, we should only need to worry about
“while” statements; all other statements should either be clearly one step, such as an assignment
or simple operation, or otherwise depend on an algorithm already proved to terminate.

Recall that the proof of the Division Theorem (Theorem 1.30) explained how to use Algorithm
1.1 for unnatural values.7 For instance, Case 1 says that if n < 0 but d > 0, divide |n | by d ,
obtaining quotient q̂ and r̂ . If r̂ = 0, use q = −q̂ and r = 0. Otherwise, use the quotient q = −q̂ − 1
and the remainder r = d − r̂ .

Let’s write a new command that takes care of this case. Sage has a convenient if statement
that, like the while statement, allows us to execute some lines only if the condition is true. Unlike
the while statement, an if statement does not loop! We’ll test if the condition of Case 1 is true; if
it is, we’ll use the simplistic_division command as speci�ed to compute q̂ and r̂ , then adjust
them as Case 1 indicates, and return the adjusted values.

7Technically, it explained this for some unnatural values. Others were in the section’s exercises. Guess what’s
coming in the exercises to this supplement?
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sage: def unnatural_division(n, d):
# case 1
if n < 0 and d > 0:

q_hat, r_hat = simplistic_division(abs(n), d)
if r_hat == 0:

q = -q_hat
r = 0

else:
q = -q_hat - 1
r = d - r_hat

# additional cases would go here
return q, r

If you try this with −7 and 3, you obtain the desired result!

sage: unnatural_division(-7, 3)
(-3, 2)
sage: unnatural_division(-6, 3)
(-2, 0)

In fact, −7 = (−3) × 3 + 2.

Exercises
Exercise 1.41. While Sage allows you to create new commands using the def keyword, they
will not usually be very e�cient. To see why, compare how long it takes perform the following
commands:

sage: 100000000.quo_rem(2)
(50000000, 0)
sage: simplistic_division(100000000, 2)
(50000000, 0)

How long does each command take?

Exercise 1.42. The proof of Theorem 1.30 describes three cases where division by negative num-
bers can happen. The new unnatural_division command implemented only the �rst case. Add
additional lines in place of the comment # additional cases go here to implement the other
cases.
Hint: First implement only Case 2, then make sure it works properly. Use your answers to Exer-
cises 1.34 and 1.35.
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1.3 Common divisors
One of the most useful scienti�c tools is “divide and conquer.” Generally this refers to dividing a
task or question into smaller tasks and questions, then dividing again and again until you reach
a point where you can answer the questions relatively easily. As it turns out, “divide and con-
quer” sometimes applies in an analogous way to problems that involve integers: divide them into
smaller pieces called “factors”, and study those.

Let a,b, c ∈ N. We say that c is a common divisor of a and b if c | a and c | b.

Example 1.43. The numbers a = 12 and b = 16 have common divisors 1, 2, 4.

It is not hard to show that none of a’s divisors is larger than a itself.

Lemma 1.44. Let a ∈ N+. If d | a, then d ≤ a.

Proof. Assume d | a. By de�nition, there exists q ∈ N such that qd = a. By way of contradiction,
suppose d > a. Then 2d = d + d > a, 3d = 2d + d > a, . . . until qd > a. By substitution,
a = qd > a, so a > a, a contradiction. The assumption that d > a must be invalid; we conclude
that d ≤ a. �

Recall a,b ∈ N. There are only �nitely many numbers smaller than a, and only �nitely many
smaller than b, so if a,b , 0 they can have only �nitely many common divisors. We call the
largest of these the greatest common divisor , written gcd (a,b).

Example 1.45. Building on Example 1.43, gcd (12, 16) = 4.

Over two thousand years ago, Euclid described a very nice way to use compute the greatest
common divisor via division. Surprisingly, it is still one of the most e�cient methods to compute
a gcd.

Algorithm 1.2 The Euclidean Algorithm
Input

• a,b ∈ N+

Output

• gcd (a,b)

Do

1. letm = max (a,b), n = min (a,b)

2. while n , 0

(a) determine q, r that satisfy the Division Theorem
(b) replacem by n, then replace n by r

3. returnm
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As with Algorithm 1.1, we’ll have to prove that Algorithm 1.2 terminates correctly. First let’s
look at an example to see how it works.

Example 1.46. We compute gcd (142, 64). Step 1 of the algorithm assignsm = 142, n = 64.
Since n , 0, we proceed to step 2, compute q = 2 and r = 14, and replacem by 64 and n by 14.
Since n , 0, we repeat step 2, compute q = 4 and r = 8, and replacem by 14 and n by 8.
Since n , 0, we repeat step 2, compute q = 1 and r = 6, and replacem by 8 and n by 6.
Since n , 0, we repeat step 2, compute q = 1 and r = 2, and replacem by 6 and n by 2.
Since n , 0, we repeat step 2, compute q = 3 and r = 0, and replace n by 2 and n by 0.
We now have n = 0, so the algorithm terminates with gcd (142, 64) = 2. You can con�rm this

result by listing all the divisors of 142 and 64.

Theorem 1.47. The Euclidean Algorithm terminates correctly.

Proof. Enumerate eachm and n computed in steps 1 and 2(b) asm0,m1, . . . and n0, n1, n2, . . . . For
convenience, write d = gcd (a,b).

Termination? Consider that for i > 0 we know that ni is the remainder of dividing mi−1 by
ni−1, so ni−1 ≥ ni for each i = 1, 2, . . .. This is a non-increasing sequence of natural numbers; by
Theorem 1.28, it must stabilize at a least element, say nk . If nk , 0, then the algorithm would
perform step 2 again, and obtain a remainder from dividingmk by nk , and assign it to nk+1. That
makes nk > nk+1, contradicting the observation that nk is our smallest n. The assumption that
nk , 0 must have been wrong; we conclude thatnk = 0. Yet oncenk = 0 the algorithm terminates.

Correctness? We claim that gcd (mi ,ni ) = gcd (mi+1,ni+1) for each i = 0, 1, 2, . . .. If the
claim is true, then the last pair is gcd (r , 0) = r , and we would have gcd (a,b) = gcd (m0,n0) =
gcd (mlast,nlast) = r .

But is the claim true? Let d = gcd (mi ,ni ), and choose x ,y ∈ N such thatmi = xd and ni = yd .
The algorithm assigns mi+1 = ni and ni+1 to be the remainder of dividing mi by ni . Let q be the
quotient of that division, so that

mi = qni + ni+1 .

By substitution,
xd = q (yd ) + ni+1 .

Rewrite this as
d (x − qy) = ni+1 .

By de�nition, d | ni+1, so d is a common divisor of ni+1 and ni =mi+1. So d ≤ gcd (mi+1,ni+1).
Now let d′ = gcd (mi+1,ni+1). Recall that mi+1 = ni , so d′ = gcd (ni ,ni+1). Choose u,v ∈ N

such that ni = ud′ and ni+1 = vd
′. By substitution,

mi = qni + ni+1 =⇒ mi = q (ud
′) +vd′ =⇒ mi = d

′ (qu +v ) .

By de�nition, d′ | mi , so d′ is a common divisor ofmi and ni . So d′ ≤ gcd (mi ,ni ).
Putting together the previous two paragraphs, we have

d ≤ gcd (mi+1,ni+1) = d
′ ≤ gcd (mi ,ni ) = d .

In short,
d ≤ d′ and d′ ≤ d ;
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by Exercise 1.33, d = d′. By substitution,

gcd (mi ,ni ) = gcd (mi+1,ni+1) .

�

The various quotients and remainders turn out to be even more useful.

Theorem 1.48 (Extended Euclidean Algorithm). For any a,b ∈ N, there exist x ,y ∈ Z such that
ax + by = gcd (a,b).

Example 1.49. For a = 142 and b = 64, we have 142 × (−9) + 64 × 20 = 2.

We call the equation
ax + by = gcd (a,b)

the Bézout identity, and we call x and y Bézout coe�cients of gcd (a,b). There are in�nitely
many Bézout coe�cients, but it su�ces to �nd only one pair. We can �nd these coe�cients by
back-substituting through the various divisions of the Euclidean Algorithm, in reverse order.

Example 1.50. We found gcd (142, 64) = 2 via the divisions

142 = 2 × 64 + 14 (1.1)
64 = 4 × 14 + 8 (1.2)
14 = 1 × 8 + 6 (1.3)
8 = 1 × 6 + 2 .

First we isolate gcd (142, 64) in the last equation,

2 = 8 + (−1) × 6 . (1.4)

Now isolate the remainder of equation (1.3),

6 = 14 + (−1) × 8 .

Substitute that into equation (1.4) and we have

2 = 8 + (−1) × [14 + (−1 × 8)] ,

or
2 = 2 × 8 + (−1) × 14 . (1.5)

Isolate the remainder of equation (1.2),

8 = 64 + (−4) × 14 .

Substitute that into equation (1.5) and we have

2 = 2 × [64 + (−4) × 14] + (−1) × 14 ,
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or
2 = 2 × 64 + (−9) × 14 . (1.6)

Equation (1.1) tells us that
14 = 142 + (−2) × 64 .

Substitute that into equation (1.6) and we have

2 = 2 × 64 + (−9) × [142 + (−2) × 64] ,

or
2 = 20 × 64 + (−9) × 142 ,

as in Example 1.49.

We can use this technique to prove the Extended Euclidean Algorithm.

Proof of Theorem 1.48. Enumerate the various divisions performed during the Euclidean Algo-
rithm as

m0 = q0n0 + r0 , m1 = q1n1 + r1, . . . , mk = qknk + rk ,

where rk = gcd (a,b) is the last non-zero remainder. Rewrite the last division as

gcd (a,b) =mk − qknk . (1.7)

Recall thatmk = nk−1 and nk = rk−1, so rewrite this equation as

gcd (a,b) = nk−1 − qkrk−1 .

Rewrite the previous division as

rk−1 =mk−1 − qk−1nk−1 .

Substitute into equation (1.7) to obtain

gcd (a,b) = nk−1 − qk (mk−1 − qk−1nk−1) = (1 + qkqk−1) nk−1 + (−qk )mk−1 .

By repeating this process, we eventually obtain an expression

gcd (a,b) = Q0m0 +Q1n0 ,

which by substitution becomes
gcd (a,b) = Q0a +Q1b .

The values x = Q0 and y = Q1 satisfy the theorem. �

Algorithm 1.3 describes a step-by-step method for the Extended Euclidean Algorithm.
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Algorithm 1.3 Extended Euclidean Algorithm
Inputs

• a,b ∈ N+

Outputs

• s, t ∈ Z such that as + bt = gcd (a,b)

Do

1. apply the Euclidean Algorithm, enumerating the divisions asmi = qini + ri

2. let k be the number of the last division with a nonzero remainder

3. solvemk = qknk + rk for rk , obtaining an expression

gcd (a,b) =mksk + nktk (1.8)

(in the �rst case we have sk = 1 and tk = −qk )

4. let i = k − 1

5. while i ∈ N

(a) substitute ri =mi − qini in place of ni+1 in (1.8)
(b) decrement i by 1

6. return s = s0, t = t0

Theorem 1.51. Algorithm 1.3 terminates correctly.

Proof. Termination? Step 1 terminates by Theorem 1.47. Steps 2, 3, 4, 5(a,b), and 6 are simple
statements, so they will not inhibit termination. That brings us to step 5, a while statement.
The statement continues as long as i is a natural number; it starts at i = k − 1 and is changed
only by step 5(b), which decreases it by 1. In other words, step 5 will consider the values i =
k − 1,k − 2, . . . , 1, 0,−1, at which point the condition i ∈ N is no longer true, and the algorithm
proceeds to step 6. Hence the algorithm terminates.

Correctness? The computations of steps 3 and 5(a) replicate the proof of Theorem 1.48. �

Exercises
Exercise 1.52. For each pair a,b ∈ N, use the Euclidean Algorithm to compute gcd (a,b). Then
use the Extended Euclidean Algorithm to compute the Bézout coe�cients of a and b.

(a) a = 4, b = 9
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(b) a = 100, b = 112

(c) a = 255, b = 51

Exercise 1.53. Let n ≥ 2.

(a) Show that gcd (n + 1,n) = 1.

(b) What is gcd (n + 2,n)? Explain why.
Hint: It depends on the value of n. Try a few examples before deciding and explaining.

Exercise 1.54. In this section we have discussed common divisors only of positive integers, and
the greatest common divisor of two positive integers.

(a) Explain why it makes sense to speak of common divisors of negative numbers, as well.

(b) How would you compute the greatest common divisor of two integers if they are negative?

(c) How would you de�ne gcd (a, 0) where a is nonzero?

(d) Why does gcd (0, 0) not make sense?

Exercise 1.55. Suppose gcd (a,n) = 1.

(a) Show that if gcd (b,n) = 1, then gcd (ab,n) = 1.
Hint: Find Bézout identities for gcd (a,n) and gcd (b,n), then — since you want to look at
gcd (ab,n) — multiply the identities and see what happens.

(b) Show that gcd
(
ak ,n

)
= 1 for any k ∈ N.

Hint: It can be easy if you use part (a) and induction.

Exercise 1.56. Let a,b, c ∈ N. Suppose gcd (a,b) = 1 and both a | c and b | c . Show that (ab) | c .
Hint: Multiply the Bézout identity of gcd (a,b) by c .

Exercise 1.57. Algorithm 1.4 gives another way to compute the Bézout coe�cients of a,b ∈ Z.

(a) Compute the Bézout coe�cients of gcd (255, 51) using this algorithm, and compare your
result to Exercise 1.52.

(b) Prove that Algorithm 1.4 terminates. (Don’t worry about correctness. It is correct, but we
won’t consider those details here.)

Sage supplement
Sage will compute the greatest common divisor of two integers via the gcd command. It will
compute the Bézout coe�cients at the same time as the gcd via the xgcd command.

sage: gcd(132, 72)
12
sage: xgcd(132, 72)
(12, -1, 2)
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Algorithm 1.4 Alternate Extended Euclidean Algorithm
Inputs

• a,b ∈ N+

Outputs

• s, t ∈ Z such that as + bt = gcd (a,b)

Do

1. set up the following table, which will probably extend by more rows
i si ti mi ni qi ri

−1 1 0
0 0 1 max (a,b) min (a,b)

(m−1,n−1,q−1, r−1 are not needed and remain unde�ned)

2. let i = 0

3. repeat. . .

(a) compute qi , ri to satisfy the Division Theorem for dividingmi by ni

(b) let si+1 = si−1 − qisi , ti+1 = ti−1 − qiti ,mi+1 = ni , ni+1 = ri
(c) increment i by 1

. . . until ri−1 = 0

4. return s = si , t = ti

The result of xgcd(a,b) is (d,x ,y) where gcd (a,b) = d = ax + by.
In the last section we illustrated basic programming in Sage by implementing a simplistic

division algorithm, even though Sage already has a division operator (which is much faster, any-
way). In this section we illustrate how to implement the Extended Euclidean Algorithm, even
though Sage already has the xgcd command. In this case we implement Algorithm 1.4, the Alter-
nate Extended Euclidean Algorithm. One reason is to show how one can keep track of the results
from an iteration.

Line 3(b) of the Alternate Extended Euclidean Algorithm requires us to track several values
of s and t . We can do this using a list. We can create a list in Sage using the list command or
brackets []; we add elements to the end of a list using the .append command.
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sage: L = []
sage: L.append(3)
sage: L.append(5)
sage: L.append(-2)
sage: L.append(5)
[3, 5, -2, 5]

Unlike a set, a list can contain multiple copies of an element, so we see 5 twice in L.
We access elements using the [] operator. Proper usage of the [] operator might be a little

counterintuitive if you aren’t accustomed to languages like C and Python where the �rst element
is element 0, not element 1.

sage: L
sage: L[0]
3
sage: L[1]
5
sage: L[2]
-2
sage: L[-1]
-2

As indicated above, L[0] gives you 3, the list’s �rst element. Another curiosity is that negative
indices refer to elements from the back of the list. Just as L[-1] gives us the last element, L[-2]
gives us the element before that, and so on.

In a manner similar to sets, we can build lists using Sage’s analogy to set-builder notation.

sage: L2 = [ i^2 for i in range(20) if is_even(i) ]
sage: L2
[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

There are a number of useful operations you can perform on a list, but discussing them lies
beyond the scope of our current motivation, which is to implement the Alternative Extended
Euclidean Algorithm. Let’s remind ourselves why we need a list anyway: the instructions in
Algorithm 1.4 require us to keep track of previously computed s and t values. To do this, we will
maintain two lists, s and t. We will initialize them with the values indicated at the beginning of
Algorithm 1.4. The last values in the lists, s[-1] and t[-1], will correspond to si and ti . We can
thus compute the next values — the ones we have to add, or .append to the lists — by translating

si+1 = si−1 − qisi −→ s.append( s[-2] - q*s[-1] )

and similarly for ti+1. Thus, translating Algorithm 1.4 into Sage code yields the following.
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sage: def alternate_euclidean(a, b):
s = [ 1, 0 ]
t = [ 0, 1 ]
m, n = max(a, b), min(a, b)
r = n
while r != 0:

q, r = m.quo_rem(n)
s.append( s[-2] - q*s[-1] )
t.append( t[-2] - q*t[-1] )
m, n = n, r

return s[-2], t[-2]

Before testing it, let’s point out an important di�erence. First, Algorithm 1.4 uses a “re-
peat. . . until” construction in step 3. This tells a computer to perform steps 3(a)–3(c) at least once,
test the subsequent condition (ri−1 = 0), and if it is false repeat the loop. Sage does not have a
command that does this, so when implementing it we had to convert it to a “while” construction.
This typically involves setting up the variable(s) in the condition so that the while condition will
be true at least once (in this case, r = n should do the trick).

Another thing to notice is the use of the != operator. This is how we tell Sage to test whether
two values are not equal to each other. The statement r != 0 will be true so long as r , 0, and
becomes false only if r = 0.

Now let’s try the algorithm.

sage: alternate_euclidean(132, 72)
(-1, 2)

These are precisely the Bézout coe�cients that xgcd gave us. While alternate_euclidean does
not return the gcd itself, we can obtain it as follows.

sage: _[0] * 132 + _[1] * 72
12

(Recall that the _ symbol asks Sage for the result of the last statement.) In our case, the last
statement’s result was the pair (-1, 2), so _[0] gives us the number −1, and _[1] gives us the
number 2.

Exercises
Exercise 1.58. Use Sage’s gcd and xgcd commands to verify your answers to Exercises 1.52 and
1.53.
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Exercise 1.59. Modify the alternate_euclidean command’s return statement so that it re-
turns gcd (a,b) in addition to the Bézout coe�cients.
Hint: Recall that in both Algorithms 1.2 and 1.4, the gcd appears as the last nonzero remainder.
Where does that appear in the program? If necessary, work a simple example by hand to see.

Exercise 1.60. De�ne a procedure that implements Algorithm 1.2 in Sage. Don’t call your pro-
cedure gcd, as that would “overwrite” Sage’s gcd command. Rather, call it euclidean, then test
it with several examples, such as euclidean(132,72).

1.4 Prime and composite numbers
Unless we state otherwise, the rest of this chapter deals only with natural numbers.

The previous section described for us a division algorithm, and proved that it had several nice
properties. The case where the remainder is 0 has several interesting possibilities. If n,d,q are all
integers and n = qd , we say that d divides n, and write d | n. We also say that n is divisible by
d , and that d is a divisor of n. If d does not divide n, but has a remainder, we write d - n.

Example 1.61. 4 | 8 but 4 - 6.

An important example occurs when 2 divides a number; we call it even. A number that is not
even is odd.

We now return to a question we raised in Example 1.5: Is every real number rational? We
focus on

√
2. We know from Exercise 1.15 that

√
2 is real; suppose that it is also rational. By

de�nition, we could write
√
2 = a/b such that a,b ∈ Z and b , 0. To make things simple, we’ll say

that gcd (a,b) = 1; this is a valid assumption, since if gcd (a,b) , 1 we can divide both a and b by
gcd (a,b) and write it in simpler terms.

Square both sides of
√
2 = a/b, to obtain 2 = a2/b2, or 2b2 = a2. This says that a2 is an even

number. Is a also even?

Lemma 1.62. Any number is even if and only if its square is even.

Proof. Let a ∈ Z, and suppose 2 | a. By de�nition of divisibility, choose q ∈ Z such that 2q = a.
Square both sides to see that 4q2 = a2, or 2

(
2q2

)
= a2, so 2 | a2.

We prove the converse via its contrapositive: suppose a is not even. By de�nition, the re-
mainder of dividing a by 2 is 1, so we can write a = 2q + 1 for some q ∈ Z. That gives
a2 = 4k2 + 4k + 1 = 2

(
2k2 + 2k

)
+ 1, which is also not even. If a is not even, then a2 is not

even, either. Hence if a2 is even, then a is. �

We return to the equation 2b2 = a2; Lemma 1.62 tells us that a is even. Choose q ∈ Z such
that a = 2q and substitute into 2b2 = a2 = 4q2; now we have b2 = 2q2. This says that b2 is an
even number. As with a, we conclude that b itself must be even.

Hold on — we assumed above that gcd (a,b) = 1. Now we’ve found that 2 is a common divisor
of a and b, contradicting gcd (a,b) = 1. Something isn’t right here; which is it? As we pointed out
above, it’s perfectly reasonable to suppose that gcd (a,b) = 1; we can always reduce a fraction
to lowest terms. We had also assumed that

√
2 is rational — that’s not so clear. That assumption

must be wrong:
√
2 is irrational.

We conclude that Q , R.
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Prime and composite numbers
That’s a neat trick we pulled with Lemma 1.62: 2 | a2 if an only if 2 | a. Is that true for any divisor
besides 2? No, as it turns out: 4 | 22, but 4 - 2. So this property of 2 is rather special: it’s not easy
to divide 2.

Here’s another way to generalize Lemma 1.62: instead of looking at squares, look at products.
Let n be any even number, and suppose n = ab. By de�nition of even, 2 | n, so 2 | (ab). Must a
or b be even? Yes! To see why, suppose neither is even. By de�nition, there exist qa,qb ∈ N such
that a = 2qa + 1 and b = 2qb + 1. By substitution,

ab = (2qa + 1) (2qb + 1) = 4qaqb + 2qa + 2qb + 1 = 2 (2qaqb + qa + qb ) + 1 .

The product is odd! If both a and b are odd, then ab is odd. By the contrapositive, if ab is even,
then one of a or b is even.

This does not apply to all numbers! Consider that 6 | 12 and 4 × 3 = 12. By substitution,
6 | (4 × 3), but 6 - 4 and 6 - 3.

Here’s a similar situation. If you have 6 chocolates, then you can divide them evenly among
your friends only if you have 1 friend, 2 friends, 3 friends, or 6 friends. But if you have 7 choco-
lates, you can only divide them without remainder if you have 1 friend or 7 friends; any other
number of friends leaves either broken chocolate or broken friendships.

This second property is so important that we give it a name. A natural number is prime if
it has exactly two natural divisors: itself and 1. We can also call a prime number irreducible,
because it does not “reduce” by factorization. If, however, a number is greater than 1 and not
prime, we call it composite.

Example 1.63. The numbers 2 and 5 are prime. The numbers 4 and 6 are composite. The numbers
0 and 1 are neither prime nor composite,8 because they don’t have exactly two natural divisors
(0 has in�nitely many while 1 has only itself), and they are smaller than 2.

Prime numbers enjoy a special property that composite numbers do not: they generalize
Lemma 1.62 to arbitrary products.

Theorem 1.64 (Euclid’s Lemma). Let d ∈ N+. Then d is prime if and only if any time d divides a
product ab, we also have d | a or d | b.

Proof. Assume d is prime and d | ab. If d | a, then the statement “d | a or d | b” is true, and we’re
done. Otherwise, d - a. The de�nition of prime tells us that d’s only divisors are 1 and itself, so a
and d have only 1 as a common divisor. Thus gcd (a,d ) = 1. By the Euclidean Algorithm, we can
�nd x ,y ∈ Z such that ax +dy = 1. Multiply both sides by b, and we have (ab) x +d (by) = b. By
hypothesis, d | ab, so we can choose z ∈ Z such that ab = dz. By substitution, (dz) x +d (by) = b,
or d (xz + by) = b. By de�nition, d | b. We have shown that if d is prime, then d | a or d | b.

Conversely, assume that any time d | ab, we also have d | a or d | b. Choose any x ,y ∈ N
such that d = xy. By Lemma 1.44, x ,y ≤ d . Rewrite d = xy as d · 1 = xy. By de�nition, d | xy.
By hypothesis, d | x or d | y; let’s say d | x . By Lemma 1.44, d ≤ x . We now have x ≤ d ≤ x ; by
Exercise 1.33, x = d , and thus y = 1. Since xy was an arbitrary factorization of d , the only factors
of d are 1 and itself. Hence d is prime. �

8Some grade school textbooks teach children that 1 is prime. They are wrong.
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Euclid’s Lemma is actually a special case of a more general fact.

Theorem 1.65. Let d ∈ Z with d , 0 and a,b ∈ Z. If d | ab and gcd (a,d ) = 1, then d | b.

We leave the proof to Exercise 1.71, but the following example bears comment.

Example 1.66. Suppose we know that 4 | (5x ). Now, 4 is not prime, but Theorem 1.65 tells us
that 4 | x , so in this case 4 behaves like a prime number. We already saw that 4 | (2 × 2) but 4 - 2,
so there must be something special about the fact that gcd (4, 5) = 1.

More generally, Theorem 1.65 shows that two numbers that are not prime can act with each
other much the same way that a prime number interacts with other numbers. This phenomenon
is important enough that we make the following de�nition: If gcd (a,b) = 1, then we call a and b
relatively prime.

How do we �nd prime numbers? Algorithm 1.5 gives one way.

Algorithm 1.5 The Sieve of Eratosthenes
Inputs

• n > 2

Outputs

• every prime p ≤ n

Do

1. write the numbers from 2 to n

2. let i = 2

3. while i ≤
√
n

(a) if i is not itself crossed out, cross out all multiples of i except for i itself
(b) increment i by 1

4. return the numbers that are not crossed out

Theorem 1.67. Algorithm 1.5 terminates correctly.

Proof. Termination? Each of steps 1, 2, 3(a), 3(b), and 4 can be done in �nite time. That leaves the
while loop of step 3, which repeats as long as i <

√
n. But i starts at 1, and increments by 1 at step

3(b) each time, so eventually it rises above
√
n, which is �xed. Hence the algorithm terminates.

Correctness? As the algorithm crosses out numbers that are obviously composite, we need
merely show that the remaining numbers are all prime. Suppose 2 < a ≤ n and a is not prime.
By Exercise 1.76, it has a prime divisor, say p. By Lemma 1.44, p < a. If p ≤

√
n, then we would

have encountered p in step 3(a) of the algorithm, and crossed out a as a result.
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Otherwise, p >
√
n. Choose q ∈ N such that a = pq. By Lemma 1.44, we also have q < a. If

q >
√
n also, then

a = pq >
√
n
2
= n ≥ a ,

which says that a > a, a contradiction. So we must have q <
√
n. If q is prime, then we would

have encountered q in step 3(a) of the algorithm, and crossed out a as a result. Otherwise, q
is composite, and as before it must have a prime divisor, say q′; again, q′ < q. We now have
a = (pq) q′, and since q′ < q and q <

√
n we have q′ <

√
n, so we would have encountered q′ in

step 3(a) of the algorithm, and crossed out a as a result.
No matter how we go about it, we crossed out the composite number a, so the algorithm could

not return it in step 4. Hence the algorithm returns only prime numbers, and is correct. �

Factorization
In Exercise 1.76 you will show that every composite number has at least one prime divisor. We
can actually say something much stronger.

Theorem 1.68 (The Fundamental Theorem of Arithmetic). Let n > 2 be an integer. There exist
prime numbers p1, . . . ,pk such that n = p1 · · ·pk . (The p’s might not be distinct.) Moreover, if
p1 ≤ · · · ≤ pk , then this expression is unique.

Example 1.69. We can factor 40 = 2 × 2 × 2 × 5. Here p1 = p2 = p3 = 2 and p4 = 5.

Proof. If n is prime, then put p1 = n and we are done.
Otherwise, let m1 = n and i = 1. While mi is composite, Exercise 1.76 tells us that mi has a

prime divisor; call it qi , and choosemi+1 such thatmi =mi+1qi ; then increment i by 1. By Lemma
1.44, mi+1 ≤ mi for each i = 1, . . .; since qi is prime and mi is not, we see that mi+1 < mi . By
Theorem 1.28, the sequence of m’s stabilizes at a least value, mk . Were mk composite, we could
prolong the sequence, but the sequence has now stabilized, somk must be prime; let qk =mk .

We claim that each qi divides n/ (q1 · · ·qi−1). To see why, notice that q1 | m1 andm2 = m1/q1 =
n/q1, so n = q1m2. Then if qi | mi andmi+1 = mi/qi , rewriting and substitution gives us

n = q1 · · ·qi−1mi = q1 · · ·qi−1 (qimi+1) = (q1 · · ·qi )mi+1 ,

which we can rewrite again as
n

q1 · · ·qi−1
= qimi+1,

as claimed. Moreover,
n = q1 · · ·qk−1mk = q1 · · ·qk ,

so n factors into prime numbers.
The list of q’s now consists of prime numbers. Let p1 = min (q1, . . . ,qk ) and for i = 2, . . . ,k

let pi = min (
{
q1, . . . ,qk

}
\
{
p1, . . . ,pi−1

}
). By construction, p1 ≤ . . . ≤ pk . Moreover, each of

these corresponds to a unique qi , so n = p1 · · ·pk .
It remains to show uniqueness. Suppose we factor n twice and obtain p1 · · ·pk and q1 · · ·q` ,

with the p’s and q’s prime, but not necessarily distinct. By substitution

p1 · · ·pk = q1 · · ·q` . (1.9)
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By Euclid’s Lemma, p1 | qi for some i = 1, . . . , `; similarly, q1 | pj for some j = 1, . . . ,k . The p’s
and q’s are both irreducible, so p1 = qi , and q1 = pj . Now,

p1 ≤ pj = q1 ≤ qi = p1 ,

or, more succinctly,
p1 ≤ q1 ≤ p1 ,

so p1 = q1. Divide both sides of (1.9) by p1 = q1 and we have p2 · · ·pk = q2 · · ·q` . Continuing in
this fashion, we �nd that p2 = q2, . . . , pk = qk , and k = `. The factorization is unique. �

Exercises
Exercise 1.70. Use the Sieve of Eratosthenes to compute all the prime numbers smaller than 200.
Exercise 1.71. Prove Theorem 1.65. The proof should be similar to that of the �rst part of Euclid’s
Lemma.
Exercise 1.72. Show that √p < Q for any prime number p.
Exercise 1.73. Show that n

√
p < Q for any prime number p.

Exercise 1.74. Show that if a is not a perfect square, then
√
a, n
√
a < Q.

Exercise 1.75. It turns out that if 6 | a2, then 6 | a.
(a) Explain why. Why does the same argument not apply when 4 | a2?

Hint: Think about the prime factors of 6 and the prime factors of 4.

(b) We call a composite number squarefree when it factors as n = p1 · · ·pk , and the p’s are all
distinct. Show that if n is squarefree and n | a2, then n | a.

Exercise 1.76. Show that every composite number has at least one prime divisor. Do not use the
Fundamental Theorem of Arithmetic, or anything after that.

Sage supplement
To compute the prime factorization of an integer, use the factor() command. The .divides()
and .is_prime() dot commands return True or False to indicate what their names imply:
whether one number divides another, and whether a number is prime.

sage: factor(100)
2^2 * 5^2
sage: 2.divides(5)
False
sage: 2.divides(4)
True
sage: 2.is_prime()
True
sage: 4.is_prime()
False
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Sage will produce a list of primes up to n using a command �ttingly called eratosthenes().

sage: eratosthenes(100)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89, 97]

That said, we will do here the same thing we’ve done in previous sections: implement the Sieve
of Eratosthenes as a procedure. This will give us some more practice manipulating lists.

The Sieve requires only one input, an integer n. Algorithm 1.5 �rst instructs us to “write the
numbers from 2 to n.” We could ask Sage to print the numbers from to to n, but that won’t
actually help us in our task; the algorithm tells us to write the numbers so that we can manip-
ulate them. To do that in Sage, we want a list or a set. In step 3(a) we see that we need to
test if a number i is in our list or set of numbers, and cross out its multiples. For both of these
types, the in command tests for membership and the method .remove removes an element.9
However, sets have the convenient di�erence operation, implemented in Sage as .difference or
.difference_update; using that makes the code easier to follow, so we’ll go with that.

sage: def sieve(n):
S = set( i for i in range(2,n+1) )
i = 2
while i <= sqrt(n):

if i in S:
S.difference_update(
i*j for j in range(2,n/i+1)

)
i += 1

return S

Let’s look at what this procedure attempts to do.

• The �rst line de�nes a procedure named sieve, which takes one input, n.

• The second line creates a set S, which contains the numbers from 2 to n. (Recall that the
range command does not include the last number!) This corresponds to step 1 of Algorithm
1.5.

• The third line corresponds to step 2 of Algorithm 1.5.

• The fourth line begins the same loop that we see in step 3 Algorithm 1.5.

• Lines 5–8 implement Step 3(a) of Algorithm 1.5:
9It’s also more e�cient to test for membership in a set. Depending on the set’s structure, it may also be more

e�cient to remove items from a set than from a list.



CHAPTER 1. MODULAR ARITHMETIC 42

– The �fth line tests if i is a member of S. This corresponds to the beginning of step
3(a) of Algorithm 1.5!

– Lines 6–8 creates a new set that consists of all multiples of i (computed using i*j)
starting from 2*i until (n+i)/i, then uses the .difference_update method to re-
move its elements from S. We have “split up” the invocation of .difference_update
over three lines in part because we didn’t have much space in the text here, but also
to show that Sage suspends its rules on indentation between parentheses.

• The ninth line corresponds to step 3(b) of Algorithm 1.5.

• The tenth line corresponds to step 4 of Algorithm 1.5.

Let’s try the command.

sage: sieve(100)
set([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97])

The only di�erence between this result and the one we obtained from eratosthenes is that this
one comes back as a set rather than a list. It’s always good to get the same result!

Exercises
Exercise 1.77. Does Sage factor negative numbers? Try it and see if the answer makes sense.

Exercise 1.78. Sage has an .is_prime method, but we can implement our own function to test
if an integer n is prime:

Algorithm 1.6 Naïve primality test
Inputs

• n, an integer

Outputs

• True if n is prime; False otherwise

Do

1. let P be the set of all primes no larger than
√
n

2. for each p ∈ P

(a) if p | n, return False

3. return True



CHAPTER 1. MODULAR ARITHMETIC 43

Implement Algorithm 1.6 as a Sage procedure, and test it on several “large” integers, both prime
and not-so-prime.
Hint: The Sieve of Eratosthenes will do step 1 for you, so just sieve(sqrt(n)) for that step.

1.5 Congruence
For the rest of this chapter,m is an integer, andm > 2.

It’s 10:00pm and I tell you we should meet in 4 hours. At what time will we meet? Not at
“14:00pm”, but at 2:00am. A clock’s hour dial has only twelve settings; once we move past 12:59,
time resets to 1:00. In algebra, we generalize this idea to dials with di�erent settings and later to
polynomials.

Congruence
Throughout this section,m ∈ Z\ {0}.

Recall that division is not an operation on Z, but a function on Z2: we start with a dividend
and divisor, and end with a quotient and remainder. While division is not an operation, we can
adapt it to one by keeping only part of the result. Let a be the remainder after dividing a ∈ Z by
m.

Example 1.79. In Z5, we would have 18 = 3.

Here we have
(a,m) 7→ a, an element of Z2 × Z .

In other words, a is an operation on Z. Given our assumption that n > 2, it is also closed: after
all, the Division Theorem guarantees us a remainder.

In our example above, 14:00 changes to 2:00 because 2 is the remainder of 14 after division by
12. We say that a is congruent to b,modulom, written a ≡ b (mod m), if a and b have the same
remainder after division bym. The following characterization based on divisibility is often more
convenient.

Theorem 1.80. Let a,b ∈ Z. Then a ≡ b (mod m) if and only ifm | (a − b).

Proof. Recall that the phrase “if and only if” signals that the two phrases are equivalent, and thus
we have to prove two directions.

Suppose that a ≡ b (mod m). By de�nition, there exist qa,qb ∈ Z and r ∈ {0, 1, . . . , ,m − 1}
such that a = qam + r and b = qbm + r . Rewrite these equations as a − qam = r and b − qbm = r .
By substitution, a −qam = b −qbm. Rewrite as a −b = (qa − qb )m. By de�nition,m | (a − b). We
have shown that if a ≡ b (mod m), thenm | (a − b).

Conversely, suppose m | (a − b). By de�nition, there exists q ∈ Z such that mq = a − b. Use
the Division Theorem to choose qa,qb ∈ Z and ra, rb ∈ {0, 1, . . . ,m − 1} such that a = qam + ra
and b = qbm + rb . If ra = rb , then we are done: the remainders are the same, so a ≡ b (mod m).

Unfortunately, it’s not clear that ra = rb , so let’s suppose that they’re not, and see what
happens. By substitution,

a − b = (qam + ra ) − (qbm − rb ) = (qa − qb )m + (ra − rb ) .
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Rewrite as

a − b = (qa − qb )m + (ra − rb ) =⇒ [(a − b) − (qa − qb )m] = ra − rb .

By substitution,

[mq − (qa − qb )m] = ra − rb =⇒ m [q − (qa − qb )] = ra − rb .

By de�nition, m | (ra − rb ). By Lemma 1.44, m ≤ |ra − rb |. (We use absolute value because we
don’t know which is larger.)

Hold on: we know that ra, rb ∈ {0, 1, . . . ,m − 1}, so |ra − rb | ≤ m − 1. But then

m ≤ |ra − rb | ≤ m − 1 < m ,

which simpli�es to m < m, a contradiction. What assumption did we make that wasn’t on solid
footing? The only such assumption is that ra , rb . That led to a contradiction, so we must have
ra = rb . As we saw, that means that a ≡ b (mod m). In summary, if m | (a − b), then a ≡ b
(mod m). �

Example 1.81. By de�nition, 14 ≡ 2 (mod 12). As the theorem indicates, 12 | (14 − 2).

Congruence is a relation! After all, we can write a ≡ b (mod m) as the ordered pair (a,b),
and de�ne the set

Rn = {(a,b) : a ≡ b (mod m)} .

Example 1.82. Some elements of R12 would be (3, 15), (−24, 144), (38, 2).

Example 1.83. Some elements of R4 would be (3, 3), (7, 3), (3, 7). The dots in the lattice diagram
below indicate elements of R4; the circles indicate pairs (a,b) that are not congruent modulo 4.

Henceforth, we keep with convention and write a ≡ b (mod m) instead of (a,b) ∈ Rm.
The congruence symbol ≡ resembles the equality symbol = for a reason: congruence shares

many interesting properties with equality.

Theorem 1.84. For anym ≥ 2, congruence modulom is an equivalence relation.

Proof. Letm ≥ 2. We have to show three properties: re�exive, symmetric and transitive.



CHAPTER 1. MODULAR ARITHMETIC 45

Re�exive: Let a ∈ Z. We want to show that a ≡ a (mod m). By Theorem 1.80, this is true if
and only ifm | (a − a), orm | 0. The last statement is de�nitely true, sincem×0 = 0.
Hence a ≡ a (mod m); or, congruence modulo n is re�exive.

Symmetric: Let a,b ∈ Z. We want to show that if a ≡ b (mod m), then b ≡ a (mod m). We
leave this as Exercise 1.102 to the reader.

Transitive: Let a,b, c ∈ Z. We want to show that if a ≡ b (mod m) and b ≡ c (mod m), then
a ≡ c (mod m). Assume that a ≡ b (mod m) and b ≡ c (mod m). By Theorem 1.80,
m | (b − a) and m | (c − b). By de�nition, there exist x ,y ∈ Z such that mx = b − a
andmy = c − b.
We need to show that a ≡ c (mod m). By Theorem 1.80, this is true if and only
if m | (a − c ). By de�nition, this is true if and only if there exists z ∈ Z such that
mz = a − c .
Can we somehow combinemx = b −a andmy = c −b to �nd the desired z? We can:

mx −my = (b − a) + (c − b) = c − a .

If we set z = x − y, then
mz =m (x − y) = c − a .

Hence a ≡ c (mod m); or, congruence is transitive.

�

Another similarity between congruence and equality is that congruence also allows basic
algebra.

Theorem 1.85. Let a,b, c ∈ Z, and suppose a ≡ b (mod m).

(A) a ± c ≡ b ± c (mod m).

(B) ac ≡ bc (mod m).

Proof. By Theorem 1.80, m | (a − b). We leave a proof of (A) to Exercise 1.103, proving only (B)
here.

We want to show that ac ≡ bc (mod m). By Theorem 1.80, this is true if and only if m |
(ac − bc ), or m | [(a − b) c]. We already know that m | (a − b); by de�nition, there exists q ∈ Z
such that

mq = a − b . (1.10)
Can we �nd another integer x such that mx = (a − b) c? Certainly: just multiply both sides of
(1.10) to obtain

m (qc ) = (a − b) c .

Hencem | [(a − b) c], and ac ≡ bc (mod m). �

Example 1.86. Since 14 ≡ 2 (mod 12), we also have

14 − 2 ≡ 2 − 2 (mod 12) and 14 × 2 ≡ 2 × 2 (mod 12) .

You can verify this by computing their remainders.
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These properties may seem obvious, and proving them may seem silly. Still, consider the
following “obvious” property:

if ab = 0 , then a = 0 or b = 0 .

This property is always true for integers, rationals, real numbers, and complex numbers; we know
it as the zero product property.

Strangely enough, the zero product property is not guaranteed by congruence! To wit,

2 × 3 ≡ 0 (mod 6) but 2, 3 . 0 (mod 6) .

The following section elaborates on a similar phenomenon.

Can we divide modulo a number?
Theorem 1.85 tells us that we can add, subtract, and multiply modulo a number. Did you notice
that we left something out?

Example 1.87. 14 ≡ 2 (mod 12), but if you divide both sides by 2, you end up with 7 ≡ 1
(mod 12), which is false.

Once again, division stands apart from the arithmetic operations. Yet sometimes it does pre-
serve congruence.

Example 1.88. Suppose ac ≡ bc (mod 5). By de�nition,

5 | (ac − bc ) , or, 5 | [(a − b) c] .

Now, 5 is a prime number, so by Euclid’s Lemma 5 | (a − b) or 5 | c .
If 5 | c , then c ≡ 0 (mod 5), so by Theorem 1.85, ac ≡ bc ≡ 0 (mod 5).
If 5 - c , then we must have 5 | (a − b), and by Theorem 1.80 a ≡ b (mod 5).
In summary, if 5 - c then we can go from ac ≡ bc to a ≡ b.

Does this apply to other moduli? The key to our example is that when 5 - d we could apply
Euclid’s Lemma. Euclid’s Lemma requires only a prime number. In other words, if p is prime,
then we should be able to divide modulo p.

Theorem 1.89. The number p is prime if and only if ac ≡ bc (mod p) implies a ≡ b (mod p) for
every a,b, c ∈ Z such that p - c .

Proof. Recall that the phrase “if and only if” signals that the two phrases are equivalent, and thus
we have to prove two directions.

Suppose p is prime, and let a,b, c ∈ Z such that ac ≡ bc (mod p) and p - c . By Theorem
1.80, p | (ac − bc ), or p | [(a − b) c]. By hypothesis, p - c , so by Euclid’s Lemma we must have
p | (a − b). By Theorem 1.80, a ≡ b (mod p).

Conversely, suppose p is not prime. By de�nition, p is composite, and we can �nd a, c ∈ N
such that ac = p and 1 < a, c < p. Certainly p | (ap − ac ), so ap ≡ ac (mod b), but it is not the
case that 0 ≡ p ≡ c (mod p), because 1 < c < p implies c . 0. �
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Just as Euclid’s Lemma generalized to a theorem for relatively prime numbers, so does The-
orem 1.89 generalize to a theorem for relatively prime numbers.

Theorem 1.90. The numbers c andm are relatively prime if and only if ac ≡ bc (mod m) implies
a ≡ b (mod m) for every a,b ∈ Z.

Proof. Suppose that c and m are relatively prime. Let a,b ∈ Z such that ab ≡ ac (mod m). By
Theorem 1.80, m | (ab − ac ), or m | [(a − b) c]. By Theorem 1.65, m | (a − b). By Theorem 1.80,
a ≡ b (mod m). �

The set Zm and its arithmetic
We use our observations in this section to de�ne a new kind of arithmetic. Let

Zm = {0, 1, 2, . . . ,n − 1} .

Recall the remainder operation a from page 43. De�ne addition, subtraction, and multiplication
on Zm in the following way: for any a,b ∈ Zn, we say that

a ⊕ b = a + b

a 	 b = a − b

a ⊗ b = ab .

(We use the symbols ⊕, 	, and ⊗ to distinguish this addition, subtraction, and multiplication from
the one you’re used to.) In other words, whenever we add or multiply two elements of Zm we
also divide and take the remainder, and this remainder is the sum or product. By the de�nition
of a remainder on page 16, all three of a + b, a − b, and ab are natural numbers, and also smaller
than n. Hence, these operations are closed; that is, their result is always in Zm.

While addition, subtraction, and division on Zm are di�erent from addition, subtraction, and
division on Z, so that we should probably continue using the symbols ⊕, 	, and ⊗, we will go
ahead and use ordinary symbols for addition of elements of Zm, so that in Z5 we write 3 + 3 = 1
instead of 3 ⊕ 3 = 1. As long as we keep in mind the set we’re working in, there will be no
confusion.

Why study Zm? Let a be any integer. By the Division Theorem, there exists a unique remain-
der r when we divide a by m, and moreover r ∈ Zm. Hence, every integer is congruent to some
element of Zm, so by Theorem 1.85, Zm gives us a very powerful tool to study integers. We will
see some of this in the next section.

Example 1.91. In Z12, 10 + 4 = 2, 2 − 4 = 10, and 10 × 4 = 4.

By which elements can we “divide”? A better way to phrase this might be, which elements
have multiplicative inverses? By Theorem 1.90, only those numbers relatively prime to the mod-
ulus.

Example 1.92. In Z12, only the numbers 1, 5, 7, and 11 have multiplicative inverses: 1−1 = 1,
5−1 = 5, 7−1 = 7, and 11−1 = 11. The other values do not, because they are not relatively prime
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to 12. If that leaves you skeptical, consider that in Z12 we have

2 × 0 = 0, 2 × 1 = 2, 2 × 2 = 4,
2 × 3 = 6, 2 × 4 = 8, 2 × 5 = 10,
2 × 6 = 0, 2 × 7 = 2, . . .

so that all products cycle among 0, 2, 4, 6, 8, 10.

Example 1.93. In Z14, the numbers 1, 3, 5, 9, 11, 13 have multiplicative inverses: 1−1 = 1, 3−1 = 5,
5−1 = 3, 9−1 = 11, 11−1 = 9, and 13−1 = 13.

In small moduli like 12 and 14, it isn’t too hard to discover the inverses via brute force. Often,
however, the modulus is very large (for example, 32003). In a case like this, how can we �nd the
multiplicative inverse of a number in Zm?

Amazingly, the same method tells us both whether a has a multiplicative inverse modulo
m, as well as what the inverse is. By Theorem 1.90 tells us that a has multiplicative inverse if
and only if gcd (a,m) = 1. To compute the gcd, perform the Euclidean Algorithm. If in fact
gcd (a,m) = 1, then by the Extended Euclidean Algorithm we can use its divisions to compute
the Bézout coe�cients x and y such that

ax +my = 1 .

Rewrite this as
my = 1 − ax .

By de�nition,
m | (1 − ax ) , or 1 ≡ ax (mod m) .

In other words, x is the multiplicative inverse of a, modulom. We have just proved the following
theorem.

Theorem 1.94. Let m > 2. A nonzero a ∈ Zm has a multiplicative inverse in Zm if and only if
gcd (a,m) = 1.

Example 1.95. In Z14, performing the Euclidean algorithm on 14 and 9 gives us the divisions

14 = 1 × 9 + 5
9 = 1 × 5 + 4
5 = 1 × 4 + 1
4 = 4 × 1 + 0 .

Reversing these according to the Extended Euclidean Algorithm, we obtain the equations

1 = 5 + (−1) × 4
1 = 5 + (−1) × [9 + (−1) × 5]
= 2 × 5 + (−1) × 9

1 = 2 × [14 + (−1 × 9)] + (−1) × 9
= 2 × 14 + (−3) × 9 .

So the Bézout coe�cient of 9 is −3, and −3 ≡ 11 (mod 14). Hence 11 = 9−1 in Z14.
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Example 1.96. In Z14, performing the Euclidean algorithm on 14 and 12 gives us the divisions

14 = 1 × 12 + 2
12 = 6 × 2 + 0 .

This tells us that gcd (14, 12) , 0, so 12 has no multiplicative inverse modulo 14.

We conclude this section by observing that division is related to the zero product property. If
we could always divide equal numbers from both sides of a congruence, then

2 × 3 ≡ 0 would imply that 2 × 3 ≡ 2 × 0 and thus 3 ≡ 0 (mod 6) .

Put another way,

Corollary 1.97. The zero product property holds in Zm if and only ifm is prime.

Proof. If m is prime, then it is relatively prime to each of the numbers 1, 2, . . . , m − 1. Hence if
a,b ∈ Zm and ab = 0, then by our notation ab ≡ 0 (mod m), so ab ≡ a × 0 (mod m), so by
Theorem 1.90 b ≡ 0 (mod m), or b = 0.

On the other hand, ifm is not prime, then there exist a,b ∈ Z such that ab =m and 1 < a,b <
m. Thus a,b ∈ Zm and ab =m ≡ 0 (mod m). By our notation, this means ab = 0 in Zm. �

We will explore this relationship between division (or, more properly, “cancellation”) and the
zero product property as the material unfolds.

Exercises
Exercise 1.98. In which of the following congruences is the indicated division reliable?

(a) 12 × a ≡ 12 × b (mod 7) implies a ≡ b (mod 7)

(b) 12 × a ≡ 12 × b (mod 6) implies a ≡ b (mod 6)

(c) 12 × a ≡ 12 × b (mod 25) implies a ≡ b (mod 25)

Exercise 1.99. Make a lattice diagram of congruence modulo 3. The x- and y-axes should each
go to at least 10. Compare and contrast your answer to Example 1.83.

Exercise 1.100. Compute multiplicative inverses of the following numbers, according to the
given moduli. If an inverse does not exist, explain why not.

(a) 72−1 in Z101

(b) 105−1 in Z539

Exercise 1.101. Show that every nonzero element of Zm has a multiplicative inverse if and only
ifm is prime.

Exercise 1.102. Complete the proof of Theorem 1.84 by showing that congruence modulo n is
symmetric.
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Exercise 1.103. Complete the proof of Theorem 1.85 by showing that if a ≡ b (mod n), then
a ± c ≡ b ± c (mod n).

Exercise 1.104. Recall Euclid’s Lemma (Theorem 1.64).

(a) Use Euclid’s Lemma to show that if p is prime and ab ≡ 0 (mod p), then a ≡ 0 (mod p) or
b ≡ 0 (mod p).

(b) Find a,b,m ∈ N such that ab ≡ 0 (mod m) but neither a ≡ 0 (mod m) nor b ≡ 0 (mod m).

(c) For any �xed m ∈ N, the numbers a and b of part (b) above are called zero divisors. Show
that ifm > 2 is not prime, then you can always �nd zero divisors a,b ∈ {1, 2, . . . ,m − 1}.
Hint: Try factoringm.

Exercise 1.105. Recall the generalization of Euclid’s Lemma (Theorem 1.65).

(a) Use Theorem 1.65 to show that if ab ≡ 0 (mod m) and gcd (a,m) = 1, then b ≡ 0 (mod m).

(b) Find a,b,m ∈ N+ that satisfy part (a). (Notice b ∈ N+ means b , 0.)

Sage supplement
You already know that we can compute the remainder ofa after division byn using a.quo_rem(n)
and taking the second entry of the result. Another, more convenient way to do this is by using
either the % operator10 or the .mod method.

sage: (-10).quo_rem(3)
(-4, 2)
sage: -10 % 3
2
sage: (-10).mod(3)
2

Sage doesn’t have a command named is_congruent, but we can easily create one.

sage: def is_congruent(a, b, n):
return (a % n) == (b % n)

The �rst line de�nes our procedure with three arguments, a, b, and c. The second computes the
remainders of a and b after division by n, and returns whether they are the same.

10You may recognize the % operator if you are familiar with any of the programming languages C, Java, and
Python.
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sage: is_congruent(7, 5, 4)
false
sage: is_congruent(9, 5, 4)
true

There’s also another way: Sage makes it easy to compute in Zn! To do this, we must set up
every number as an element of Zn. There are two steps for this: one you have to do only once,
but the other you have to do every time you work with a new number.

1. De�ne Zn as the quotient of Z and the modulus.

2. Initialize a number a as elements of Zn by typing Zn(a). This is called coercion.

sage: Z3 = ZZ.quo(3)
sage: a = Z3(-10)
sage: a
2

One nice consequence of this is that any arithmetic between a and other numbers also occurs in
Zn:

sage: a + 7
0
sage: a * 7
2

Let’s review what happened in these computations.

• We de�ned a as an element of Z3: originally we set it to −10, but the remainder of dividing
−10 by 3 is 2, so Sage sets a to 2.

• If a has the value 2, how did Sage �gure a + 7 to be 0? The sum is 9, but again Sage
automatically reduces it modulo 3 to 0.

• In the same way, for a * 7 Sage computes the product 14, then reduces it modulo 3 to 2.

Sage similarly coerces numbers involved in a comparison, giving us an easier way to test con-
gruence than the is_congruent command we de�ned earlier. (Make sure you type two equality
signs in the example below, not one. Otherwise you’ll reassign a.)

sage: a == 5
True
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Sage will also compute the multiplicative inverse of a in a very natural manner: use the
exponent −1.

sage: a^(-1)
2

Recall that not every number in every modulus has a multiplicative inverse. Sage has a way
to tell you this, too. We’ll look at the same example we conidered in the text, the number 12 in
Z14.

sage: Z14 = ZZ.quo(14)
sage: a = Z14(12)
sage: a
12
sage: a^(-1)
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/

smc_sagews/sage_server.py", line 1188, in execute
flags=compile_flags) in namespace, locals

File "", line 1, in <module>
File "sage/rings/finite_rings/integer_mod.pyx",

line 2704, in sage.rings.finite_rings.integer_mod.
IntegerMod_int.__pow__ (build/cythonized/sage/
rings/finite_rings/integer_mod.c:30197)

return ~self._new_c(res)
File "sage/rings/finite_rings/integer_mod.pyx",

line 2722, in sage.rings.finite_rings.integer_mod.
IntegerMod_int.__invert__ (build/cythonized/sage/
rings/finite_rings/integer_mod.c:30372)

raise ZeroDivisionError(f"inverse of Mod({self},
{self.__modulus.sageInteger}) does not exist")
ZeroDivisionError: inverse of Mod(12, 14) does not exist

Whenever you encounter an error in Sage, the �rst line to examine is the last line. It tells you
the precise error, gives a brief explanation, and sometimes even suggests how to �x it. In this
case, it gives us a ZeroDivisionError, which seems like a strange thing to get when looking
for a multiplicative inverse; this will make sense later when we talk about zero divisors.

Exercises
Exercise 1.106. Use Sage to �nd the multiplicative inverse of every invertible element of Z100.
Hint: Doing this one number at a time would be tedious. Use a for loop to make Sage do them
all for you in one go! To avoid a ZeroDivisionError, use an if statement to check whether the
number is relatively prime to 100.
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1.6 Linear equations in Zm
In this section we introduce the reader to linear algebra in Zm; that is, we consider the question
of solving a congruence of the form

ax ≡ b (mod m)

or, more generally, a system of congruences of the form



ax ≡ b (mod m)

cx ≡ d (mod n)
.

These are called linear congruences because the variable, x , is only to the �rst power.
If we can �nd one solution to a linear congruence, then we can �nd in�nitely many. Here’s

why:
• Suppose y is a solution to ax ≡ b. Then

ay ≡ b (mod m) ,

but also
a (y +m) = ay + am ≡ b + am ≡ b (mod m) ,

because (b + am) − b = am ≡ 0 (mod m).

• In a similar fashion, suppose y is a solution to both ax ≡ b (mod m) and cx ≡ d (mod n).
This time, consider the fact that

a (y +mn) = ay + a (mn) ≡ b + (an)m ≡ b (mod m) ,

and similarly

c (y +mn) = cy + c (mn) ≡ d + (cm) n ≡ d (mod mn) .

So if there is a solution, there are in�nitely many.
That said, the other solutions given can be viewed as not especially interesting; after all:
• For a solution y to ax ≡ b (mod m), we know that y +m ≡ y (mod m). If we consider y as

a solution of Zm, it might well be unique; we’re only guaranteed another solution when we
add or subtract a multiple of m. What would be interesting is if we don’t have a solution
that is congruent to y modulom.

• For a solution y to ax ≡ b (mod m) and cx ≡ d (mod n), we know that y + mn ≡ y
(mod mn). If we considery as a solution of Zmn, it might well be unique; we’re only guaran-
teed another solution when we add or subtract a multiple ofmn. What would be interesting
is if we don’t have a solution that is congruent to y modulomn.

Because of this, this section considers two questions:
• Does a solution exist?

• When it does, is it unique up to congruence?

“Up to congruence” means that the solution is the only one in Zm, where the value of n depends
on the problem.
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One linear congruence
We begin by looking at ax ≡ b (mod m). From the previous section we know that if gcd (a,m) =
1, then a has a multiplicative inverse modulo m; that is, we can �nd s ∈ Zm such that as ≡ 1
(mod m). This leads to a very simple solution to the congruence.

Algorithm 1.7 Solving linear congruences
Inputs

• ax ≡ b (mod m), where

– a,b,n ∈ Z,
– n ≥ 2, and
– gcd (a,m) = 1

Outputs

• x ∈ Zm satisfying ax ≡ b

Do

1. let s be the multiplicative inverse of a modulom

2. return the remainder of bs after division bym

Theorem 1.107. Algorithm 1.7 terminates correctly. The solution is unique up to congruence.

Proof. Termination? We can perform step 1 via the Extended Euclidean Algorithm (1.3), and that
terminates by Theorem 1.51. Step 2 is a return statement, so the algorithm terminates.

Correctness? If we substitute x = bs into the left hand side of ax ≡ b (mod m) we have

a (bs ) = a (sb) = (as ) b ≡ 1 · b = b (mod m) .

So x = bs would be a correct solution. The algorithm actually returns the remainder after division
bym; that is, it returns r where x = qm + r . Rewrite that equation to qm = x − r and we see that
x ≡ r (mod m). In other words,m is also a solution.

Is the solution unique up to congruence? Let y, z be solutions to ax ≡ b (mod m). Then
ay ≡ b (mod m) and az ≡ b (mod m). By the transitive property of congruence (Theorem 1.84),
ay ≡ az (mod m). By hypothesis, gcd (a,m) = 1, so a has a multiplicative inverse modulom; call
it s . Multiply both sides of the congruence by s , and we have

(sa)y ≡ (sa) z =⇒ y ≡ z (mod m) .

By de�nition,m | (y − z), so y ≡ z (mod m), and the solution is unique up to congruence. �

Example 1.108. Consider the linear congruence 9x ≡ 3 (mod 14). In Example 1.93 we found
that 9−1 ≡ 11 (mod 14). Multiply both sides by 11 and we have 99x ≡ 33 (mod 14). However,
99 ≡ 1 (mod 14), and 33 ≡ 5 (mod 14), so

99x ≡ 33 =⇒ x ≡ 5 (mod 14) .
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If you substitute 5 in for x in 9x ≡ 3 (mod 14), you will see that the equation checks out as
true. Moreover, Theorem 1.107 tells us the solution is unique up to congruence; that is, none of
{0, 1, 2, 3, 4} ∪ {6, 7, . . . , 13} will work for x .

You may have noticed a little wrinkle; Algorithm 1.7 requires gcd (a,n) = 1. What if this is
not true? We consider two examples.

Example 1.109. Algorithm 1.7 cannot solve 6x ≡ 2 (mod 14) directly, because gcd (6, 14) = 2 ,
1. However, x is a solution to the congruence if and only if 14 | (6x − 2), which is true if and only
if we can �nd an integer q such that 14q = 6x − 2. Both sides of the equation are divisible by 2, so
we divide and obtain 7q = 3x −1. This is equivalent to 7 | (3x − 1), which is true if and only if x is
a solution to 3x ≡ 1 (mod 7). Algorithm 1.7 can solve this congruence; it returns x = 5. You can
easily check that this is also a solution to 6x ≡ 2 (mod 14), precisely what all the equivalences
imply.

This solution is not, however, unique! We can add 7 to our solution x = 3 to obtain x = 10
as another solution to 3x ≡ 1 (mod 7). This is not a new solution modulo 7, but it is another
solution modulo 14, and it is certainly di�erent from 5 in that modulus!

Example 1.110. Algorithm 1.7 cannot solve 6x ≡ 1 (mod 14) directly, because gcd (6, 14) = 2 ,
1. In fact, Algorithm 1.7 cannot solve 6x ≡ 1 (mod 14) at all, because it is equivalent to the
equation 6x = 14q + 1, or 6x − 14q = 1, or 2 (3x − 7q) = 1. This latter equation is true if and only
if 2 | 1, which it does not!

These results allow us to answer completely the question of solving ax ≡ b (mod m).

Theorem 1.111. Let a,b,m ∈ Z, withm ≥ 2. Let d = gcd (a,m).

• If d = 1, then the linear congruence ax ≡ b (mod m) has one solution, and the solution is
unique up to congruence.

• If d , 1, then:

– If d - b, then there the linear congruence ax ≡ b (mod n) has no solution.

– If d | b, then the linear congruence ax ≡ b (mod n) has d incongruent solutions modulo
n, and we can �nd them by �rst solving (a/d) x ≡ b/d (mod n/d), then enumerating the
solutions x , x + n/d, x + 2n/d . . . , x + (d−1)n/d.

Proof. If d = 1, then Theorem 1.107 applies.
If d , 1 and d - b, then we can rewrite ax ≡ b (mod m) as ax +mq = b for some integer q.

Then d divides the left hand side, but it does not divide the right, so there can be no solution.
If d , 1 and d | b, then choose â, b̂,m̂ ∈ Z such that âd = a, b̂d = b, and m̂d = m. The

congruence ax ≡ b (mod m) is equivalent to the equation ax +mq = b for some q ∈ Z. Divide
both sides by d to see that this is equivalent to âx + m̂q = b̂. This latter equation is equivalent
to âx ≡ b̂ (mod m̂). We obtained â and m̂ by dividing a andm by their greatest common divisor,
so â and m̂ can have no common divisor; otherwise, a and m would have a larger one. Hence
gcd (â,m̂) = 1 and Theorem 1.107 applies; a solution x to âx ≡ b̂ (mod m̂) exists. As explained
above, this congruence is equivalent to ax ≡ b (mod m), so x is a solution to that one, as well.
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Moreover, y = x + km/d = x + km̂ is likewise a solution to âx ≡ b̂ (mod m̂) for every k ∈ N, so as
with x , y is also a solution to ax ≡ b (mod m).

To show that there are only d incongruent solutions modulom, let x ,y ∈ Zm be any solutions
to ax ≡ b (mod m). By substitution,

ax ≡ ay (mod m) .

ai
(m
d

)
≡ aj

(m
d

)
(mod m) .

By de�nition,
m | a (x − y) .

Choose q ∈ Z such that
mq = a (x − y) ;

rewrite this as
m̂q = â (x − y) .

Recall that gcd (â,m̂) = 1. By Theorem 1.65, x − y is a multiple of m̂. Since m = m̂d , there are
only d multiples of m̂ in Zm, so there can be be only d distinct values of x − y in Zm. Thus, there
are only d solutions to ax ≡ b (mod m). �

Several simultaneous congruences
This section’s theorems have been tough, but they lay the groundwork we need to make the
remainder easy (no pun intended).

Consider a system of congruences




x ≡ a (mod m)

x ≡ b (mod n)
.

Theorem 1.107 tells us that 1 ·x ≡ a (mod m) has a solution x = a. Now, a might not be a solution
to x ≡ b (mod n), but we have pointed out several times that there are in�nitely many solutions
to x ≡ a (mod m), all of them having the form x = a + km, where k is any integer. We’d like
to �nd a value of k that makes the second congruence true; in other words, we can treat k as an
unknown.

Substitute this expression for x into the second congruence, obtaining

a + km ≡ b (mod n) .

Rewrite this as
mk ≡ b − a (mod n) .

By Theorem 1.107, we can solve this congruence so long as gcd (m,n) | (b − a). In fact, it is very
easy to solve if gcd (m,n) = 1, and this is such a useful fact that the result is very ancient.
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Theorem 1.112 (The Chinese Remainder Theorem). Let m,n ∈ N such that m,n ≥ 2 and
gcd (m,n) = 1. The system of linear congruences




x ≡ a (mod m)

x ≡ b (mod n)

has a solution, and the solution is unique up to congruence modulomn.

Proof. As we explained before the theorem, this system has a solution if gcd (m,n) = 1. It remains
to show that the solution is unique up to congruence modulomn. Let y, z ∈ Z be solutions to the
system, so that

y ≡ a ≡ z (mod m) and y ≡ b ≡ z (mod n) .

By the transitive property, y ≡ z under both moduli. By de�nition,m | (y − z) and n | (y − z). By
Exercise 1.56,mn | (y − z). By de�nition, y ≡ z (mod mn). �

What about the more complicated case




ax ≡ b (mod m)

cx ≡ d (mod n)
,

which we mentioned at the beginning of the section? As with the Chinese Remainder Theorem,
we can �nd solutions to this system using a similar principle. See Algorithm 1.8.

Example 1.113. Solve



5x ≡ 72 (mod 99)
3x ≡ 4 (mod 101)

.

It is easy to verify that gcd (5, 99) = gcd (3, 101) = 1, so we pass through steps 1 and 2 without
di�culty. For step 3, we �nd the multiplicative inverses of 5 modulo 99 and of 3 modulo 101 to
rewrite the system as




x ≡ 54 (mod 99)
x ≡ 35 (mod 101)

.

Again, it is easy to see that gcd (99, 101) = 1 (the result of Exercise 1.53 makes it very easy) so we
pass through step 4 without di�culty.

We �nally come to something new in step 5. We have to follow step 5(a), which tells us to
solve according to the manner outlined in the proof of the Chinese Remainder Theorem. We
rewrite the �rst equation as

x = 99q + 54
and substitute this into the second equation,

99q + 54 ≡ 35 (mod 101) .

Solve this in the usual manner for linear congruences,

99q ≡ 82 (mod 101)
50 × 99q ≡ 50 × 82

q ≡ 60 .
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Algorithm 1.8 Solving two linear congruences
Inputs

• a,b, c,d,m,n ∈ N+ such thatm,n ≥ 2

Outputs

• a solution to



ax ≡ b (mod m)

cx ≡ d (mod n)
,

if it exists; otherwise, ∅

Do

1. if gcd (a,m) - b or gcd (c,n) - d , return ∅

2. rewrite the system as



âx ≡ b̂ (mod m̂)

ĉx ≡ d̂ (mod n̂)
,

where gcd (â,m̂) = gcd (ĉ, n̂) = 1

3. multiply both sides of the �rst congruence by â−1, and both sides of the second by ĉ−1, to
obtain the equivalent system




x ≡ b′ (mod m̂)

x ≡ d′ (mod n̂)
,

4. if gcd (m̂, n̂) - (b′ − d′), return ∅

5. else

(a) if gcd (m̂, n̂) = 1,
i. compute the unique solution x found by the Chinese Remainder Theorem

ii. return the resulting solution
(b) else

i. substitute x = b′ +mk into x ≡ d′ (mod n̂)

ii. return the resulting solution
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Back-substitute to obtain

x = 99 × 60 + 54 ≡ 5994 (mod 9999) .

Verifying this answer is straightforward.
Theorem 1.114. Algorithm 1.8 terminates correctly.

Proof. Termination? Steps 5(a)(ii), 5(b)(i), and 5(b)(ii) always terminate. By Theorem 1.47, com-
puting the gcd terminates, so computing the gcd in steps 1, 2, 4, and 5(a) always terminates.
Computing a multiplicative inverse in step 3 requires the Extended Euclidean Algorithm, which
terminates by Theorem 1.51, so step 3 terminates. By Theorem 1.7, step 5(b)(ii) terminates. Step
5(a)(i) requires us to solve a Chinese Remainder Theorem, and the proof of Theorem 1.112 shows
that this is just a matter of twice solving a linear congruence; by Theorem 1.107, that also termi-
nates. This covers all the steps, so the algorithm terminates.

Correctness? If the algorithm returns a result in steps 1, 4, or 5(a)(ii), then the Chinese Remain-
der Theorem guarantees correctness. The only other way it returns a result is in step 5(b)(ii),
where Theorem 1.107 and the subsequent discussion imply that the solution is a result to the
system. �

Remark. The result obtained from steps 5(a)(ii) and 5(b)(ii) in Algorithm 1.8 are not necessarily
unique. See Exercise .

Exercises
Exercise 1.115. Solve the following linear congruences. If they cannot be solved, explain why
not. If there is more than one solution among the canonical residues, list them all.
(a) 4x ≡ 7 (mod 9)

(b) 100x ≡ 18 (mod 112)

(c) 100x ≡ 20 (mod 112)
Exercise 1.116. Solve




5x ≡ 3 (mod 7)
4x ≡ 2 (mod 9)

.

List all distinct solutions modulo 63.
Exercise 1.117. Solve




2x ≡ 1 (mod 7)
7x ≡ 5 (mod 11)
4x ≡ 7 (mod 15)

.

Indicate the modulus in which this solution is unique.
Hint: Divide and conquer. First solve the �rst two congruences; by the Chinese Remainder The-
orem, this gives a unique solution modulo 77. Let’s call that solution b; you now know that the
solution must satisfy the smaller system




x ≡ b (mod 77)
4x ≡ 7 (mod 15)

.
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You can solve this the same as before, and �nd your solution.

Exercise 1.118. Show that if gcd (a,b) , 1 but divides m, then ax ≡ b (mod m) still has a
solution.
Hint: Consider the equation ax = mq + b. “Simplify” this to show that a solution exists. Explain
why the solution works for ax ≡ b (mod m).

Exercise 1.119. Solve



x ≡ 12 (mod 15)
x ≡ 17 (mod 20)

.

Hint: There is one unique solution modulo 60, and distinct 5 solutions modulo 300.

Exercise 1.120. Consider the system




x ≡ a (mod m)

x ≡ b (mod n)

where gcd (a,m) = 1 and gcd (b,n) = 1, but gcd (m,n) , 1. Suppose that gcd (m,n) | (b − a), as
in Exercise 1.119. In this case, step 5(b)(ii) returns one answer to such a system.

(a) Use the algorithm, as well as insight from Exercise 1.119, to write a symbolic formula for one
solution.

(b) Explain how to �nd all solutions.

(c) The solutions are incongruent modulo what number?

Sage supplement
Sage’s solve command will solve regular equations. You need to specify the name of the variable
to solve for.

sage: solve( 5*x == 2, x)
[x == (2/5)]

The result is a list of equations that satisfy the solution. Higher-degree equations will have mul-
tiple solutions.

sage: solve( 5*x^2 == 2, x)
[x == -1/5*sqrt(5)*sqrt(2), x == 1/5*sqrt(5)*sqrt(2)]

Sage will also solve a linear congruence, but it requires a di�erent command. Instead of solve,
we’ll use solve_mod, which expects an equation as the �rst argument, and the modulus as the
second.
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sage: solve_mod( 5*x == 7, 12 )
[(11,)]

The solution is a list of incongruent values for each variable; when substituted for the variable(s),
they make the congruence true. In this case, there is only one solution, and only one variable, so
the list [...] gives us one solution (...) which lists only one number, 11.

Oftentimes there can be more than one incongruent solution to a linear congruence. In this
case, the list will have more entries.

sage: solve_mod( 4*x == 8, 12 )
[(8,), (5,), (2,), (11,)]

There are four solutions! One of these solutions is obvious: x = 2. What about the others? It
isn’t hard to verify that in fact

4 × 8 ≡ 4 × 5 ≡ 4 × 2 ≡ 4 × 11 ≡ 8 (mod 12) ,

but how would you know this in advance? You will explore this in the exercises.
There is also a more traditional way to solve linear congruences. Remember that Theorem 1.80

tells us we can think of a linear congruence ax ≡ b (mod n) as n | (ax − b). Choose q ∈ Z such
that ax − b = nq and we’re looking at an equation whose solutions must be via integers.11 Sage
gives us a way to specify that via an assume command. This command allows us to specify many
kinds of constraints on variables. To specify that the variable x is an integer, we use assume(x,
’integer’). We can then solve an equation with x, and only integer solutions will be allowed.

We illustrate this with the congruence 5x ≡ 7 (mod 12). As per the discussion above, we
consider the equation 5x = 12q + 7. We need to de�ne a symbol in Sage for the variable q, which
we can do with the var command.

sage: var( ’q’ )
sage: assume( x, ’integer’ )
sage: assume( q, ’integer’ )
sage: solve( 5*x == 12*q + 7 )
12*t_0 + 35

This tells us that for any integer t0, x = 12t0 + 35 will satisfy 5x = 12q + 7. We know that this
means it should satisfy 5x ≡ 7 (mod 12), and in fact

5 × (12t0 + 35) = 60t0 + 175 ≡ 0 + 7 (mod 12) ,

as desired. So x ≡ 35 (mod 12), or preferably we use its canonical linear residue, x ≡ 11
(mod 12).

Solving Chinese Remainder Theorem problems is also fairly easy in Sage; we use the crt
command. It expects two arguments, and each of those arguments is to be a list of two integers:

11Equations of the form ax + by = c where every constant variable is an integer are called Diophantine equations.
Solving them is a major topic in Number Theory.
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crt( [ a, b ] , [ m, n ] ) corresponds to



x ≡ a (mod m)

x ≡ b (mod n)
.

The coe�cients of x must be 1; if they are not, we must �rst rewrite the system.

Example 1.121. To solve the system in Example 1.113,




5x ≡ 72 (mod 99)
3x ≡ 4 (mod 101)

,

we �rst have to rewrite it using the multiplicative inverses. We took care of that already in
Example 1.113, obtaining




x ≡ 54 (mod 99)
x ≡ 35 (mod 101)

.

We can �nally apply crt to this form.

sage: crt( [ 54, 35 ], [ 99, 101 ] )
5994

This is the solution we expect.

Exercises
Exercise 1.122. Use Sage to solve the following linear congruences.

(a) 5123x ≡ 1001 (mod 32003)

(b) 7719x ≡ 10017 (mod 35)

(c) 1024x ≡ 256 (mod 65536)
Hint: In this last case there are a lot of solutions. Don’t write down all of them: �nd a pattern
x = ai + b, where a and b are �xed integers and i ranges from a smallest to a largest value.
Be sure to indicate the smallest and largest values of i that describe a solution.

Exercise 1.123. Try using Sage to solve 6x ≡ 7 (mod 12). What happens? Why?

Exercise 1.124. Use Sage to solve the following systems of linear congruences. Be sure to list
all incongruent solutions if there are more than one. Be careful with the latter: Sage will not
automatically tell you all incongruent solutions when there are more than one. You’ll have to
think about it a bit!

(a)



38x ≡ 52 (mod 101)
82x ≡ 7 (mod 103)

(b)



x ≡ 17 (mod 20)
x ≡ 13 (mod 32)
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Exercise 1.125. Sage will not automatically solve systems of linear congruences of the form




ax ≡ b (mod m)

cx ≡ d (mod n)
.

We can however outline an algorithm to solve them, based on this section’s discussions and the
procedure of Example 1.113:

Algorithm 1.9 CRT with coe�cients
Inputs

• a,b, c,d ∈ N

• m,n ∈ N+

Outputs

• a solution to the system of linear congruences




ax ≡ b (mod m)

cx ≡ d (mod n)
(1.11)

Do

1. if gcd (a,m) - b or gcd (c,n) - d then return ∅

2. �nd â, b̂ such that the system (1.11) is equivalent to




x ≡ â (mod m)

x ≡ b̂ (mod n)

3. use Sage to solve the system obtained in step 2 and return that solution

Implement this algorithm as a Sage procedure.
Hint: For step 2, you don’t have to create any equations; you just have to �nd â and b̂ so that you
can use them in step 3. You can do this with Sage by computing â = a−1b and b̂ = c−1d .

1.7 Public-key encryption
We end this chapter with a famous application of the ideas we have studied: secret communica-
tion. Suppose that Person A and Person B want to exchange messages, but are afraid that Person
E might overhear.12 They need a function f that transforms a readable message m into an un-

12Authors often use “Alice,” “Bob,” and “Eve” instead of A, B, and E. In our internet economy one could well use
“Amazon,” “Buyer,” and “Eavesdropper.”
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readable cipher c , typically using an encryption key e . That is,

c = f (m, e ) .

They also need a way to undo the encryption.
In the modern age we use computers to do this. Computers work with numbers, so we need

some way to turn letters into numbers. We will adopt a very simple method where

A 7→ 0, B 7→ 1, . . . Z 7→ 25, ; 7→ 26,
, 7→ 27, . 7→ 28, ␣ 7→ 29, - 7→ 30 .

(The symbol ␣ indicates a space.) This would encode the message

STOP␣—␣DANGER␣AHEAD

as

18 19 14 15 29 30 29 3 0 13 6 4 17 29 0 7 4 0 3 .

The numbers are elements of Z31. We don’t have to use the modulus 31; we can use any modulus
that is su�ciently large to encode the alphabet. The bene�t is that we can leverage modular
arithmetic to �nd a way to communicate secretly.

Classical versus public-key encryption
The “classical” approach to encryption requires A and B to know both the encryption method f
and the private key e . Only the ciphertext c is public knowledge, so E’s challenge is to determine
both f and e . Once E determines this information, decryption is a snap, since typically

m = f −1 (c, e ) .

and it is “easy” to compute f −1 from f . For example;

• The Cæsar cipher consists of choosing some k ∈ Z and using

f (m, e ) =m + e ,

where the line overm + e means to divide and take the remainder modulo 31 (or whatever
modulus one chooses, only both A and B must know it). Decryption consists of computing

f −1 (c, e ) = c − e .

This cipher takes its name from Julius Cæsar; according to several ancient Romans, he used
a version of this method.

• The Vigenère cipher consists of choosing a short sequence e1, . . . , e` (sometimes corre-
sponding to an easy-to-remember word) and enciphering several characters at a time

f ((m1, . . . ,m` ) , (e1, . . . , e` )) =
(
m1 + e1, . . . ,m` + e`

)
.
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Decryption consists of computing

f −1 ((c1, . . . , c` ) , (e1, . . . , e` )) =
(
c1 − e1, . . . , c` − e`

)
.

It takes its name from Blaise de Vigenère, though Giovan Battista Bellasio discovered it.
For a long time people considered the Vigenère cipher indecipherable if E does not know
the key.

• A one-time pad uses for its key a sequence of random numbers e1, . . . , e` in exactly the
same fashion as the Vigenère cipher, except that the sequence must be long, at least as long
as the message. It takes its name from the fact that you use a one-time pad exactly once,
then never again. Because of this, the cipher has been proved indecipherable if E does
not know the key. Unfortunately, generating and storing sequences of random numbers is
burdensome.

• A stream cipher uses for its key a sequence of pseudo-random numbers e1, e2, . . . in exactly
the same fashion as the one-time pad. Here, “pseudo-random” means that the numbers are
generated according to a formula designed to produce numbers that look random, even
though they are not — the reasoning being that if you can generate the numbers according
to a formula, then they aren’t truly random.

• The Navajo code talkers were Navajo men who translated English messages to Navajo,
which was then radioed between airplanes in the Paci�c theater during World War II. The
Japanese Navy had never heard anything like it before, and was completely unable to make
sense of it.

Again, these techniques require both A and B to know both the method and the key, and inde-
cipherability depends on keeping at least one of the two secret. This makes classical encryption
practically di�cult, as both A and B must not only keep a record of the keys — in a codebook, for
instance — they must also keep the record hidden from E. Failure either to use a secure method
or to keep the method secret forfeits the security.

• The American Department of State at one time used an encryption method so poor that
every half-competent intelligence agency was reading our “secret” communications. One
history of encryption called us the “laughing stock of the world.”

• The German military in World War II used an encryption device called Enigma. The United
States and Britain invested heavily in early computer technology precisely to decrypt Nazi
communications. These e�orts received an enormous boost when the Allies captured a
codebook that a captured submarine’s commander was unable to destroy before being
boarded.

By contrast, public-key encryption works as follows.

• A chooses a method f and a public “encryption key e .”

• A broadcasts in public that anyone who wishes to communicate secretly with A should use
the method f and the key e .
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• B computes and broadcasts c = f (m, e ), so that everyone now knows f , c , and e .

• A also has a second, private “decryption key” d . To decipher the method, E needs to �nd d .

This is much easier to deal with on a large scale than private encryption: A and B do not need
to keep secret, hidden codebooks. Whenever they want to communicate, they broadcast clearly
each other’s encryption key. What’s more, anyone can send messages securely to A using this
method, not just B.

RSA encryption
RSA encryption takes its name from “Rivest, Shamir, Adelman,” the mathematicians who �rst
described the technique publicly. One convenient aspect of RSA is that encryption and decryption
use the same mathematical operations; the only di�erence is in the key. Another convenient
aspect is that a computer can perform the operations relatively quickly.

A does the following in preparation to receive messages.

• Choose two prime numbers, p and q.

• Compute N = pq.

• Let e be a number that is relatively prime to ϕ = (p − 1) (q − 1).

• Let d be the multiplicative inverse of e , modulo ϕ.

• Invite everyone to send messages using RSA, encryption key e , modulo N .

To send a message, B does the following.

• Compute, then broadcast, c =me (mod N ).

To decrypt the message, A does the following.

• Compute x = cd .

Theorem 1.126. If A and B perform the steps above, then x ≡m (mod m).

We postpone the proof until we build up some background theory. To begin with, you are
probably wondering why ϕ = (p − 1) (q − 1) is special. To explain this we need a new set: let Z∗m
be the subset of Zm whose elements are all relatively prime to n.

Example 1.127. Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14} and Z∗31 = {1, 2, . . . , 31}.

Lemma 1.128. Let p and q be prime, and N = pq. The number ϕ = (p − 1) (q − 1) counts the
elements of Z∗N . That is, ϕ =

���Z
∗
pq

���.

To help understand the proof, we illustrate it with an example.
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Example 1.129. Let p = 3 and q = 5. We have N = 15 and ϕ = 2 × 4 = 8. To see why ϕ really
does count the number of integers in {1, . . . , 15} that are relatively prime to 15, count the number
of integers that are not.

Since N = 3 × 5, and both 3 and 5 are prime, a number has a common divisor with N only if
it is a multiple of 3 or 5. These are

3, 6, 9, 12, 15 (multiples of 3)
5, 10, 15 (multiples of 5) .

The �rst sequence has 5 multiples of 3; the second has 3 multiples of 5. They have no common
elements except the last one, 15. In fact, they should have nothing in common, since one consists
of multiples of 3, the other consists of multiples of 5, and the least common multiple of 3 and 5 is
15. So the number of integers in {1, . . . , 15} that share a common divisor with 15 is

5︸︷︷︸
multiples of 3

+ 3︸︷︷︸
multiples of 5

− 1︸︷︷︸
extra 15

.

Hence, the number of integers in {1, . . . , 15} that are relatively prime to 15 is

15 − (5 + 3 − 1) = 8 ,

which is precisely the value of ϕ we computed above.

Proof of Lemma 1.128. Let a ∈ {0, 1, . . . ,N − 1}, and suppose that gcd (a,N ) , 1. By the Funda-
mental Theorem of Arithmetic, gcd (a,N ) has a unique prime factorization, say

gcd (a,N ) = r1 · · · rk .

By de�nition of divisibility, we can �nd s ∈ N such that N = s gcd (a,N ), so by substitution

pq = sr1 · · · rk .

By Euclid’s Lemma, p | s or p | ri for some i = 1, . . . ,k . Suppose p - ri for any i; this forces p | s .
Choose t ∈ N such that pt = s . We divide both sides by p and obtain the equation

q = tr1 · · · rk .

By Euclid’s Lemma, q | t or q | ri for some i = 1, . . . ,k . Suppose q - ri for any i; this forces q | t .
Choose u ∈ N such that qu = t . We divide both sides by q and obtain the equation

1 = ur1 · · · rk .

This happens only if u = r1 = · · · = rk = 1. Recall that r1 · · · rk = gcd (a,N ); by substitution,
1 = gcd (a,N ). This contradicts the hypothesis that gcd (a,N ) , 1, so p | ri or q | ri for some i .
Either way, p or q is a divisor of gcd (a,N ), so p or q is a divisor of a.

We have shown that if gcd (a,N ) , 1, then p or q divides a. How many such a’s are there in
{0, 1, . . . ,N − 1}? The multiples of p are

p, 2p, . . . pq ;
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the multiples of q are
q, 2q, . . .pq .

The number pq appears in both sequences; are there others? Suppose i, j satisfy ip = jq. By
Euclid’s Lemma, p | j or p | q. Both p and q are prime, and p , q, so p | j. Similarly, q | i . So
the smallest number that is a multiple of both p and q is pq itself. Hence our sequences above are
completely distinct except for pq itself, and there are

q︸︷︷︸
multiples of p

+ p︸︷︷︸
multiples of q

− 1︸︷︷︸
extra pq

common multiples of p and q from {0, 1, . . . ,N − 1}. These are the only numbers in Z∗N that share
a common divisor with N , so the number of integers in {0, 1, . . .N − 1} that are not multiples of
p or q are

N − (p + q − 1) = pq − p − q − 1
= p (q − 1) − (q − 1)
= (p − 1) (q − 1)
= ϕ ,

as claimed. �

More generally, suppose ϕ (m) = ��Z∗m�� for any integer n. This number has a useful property.

Theorem 1.130 (Euler’s Theorem). For any a ∈ Z∗m, aϕ (m) ≡ 1 (mod m).

Example 1.131. In Z15, 28 ≡ 1 (mod 15). One way to compute this is by evaluating

2 × 2 × · · · × 2︸            ︷︷            ︸
8 times

,

but a more clever way to do it is to realize that 8 = 23 and compute((
22

)2)2
.

If we reduce modulo 15 every chance we get, we see that in fact

22 = 4(
22

)2
= 42 = 16 ≡ 1((

22
)2)2

≡ 12 = 1 .

Here we encountered 1 at 24, illustrating that we might meet it sooner than the ϕ (n) power.
Nevertheless, we will still always reach it at ϕ (n).

Proof of Euler’s Theorem. Let a ∈ Zn, and suppose a is relatively prime to n. The set Zn is �nite,
so there can be only �nitely many distinct powers of a, modulo n. Let T =

{
a,a2, . . . ,ak

}
be a

complete list of the powers of a. We now make two observations.
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Claim. The elements of T are all distinct.

Subproof. Suppose ai = aj in Zn for some i < j. The exponents are natural, so we can choose i
so that it is the smallest power of a for which this occurs. By hypothesis, a and n are relatively
prime; this means that a has a multiplicative inverse, call it s . Multiply both sides of ai = aj by
si−1 to obtain

a = aj−i+1 .

Remember that i was supposed to be the smallest positive power where repetition occurred, so
we have just proved that i = 1. By substitution,

a = aj , a2 = aj+1 , . . . ;

that is, all powers from j on simply repeat powers that already appear in T . Repetition cannot
occur until after we have reached the jth power, which means k = j − 1 and the elements of T
are indeed distinct.

Claim. ak = 1 in Zn.

Subproof. We showed above that ak+1 = a. Multiply both sides by the inverse of a to see that
ak = 1.

We now perform the following iteration.

1. let U1 = T

2. let i = 2

3. while U1 ∪ · · · ∪Ui−1 , Z
∗
n

(a) let bi ∈ Z∗n\ (U1 ∪ · · · ∪Ui−1)

(b) let Ui =
{
abi ,a

2bi , . . . ,akbi
}

(c) increment i by 1

We claim this iteration terminates withU1 ∪ · · · ∪Ulast = Z
∗
n, no pair of distinctU ’s has even one

element in common, and the U ’s all have the same size. We prove each claim individually.
Example 1.132. Before examining the claims, we illustrate the iteration on a concrete example.
Let n = 15 and a = 4. We have Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}. We start with

U1 = T =
{
4, 42, 43, . . .

}
= {4, 1} .

Notice that k = 2. Since U1 , Z
∗
15, let b = 2 and we have

U2 = {2 × 4, 2 × 1} = {8, 2} .

Since U1 ∪U2 , Z
∗
15, let b = 7 and we have

U3 = {7 × 4, 7 × 1} = {13, 7} .
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Since U1 ∪U2 ∪U3 , Z
∗
15, let b = 11 and we have

U4 = {11 × 4, 11 × 1} = {14, 11} .

The iteration has now terminated withU1 ∪U2 ∪U3 ∪U4 = Z
∗
15. DistinctU ’s have no elements in

common, and they are all the same size.
Claim. The iteration terminates.

Subproof. Steps 1, 2, 3(a), 3(b), and 3(c) are simple assignments, so by themselves they do not
inhibit termination. Only the repetition of step 3 might lead to a never-ending task, but that
requires U1 ∪ · · · ∪ Ui−1 , Z∗n. There are only �nitely many elements of Z∗n, and each time we
perform steps 3(a) and 3(b) we move at least one element of Z∗n that is not in some U into a new
U . Eventually, we run out of elements of Z∗n, so the iteration must terminate.

Claim. U1 ∪ · · ·Ulast = Z
∗
n.

Subproof. We showed in the previous claim that the iteration must terminate, but by step 3 the
iteration terminates only when U1 ∪ · · · ∪Ulast = Zn.

Claim. Ui ∩Uj = ∅ only if i = j.

Subproof. Suppose Ui ∩Uj , ∅ and let c be a common element. Without loss of generality, i ≤ j.
By construction, c ∈ Ui implies that c = a`bi for some j = 1, . . . ,k . Similarly, c ∈ Uj implies that
c = ambj for somem = 1, . . . ,k . By substitution,

a`bi = ambj .

Ifm ≤ `, then
a`−mbi = bj ,

which means thatbj ∈ T . This contradicts the choice ofbj as not being an element ofU1∪· · ·∪Uj−1.
On the other hand, ifm > `, recall that ak = 1 andm ≤ k , so

a`bi × a
k−m = ambj × a

k−m = akbj = 1 × bj = bj ;

in other words,
a`+k−mbi = bj .

Recall that ` < m, so ` + k −m < m + k −m = k , so a`+k−mbi ∈ Ui , the same contradiction as
before.

Claim. The U ’s all have the same size.

Subproof. It su�ces to show that each U has k distinct elements. We have already shown that
U0 = T has k distinct elements. For any other i , suppose there exist `,m ∈ {1, . . . ,k } such that
a`bi = ambi . Without loss of generality, ` ≤ m. Let s be the multiplicative inverse of a in Zn and
multiply both sides by a`; we have bi = am−`bi . Recall that bi ∈ Z∗n; that is, bi is also relatively
prime to n, so it has a multiplicative inverse in Zn. Let t be the multiplicative inverse of b in Zn
and multiply both sides by t ; we have 1 = am−` . Since 0 < m, ` ≤ k and k is the smallest positive
power where ak = 1, we must havem − ` = 0; in other words, ` =m. The elements ofUi are thus
all distinct, and it has k elements.
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Our three claims show that the U ’s “divide” Z∗n into equally-sized sets. Recall that ϕ = ��Z∗n�� If
we put ` = last, then

ϕ = k × ` .

Hence aϕ = ak×` =
(
ak

)`
= 1` = 1, as claimed. �

We can now prove RSA’s correctness.

Proof of Theorem 1.126. Observe that

x = cd ≡ (me )d ≡med (mod N ) .

If we can show thatmed ≡m (mod N ), then we will have proved the theorem.
By construction, ed ≡ 1 (mod ϕ). By de�nition, there exists q ∈ N such that ed = 1 + qϕ.

Rewrite
x ≡med =m1+qϕ =m ×

(
mϕ

)q
(mod N ) .

Recall that ϕ = (p − 1) (q − 1) is the number of integers {0, 1, . . . ,N − 1} that are relatively prime
to N . By Euler’s Theorem,mϕ ≡ 1 (mod N ). By substitution,

x ≡m × 1q =m (mod N ) .

The result of A’s decryption is B’s original message. �

Is RSA secure?
Before we consider this question, let’s review what E knows about B’s message. E knows that:

• B used RSA with the parameters N and e;

• in RSA, N = pq where p and q are both prime;

• in RSA, the decryption exponent d is e’s multiplicative inverse modulo ϕ (N );

• by Lemma 1.128, ϕ (N ) = (p − 1) (q − 1);

• applying the Extended Euclidean Algorithm to e and ϕ (N ) will reveal d .

The one thing E needs is the factorization N = pq. Once E knows p and q, E can compute ϕ (N )
and d , then apply them to decrypt the message.

How would E determine p and q? Again, E already knows that N is the product of p and q,
which are both prime. So E’s task is as “easy” as this:

6 = 2 × 3 ,

or as “easy” as this:
15 = 3 × 5 ,

or as “easy” as this:
33 = 3 × 11 .
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This is a grade-school problem! How is RSA secure?
Factoring is much easier for small numbers than large ones. In real-world RSA encryption, the

primes used are quite large. One of the strange quirks of mathematics is that many grade-school
problems are easy with small numbers, but unfeasible with large ones. Factoring a number into
primes is one of those! In fact, RSA was �rst described in the late 1970s, and 40 years later there
is still no practical way to defeat it. If you could �nd a practical way to factor two large primes,
you would became very famous, possibly very rich, and also possibly very dead, depending on
whom you informed �rst!

Other methods of public-key encryption exist, such as Elgamal or elliptic curve encryption.
The long-term security of many of these methods is also not clear in general. Some schemes
have been proposed, only to be cracked very quickly: problems that seem di�cult to do can
sometimes be cracked open quickly once someone �nds the right approach — it’s just that no one
was motivated to �nd that approach before. Modern cryptography is, therefore, an exciting and
active �eld of research that grows from number theory and algebra — two �elds that were once
considered as abstract and useless and mathematics could possibly be!

Exercises
Exercise 1.133. Encode the message LEAVE␣ME␣ALONE according to the technique described at
the beginning of this section.
Hint: The problem asks you to encode, not to encrypt. Make sure you understand the di�erence.

Exercise 1.134. Another way to encode a message as numbers is to pair consecutive letters
together, adding a random letter at the end if needed to get a pair. For example, the message

STOP␣—␣DANGER␣AHEAD

pairs up as

ST, OP, ␣-, ␣D, AN, GE, R␣, AH, EA, DX .

We then encode each pair XY as
x × 31 + y ,

where x is the value we’d use for X in the encoding described at the beginning of this section, and
y is the value we’d use for Y. Complete the encoding of the message.

Exercise 1.135. Use a Cæsar cipher with k = 3 to encode LEAVE␣ME␣ALONE.

Exercise 1.136. The message JUPNKAJADUI has been encoded using a Cæsar cipher with k = 9.
Decrypt the message.

Exercise 1.137. A stream cipher needs a function that generates pseudo-random numbers. One
example generator is the following:

xi =



27, i = 1
3xi−1 ∈ Z31, i > 1

.

Compute the �rst 31 numbers generated by this sequence. Do you think the sequence looks
random? Why or why not?
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Exercise 1.138. In Example 1.131, we showed a shortcut for computing 28. Adapt this method
to compute the following exponents relatively quickly. If you want to be really clever, use Euler’s
Theorem to make it even faster.

(a) 536 in Z31

(b) 378 in Z38

Exercise 1.139. Example 1.132 uses Z∗15 to illustrate the iterative generation of the U ’s in the
proof of Euler’s Theorem. Repeat the example with Z∗31 and a = 2. Observe how the U ’s “cover”
Z∗31 completely, how they have no elements in common, and how they are all the same size.

Exercise 1.140. Consider the message (without the period)

MEET␣AT␣DAWN.

(a) Encode the message using the encoding described at the beginning of this section. (Don’t
forget the two spaces!)

(b) Use the RSA algorithm to encrypt the message, using parameters N = 33 and e = 3.

(c) What value of d would decrypt the message?

Sage supplement
Sage already incorporates fast exponentiation modulo n, as long as you ask for it. As it happens,
there is a right way and a wrong way.

The right way is to de�ne an integer in Zn. For instance:

sage: Z35 = ZZ.quo(35)
sage: Z35(2)^1000000000000
16

You’ll notice that this computation resolves very quickly. By specifying that 2 ∈ Z35, you have
told Sage that you want to compute the power modulo 35. With this information, Sage takes
advantage of all the mathematics we have described. On the other hand, suppose we write that
second line only slightly di�erently:

sage: Z35(2^1000000000000)

This takes a lot longer, and might not even work on some machines. The author actually gave up
after about a minute passed, so he never saw it produce 16.

What makes the second version take so much longer? The order of operations.

• The �rst version explicitly tells Sage that we want 2 ∈ Z35, and only then do we raise it
to the enormous exponent. Sage can �rst divide that exponent by ϕ = 24, obtaining a
remainder of 16. It then computes 216, dividing by 35 to keep the numbers small.
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• The second version tells Sage that we want to compute 21000000000000 �rst, and only after-
wards should it move the result intoZ35. Sage thus tries to compute 21000000000000 as a regular
integer, which takes a really long time13 and requires a lot of memory,14 either of which
your machine may lack!

The upshot is that when implementing modular arithmetic, we have to take care to specify that
our numbers are in Zn.

With that in mind, we can illustrate RSA encryption and decryption. We’ll use p = 5 and
q = 7, so that N = 35 and ϕ = 24. For an encryption exponent we’ll choose e = 7; then the
decryption exponent is d = 7,15 as Sage itself informs us via Bézout coe�cients.

sage: euler_phi(35)
24
sage: e = 7
sage: xgcd(e, 24)
(1, 7, -2)

Encryption and decryption is then a simple matter of encoding the messages and raising them to
powers. To encode, we use the Sage command ord, which converts a letter to a number. Under
the default encoding, the letter a has the value 97, so we will subtract its value from ord(m) in
order to obtain numbers between 0 and 35.

sage: def encode(m):
return ord(m) - ord('a’')

A few examples:

sage: encode('a')
0
sage: encode('m')
12
sage: encode('z')
25

Decoding requires us to perform the reverse operation. For this, Sage o�ers chr, which converts
a number to a character. As before, we deal with numbers between 0 and 25, inclusive, but the
default encoding gives “a” the value 97, so we need to add its value to whatever number comes
in.

13Try it by hand if you doubt this.
14If you do try it by hand, you will probably run out of paper.
15This is a terrible choice of parameters for the RSA algorithm; in no way should you have e = d . Choosing the

right parameters is an art form in itself.
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sage: def decode(n):
return chr(n + ord('a'))

sage: decode(12)
'm'
sage: decode(25)
'z'

Once we have de�ned these procedures, encryption and decryption is a fairly straightforward
matter using a for loop inside a list.

• To encrypt, we tell Sage to encode the letters as numbers, put the numbers in Z35, and raise
them to the 7th power (e).

• To decrypt, we tell Sage to raise the numbers to the 7th power again (d), then decode the
numbers as letters.

We have to take a little care in the second step, because the numbers resulting from operations
in Z35 are not integers in Sage’s opinion: they’re elements of Z35, which are not quite the same
thing. Fortunately, we can convert them back into integers using a simple command called int.

sage: [ Z35( encode(m) )^7 for m in 'secret']
[32, 4, 23, 3, 4, 19]
sage: [ decode( int(n^7) ) for n in _ ]
['s', 'e', 'c', 'r', 'e', 't']

If you examine this result carefully, you may wonder whether it is in fact secure. After all,
e always turns into the same number (in this case, 4). It is well-known that some letters appear
more often than others in English text, and “e” typically shows up the most. Hence, a simple
frequency analysis would tell us which letter corresponded to which number, making it a snap to
decrypt.

This skepticism is well warranted; real-life use of the RSA algorithm is not done in quite this
fashion. A course on cybersecurity is well beyond the scope of these notes, but one thing we
can do to make the algorithm somewhat more secure is to combine several letters at a time. We
have to be careful here, as this simultaneously increases the minimum size of the modulus. For
instance:

• If we combine two letters at a time, we need N > 262.

• If we combine three letters at a time, we need N > 263.
. . .

• If we combine ` letters at a time, we need N > 26` .

This requires us to modify the encoding and decoding algorithms. Instead of encoding or decod-
ing one letter at a time, we’ll take ` at a time, and multiply each by a power of 26 to move it to
the right place.
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sage: def encode(M):
result = 0
for m in M:

result *= 26
result += ord('m') - ord('a')

return result

The message ’secret’ now encodes in pairs as:

sage: encode('se'), encode('cr'), encode('et')
(472, 69, 123)

To encrypt it, we need to choose larger values of p and q, since N = 35 is too small to capture
numbers like 472. How large does N need to be? We are encoding two letters at a time, which
means we need

N > 262 = 676 .

If we choose p = 29 and q = 31, then N = 899 is su�ciently large. We have ϕ = 28 × 30 = 840.
For an encryption exponent we choose e = 11; the decryption exponent will be 611.

sage: euler_phi(29*31)
840
sage: xgcd(11, 840)
(1, -229, 3)
sage: 840 - 229
611

(We cannot use −229 as an exponent, so we subtract 229 from 840 in order to �nd a positive
multiplicative inverse of 11.)

We can now encrypt as before:

sage: Z899 = ZZ.quo(899)
sage: [ Z899(m)^11 for m in [ 'se', 'cr', 'et'] ]
[206, 764, 371]

When we encoded secret before, the e’s repeated. Here there is no repetition, which makes a
frequency analysis impossible. With a long enough message, we would encounter some repeti-
tion, and some two-letter pairs, such as “an” or “th,” appear more frequently than others.

Decryption remains a simple matter of applying the decryption exponent to the result. De-
coding, however, requires us to separate the letters which encoding joined; since that involved
multiplication, we can decode using the % and / operators.
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Algorithm 1.10 Cæsar cipher
Inputs

• M , a list of numbers corresponding to a message

• k ∈ N

Outputs

• C , an encryption (or decryption) of M using a Cæsar cipher with an o�set of k

Do

1. for each i = 1, 2, . . . , |M |

(a) let ci be the canonical residue of computingmi + k modulo 26

2. Return C =
(
c1, c2, . . . , c |M |

)

sage: def decode(N):
result = ''
for n in N:

m = N % 26
result = chr(m + ord('a')) + result
N -= m
N /= 26

return result
sage: [ decode(int(Z899(n)^611))

for n in [206, 764, 371] ]
['se', 'cr', 'et']

We have successfully decrypted the message!

Exercises
Exercise 1.141. Reword the encryption of “secret” so that you encrypt and decrypt three letters
at a time. This will require you to rewrite the encode and decode procedures.

Exercise 1.142. Implement in Sage the following algorithm to encrypt a message using the Cæsar
cipher. Test it against the message leavemealone. There are no spaces, and the letters are all
lower-case.

Exercise 1.143. In Exercise 1.137 you experimented with a pseudo-random number generator
which gives us the numbers in the key. The following program will give us the �rst n numbers
in a stream cipher’s key.
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Algorithm 1.11 Encryption via stream cipher
Inputs

• A, a sequence of n letters

• N ∈ N+

Outputs

• C , the text M encrypted by a stream cipher

Do

1. let k1, k2, . . . kn be the �rst n numbers of the stream cipher’s key

2. let bi be the encoding of ai (the ith letter of a)

3. for i ∈ {1, . . . ,n}

(a) let ci = bi + k1, where the modulus is N

4. return C = (c1, . . . , cn )

sage: def stream(n):
ZZ31 = ZZ.quo(31)
result = [ ZZ31( 27 ) ]
for each in range(2, n+1):

result.append( 3*result[-1] )
return result

The command stream(10) now gives us the following values:

sage: stream(10)
[27, 19, 26, 16, 17, 20, 29, 25, 13]

Imagine that you have just exchanged the keys for a stream cipher with a friend, and you want to
encrypt the message secret using this cipher. Based on the discussion in the text, the following
algorithm would do the trick.
Use this algorithm with the pseudo-random generator given above to encrypt the message, secret.
For extra credit, implement the algorithm in Sage to verify your work.



Chapter 2

Solving polynomial equations

This chapter aims to show that we can generalize the previous chapter’s concepts of modularity
from integers to polynomials. We can then use this powerful tool to solve polynomial equations.
First, however, we have to review the behavior of polynomials in the “ordinary” sense that you
are used to.

2.1 Polynomial arithmetic over Z and Q
A polynomial f in the indeterminate x over the integers has the form1

f = anx
n + · · · + a1x + a0

where n,a0,a1, . . . ,an ∈ N. We call a0, a1, . . . , an the coe�cients of f . If an , 0, then we say
that f has degree n, and write deg ( f ) = n. The degree is always a natural number, and is de�ned
only if the polynomial is nonzero. We say that deg (0) is unde�ned.

We call anxn the leading term of f , and write lt ( f ) for short. We call the coe�cient of lt ( f )
the leading coe�cient, and write lc ( f ) for short.

We write Z [x] for the set of all polynomials in x over the integers. If instead the a’s are
rational numbers, then we say that f is a polynomial in x over the rationals. We write Q [x] for
the set of all polynomials in y over the rationals. Naturally, Z [x] ⊆ Q [x]. Throughout this
section, when we speak of “a polynomial” without reference to whether it is over Z or over Q,
the reader should infer that the discussion applies to either case.

Example 2.1. Let д = x2 + 1 and h = 8x3 − (1/27). Both д,h ∈ Q [x] , whereas only д ∈ Z [x]. As
for the degrees and leading terms, deg (д) = 2, deg (h) = 3, lt (д) = x2, and lt (h) = 8x3.

While the use of x is fairly common, we can use other symbols for the indeterminate.

Example 2.2. The polynomial 2/3y3 − 3y is an element of Q [y].

Two polynomials are equal if they are both zero, or if their degree is equal and their coe�-
cients are equal.

1It is common to write f (x ) instead of just f , but we will generally stick with f unless we want to emphasize
that it is a polynomial in x .

79
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We trust that you are familiar with operations on polynomials, such as addition, subtraction,
and multiplication, though not necessarily division, which we turn to in a moment. However,
you may not be very comfortable with the formula for polynomial multiplication:

pq =
m+n∑
i=0

*.
,

∑
j+k=i

ajbk
+/
-
xi . (2.1)

Don’t let the summation scare you; break it down and read it! It says that pq is the sum of all
terms ajbkxi where i ranges from 0 tom +n and j +k = i . Try this out with a few polynomials to
see that it is, in fact, true. Don’t let the sums and subscripts intimidate you; work with them! Get
to know them! This is an essential part of mathematical notation.

Example 2.3. Here’s an example to demonstrate. Suppose p = 6x2 + 4 and q = 4x3 − 2x − 1. You
know from past experience that pq = 24x5 + 4x3 − 6x2 − 8x − 4.

How does this compare to equation (2.1)? We have m = 2; n = 3; p = a2x
2 + a1x + a0 where

a2 = 6, a1 = 0; and a0 = 4, while q = a3x
3+a2x

2+a1x +a0 where b3 = 4, b2 = 0, b1 = −2, b0 = −1.
Substituting into (2.1),

pq =
m+n∑
i=0

*.
,

∑
j+k=i

ajbk
+/
-
xi

=
*.
,

∑
j+k=5

ajbk
+/
-
x5 + *.

,

∑
j+k=4

ajbk
+/
-
x4 + *.

,

∑
j+k=3

ajbk
+/
-
x3

+
*.
,

∑
j+k=2

ajbk
+/
-
x2 + *.

,

∑
j+k=1

ajbk
+/
-
x1 + *.

,

∑
j+k=0

ajbk
+/
-
x0

= a2b3x
5 + (a2b2 + a1b3) x

4 + (a2b1 + a1b2 + a0b3) x
3

+ (a2b0 + a1b1 + a0b2) x
2 + (a1b0 + a0b1) x + (a0b0)

= (6 × 4) x5 + (6 × 0 + 0 × 4) x4 + [6 × (−2) + 0 × 0 + 4 × 4]x3

+ [6 × (−1) + 0 × (−2) + 4 × 0]x2 + [0 × (−2) + 4 × (−2)]x + [4 × (−1)]
= 24x5 + 4x3 − 6x2 − 8x − 4 .

Try this with some other polynomials until you get the hang of how it works. It isn’t hard; it’s
just tedious.

The next two theorems should not surprise you. As they are relatively simple to prove, but a
little tedious to write, we leave most of the details to the exercises.

Theorem 2.4. Addition, subtraction, and multiplication of polynomials over Z [x] is closed. Sim-
ilarly, addition, subtraction, and multiplication of polynomials over Q [x] is closed. Moreover, if p
and q are polynomials in either Z [x] or Q [x], then

• if p + q , 0, then deg (p + q) ≤ max (deg (p) , deg (q));

• if p − q , 0, then deg (p − q) ≤ max (deg (p) , deg (q)); and �nally,
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• if pq , 0, then deg (pq) = deg (p) + deg (q) and lt (pq) = lt (p) · lt (q).

Proof. For addition and subtraction, see Exercise 2.13.
For multiplication, either pq = 0 or it is not. If pq = 0, then it is in Z [x], and thus in Q [x], by

virtue of all its coe�cients being 0 ∈ Z.
Suppose, then, that pq , 0. Choose m,n ∈ N such that deg (p) = m and deg (q) = n. Now

choose a0, . . . ,am ∈ Z and b0, . . . ,bn ∈ Z such that

p = amx
m + · · · + a1x + a0 and q = bnx

n + · · · + b1x + b0 .

Recall that

pq =
m+n∑
i=0

*.
,

∑
j+k=i

ajbk
+/
-
xi .

Multiplication of integers (respectively, rationals) is closed; hence, each ajbk is also an integer
(resp., rational number). Recall further that the addition of integers (resp., rational numbers) is
closed; hence, each ∑

ajbk is an integer (resp., rational number). In other words, the coe�cient
of each xi is an integer (resp., rational number), and pq ∈ Z [x]. That is, multiplication of poly-
nomials is closed.

As for the degree, deg (p) = m and deg (q) = n means that am,bn , 0, so by the zero product
property ambn , 0. This is the only pair of coe�cients aj ,bk such that j + k =m + n; every other
pair of terms produces a term of smaller degree. Hence lt (pq) = ambnx

m+n = lt (p) lt (q) and
deg (pq) =m + n. �

Theorem 2.5. • Polynomial addition is commutative, associative, and invertible, and it has an
identity: the zero polynomial.

• Polynomial multiplication is commutative and associative, and it has an identity: the polyno-
mial 1. However, polynomial multiplication is not generally invertible.

Proof. As before, let p and q be polynomials of degree m and n, respectively, in either Z [x] or
Q [x]. Choose a’s and b’s such that

p = amx
m + · · · + a1x + a0 and q = bnx

n + · · · + b1x + b0 .

Without loss of generality, we may assume thatm ≥ n. By de�nition of polynomial addition,

p + q = amx
m + · · · + an+1x

n+1 + (an + bn ) x
n + · · · (a1 + b1) x + (a0 + b0) .

Also by de�nition of polynomial addition,

q + p = amx
m + · · · + an+1x

n+1 + (bn + an ) x
n + · · · (b1 + a1) x + (b0 + a0) .

A naïve glance at p+q and q+p might make us think that they are di�erent, as the coe�cients of
xn look di�erent. However, recall from Section 1.2 that addition of natural numbers and integers
is commutative! Apply the commutative property to rewrite

q + p = amx
m + · · · + an+1x

n+1 + (an + bn ) x
n + · · · (a1 + b1) x + (a0 + b0) ,

and it becomes clear that p + q = q + p.
The proof of the remaining properties is similar in spirit. �
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The proof of Theorem 2.4 uses the zero product property of the rational numbers. We saw
that the integers modulo m do not necessarily satisfy this property, so it is a good idea to check
whether polynomials satisfy the zero product property. If this is true for f ,д ∈ Q [x], then it is
also true for f ,д ∈ Z [x].

Theorem 2.6. Polynomials over the rationals satisfy the zero product rule. That is, if f ,д ∈ Q [x]
and f д = 0, then f = 0 or д = 0.

Proof. We prove the statement’s contrapositive that if f ,д , 0, then f д , 0.2 Suppose that neither
f nor д is a zero polynomial. Let m = deg ( f ) and n = deg (д). As in the proof of Theorem 2.4,
m + n is the largest possible degree of any product of a term of f and a term of д. By the zero
product property of rational numbers, lc ( f ) × lc (д) , 0, so f д has a nonzero coe�cient at that
degree. By de�nition, f д , 0. �

Roots of polynomials
Recall that if f is a polynomial, then “f (a)” means to “replace every x in f by a”. We say that f
has a root in a set S if we can �nd s ∈ S such that f (s ) = 0. We also say that s is a root of f .

Example 2.7. Recall from Example 2.1 the polynomials д = x2 + 1 and h = 8x3 − (1/27). The
polynomial д has no root in R, as r 2 + 1 ≥ 1 > 0 for every r ∈ R. As Q ⊆ R, this means д has no
root in Q, either.

The polynomial h has a root in Q. The root is 1/6, since

h (1/6) = 8
(1
6

)3
−

1
27 = 23 × 1

23 ×
1
33 −

1
33 = 0 .

Amazingly, we can decide whether a polynomial over the rationals has roots by turning it
into a polynomial over the integers.

Theorem 2.8. Let f ∈ Q [x] with degree n and coe�cients a0, a1, . . . , an. Let d be the greatest
common denominator of the nonzero coe�cients of f , and set bi = aid for each i = 1, . . . ,n. Let

д = bnx
n + · · · + b1x + b0 .

Let S be any set. Then f has a root in S if and only if д does.

Example 2.9. Recall from Example 2.1 the polynomial h = 8x3− (1/27). We saw earlier that h has
the root 1/6. The denominators of h’s coe�cients are 1 and 27; the greatest common denominator
is d = 27. If we multiply each coe�cient of h by d , we have the polynomial

д = 216x3 − 1 .

It is easy to verify that д (1/6) = 216 (1/6)3 − 1 = 216 (1/216) − 1 = 0.
2Recall that if a statement has the form “if A, then B,” its contrapositive has the form “if not B, then not A.” A

statement and its contrapositive are logically equivalent.
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Proof of Theorem 2.8. Suppose f has a root s ∈ S . By de�nition, f (s ) = 0, which means that

ans
n + · · · + a1s + a0 = 0 .

Multiply both sides of the equation by d ; by distribution, the associative property, and the com-
mutative property,

(and ) s
n + · · · + (a1d ) s + a0d = 0 .

By substitution,
bns

n + · · · + b1s + b0 = 0 ;

that is, д (s ) = 0. By de�nition, д has a root s in S .
For the converse, assume д has a root s in S . By de�nition,

bns
n + · · · + b1s + b0 = 0 .

Multiply both sides by 1/d to obtain f (s ) = 0, which by de�nition implies f has a root s in S . �

The upshot is that if we want to �nd roots of polynomials over the integers, we can start with
polynomials over the rationals; solve those, then return to polynomials over the integers. The
reverse is also true. This tack will prove useful in the future.

Exercises
Exercise 2.10. Let f = 2x3 + x + 1, д = x4 − x − 1, and h = −2x3 + x − 1.

(a) Evaluate f + д, f + h, and д + h. For which expressions does the degree change? Why?

(b) Evaluate f д, f h, and дh.

(c) For f д, indicate the values ofm, n, aj , andbk that satisfy equation (2.1). Work out the formula
to show that you get the same answer as in part (b).

Exercise 2.11. Find all roots of f = (
x4/3

)
− 9x2 + (14x/3) + 40.

Hint: Take the advice of Theorem 2.8 and turn this into a polynomial over the integers. Then
factor by grouping.

Exercise 2.12. Show that if r is a root of x2n − a, then −r is also a root.
Hint: x2n =

(
x2

)n
, and what is the square of a negative?

Exercise 2.13. Show that if f and д are polynomials, then

deg ( f ± д) ≤ max (deg ( f ) , deg (д)) .

Hint: Don’t forget to consider all possibilities. Exercise 2.10(a) should help examine the behavior.

Exercise 2.14. A remark right before Theorem 2.6 states that “If this is true for f ,д ∈ Q [x], then
it is also true for f ,д ∈ Z [x].” Why?
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Sage supplement
You can de�ne a polynomial in Sage as either an expression or a function. The di�erence is subtle
but important; a function “knows” its independent variable, while an expression doesn’t. This
makes it easier to substitute into a function than into an expression.

sage: f(x) = x^3 + 3
sage: f
x |--> x^3 + 3
sage: g = x^3 + 3
sage: g
x^3 + 3
sage: f(3)
30
sage: g(3)
__main__:3: DeprecationWarning: Substitution using
function-call syntax and unnamed arguments is deprecated
and will be removed from a future release of Sage; you can
use named arguments instead, like EXPR(x=..., y=...) See
http://trac.sagemath.org/5930 for details.
30

Observe that Sage displays f di�erently than g: the expression x |--> x^3+3 indicates
that f is a function that maps x to x2 + 3, so that f “knows” its independent variable. On the
other hand, g does not know its independent variable, which is why the substitution raises a
DeprecationWarning. Sage guesses that x is the independent variable for g, but it doesn’t actu-
ally know this. You can get around this by telling Sage explicitly how to substitute the value:

sage: g(x=3)
30

Giving a full description of Sage’s abilities with polynomials is beyond the scope of this text.
However, we can show how to perform some basic ideas. Beyond that, it is really up to the reader
to experiment and try out di�erent things.

Basic information about polynomials is generally available via methods.
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method description
.coefficient(xa) the polynomial’s coe�cient of xa
.coefficients() the polynomial’s coe�cients, in the form

[[ exponent, coe�cient ], . . . ]
.degree(x) the polynomial’s degree in x
.expand() the polynomial, expanded as a product
.factor() the polynomial’s factorization
.leading_coefficient(x) the polynomial’s leading coe�cient with respect to x
.operands() the polynomial’s terms
.roots() returns the polynomial’s roots and their multiplici-

ties, in the form [(root, mult), . . . ]
.simplify() simpli�es the polynomial, though not as much as

you might like; see .expand
Let’s verify that some of these commands are compatible with the behavior we saw in Example

2.1.

sage: g, h = x^2 + 1, 8*x^3 - 1/27
g.degree(), h.degree()

(2, 3)
g.leading_coefficient(x), h.leading_coefficient(x)

(2, 3)

Let’s try entering the polynomial of the next example.

sage: p = 2/3*y^2 - 3*y
Traceback (click to the left of this block for traceback)
...
NameError: name ’y’ is not defined

The error here seems fairly obvious, but how do we �x it? You can de�ne a new indeterminate
in Sage using the var command. Supply as its argument the indeterminate’s name in quotes:

sage: var(’y’)
y
sage: p = 2/3*y^2 - 3*y
sage: p.degree(x)
0
sage: p.degree(y)
2

Sage acknowledges after the �rst line the de�nition of the indeterminate y. You can now
de�ne a polynomial p in y, and determine its degree. You must tell Sage which variable, even
where there is only one.

Let’s continue to Example 2.3.
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sage: p, q = 6*x^2 + 4, 4*x^3 - 2*x - 1
sage: p * q
2*(4*x^3 - 2*x - 1)*(3*x^2 + 2)

While this is obviously correct, you probably expected a di�erent answer! Rather than “multiply
it out,” Sage merely factored p’s common factor. Sage’s rules for simpli�cation are not necessarily
the rules you expect! Nevertheless, you can force the expansion using the .expand method:

sage: (p * q).expand()
24*x^5 + 4*x^3 - 6*x^2 - 8*x - 4

This time, we have the same result as Example 2.3.
We move to Example 2.7. Remember that we de�ned h as an expression, so if we want to

substitute, we have to specify the variable of substitution.

sage: h(x=1/6)
0

No surprises here — unless you forgot to specify x=, in which case you may have encountered
the DeprecationWarning again. On the other hand, you might not see it even when you forget
x=. A DeprecationWarning will appear only once in any Sage session; to see it again, you have
to restart the worksheet. It’s important to avoid it — the message says that this facility will one
day be removed, so you need to adopt the proper syntax. But it’s not a “full” error, so it won’t
appear every time you make the mistake.

Exercises
Exercise 2.15. Use Sage to verify your answers in Exercise 2.10.

Exercise 2.16. Use the .roots method to �nd all the roots of f =
(
x4/3

)
− 9x2 + (14x/3) + 40.

Compare this with your answer to Exercise 2.11.
Hint: Dont’ forget to put parentheses after the .rootsmethod; otherwise you’ll just get a strange-
looking message.

Exercise 2.17. Use the .roots method to �nd all the roots of h = x4 + x3 − 6x2 − 4x + 8. Then
use the .factor method to factor h.

Recall that the .roots method gives us both roots and multiplicities. Where do the root’s
multiplicities appear in the factorization?

2.2 Polynomial division
We can divide polynomials into quotient and remainder with a result that is similar to that of
dividing integers. Even the process is similar.
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Theorem 2.18 (The division theorem for Q [x]). Let f ,d ∈ Q [x] with d , 0. There exist q, r ∈
Q [x] such that

f = qd + r and either r = 0 or deg (r ) < deg (d ) .

In addition, q and r are uniquely determined by f and d .

Algorithm 2.1 on the following page, the commonly-taught algorithm of “long division of
polynomials,” produces the result we want. Notice that it closely resembles Algorithm 1.1 on
page 16.

Example 2.19. We apply Algorithm 2.1 to f = x5 + 2x2 + 1 and d = 2x3 + x .

• In step 1 we set r = x5 + 2x2 + 1 and q = 0.

• Since r , 0 and deg (r ) = 5 > 3 = deg (d ), we perform step 2.

– We set t = x5/2x3 = x2/2.
– Add t to q, resulting in q = x2/2.
– Subtract td from r , resulting in

r =
(
x5 + 2x2 + 1

)
−
x2

2
(
2x3 + x

)
= −

x3

2 + 2x
2 + 1 .

• Since r , 0 and deg (r ) = 3 = deg (d ), we perform step 2.

– We set t = (−x3/2)/2x3 = −1/4.
– Add t to q, resulting in q =

(
x2/2

)
− (1/4).

– Subtract td from r , resulting in

r =

(
−
x3

2 + 2x
2 + 1

)
−

(
−
1
4

) (
2x3 + x

)
= 2x2 + x

4 + 1 .

• At this point r , 0 but deg (r ) = 2 < deg (d ), so we proceed to step 3 and return q and r .

It is easy to verify that

qd + r =

(
x2

2 −
1
4

) (
2x3 + x

)
+

(
2x2 + x

4 + 1
)

=

(
x5 −

x

4

)
+

(
2x2 + x

4 + 1
)

= x5 + 2x2 + 1
= f .
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Algorithm 2.1 Polynomial division
inputs

• f ,d ∈ Q [x]

outputs

• q,d ∈ Q [x] such that

– f = qd + r , and
– either r = 0 or deg (r ) < deg (d )

do

1. let r = f , q = 0

2. while r , 0 and deg (r ) ≥ deg (d )

(a) let t = lt(r )/lt(d )

(b) add t to q

(c) subtract td from r

3. return q and r

Proof of Theorem 2.18. If Algorithm 2.1 terminates correctly, the resultingq and r will satisfy The-
orem 2.18, so we prove that Algorithm 2.1 terminates correctly.

Termination? If f = 0, then step 1 sets q = 0 and r = f = 0, so nothing happens at step 2, and
step 3 returns q = r = 0, in which case

qd + r = 0 = f .

Not only has the algorithm terminated, we see that the output is correct.
Otherwise, f , 0. Step 1 sets q = 0 and r = f . If deg ( f ) < deg (d ), then nothing happens at

step 2, and step 3 returns q = 0 and r = f , in which case

qd + r = f ,

and deg (r ) = deg ( f ) < deg (d ). Not only has the algorithm terminated, we see that the output
is correct.

That leaves the case f , 0 and deg ( f ) ≥ deg (d ). We claim that every time we perform step
2, the degree of r decreases. To see why, notice that we choose t such that, by substitution,

t × lt (d ) = lt(r )/lt(d ) × lt (d ) = lt (r ) .

Subtracting td from r thus cancels lt (r ), leaving us with a polynomial of smaller degree.
Recall that the degree of a polynomial is a natural number. If we denote the degrees of r on

each pass through the loop of step 2 as n0, n1, . . . , then n0 > n1 > · · · . This is a nonincreasing
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sequence of natural numbers. By Theorem 1.28, this sequence must eventually stabilize, so we
cannot perform step 2 inde�nitely. Eventually we must pass on to step 3, which terminates the
algorithm.

Correctness? We have two things to prove: that f = qd+r , and that r = 0 or deg (r ) < deg (d ).
We consider the second one �rst.

• To show that r = 0 or deg (r ) < deg (d ) we have two subcases.

– If the returned value is r = 0, then we are done.
– Otherwise, the condition on step 2 requires the algorithm to continue as long as

deg (r ) ≥ deg (d ). We now know the algorithm terminates, so the loop cannot con-
tinue inde�nitely, so the values returned in step 3 satisfy deg (r ) < deg (d ).

• To show that f = qd + r we again have two subcases.

– If the algorithm does not perform step 2, then we saw already that f = qd + r .
– Otherwise, enumerate each t computed in step 2(a) of the algorithm as t0, t1, . . . , tlast.

The algorithm returns

q = t0 + t1 + · · · tlast and r = f − t1d − t2d − · · · − tlastd .

By substitution,

qd + r = (t0 + · · · + tlast) d + ( f − t1d − · · · − tlastd )

= (t0d + · · · + tlastd ) + ( f − t1d − · · · − tlastd )

= f .

We still have to show that q and r are unique. Suppose that in addition to q and r , we can �nd
q̂, r̂ ∈ Q [x] that satisfy the theorem. By substitution,

qd + r = q̂d + r̂ .

Rewrite as
(q − q̂) d = r̂ − r .

By Theorem 2.4, either r̂ − r = 0 or deg (r̂ − r ) ≤ max (deg (r̂ ) , deg (r )) < degd . Similarly,3
q − q̂ = 0 or deg ((q − q̂) d ) = deg (q − q̂) + deg (d ) ≥ deg (d ). The degree of the left hand side
cannot be smaller than the degree of the right hand side; they have to be equal. We conclude that
r̂ − r = 0 and q − q̂ = 0; or, r = r̂ and q = q̂.

Regardless of the situation, the outputs of Algorithm 2.1 satisfy the stated requirements. The
algorithm terminates correctly. As per the discussion at the beginning of the proof, this proves
Theorem 2.18. �

3The zero product property has an implied role here; see if you can spot it!
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Theorem 2.18 makes promises about polynomials with rational coe�cients. Naturally, this
implies a promise about polynomials with integer coe�cients; but it only promises that if we di-
vide them, we obtain a quotient and remainder with rational coe�cients, not integer coe�cients.
In fact, in Example 2.19, both f and d have integer coe�cients, but both q and r have rational
coe�cients.

If we tinker slightly with the theorem’s conclusion, we can divide and still obtain a quotient
and remainder that are also integer polynomials.

Example 2.20. Recall the result of Example 2.19: the polynomials f = x5 + 2x2 + 1, d = 2x3 + x ,
q = x2/2 − 1/4, and r = 2x2 + (x/4) + 1 satisfy

f = qd + r .

How can we eliminate all fractions from the right hand side of this equation? Clear the denom-
inators! (This is mathematical jargon for, “Multiply both sides by the greatest common denomi-
nator.”) That gives us

4 × f = q̂d + r̂

where
q̂ = 2x2 − 1 and r̂ = 8x2 + x + 4 .

We have found an integer multiple of f that divides by d into a quotient and remainder over the
integers.

Corollary 2.21 (The division theorem for Z [x]). Suppose that f ,d ∈ Z [x] with d , 0. There exist
q, r ∈ Z [x] and nonzero a ∈ Z such that

af = qd + r and either r = 0 or deg (r ) < deg (d ) .

If the leading coe�cient of d is 1, then we can also choose q and r such that a = 1.

Proof. We leave the theorem’s �rst claim to the exercises; here we show merely that if lc (d ) = 1,
then we can choose q and r such that a = 1 also. We can show this by reviewing Algorithm 2.1:
with lc (d ) = 1, step 2(a) always chooses t = lt(r )/lt(d ) where the denominator has a coe�cient of 1.
If the numerator’s coe�cient is an integer, then t ’s coe�cient will also be an integer. In fact, r ’s
initial coe�cients are all integers because they are f ’s, and f ∈ Z [x], so step 2(a) always results
in a term whose coe�cient is an integer. The end result is that the coe�cients of q and r are
always integers, and by the proof of Theorem 2.18, 1 × f = qd + r . �

Having a leading coe�cient of 1 can be useful! We such polynomials monic.

Exercises
Exercise 2.22. Let f = x4 + x + 1 by d = 2x + 3.

(a) Divide f by d as elements of Q [x], obtaining Theorem 2.18’s q, r ∈ Q [x].

(b) Divide f by d as elements of Z [x], obtaining Corollary 2.21’s a ∈ Z and q, r ∈ Z [x].
Hint: All you have to do is modify the result of part (a).
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(c) Is it possible to divide f by d and obtain a = 1 for Corollary 2.21?

Exercise 2.23. Complete the proof of Corollary 2.21; that is, for any f ,d ∈ Z [x] we can �nd
a ∈ Z and q, r ∈ Z [x] such that af = qd + r and either r = 0 or deg (r ) ≤ deg (d ).
Hint: You know that Theorem 2.18 is true, so start with its conclusion. Then apply the same
technique that we used in Example 2.20 and Exercise 2.22(b).

Exercise 2.24. Let f ∈ Q [x] and let s be any number. Let r be the remainder of dividing f by
x − s . Explain why r = 0 or deg (r ) = 0.

Exercise 2.25. The Factor Theorem states that if f ∈ Q [x] and s ∈ Q is a root of f , then x − s is
a factor of f . Prove this theorem.
Hint: Use the Division Theorem (2.18) to write f = qd +r . If r = 0, then you are done, so suppose
r , 0. Keep in mind the divisor d = x − s and the result of Exercise 2.24. Substitute x = s into
both sides of the equation. What must r be?

Exercise 2.26. The Remainder Theorem states that for any polynomial f ∈ Q [x] and any s ∈ Q,
the remainder of dividing f by x − s is f (s ). Prove this theorem.
Hint: Use the Division Theorem to write f = qd + r . Keep in mind the divisor d = x − s and the
result of Exercise 2.24. What must r be?

Sage supplement
Dividing polynomials in Sage works like dividing integers in Sage: use the .quo_rem method.
However, we cannot use it unless we �rst tell Sage what kind of coe�cients we want.

Consider f = x5 + 2x2 + 1 and д = 2x3 + x , from Example 2.19. If we try to perform division
immediately, we encounter an error.

sage: f, d = x^5 + 2*x^2 + 1, 2*x^3 + x
sage: f.quo_rem(d)
Traceback (click to the left of this block for traceback)
...
AttributeError: ’sage.symbolic.expression.Expression’
object has no attribute ’quo_rem’

To avoid this error, we need to tell Sage which set contains the coe�cients off and d. You might
look at them and think, “Isn’t it obvious that their coe�cients are integers, so that the polynomials
are elements of Z [x]?” Let’s go ahead and tell Sage this, and see what happens.

sage: f, d = ZZ[x](f), ZZ[x](d)
sage: f.quo_rem(d)
(0, x^5 + 2*x^2 + 1)
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What are we telling Sage in the �rst line? Recall that Z [x] is the set of polynomials with
integer coe�cients. Sage considers ZZ[x] to be the set of polynomials with integer coe�cients,
and the �rst line coerces f and d so that they are seen as having integer coe�cients: ZZ[x](f)
produces a new polynomial from f, only now it is guaranteed to have integer coe�cients.

Then, when we ask Sage to divide f by d, it �rst checks whether f’s leading term is divisible
by d’s. The leading term includes the coe�cient, so that even though x3 | x5, we also have 2 - 1.
On this account, Sage will not divide f and d as integer polynomials. The quotient is 0, and the
remainder is x5 + 2x2 + 1.

This is not the answer we found in Example 2.19, but it should actually make sense. We know
from Example 2.19 that the quotient and remainder should have rational coe�cients, so if we ask
Sage to consider f and d as integer polynomials, it should not return a quotient and remainder
with rational coe�cients.

Let’s try telling Sage that f and d have rational coe�cients.

sage: f, d = QQ[x](f), QQ[x](d)
sage: f.quo_rem(d)
(1/2*x^2 - 1/4, 2*x^2 + 1/4*x + 1)

We ended up with the quotient and remainder from Example 2.19, as desired.
You might wonder if we can “�x” the division in Z [x], the way we did in Example 2.20. Indeed

we can: use the .pseudo_divrem method.

sage: f, d = QQ[x](f), QQ[x](d)
sage: f.pseudo_divrem(d)
(2*x^2 - 1, 8*x^2 + x + 4, 2)

Notice that there are three answers. The �rst and second are precisely the quotient and remainder
we obtained in Example 2.20. Let’s call the third answer e (for exponent). If we write c as the
leading coe�cient of q, then the relationship between a, c , e , f , q, and r is,

ce f = dq + r .

In short, ce here stands for a in Corollary 2.21. We did not prove in the corollary that a would
have the form ce , but it does! We leave the proof of this fact as an exercise to the student.

Exercises
Exercise 2.27. Use Sage to verify your answers to Exercise 2.22.
Exercise 2.28. Consider again the polynomials of Example 87. Use Sage to help you perform the
division “by hand.” Look closely at when the quotient and remainder acquire rational coe�cients,
and at each step the denominators change. Use your observations to explain why, as we point
out at the end of this section, “a (from Corollary 2.21) has the form ce .”
Exercise 2.29. Sage already has a polynomial division algorithm, but it’s a good exercise to write
your own. So, implement Algorithm 2.1 as a Sage procedure. You will probably need some of the
Sage commands listed on page 88, so be sure to have those handy.
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2.3 Polynomial divisors
Now that we can divide polynomials, we naturally wonder if the concepts of divisibility and
common divisors will apply, and there really is no reason to think they won’t. We say that the
polynomial d divides the polynomial f if the result of Theorem 2.18 has r = 0, and write d | f for
short. We say that d is a common divisor of polynomials f and д if d | f and d | д.

Common divisors
If f ,д ∈ Q [x] then we say that d is a greatest common divisor of f and д when

• d is a common divisor of f and д, and additionally

• for any other common divisor c of f and д, deg (c ) ≤ deg (d ).

Example 2.30. The polynomial x − 1 is a common divisor of x4 − 1 and x6 − 1, but a greatest
common divisor is x2 − 1.

Unlike integers, we do not refer to “the” greatest common divisor, because polynomials can
have more than one.

Example 2.31. Another greatest common divisor of x4 − 1 and x6 − 1 is 2x2 − 2:

x4 − 1 =
(
2x2 − 2

) (
x2

2 +
1
2

)
and x6 − 1 =

(
2x2 − 2

) (
x4

2 +
x2

2 +
1
2

)
.

After all, we said that f ,д ∈ Q [x], so we are dealing with polynomials over the rationals, not
over the integers.

We prefer greatest common divisors whose leading coe�cient is 1; that is, we will always aim
for a monic greatest common divisor. Eventually we will prove that only one monic polynomial
is a greatest common divisor, but for now we do not even know that.

A common divisor of two polynomials enjoys a special relationship with their roots.

Theorem 2.32. Suppose that d , f , and д are polynomials, with d a common divisor of f and д. If
d has a root in a set S , then both f and д have the same root in S . Conversely, if both f and д have
a common root in S , then any greatest common divisor of f has s as a root.

Example 2.33. Recall the polynomials of Example 2.30: f = x4−1, д = x6−1, a common divisor
c = x − 1, and a greatest common divisor d = x2 − 1.

It is easy to verify that not only c (1) = 0, but also f (1) = д (1) = 0, as promised by the
theorem.

On the other hand, s = −1 is also a common root of f and д, but it is not a root of c , as
c (−1) = −2 , 0. This does not trouble us, since c is not a greatest common divisor. However, d
is a greatest common divisor, and in fact d (−1) = 0.
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Proof of Theorem 2.32. Let S be any set, and let s ∈ S .
First suppose that s is a root of d . By de�nition, d (s ) = 0. Choose polynomials p and q such

that dp = f and dq = д. By substitution, f (s ) = (dp) (s ) = d (s ) p (s ) = 0×p (s ) = 0, and similarly
д (s ) = 0. So a root of d is always a root of both f and д.

Conversely, suppose s is a root of both f and д, and d is a greatest common divisor of f and
д. Using the same de�nitions of p and q, we know that

f (s ) = д (s ) = 0 , so that d (s ) p (s ) = d (s ) q (s ) = 0 .

By Theorem 2.6, the zero product property holds for polynomials over the rationals, so d (s ) = 0
or both p (s ) = q (s ) = 0. If d (s ) = 0, then we have arrived at the desired conclusion, so by way
of contradiction suppose instead that d (s ) , 0. We just said that this forces p (s ) = q (s ) = 0. By
the Factor Theorem (Exercise 2.25), x − s divides both p and q, which means (x − s ) × d divides
both f and д, contradicting the choice of d as a greatest common divisor of f and д. �

Greatest common divisors
We turn our attention to two questions:

• Can we adapt the Euclidean Algorithm (Algorithm 1.2 on page 27) with polynomials to
compute a greatest common divisor of two polynomials?

• Can we adapt the Extended Euclidean Algorithm (Algorithm 1.3 on page 31) with polyno-
mials to compute coe�cients s and t such that s f + tд = gcd ( f ,д)?

The answer to both is “yes!” . . . as long as we make certain necessary, but natural (even “obvi-
ous”) adjustments to the algorithms. A modi�ed Euclidean algorithm appears in Algorithm 2.2.
Observe that it is almost identical to Algorithm 1.3 on page 31.

Algorithm 2.2 The Euclidean Algorithm for polynomials
Input

• f ,д ∈ Q [x] \ {0}

Output

• a greatest common divisor of f and д

Do

1. let h be the larger of f and д with respect to degree, and let k be the smaller

2. while k , 0

(a) determine q, r that satisfy the Division Theorem
(b) replace h by k , then replace k by r

3. return h
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Theorem 2.34. Algorithm 2.2 terminates correctly.

The proof imitates that of the original Euclidean Algorithm (Theorem 1.47). If you understand
the former, and if you understand polynomial arithmetic, you should this proof, as well.

Proof. Enumerate each h and k in steps 1 and 2 as h0, h1, . . . and k0, k1, . . . .
Termination? By construction, deg (k0) < deg (h0). For each i = 1, 2, . . . ki is the remainder of

dividing hi−1 by ki−1, so by the Division Theorem either ki = 0 or deg (ki ) < deg (ki−1). We have
a sequence

deg (k0) > deg (k1) > · · ·
of nonincreasing natural numbers. By Theorem 1.28, it must stabilize. It cannot stabilize as long
as step 2 continues, so eventually it must end, at which point the algorithm passes to step 3 and
returns h.

Correctness? We claim that for each i , if the polynomial p divides hi and ki , then it also divides
hi+1 and ki+1. To see why, assume that p divides hi and ki , then recall that in step 2 we compute
hi = qiki + ri and then set hi+1 = ki and ki+1 = ri+1. By substitution, p divides hi+1. On the other
hand, rewrite the division equation so that

ri = hi − qiki .

We readily see that p divides the right hand side; thus it must divide the left. Since p divides ri ,
by substitution it divides ki+1.

What does this mean? The last pair considered consists of hlast = r and 0, so any common
divisor of h0,k0 ∈

{
f ,д

} is a divisor of r . This would include any greatest common divisor, so
the degree of r must be at least as large as that of a greatest common divisor. On the other hand,
moving backwards through the algorithm would show that klast−1 = r , andhlast−1 = qlast−1klast−1+
hlast = (qlast−1 + 1) r , so r divides hlast−1 = klast−2. Continuing backwards through the divisions,
we would �nd that r divides bothh0 and k0, so that r is a common divisor of f andд, which means
the degree of r must be no larger than the degree of a greatest common divisor. Hence deg (r ) is
the degree of a greatest common divisor, so r is a greatest common divisor of f and д. �

It is not a long step from a Euclidean Algorithm to an Extended Euclidean Algorithm.

Example 2.35. Let f = x6 − 1 and д = x4 − 1. Perform the Euclidean Algorithm (Algorithm 2.2):

• In step 1, let h = x6 − 1 and k = x4 − 1.

• Since k , 0, we perform step 2:

– In step 2(a), q = x2 and r = x2 − 1 satisfy the Division Theorem.
– In step 2(b), replace h by x4 − 1 and k by x2 − 1.

• Since k , 0, we perform step 2 again:

– In step 2(a), q = x2 + 1 and r = 0 satisfy the Division Theorem.
– In step 2(b), replace h by x2 − 1 and k by 0.

• Nowk = 0, so we proceed to step 3, which returnsh = x2−1. This is in fact gcd
(
x6 − 1,x4 − 1

)
.
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As with the integers, we can work our way backwards through the divisions to obtain Bézout
coe�cients. Start with

x6 − 1 = x2
(
x4 − 1

)
+

(
x2 − 1

)
.

Isolate the remainder to obtain

1 ×
(
x6 − 1

)
+

(
−x2

)
×

(
x4 − 1

)
= x2 − 1 .

This shows that if we set s = 1 and t = −x2, then s f + tд = gcd ( f ,д).

Theorem 2.36 (Extended Euclidean Algorithm in Q [x]). For any f ,д ∈ Q [x], there exist s, t ∈
Q [x] such that s f + tд = gcd ( f ,д).

Again, the proof imitates that for the integers.

Proof. Enumerate the various divisions performed during the Euclidean Algorithm as

hi = qiki + ri

where i = 1, 2, . . . , ` and r` is the last non-zero remainder. Write d = h`; we know from Theorem
2.34 that d is a greatest common divisor of f and д. Rewrite the last division as

d = h` − q`k` .

Recall that h` = k`−1 and k` = r`−1, so rewrite this equation as

d = k`−1 − q`r`−1 . (2.2)

Rewrite the previous division as

r`−1 = h`−1 − q`−1k`−1 .

Substitute into equation (2.2) to obtain

d = k`−1 − q` (h`−1 − q`−1k`−1) = (1 + q`q`−1) k`−1 + (−q` ) h`−1 .

By repeating this process, we eventually obtain an expression

d = Q0h0 +Q1k0 ,

which by substitution becomes
d = Q0 f +Q1д .

By Theorem 2.4, the values s = Q0 and t = Q1 are polynomials over the rationals, so they satisfy
the theorem. �

Exercises
Exercise 2.37. Let f = x4 − 4 and д = x5 + 3x4 − x3 − 3x2 − 2x − 6.

(a) Find gcd ( f ,д) and use it to compute the common roots of f and д.

(b) Find the Bézout coe�cients s, t ∈ Q [x] such that s f + tд = gcd ( f ,д).
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Sage supplement
We already mentioned the .factor method on page 84. Computing greatest common divisors
for polynomials is identical to integers: use the gcd command if you simply want the greatest
common divisor, and the xgcd command if you want the Bézout coe�cients. We remarked earlier
that two polynomials can have more than one greatest common divisor; of these, Sage returns the
monic common divisor when that make sense (e.g., rational coe�cients). Let’s consider Example
93. We have to coerce f and ginto Z [x] before trying xgcd; otherwise, Sage will report an error.

sage: f, g = x^4 - 1, x^6 - 1
sage: gcd(f, g)
x^2 - 1
sage: f, g = ZZ[x](f), ZZ[x](g)
sage: xgcd(f, g)
(x^2 - 1, -x^2, 1)

This means that gcd
(
x4 − 1,x6 − 1

)
= x2 − 1, and that −x2

(
x4 − 1

)
+ 1×

(
x6 − 1

)
= x2 − 1. This

agrees with the results we computed in Example 2.35.
Let’s experiment a little with the coe�cients. We’ll multiply f and g by 2 and 4, respectively,

then compute their gcd in Z [x].

sage: f, g = ZZ[x](2*x^4 - 2), ZZ[x](4*x^6 - 4)
sage: gcd(f, g)
2*x^2 - 2

Now we’ll compute their gcd in Q [x].

sage: f, g = QQ[x](f), QQ[x](g)
sage: gcd(f, g)
x^2 - 1

The greatest common divisor changed. The reason for this is that 2’s multiplicative inverse, 1/2,
is clearly not an integer, so in Z [x] we consider the factorization by 2 to be important. On the
other hand, 1/2 clearly is a rational number, so in Q [x] we consider the factorization by 2 to be
unimportant. We consider this distinction more carefully in Section 2.4 when we talk about units.

Exercises
Exercise 2.38. Use Sage to verify your answers to Exercise 2.37.

Exercise 2.39. Sage already has a algorithm to compute greatest common divisors, but it’s a
good idea to implement your own. Implement Algorithm 2.2 in Sage, and make sure you get the
correct results by comparing it to Sage’s for several pairs of random polynomials. For extra credit,
implement an Extended Euclidean Algorithm, so that you get the Bézout coe�cients, as well.



CHAPTER 2. SOLVING POLYNOMIAL EQUATIONS 98

2.4 Factoring polynomials
When we studied integer division, we touched on factorization into primes. In the same way,
we can discuss factorization of polynomials. With polynomials, factorization is useful because it
helps us �nd roots.

Example 2.40. Suppose f = x4−5x2+4 ∈ Z [x]. This factors as f = (x + 2) (x + 1) (x − 1) (x − 2).
Hence, f = 0 when

(x + 2) (x + 1) (x − 1) (x − 2) = 0 .
By the zero product property, one of x + 2 = 0, x + 1 = 0, x − 1 = 0, or x − 2 = 0. Hence the roots
are {±2,±1}.

Just as we excluded 1 from the realm of prime numbers, we need to exclude certain “polyno-
mials” from the building blocks of polynomials.

Example 2.41. Although x2 + 1 = 2× [(
x2/2

)
+ (1/2)

] , this does not seem like a proper factoriza-
tion, �rst of all because it’s “too easy;” second, it doesn’t reduce the degree. It seems reasonable
to disallow this sort of thing.

This “naughty” factorization was possible merely because 2 has a multiplicative inverse in Q.
It’s a bit of a mouthful always to say “a number that has a multiplicative inverse;” instead we
call such numbers units. Of course, whether a number is a unit depends very much on whether
you’re working over Z or over Q; 2 is a unit in Q, but not in Z. Similarly we say that f and д are
associates if f = aд where a is a unit.

Suppose f is a polynomial, but not a unit. We say that f factors over a set S if there exist
polynomials p,q whose coe�cients are elements of S such thatf = pq and neither p nor q is an
associate of f . We call p and q factors of f . If f does not factor over S , then we say that f is
irreducible.

Whether a polynomial factors depends very much on the choice of S .

Example 2.42. Suppose f = x2 − 2. If we consider f ∈ Z [x], then it will not factor; there are
no polynomials p,q ∈ Z [x] such that pq = f . This remains true if we consider f ∈ Q [x]. Hence,
x2 − 2 is irreducible over Z and over Q.

If we consider f ∈ R [x], then f factors as
(
x −
√
2
) (

x +
√
2
)
. Hence, f factors over R.

The point of excluding associates is to make sure factorization really reduces a polynomial.

Lemma 2.43. If f factors over Q as f = pq, then 0 < deg (p) , deg (q) < deg ( f ).

Proof. Suppose by way of contradiction that f = pq, f and p are not associates, and deg (p) = 0
or deg (p) = deg ( f ). If deg (p) = 0, then p ∈ Q\ {0} itself, in which case p is a unit, which
makes q an associate of f , contradicting the de�nition of a factorization. On the other hand, if
deg (p) = deg ( f ), then by Theorem 2.4, deg (q) = deg ( f ) − deg (p) = 0, so q is a unit, which
makes p an associate, again contradicting the hypothesis. Hence 0 < deg (p) < deg ( f ). A similar
argument shows that this is true of deg (q), as well. �

Lemma 2.43 makes a statement about factorization over Q that is not generally true over Z.
This distinction is very subtle but very important.
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Example 2.44. Let f = 2x2+2. This factors overZ as f = 2
(
x2 + 1

)
. In addition, the factorization

is into irreducibles. Yet deg ( f ) = deg
(
x2 + 1

)
and deg (2) = 0.

On the other hand, we would not say that f factors over Q as f = 2
(
x2 + 1

)
, because 2 is a

unit, so x2 + 1 is an associate of f in Q [x].

It didn’t matter in Example 2.42 whether we considered f ∈ Z [x] or f ∈ Q [x], as f factored
over neither Z nor Q.

Recall from Section 1.4 that we sometimes call prime numbers irreducible. It is natural to ask
if irreducible polynomials behave the same way as prime numbers; that is,

• a polynomial factors into irreducibles; or,

• if an irreducible divides a product, then it divides one of the factors (f | дh implies f | д or
f | h).

Interestingly enough, this is the case.

Theorem 2.45 (Euclid’s Lemma for polynomials). Let f ,д,h ∈ Q [x], and suppose f is irreducible
over Q [x]. If f | дh, then f | д or f | h.

Proof. This proof will again resemble the one for integers, Theorem 1.64. Assume that f | дh. If
f | д, then the theorem is satis�ed, so assume that f - д. Let d be a greatest common divisor of
f and д. By the irreducibility of f , deg (d ) = 0 or deg (d ) = deg ( f ). If deg (d ) = deg ( f ), then
f = kd for some k ∈ Q, which implies that k−1 f | д, and hence that f | д, a contradiction. So
deg (d ) = 0; that is, d is constant. By the Extended Euclidean Algorithm, there exist s, t ∈ Q [x]
such that

s f + tд = d .

Multiply both sides by d−1 — a constant! — to see that(
d−1s

)
f +

(
d−1t

)
д = 1 .

Now multiply both sides by h to obtain(
d−1sh

)
f +

(
d−1t

)
(дh) = h .

Recall the hypothesis that f | дh; chooseq ∈ Q [x] such thatqf = дh. Substitute into the equation
above to obtain (

d−1sh
)
f +

(
d−1t

)
(qf ) = h .

We can factor the common f to rewrite this equation as

f
(
d−1sh + d−1qt

)
= h .

In other words, f | h. �

Now we work our way into an analogue of the Fundamental Theorem of Arithmetic. We start
by showing that every polynomial over the rationals has an irreducible factor.



CHAPTER 2. SOLVING POLYNOMIAL EQUATIONS 100

Lemma 2.46. Every f ∈ Q [x] has an irreducible factor.

Proof of Lemma 2.46. Consider the following algorithm.

1. let д0 = f , and i = 0

2. while дi is not irreducible

(a) choose дi+1,hi+1 ∈ Q [x] such that дi = дi+1hi+1 and 0 < deg (дi+1) , deg (hi+1) <
deg (дi )

(b) increment i by 1

3. return дi

We claim that this algorithm terminates with an irreducible factor of f . If f is itself irreducible,
then the algorithm skips step 2 and returns д0 = f , as desired. Otherwise, it enters step 2 and
generates a sequence of polynomials д0, д1, . . . such that deg (д0) > deg (д1) > · · · . This is a
nonincreasing sequence of natural numbers, and by Theorem 1.28 the sequence must stabilize. It
can only stabilize if the loop ends, and the loop ends only when дi is irreducible, as desired. �

Now we show that polynomials over the rationals factor uniquely into irreducibles.

Theorem 2.47. Let f ∈ Q [x]. There exist irreducible polynomials p1, . . . ,pk ∈ Q [x] such that
f = p1 · · ·pk . Moreover, this factorization is unique in the sense that if f = q1 · · ·q` , then k = ` and
we can reorder the q’s such that pi is an associate of qi for each i .

Proof. First we consider the existence of a factorization into irreducibles. Consider the following
algorithm, where step 2 is justi�ed by Lemma 2.46.

1. let i = 0 and r0 = f

2. while ri is not irreducible

(a) let pi ∈ Q [x] be an irreducible factor of ri
(b) choose ri+1 ∈ Q [x] such that piri+1 = ri
(c) increment i by 1

3. let pi = ri

4. return p0, p1, . . . , pi

We claim that this algorithm terminates with an irreducible factorization of f . How so? If f is
itself irreducible, then the algorithm skips step 2, assigns p0 = r0 = f , and returns p0, as desired.
Otherwise, it enters step 2 and generates a sequence of polynomials r1, r2, . . . and irreducible
polynomials p1, p2, . . . such that

deg (r0) = deg (r1) + deg (p1) > deg (r1) = deg (r2) + deg (p2) > deg (r2) = · · · ,

or,
deg (r0) > deg (r1) > · · · .
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This is a nonincreasing sequence of natural numbers; by Theorem 2.46 it must stabilize eventually,
which it can do only if the algorithm breaks out of step 2. At that point it assigns pi = ri . By
substitution,

f = r0 = p1r1 = p1 (p2r2) = (p1p2) (p3r3) = · · · = p1 · · ·pi .

We have a factorization of f into irreducible polynomials, as desired.
We still have to show that the factorization is unique, in the sense described in the theorem.

To see this, suppose that f = p1 · · ·pk and f = q1 · · ·q` , where each pi and each qj is irreducible
over Q. By substitution,

p1 (p2 · · ·pk ) = q1 · · ·q` . (2.3)

By de�nition of divisibility, p1 | q1 · · ·q` . By Theorem 2.45, p1 | qi for some i = 1, . . . `. Recall
that qi is also irreducible, so p1 | qi only if they are associates. Reorder the q’s so that p1 = a1q1
for some a1 ∈ Q. By substitution into equation (2.3),

p1 (p2 · · ·pk ) = (a1p1) (q2 · · ·qk ) , so that p2 · · ·pk = a1q2 · · ·qk .

Continuing in this fashion, we can show that q2 is an associate of p2, and so forth. �

Exercises
Exercise 2.48. This problem considers linear polynomials, which have the form f = ax + b.

(a) Explain why a linear polynomial is always irreducible over Q.

(b) A linear polynomial is not always irreducible over Z. Give an example of a linear polynomial
over Z that factors, and of a linear polynomial over Z that does not factor.

Exercise 2.49. Suppose that f ∈ Q [x], that its degree is m, it has m distinct roots, and all of its
roots are rational. Show that f factors into exactlym linear polynomials.
Hint: Use the Factor Theorem (Exercise 2.25).

Sage supplement
The main thing to emphasize in this section is that the way Sage factors a polynomial depends
very much on the coe�cients’ set, just as the way Sage computes a greatest common divisor.

We’ll start with an easy example that builds on our observations from the previous section:
we’ll try factoring 2x2 + 2, from Example 2.44. First factor it generically, then over Z [x], and
�nally over Q [x].

sage: (2*x^2 + 2).factor()
2*x^2 + 2
sage: ZZ[x](2*x^2 + 2).factor()
2 * (x^2 + 1)
sage: QQ[x](2*x^2 + 2).factor()
(2) * (x^2 + 1)
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The answer came out slightly di�erent each time! The �rst attempt didn’t factor at all; again,
this is due to Sage’s being careful; it doesn’t quite know what you want, so it does nothing. The
second attempt factored the way you might expect, given that 2 is in fact the greatest common
factor of 2x2 and of 2. The third case also factors this way, but placed the 2 in parentheses. This
signals that Sage is aware that 2 is a unit in Q [x].

Now consider x2 − 2, from Example 2.42.

sage: (x^2 - 2).factor()
x^2 - 2
sage: ZZ[x](x^2 - 2).factor()
x^2 - 2
sage: QQ[x](x^2 - 2).factor()
x^2 - 2
sage: RR[x](x^2 - 2).factor()
(x - 1.41421356237310) * (x + 1.41421356237310)

The polynomial x2 − 2 does not factor when we consider its coe�cients to be symbolic (the
�rst attempt), integer (the second), or rational (the third). All this is �ne. When we consider its
coe�cients to be real numbers, it does factor; unfortunately, the factorization is not quite correct,
for √

2 , 1.41421356237310 .

In Sage, RR[x] represents the set of polynomials whose coe�cients are approximations of real
numbers.

You might wonder if Sage can factor this polynomial exactly. Indeed it is. One is to use the
“algebraic numbers” as coe�cients; to do this, coerce the polynomial into AA[x], and factor it
that way.

sage: AA[x](x^2 - 2).factor()
(x - 1.414213562373095?) * (x + 1.414213562373095?)

At �rst glance, this factorization may look identical to the one before, but it isn’t: notice
that each of the two constants ends with a question mark. This is Sage’s way of indicating that
the numbers in question are algebraic numbers, and that Sage can in fact �nd them. To do so,
compute the roots of x2 − 2 in the algebraic numbers:

sage: R = AA[x](x^2 - 2).roots()
sage: R
[(-1.414213562373095?, 1), (1.414213562373095?, 1)]

We see two roots, each of multiplicity 1. The second root is positive, so let’s extract it. We can
ask Sage to convert it to a radical expression using an aptly-named command.



CHAPTER 2. SOLVING POLYNOMIAL EQUATIONS 103

sage: rpos = R[1][0]
sage: rpos
1.414213562373095?
sage: rpos.radical_expression()
sqrt(2)

Sage is telling us that the positive root is
√
2.

To obtain the exact factorization, we’ll extend the rationals by
√
2. We’ll talk about this more

in the next chapter, but the basic idea is that Sage can add
√
2 to Q, creating a new set called

Q
[√

2
]

whose arithmetic remains valid.

sage: QQ2 = QQ[sqrt(2)]
sage: QQ2[x](x^2 - 2).factor()
(x - sqrt2) * (x + sqrt2)

This is Sage’s way of telling you that it has factored x2 − 2 as
(
x −
√
2
) (

x +
√
2
)
.

Exercises
Exercise 2.50. Use Sage to factor x4 − 8x2 + 15 exactly. Its irreducible factors are all linear, so
you need to identify the roots as precisely as possible.

Exercise 2.51. Use Sage to factor x3 − 3 as much as possible using the techniques we have
described in this section. What symbol does Sage use to indicate the root in your extension of Q?
Why do you think it isn’t possible at the moment to factor x3 − 3 into linear factors?

2.5 Imagining something quite real
This section shows how modular arithmetic can help us construct roots of polynomials.

Congruence modulo a polynomial
Let f ,д,d ∈ Z [x]. Throughout this section, d , 0. In a manner similar to that of Section 1.5,
we say that f ≡ д (mod d ) if f and д have the same remainder after division by d . A familiar
theorem applies in this case, too.

Theorem 2.52. Let f ,д,d ∈ Q [x], with d , 0. Then f ≡ д (mod d ) if and only if d | ( f − д).

Proof. Recall that the phrase “if and only if” signals that the two phrases are equivalent, and thus
we have to prove two directions.

Assume that f and д have the same remainder after division by d . By de�nition, there exist
q f ,qд, r ∈ Q [x] such that f = q f d + r , д = qдd + r , and either r = 0 or deg (r ) < deg (d ). By
substitution, f − д =

(
q f − qд

)
d . By de�nition, d | ( f − д).
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Conversely, assume that d | ( f − д). By de�nition, there exists q ∈ Q [x] such that dq = f −д.
Use the Division Theorem for Q [x] (Theorem 2.18) to choose q f ,qд, r f , rд ∈ Q [x] such that
f = q f d + r f , д = qдd + rд, and both r f and rд satisfy the requirements of a polynomial remainder
after division by d . By substitution,

dq =
(
q f d + r f

)
−

(
qдd + rд

)
=⇒ d

(
q − q f + qд

)
= r f − rд .

By de�nition, d |
(
r f − rд

)
. If r f , rд, then degd ≤ deg

(
r f − rд

)
. By Theorem 2.4, however,

deg
(
r f − rд

)
≤ max

(
deg

(
r f

)
, deg

(
rд

))
, and by the Division Theorem deg

(
r f

)
, deg

(
rд

)
<

deg (d ). All together, we know that

deg (d ) ≤ deg
(
r f − rд

)
≤ max

(
deg

(
r f

)
, deg

(
rд

))
< deg (d ) ;

in short, deg (d ) < deg (d ), a contradiction. Our only assumption that might be unsound is
r f , rд; that assumption must be wrong: r f = rд. In conclusion, f ≡ д (mod d ). �

Example 2.53. Consider congruence modulo d = x2 + 1. Let f = x + 3, д = 5x4 + 2x2 + x , and
h = 5x4 + 2x2. The remainder of dividing д by d is f , so f ≡ д (mod d ). On the other hand,
д − h = x , and d - x , so д . h (mod d ).

Just as congruence modulo an integer was an equivalence relation, so is congruence modulo
a polynomial.

Theorem 2.54. Let f ∈ Q [x]. Congruence modulo f is an equivalence relation.

Proof. We have to show three properties: re�exive, symmetric and transitive.
Re�exive: We leave this to Exercise 2.63(a).
Symmetric: We leave this to Exercise 2.63(b).
Transitive: Let p,q, r ∈ Q [x]. We want to show that if p ≡ q (mod f ) and q ≡ r (mod f ),

then p ≡ r (mod f ). Assume that p ≡ q (mod f ) and q ≡ r (mod f ). By Theorem 1.80, f |
(p − q) and f | (q − r ). By de�nition, there exist д,h ∈ Q [x] such that f д = p −q and f h = q − r .
By substitution and factorization,

p − r = (p − q) + (q − r ) = f д + f h = f (д + h) .

By Theorem 2.4, д + h ∈ Q [x]. By de�nition of divisibility, f | (p − r ). By Theorem 1.80, p ≡ r
(mod f ); or, congruence modulo a polynomial is transitive. �

Likewise, congruence cooperates with addition, subtraction, and multiplication.

Theorem 2.55. Let p,q, r ∈ Q [x], and let f ∈ Q [x] \ {0}. Suppose that p ≡ q (mod f ).

(A) p ± r ≡ q ± r (mod f ).

(B) pr ≡ qr (mod f ).
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Proof. By Theorem 2.52, f | (p − q). We prove only (B), and leave a proof of (A) to Exercise 2.64.
We want to show that pr ≡ qr (mod f ). By Theorem 2.52, this is true if f | (pr − qr ), or

f | [(p − q) r ]. We already know that f | (p − q); by de�nition, choose д ∈ Q [x] such that

f д = p − q .

By substitution and the associative property,

f (дr ) = (p − q) r .

By de�nition, f | [(p − q) r ], so that pr ≡ qr (mod f ). �

Does division preserve congruence?
Congruence modulo a polynomial shares another property of congruence modulo an integer:
division does not preserve congruence for all polynomial moduli, but it does preserve congruence
for certain special polynomial moduli. Here we see that again how irreducible polynomials stand
in for prime numbers (which are themselves irreducible).

Theorem 2.56. Let f ∈ Q [x], with deg ( f ) ≥ 1. The following are equivalent.
(A) f is irreducible over Q [x]
(B) For every p,q, r ∈ Q [x] such that f - r , pr ≡ qr (mod f ) implies p ≡ q (mod f ).

Proof. Recall that when we claim two phrases are equivalent, we have to prove two directions.
Assume that f is irreducible over Q [x]. Let p,q, r ∈ Q [x] such that f - r . Assume that

pr ≡ qr (mod f ). By Theorem 2.52, f | (pr − qr ), or f | [(p − q) r ]. By hypothesis, f - r , so by
Theorem 2.45, f | (p − q). By Theorem 2.52, p ≡ q (mod f ).

For the converse, we prove its contrapositive. Assume that f is not irreducible. By de�nition,
there exist nonzero д,h ∈ Q [x] such that f factors as f = дh and 0 < deg (д) , deg (h) < deg ( f ).
Rewrite f = дh as f × 1 = дh. By de�nition of divisibility, f | дh. Now, 0 < deg (д) < deg ( f )
implies д . 0 ≡ f . Set p = д, q = f , r = h, and we have pr ≡ qr (mod f ) but p . q (mod f ). �

An imaginary number
We come to the main goal of this section — of this chapter, really — which is to introduce you to an
example of what we will later call a “quotient ring.” Keeping in line with our pattern of showing
how polynomials behave in ways that are very similar to integers, we turn our attention to the
last part of Section 1.5, where we de�ned the set Zn and its arithmetic. Here we show that we can
likewise obtain a set of polynomials with an arithmetic that has an amazing consequence.

For any polynomial p ∈ Q [y], de�ne p to be the remainder of dividing p by y2 + 1. (This
is similar to the remainder operation de�ned on page 43.) By the Division Theorem for Q [y]
(Theorem 2.18), deg (

p
)
< deg

(
y2 + 1

)
= 2. By de�nition of degree, p = ay + b, where a,b ∈ Q.

Example 2.57. Let f = y + 3 and д = 5y4 + 2y2 + y, simlarly to Example 2.53. Since f is the
remainder of dividing д by y2 + 1, f = д.
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Consider the set
S =

{
ay + b : a,b ∈ Q}

.

Notice that S ⊆ Q [y]. De�ne addition, subtraction, and multiplication of elements of S as follows:
for any ay + b, cy + d ∈ S,

(ay + b) ± (cy + d ) = (a ± c )y + (b ± d )

(ay + b) (cy + d ) = (ay + b) (cy + d ) .

We can simplify the product as

(ay + b) (cy + d ) = (ad + bc )y + (bd − ac ) , (2.4)

since
(ac )

(
y2 + 1

)
= [(ay + b) (cy + d )] − [(ad + bc )y + (bd − ac )] .

Addition, subtraction, and multiplication in S are thus closed.

Example 2.58. Suppose f = 2y + 3,д = 6y + 35. Then

f + д = 8y + 38
f − д = −4y − 32

f д = 88y + 93 .

Be sure you understand how we arrived at the last one. Everything else in this section depends on
understanding that! Here are the details:

f д = (2y + 3) (6y + 35) = 12y2 + 88y + 105 = 88y + 93 .

We build S using polynomial congruence, and that leads to some interesting behavior.

Lemma 2.59. Q ( S.

Proof. Let b ∈ Q. By de�nition, b = 0y + b ∈ S. As b ∈ Q is arbitrary, Q ⊆ S. On the other hand,
y < Q, so Q , S, as claimed. �

Lemma 2.60. In S, y2 = −1 and (−y)2 = −1.

Proof. By Equation (2.4),

y2 = (1 × 0 + 0 × 1)y + (0 × 0 − 1 × 1)
= −1

and

(−y)2 = [−1 × 0 + 0 × (−1)]y + [0 × 0 − (−1) × (−1)]
= −1 .

�
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Let S [x] be the set of polynomials in x whose coe�cients are elements of S. We can perform
addition, subtraction, and multiplication in S [x] using exactly the same techniques as in Q [x],
with only one exception: when we multiply coe�cients, we have to reduce them modulo y2 + 1.

Example 2.61. Examples of elements of S [x] are

p = x2 + 1 , q = (2y + 3) x + (6y + 35) , r = yx3 − (12y + 1) .

The respective leading term of each polynomial is x2, (2y + 3) x , and yx3. In addition,

qr =
(
2y2 + 3y

)
x4 +

(
6y2 + 35y

)
x3 −

(
24y2 + 38y + 3

)
x +

(
6y + 35

)
=

(
3y2 − 2

)
x4 + (35y − 6) x3 − (38y − 21) x + (6y + 35) .

We �nally arrive at our goal, which is actually easy to prove.

Corollary 2.62. Both y,−y ∈ S are roots of x2 + 1 ∈ Q [x].

Proof. Let f = x2 + 1. By Lemma 2.60, f (y) = y2 + 1 = (−1) + 1 = 0, and by de�nition y is a root
of f . The proof for −y is similar. �

What just happened? We have built a concrete set S that extends Q; after all, Lemma 2.59
shows that Q is a subset of S. In addition, by Theorem 2.55, the basic arithmetic of S is both
identical to that of Q for elements of Q, and also closed for elements of S\Q. We could further
show (as in Exercise 2.65) that S satis�es additional arithmetic properties we �nd desirable, so
that it really does extend Q in every conceivable way. It also contains a root of f = x2 + 1.

Let us empasize that we constructed S in a very concrete way. It is no less “real” than any
rational number or polynomial. If you consider those things real — and there’s no good reason
not to — then so are the elements of S.

But y ∈ S behaves just like the “imaginary” number i . In short, the imaginary number is
real.4 Henceforth we refer to S by its more common name, the set of complex numbers, or, C.

Exercises
Exercise 2.63. Complete the proof of Theorem 2.54 by showing that congruence modulo a poly-
nomial in Q [x] is (a) re�exive and (b) symmetric.

Exercise 2.64. Complete the proof of Theorem 2.55 by showing that if p ≡ q (mod f ), then
p ± r ≡ q ± r (mod f ).

Exercise 2.65. Show that the following properties for addition and multiplication of elements of
S.

(a) the commutative property: both (ay + b)+(cy + d ) = (cy + d )+(ay + b) and (ay + b) (cy + d ) =
(cy + d ) (ay + b)

4We don’t mean that i is a real number, but rather that it is not “imaginary” in the sense of “not based in reality”.
The author of these notes learned in high school that i is imaginary and not real, and for a long time he found it very
perplexing that we have to work with imaginary numbers. As we have seen, however, the name is unfortunate: i is
as real as any other “real” number, insofar as we can “construct” it in a very concrete way.
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(b) the associative property: both [(ay + b) + (cy + d )]+(ey + f ) = (ay + b)+[(cy + d ) + (ey + f )]
and [(ay + b) (cy + d )] (ey + f ) = (ay + b) [(cy + d ) (ey + f )]

(c) 1 ∈ S, and any s ∈ S satis�es 1 × s = s and s × 1 = s
Hint: Be careful. You have to work in the form of elements of S for full correctness; that is,
ay + b and so forth.

(d) Any nonzero element of S has a multiplicative inverse; that is, for any ay + b ∈ S\ {0}, we
can �nd cy + d ∈ S such that (ay + b) (cy + d ) = 1.

(e) The distributive property holds for elements of S: that is, for any s, t ,u ∈ S, we have
s (t + u) = st + su.
Hint: Again, you have to respect the form of elements of S; rede�ne s = ay +b and similarly
for t and u, then work with those forms.

Exercise 2.66. The technique we adopted in this section will construct a root of any polynomial.
For instance, we can use it to construct

√
2.

(a) What polynomial f should we use to construct
√
2?

(b) Suppose we build a set S = {
ay + b : a,b ∈ Q} and de�ne addition, subtraction, and multi-

plication all modulo f (y). What is the simpli�ed form of the product (ay + b) (cy + d )? (By
“f (y)”, I mean, “substitute y for the variable of x .)
Hint: y2 should not appear in the simpli�ed form; use f (y) to reduce it.

(c) Show that, when you take this route, y × y = 2 and also (−y) × (−y) = 2.

(d) Show that y is a root of the polynomial you listed in (a).

Sage supplement
We can de�ne congruence modulo a polynomial in a manner analogous to the way we de�ned
congruence modulo an integer. Let’s start with Example 2.53.

sage: d = x^2 + 1
sage: Zd = ZZ[x].quo(d)
sage: Zd
Univariate Quotient Polynomial Ring in xbar over Integer
Ring with modulus x^2 + 1

This tells us that Qd stands for a set of polynomials in “xbar” whose coe�cients are integers, and
whose modulus is x2 + 1.

You are probably wondering what xbar means. It is common in mathematics to write ele-
ments modulo an element with a bar over them. For instance, 12 = 2 ∈ Z5. In the same way,
Sage is telling us that elements of Zd looks are polynomials in the variable x , and operations are
modulo x2+1. We can verify this by “injecting” x into our work and performing some calculations.
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sage: Zd.inject_variables()
Defining xbar
sage: xbar^2 + 1
0

We see that Sage interprets x2 + 1 = 0. Notice that these modular computations do not apply to
x , so that x2 + 1 simpli�es as before.

sage: x^2 + 1
x^2 + 1

We return to Example 2.53. The example claims that if f = x + 3 and д = 5x4 + 2x2 + x ,then
f ≡ д (mod d ). So long as we coerce the polynomials to reside in Zd, we get the expected results.
There are two ways to do that: use the same coercion techniques we have used until now, or
de�ne the polynomial using xbar instead of x.

All three computations below are correct, but only two obtain the result we want. Make sure
you understand why.

sage: ( x + 3 ) == ( 5*x^4 + 2*x^2 + x )
x + 3 == 5*x^4 + 2*x^2 + x
sage: Zd( x + 3 ) == Zd( 5*x^4 + 2*x^2 + x )
True
sage: ( xbar + 3 ) == ( 5*xbar^4 + 2*xbar^2 + xbar )
False

We can also verify that h = 5x4 + 2x2 is congruent to neither f nor д. We leave that to you as
an exercise.

If you have completed the main text up to this point, you may have realized that xbar corre-
sponds to the object we called y in the set S. We proved in Lemma 2.60 that y behaved just like
the imaginary number i . In particular, y2 + 1, or, y is a root of x2 + 1. Let’s see if that pans out
here.

sage: f = x^2 + 1
sage: f(x = xbar)
Traceback (click to the left of this block for traceback)
...
TypeError: no canonical coercion from Univariate Quotient
Polynomial Ring in xbar over Integer Ring with modulus x^2 +
1 to Symbolic Ring
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Here, Sage is telling us that it cannot combine x , which lives in Zd, with x2 + 1, which lives in the
“symbolic ring.” The cause is not with our principles, but that we neglected to tell Sage to view f
as having integer coe�cients. We’ll coerce it and try again.

sage: f = ZZ[x](x^2 + 1)
sage: f(x = xbar)
0

It worked out! Substituting x in place of x gave us 0! In other words, we have constructed in Sage
the symbol xbar, which works exactly the same way that the imaginary number i works: just as
i2 + 1 = 0, we get xbar^2 + 1 == 0.

You should verify that this works even if we situation f’s coe�cients in Q [x].

Exercises
Exercise 2.67. Use Sage to replicate and verify your work in Exercise 2.66. Be sure to check that
some other properties hold, such as xbar^2 + 1 == . . . ?



Chapter 3

Rings and �elds

The previous chapters reinforced a great deal of what you should have learned already about
integers and polynomials, and perhaps you learned something new when it came to modular
arithmetic. You may also have noticed that both the integers and the polynomials have a great
deal in common. For instance:

• Both have operations called addition, subtraction, and multiplication, where:

– Addition and multiplication are both commutative and associative, and have identity
elements.

– Multiplication distributes over addition.
– For addition, we can always �nd an “inverse” element, and adding a number to its

inverse yields the identity.

It’s important to point out that rational and real numbers also enjoy these properties.

• For rational and real numbers, division is an operation, but for integers and polynomials,
division is not an operation, as it results in two elements instead of one: quotient and
remainder. This distinction is worth keeping in mind, as it tells us that, at least in this
sense, integers are more akin to polynomials than to rational or real numbers!

• For instance, this curious property of integer and polynomial division results in modular
operations for both integers and polynomials. The modular operation is closed, commuta-
tive, and associative, and the operation also has an identity, though it may not be invertible,
even for non-zero elements. It also turns out to be very useful for certain applications:

– With modular integer arithmetic, we derive modern cryptography.
– With modular polynomial arithmetic, we can construct the so-called “imaginary”

number, i .

By contrast, division of rational and real numbers does not lead to a new, modular arith-
metic. It has important applications, but those applicatons are very di�erent.

Other similarities exist, and you might want to think about what they are.

111
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Noticing that integers and polynomials share so many similarities, mathematicians of the 18th
and 19th centuries began to describe a structure that underlies both systems. Investigating this
common structure can be a bit tough at �rst, because we have to work with abstract symbols
rather than concrete numbers or polynomials (or other objects!), but if you keep at it, it will re-
ward you! Since the discovery of these structures, mathematics has becme a much more powerful
tool for solving problems.

This chapter introduces you to those structures.

3.1 Rings
The main structure we consider is a ring.

Informally, we can think of a ring as “a set of objects where addition is very well-behaved,
but multiplication is merely well-behaved, and distributes over addition.”

More precisely, let R be a set where addition and multiplication are de�ned in some way. We
say that R is a ring if:

• addition on R is closed, commutative, associative, invertible, and satis�es the identity;

• multiplication is closed, commutative, associative, and satis�es the identity; and

• multiplication distributes over addition; that is, any three elements r , s, t ∈ R satisfy r (s + t ) =
rs + rt .

We normally write a ring’s additive identity as 0, and its multiplicative identity as 1. Given a ring
element r , we normally write its additive inverse as −r .

Example 3.1. The set N is not a ring, because addition is not invertible: 2 + (−5) = −3, and
−3 < N.

Example 3.2. Although we didn’t call it a ring, we established in Section 1.2 that the set Z is
a ring under addition and multiplication. We established in Section 2.1 that Z [x], and Q [x] are
rings.

We also showed earlier thatQ andR are also rings, but they di�er fromZ in that every nonzero
element has a multiplicative inverse. It is worth remembering when a ring has this property, so
we give it a special name: a ring with a multiplicative inverse is a �eld.

Exercise 2.65 shows that the set S that we de�ned there is also a ring. What we have not yet
considered is whether Zn is a ring.

Is Zm a ring?
Theorem 3.3. For anym ≥ 2, the set Zm is a ring under addition and multiplication modulom.

Proof. We split this into three cases: one to show that addition is very well-behaved; one to show
that multiplication is merely well-behaved; and one to show that multiplication distributes over
addition.
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Case 1. Is addition very well-behaved?
First we consider addition. For the sake of clarity in this proof, we brie�y revive the
use of ⊕ from page 47 to indicate “addition modulom.”
closure? We explained on page 47 that addition modulom is closed.
commutative? Let a,b ∈ Zm. By de�nition of addition modulom,

a ⊕ b = a + b .

Elements of Zm are the natural numbers 0, 1, . . . ,m − 1, and natural numbers commute
under addition. Hence

a ⊕ b = a + b = b + a = b ⊕ a .

Hence, a ⊕ b = b ⊕ a, and addition modulom is commutative.
associative? Let a,b, c ∈ Zm. By de�nition of addition modulom,

(a ⊕ b) ⊕ c = (a + b) + c .

Elements of Zm are the natural numbers 0, 1, . . . ,m − 1, and natural numbers are asso-
ciative under addition. Hence

(a ⊕ b) ⊕ c = (a + b) + c = a + (b + c ) = a ⊕ (b ⊕ c ) .

Hence, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c ), and addition modulom is associative.
identity? We claim that 0 is an additive identity for Zm. This is a natural guess, since 0
is an additive identity for Z. First observe that, by de�nition, 0 ∈ Zm. Now let a ∈ Zm.
By de�nition of addition modulom,

a ⊕ 0 = a + 0 = a and 0 ⊕ a = 0 + a = a .

Recall that a ∈ Zm. Elements of Zm are the natural numbers 0, 1, . . . , m − 1, so a = a.
Hence, a ⊕ 0 = a and 0 ⊕ a = a, and we have achieved our goal of showing that 0 is the
additive identity of Zm.
invertible? Let a ∈ Zm. Don’t make the mistake of thinking that −a is the inverse of a:
−a is negative, and Zm consists entirely of natural numbers. An element’s inverse has
to be in the same set as the original element.
Since −a is out of the question, what else could be the inverse of a? If you remember
how congruence works: any element of Zm that is congruent to −a will give the same
result. Congruence is simply the result of adding multiples ofm, so we could try −a+m
— or, written di�erently, m − a. Recall that 0 ≤ a < m, so 0 < m − a ≤ m. As long as
m − a < m, we are OK, because

a ⊕ (m − a) = a + (m − a) =m = 0 ,

and similarly (m − a) ⊕ a = 0, som − a is the inverse of a whenever a , 0.
Unfortunately, if a = 0, then m − a = m < Zm, and again we have a problem. But this
isn’t a big problem, because if a = 0 then a ⊕ a = 0⊕ 0 = 0 + 0 = 0. That is, 0 is its own
inverse, and that covers all the cases.
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Case 2. Is multiplication merely well-behaved?
We leave this to the exercises.

Case 3. Does multiplication distribute over addition?
Let a,b, c ∈ Zm. We need to show that

a ⊗ (b ⊕ c ) = (a ⊗ b) ⊕ (a ⊗ c ) . (3.1)

We will do this by showing that the left and right hand sides are equal.
We start with the left hand side of (3.1). By de�nition of multiplication modulom,

a ⊗ (b ⊕ c ) = a × (b ⊕ c ) . (3.2)

We need to think a little more about b ⊕ c; by de�nition,

b ⊕ c = b + c .

By substitution into (3.2), we have

a ⊗ (b ⊕ c ) = a ×
(
b + c

)
. (3.3)

The double lines tell us we have to computer a remainder twice. That’s a bit confusing
as is, so let’s think about it a bit. By the de�nition of remainder, b + c = mq +

(
b + c

)
for some q ∈ Z. We can rewrite this as b + c = (b + c ) −mq. By substitution into (3.3),
we have

a ⊗ (b ⊕ c ) = a × [(b + c ) −mq] .
Now that we’ve eliminated the inner line, we can apply properties of ordinary integer
arithmetic, which include distribution of multiplication over addition, and we obtain

a ⊗ (b ⊕ c ) = [a × (b + c )] − a × (mq) . (3.4)

Observe that
[a × (b + c ) − a × (mq)] ≡ a × (b + c ) (mod m) ,

since the di�erence between the left and right hand sides is a× (mq), which is a multiple
ofm. By Theorem 1.80, we can substitute into (3.4) and obtain

a ⊗ (b ⊕ c ) = a × (b + c ) ,

and by the properties of integer arithmetic, we have

a ⊗ (b ⊕ c ) = ab + ac . (3.5)

We turn to the right hand side of (3.1). By applying the de�nition of addition and
multiplication in Zm, we rewrite it as

(a ⊗ b) ⊕ (a ⊗ c ) =
(
a × b

)
+

(
a × c

)
. (3.6)
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By the de�nition of remainder, ab = mq +
(
a × b

)
for some q ∈ Z. We can rewrite

this as a × b = ab −mq. Similarly, we can �nd q′ ∈ Z such that a × c = ac −mq′. By
substitution into (3.6), we have

(a ⊗ b) ⊕ (a ⊗ c ) = (ab −mq) + (ac −mq′) . (3.7)

Again we observe that

ab −mq ≡ ab and ac −mq′ ≡ ac (mod m) ,

so again we apply Theorem 1.80 while substituting into (3.7) to obtain

(a ⊗ b) ⊕ (a ⊗ c ) = ab + ac . (3.8)

The right hand sides of (3.5) and (3.8) are equal, so by substitution, the left hand sides
must be equal as well, and we have the desired property,

a ⊗ (b ⊕ c ) = (a ⊗ b) ⊕ (a ⊗ c ) .

�

Now that we know that Zm is a ring, what do you think the natural question should be?

Is Zm a �eld?
If you remember the material in Section 1.5, you can actually work this out on your own! The
main result that helps us here is Theorem 1.94.

Theorem 3.4. Letm ≥ 2. The ring Zm is a �eld if and only ifm is prime.

Proof. By Theorem 3.3, Zm is a ring.
First assume that Zm is a �eld. By de�nition, every nonzero element of Zm has a multiplicative

inverse. By Theorem 1.94, a nonzero element a of Zm has a multiplicative inverse if and only if
gcd (a,m) = 1. Hence, every nonzero a ∈ Zm is relatively prime to m. That means none of
{2, 3, . . . ,m − 1} is a divisor of m. The only natural divisors of m are thus 1 and m. We conclude
thatm is irreducible, or prime.

Conversely, assume that m is prime. By de�nition, it has only two natural divisors, 1 and m.
Since none of 2, 3, . . . ,m − 1 divides the irreducible number m, we conclude that gcd (a,m) = 1
for each nonzero a ∈ Zm. By Theorem 1.94, each nonzero a ∈ Zm has a multiplicative inverse in
Zm. By de�nition, Zm is a �eld. �

Two important ring properties
The fact that Zm is a ring should startle you, because an important property that we often use to
solve equations is not necessarily true! Corollary 1.97 told us that the zero product property is
true in Zm only when m is prime. This means that, given an arbitrary ring R and two elements
r , s ∈ R such that rs = 0, we cannot conclude that r = 0 or s = 0: it’s entirely possible that neither
of them is!
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Example 3.5 ((Reminder)). We have just shown that Z6 is a ring. Both 2, 3 ∈ Z6, and neither is
0, but 2 × 3 = 0 in Z6.

Rings that satisfy the zero product property are called integral domains. They are very
important, but we will not focus very much on them in this course.

This troubles enough that we have to ask: are we guaranteed that 0 × r = 0? Fortunately, the
answer is yes.

Theorem 3.6. For any ring R, and for any r ∈ R, we have 0 × r = 0.

Proof. Let R be a ring, and r ∈ R. By distribution, r × (0 + 0) = r ×0+r ×0. By the additive identity
property, 0 + 0 = 0. By substitution, r × 0 = r × (0 + 0) = r × 0 + r × 0 and r × 0 = r × 0 + r × 0.
Rings contain the inverses of their elements, so − (r × 0) ∈ R. Apply substitution and various
rings properties to rewrite

0 = − (r × 0)+ (r × 0) = − (r × 0)+ [r × 0 + r × 0] = [− (r × 0) + r × 0]+r ×0 = 0+r ×0 = r ×0 .
(3.9)

The ends of the chain tell us that 0 = r × 0. �

The other important ring property we need involves additive inverses. You are accustomed
to writing −2 = (−1) × 2 for the integers, and you may be tempted to do this for ring elements as
well — but the issue with zero divisors should give you pause. Is it really true that, for any ring
R and any r ∈ R, we can write −r = (−1) × r?

Fortunately, this actually pans out.

Theorem 3.7. For any ring R, and for any r ∈ R, we have (−1) × r = −r and r × (−1) = −r .

Proof. Let R be a ring, and r ∈ R. By de�nition of additive inverses, −1 + 1 = 0. By substitution,
(−1 + 1)×r = 0×r . By Theorem 3.6, 0×r = 0, so by substitution, (−1 + 1)×r = 0. By distribution,
(−1)×r + 1×r = 0. By the multiplicative identity property of a ring, 1×r = 0, so by substitution,
(−1) × r + r = 0. By substitution, [(−1) × r + r ]+ (−r ) = 0+ (−r ). By the associative and identity
properties of addition, we can rewrite this as (−1) × r + [r + (−r )] = −r . By the inverse and
identity properties of addition, we can rewrite this as (−1)×r +0 = −r , and thus as (−1)×r = −r .
This proves the �rst claim; the second is similar. �

Exercises
Exercise 3.8. In equation (3.9), each equals sign is justi�ed by substitution or by a ring property,
or both. Indicate which.

Exercise 3.9. Much like Theorem 3.6, it turns out that additive inverses are multiples of 1’s ad-
ditive inverse; that is, −r = −1 × r . To prove this, we o�er the following sequence of assertions.
Explain why each assertion is true. Remember that your explanation must be either a ring prop-
erty or the word “substitution”.

(a) 1 + (−1) = 0

(b) r × [1 + (−1)] = r × 0

(c) r × 0 = 0

(d) r × [1 + (−1)] = 0
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(e) r × 1 + r × (−1) = 0

(f) r × 1 = r

(g) r + r × (−1) = 0

(h) −r + [r + r × (−1)] = −r + 0

(i) (−r + r ) + r × (−1) = −r + 0

(j) −r + r = 0

(k) 0 + r × (−1) = −r + 0

(l) 0 + r × (−1) = r × (−1)

(m) −r + 0 = −r

(n) r × (−1) = −r

Exercise 3.10. Complete the proof of Theorem 3.3 by showing that multiplication in Zm is closed,
associative, and has an identity.

Exercise 3.11. Show that Z [x] and Q [x] are not �elds.
Hint: By de�nition, you only have to �nd some element of the ring(s) that has no multiplicative
inverse.

Exercise 3.12. Which of Z10, Z63, Z67, or Z117 is a �eld?

Exercise 3.13. Show that the zero product property is always true in a �eld. That is, suppose
F is a �eld, and let a,b ∈ F. Show that if ab = 0, then a = 0 or b = 0.
Hint: Fields are more special than rings. Use what’s special!

Exercise 3.14. The last chain of equations in the proof of Theorem 3.56 contains no justi�cations
for the equalities. Indicate which de�nition, or which property of ring arithmetic, justi�es each
equality.

3.2 In the absence of division we have ideals
The previous section discussed a common structure that underlies the natural numbers, important
sets of polynomials, and modular arithmetic. The operations involved are addition and multipli-
cation. Mathematicians call this sort of thing generalization: identifying which properties of
one system (Z) apply to a larger class of systems (rings).

Natural numbers and polynomials also have a Division Algorithm that computes a quotient
and remainder. This is where modular arithmetic parts ways with the other rings we have studied:
we do not generally perform division in Zm — and when we do, it doesn’t produce a quotient and
remainder, because, as Theorem 3.4 points out, in these cases Zm is a �eld, where division behaves
as an operation, the same as it does in Q or R.

Generalizing the Division Algorithm to rings is thus an interesting problem, and to under-
stand how we can do it, we would do well to consider not so much the process of division as the
applications.

Applications of division
For the natural numbers, three e�ects of division were

• common divisors (Section 1.3),



CHAPTER 3. RINGS AND FIELDS 118

• prime numbers, also called irreducible (Section 1.4), and

• congruence (Section 1.5), which allowed us to build new rings (Zm) for applications (cryp-
tography).

Polynomial division has the same e�ects (Sections 2.3, 2.4, and 2.5), and polynomial congruence
likewise builds a new ring (S) for applications (constructing the “imaginary” number). Both in-
vestigations start o� with common divisors, which are based on the Euclidean algorithm. The
Euclidean algorithm requires division, which — again — we don’t have. Still, let’s investigate
what division does.

First, recall from Algorithm 1.1 that division is really repeated subtraction; we perform it until
the remainder is smaller than the divisor. Subtraction is something we do have in a ring, and we
can perform it repeatedly. Thus, the �rst attribute of division that we will try to generalize is
repeated subtraction.

Another attribute of division — this may surprise you — is that it incorporates multiplication.
Think here of the result: when we divide n by d , we obtain a quotient q and a remainder r such
that n− r = qd . Right there you see not only subtraction, but division. Thus, the second attribute
of division that we will try to generalize is divisibility, or, if you prefer, multiples.

With this in mind, let’s try the following. Given a ring R, we say that an ideal subset of R is
any nonempty set I ⊆ R such that

• I is closed under subtraction; that is, a − b ∈ I for all a,b ∈ I ; and

• I absorbs multiplication from R; that is, ra ∈ I for any a ∈ I and any r ∈ R.

Let’s work out what an “ideal subset” looks like in some of the rings we’ve studied.

Example 3.15. Suppose an ideal I ⊆ Z contains the numbers 15 and −18. Closed subtraction
means that

• 15 − (−18) = 33 ∈ I ;

• 33 − 15 = 18 ∈ I ; and

• 18 − 15 = 3 ∈ I .

This last discovery is interesting, because 3 = gcd (15,−18). We have more to say about this later.
We haven’t considered absorption yet. Since 3 is a divisor of every element of I we’ve seen

so far, we’ll look at its multiples. It implies that

• 0 × 3 = 0 ∈ I ;

• −1 × 3 = −3 ∈ I ; and in fact

• 3z ∈ I for every z ∈ Z.

Every multiple of 3 is in I . If neither 2 nor 1 is in I , then I is the set of all multiples of 3.

The last few words of Example 3.15 are more important than you might think at �rst glance,
and we will return to this idea shortly.
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Example 3.16. Suppose an ideal J ⊆ Z [x] contains the polynomials x3 + x2 and x2 − 1.

• Absorption means that x
(
x2 − 1

)
= x3 − x ∈ J .

• Closure of subtraction means that
(
x3 + x2

)
−

(
x3 − x

)
= x2 + x ∈ J .

• Closure of subtraction also means that
(
x2 + x

)
−

(
x2 − 1

)
= x + 1 ∈ J .

Once again, we have just discovered x + 1 = gcd
(
x3 + x2,x2 − 1

)
. Now, x + 1 is irreducible!

Perhaps J consists of the set of all multiples of x +1. Notice the similarity to Example 3.15, where
3 = gcd (15,−18).

It’s important to point out that we don’t actually have enough information to conclude that I
is the set of multiples of 3, or that J is the set of multiples of x + 1. They may well contain other
elements! Nevertheless, they point to an important class of ideals.

Generating ideals
In Examples 3.15 and 3.16 we started with two elements of a ring, and looked at what else might
be an ideal. Of particular interest would be the smallest ideal that contains those elements. In
general, if R is a ring and r1, . . . , rm ∈ R, we say that the smallest ideal containing r1, . . . , rm is
the ideal generated by r1, . . . , rm, and write for short.

Example 3.17. Let I = 〈15,−18〉; that is, let I be the ideal generated by 15 and −18. Example
3.15 showed that 3 ∈ I , or, 3 ∈ 〈15,−18〉. Of course, 15,−18 ∈ 〈3〉, because they are multiples of
3. Now, every element of I is either

• a multiple of 15 = 3 × 5, and thus in 〈3〉; or,

• a multiple of 18 = 3 × 6, and thus in 〈3〉; or,

• a di�erence two other elements of I .

It’s starting to look as if I = 〈3〉.

Theorem 3.18. Let R be a ring, and a1, . . . ,am ∈ R. Then 〈a1, . . . ,am〉 is the set of all sums of
multiples of the ai ’s. In symbols, 〈a1, . . . ,am〉 = {r1a1 + · · · + rmam : ri ∈ R}.

Proof. We need to show that two sets are equal. That requires us to show that each is a subset of
the other.

First, let x ∈ {r1a1 + · · · + rmam : ri ∈ R}. By de�nition, there exist r1, . . . , rm ∈ R such that
x = r1a1 + · · · + rmam. Rings satisfy the additive inverse property, so −r2, . . . ,−rm ∈ R. Consider
the following chain of operations:

• Ideals absorb multiplication from R, so all of r1a1,−r2a2, . . . ,−rmam ∈ 〈a1, . . . ,am〉.

• Ideals are closed under subtraction, so

– r1a1 − (−r2a2) = r1a1 + r2a2 ∈ 〈a1, . . . ,am〉; and
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– (r1a1 + r2a2) − (−r3a3) = r1a1 + r2a2 + r3a3 ∈ 〈a1, . . . ,am〉; and
. . .

– (r1a1 + r2a2 + · · · + rm−1am−1) − (−rmam ) = r1a1 + · · · + rmam ∈ 〈a1, . . . ,am〉.

This last element is x ! We took an arbitrary x from {r1a1 + · · · + rmam : ri ∈ R}, and we showed
that x ∈ 〈a1, . . . ,am〉. We have thus shown that

{r1a1 + · · · + rmam : ri ∈ R} ⊆ 〈a1, . . . ,am〉 .

For the converse, we show two things. First, we show that each a1, . . . ,am is an element of
{r1a1 + · · · + rmam : ri ∈ R}. Then, we show that {r1a1 + · · · + rmam : ri ∈ R} is itself an ideal. We
would then have

{r1a1 + · · · + rmam : ri ∈ R} ⊇ 〈a1, . . . ,am〉 ,
so that each is a subset of the other, and they are equal.

For the �rst claim, recall that R has a multiplicative identity, which we write as 1, and an
additive identity, which we write as 0. By de�nition of the set, and by Theorem 3.6,

1 · a1 + 0 · a2 + · · · + 0 · am = a1 ∈ {r1a1 + · · · + rmam : ri ∈ R} ,
...

0 · a1 + · · · + 0 · am−1 + 1 · am = am ∈ {r1a1 + · · · + rmam : ri ∈ R} .

So the �rst claim is proved.
For the second claim, we need to show that {r1a1 + · · · + rmam : ri ∈ R} is closed under sub-

traction and absorbs multiplication from R. To this end, take two arbitrary elements b, c ∈
{r1a1 + · · · + rmam : ri ∈ R}. By de�nition, there exist p1, . . . ,pm,q1, . . . ,qm ∈ R such that

b = p1a1 + · · · + pmam and c = q1a1 + · · · + qmam .

Their di�erence is

b − c = (p1a1 + · · · + pmam ) − (q1a1 + · · · + qmam ) .

By Exercise 3.9,

b − c = (p1a1 + · · · + pmam ) + [(−q1a1) + · · · + (−qmam )] .

By the associative and commutative properties of ring addition,

b − c = (p1 − q1) a1 + · · · + (pm − qm ) am .

Rings are closed under subtraction, so pi − qi ∈ R for each i . By de�nition of the set, then,

b − c ∈ {r1a1 + · · · + rmam : ri ∈ R} .

Meanwhile, let r ∈ R. By substitution,

rb = r (p1a1 + · · · + pmam ) .
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By the distributive property,

rb = r (p1a1) + · · · + r (pmam ) .

By the associative property of ring multiplication,

rb = (rp1) a1 + · · · + (rpm ) am .

Rings are closed under multiplicaiton, so rpi ∈ R for each i . By de�nition of the set, then,

rb ∈ {r1a1 + · · · + rmam : ri ∈ R} .

We have shown that {r1a1 + · · · + rmam : ri ∈ R} is an ideal. As explained above, this completes
the proof. �

Example 3.19. A simple example of an ideal generated by some elements is an ideal generated
by only one element, called a principal ideal. One example of a principal comes from the ring of
integers: 〈3〉 = {3z : z ∈ Z}. In the case of Example 3.17, it seems that 〈15,−18〉 = 〈3〉. However,
we still do not know this for certain.

More generally, let d ∈ Z, and write dZ = {dz : z ∈ Z}; that is, dZ is the set of all integer
multiples of d . Written another way, dZ = 〈d〉. Theorem 3.18 tells us that dZ is a principal ideal.

Common divisors
Example 3.19 remarked that it looks as if 〈15,−18〉 = 〈3〉, but we do not yet know this. Let’s see
if we can decide this. If you remember an observation from Example 3.15, 3 = gcd (15,−18), so
actually we have 〈15,−18〉 = 〈gcd (15,−18)〉.

Is it always the case that 〈r , s〉 = 〈gcd (r , s )〉? You might think that we can’t answer the
question, as we haven’t de�ned greatest common divisors for arbitrary rings, but in fact we can.
The answer involves one theorem and one example.

Theorem 3.20. Every ideal I of Z is principal, and the generator is the greatest common divisor of
I ’s elements.

Proof. Let I be an ideal of Z, and let A be the set of I ’s positive elements. By the Well-Ordering
Property, A has a minimal element; let’s call it a. We claim that I = 〈a〉.

Let n ∈ I , and use the Division Algorithm to compute q, r ∈ Z such that n = qa + r and
0 ≤ r < a. Rewrite n = qa + r as n − qa = r . By absorption, qa ∈ I , and by closure of subtraction,
n − qa ∈ I . By substitution, r ∈ I .

What do we know about r? We know that r ∈ I and that r ≥ 0. Is r > 0? If so, then by
de�nition, r ∈ A. Recall that r < a; this is a problem, because a is supposed to be A’s smallest
element! This answer our question: we cannot have r > 0. Instead, r = 0.

We have shown that any n ∈ I is divisible by a. Hence, a is a common divisor of I ’s elements.
Of course, a ∈ A and A ⊆ I implies that a ∈ I itself. No integer larger than a divides it, so a has
to be the greatest common divisor of I ’s elements. �

If you look carefully at this proof, you’ll notice that it relies on a property of integers that is
not true for polynomials. Example 2.20 and Corollary 2.21 also give a hint on this: Z [x] is a ring,
but its division algorithm does not guarantee what we need.
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Example 3.21. The ideal 〈2,x〉 is not principal in Z [x]. To see why, suppose by way of contra-
diction that there were some f ∈ Z [x] such that 〈2,x〉 = 〈

f
〉. Then f | 2 and f | x . The only

integers that divide both 2 and x are ±1, so we are saying that 〈2,x〉 = 〈1〉. By Theorem 3.18, this
means that we can write 1 = 2p + xq for some p,q ∈ Z [x]. If two polynomials are equal, each of
their terms is equal, and there is only one term on the left-hand side of 1 = 2p + xq, namely, 1
itself. So the constant term of 2p +xq must equal 1. But the constant term of 2p is a multiple of 2,
and every term of xq is a multiple of x , so not constant. The polynomial 2p + xq has no constant
terms! So 1 , 2p + xq, and hence 〈1〉 , 〈2,x〉. This was our only option to generate the entire
ideal, so 〈2,x〉 is not principal.

What a huge di�erence only one symbol can make! Rings likeZ, where every ideal is principal,
are called principal ideal rings, but as we see from Z [x], not every ring is a principal ideal ring.

Common roots
Speaking of polynomials, ideals have an important application to polynomials.

Theorem3.22. Let f1, . . . , fm be polynomials ofZ [x],Q [x],R [x], orC [x], and let I = 〈
f1, . . . , fm

〉
.

Let a be any number such that fi (a) = 0 for each i ; that is, a is a common root of all the f ’s. Then
a is a root of every д ∈ I .

Proof. Let д ∈ I . By Theorem 3.18, we can �nd polynomials p1, . . . ,pm such that д = p1 f1 + · · · +
pm fm. By substitution,

д (a) = p1 (a) f1 (a) + · · · + pm (a) fm (a) = p1 (a) × 0 + · · · + pm (a) × 0 = 0 ;

that is, a is a root of д. �

Example 3.23. Let f1 = x3+x2 and f2 = x2−1. It is not hard to verify that f1 (−1) = f2 (−1) = 0;
that is, −1 is a common root of f1 and f2. We saw in Example 3.16 thatд = x+1 ∈

〈
x3 + x2,x2 − 1

〉
,

so it must be that −1 is also a root of д — but this is obvious, since д (−1) = −1 + 1 = 0.

Theorem 3.22 is a very important tool in algebra, as it tells us that we can use propreties of
ideals to analyze the roots common to all polynomials in the ideal.

Exercises
Exercise 3.24. Is 〈12,−18, 37〉 a principal ideal in Z? If so, what element generates it?

Exercise 3.25. Show that 0 ∈ I for any ideal I .

Exercise 3.26. Let I be an ideal of a ring. Show that if a,b ∈ I , then a + b also in I .
Hint: You need the result of Exercise 3.25.

Exercise 3.27. Every ring R is itself an ideal. In fact, every ring is a principal ideal! Find an
element r ∈ R such that R = 〈r 〉.
Hint: Look at some simple examples, such as Z and Z6.

Exercise 3.28. Suppose that a ring R is actually a �eld, like Q or Z17. Show that:
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(a) The only two ideals possible are 〈0〉 and 〈1〉.

(b) R is a principal ideal ring.

Exercise 3.29. Show that Q [x] is a principal ideal ring.
Hint: Let I be any ideal of Q [x]. Let D be the set of degrees of polynomials in I . You know that
D has a minimal element d (why?) so choose from I any polynomial f of degree d . Now use a
technique similar to that of Theorem 3.20 to show that f divides every element of I . By de�nition,
then, I = 〈

f
〉.

Exercise 3.30. Are there any values ofm for which Zm is not a principal ideal ring?
Hint: Experiment with some small values of m. See if every ideal turns out to be principal for
each value of m. If so, that should give you the insight you need to prove it in general. If not,
then you’ve found a counterexample.
Another hint: Bézout’s identity could prove helpful.

3.3 Cosets
Section 3.2 indicated that we would use ideals to obtain the same e�ects in rings that division has
for integers and polynomials, but we listed three e�ects, and so far we’ve only really addressed
one of them: common divisors. The second one, prime or irreducible numbers, we put o� until
Section 3.7. That leaves the question of congruence, which we now consider.

Congruence modulo an ideal
Both with the integers and with polynomials, we initially de�ned congruence using remainders,
along these lines:

a ≡ b (mod m) if a and b have the same remainder after division bym.

Abstract rings don’t o�er us division with remainder, so we have to take a di�erent tack. Fortu-
nately, we had already found a rather useful one: Theorems 1.80 and 2.52 tell us that

a ≡ b (mod m) if and only ifm | (a − b).

This gets us a little closer to something useful, though it still isn’t as general as we want: for a
principal ideal that is generated by only one element, say I = 〈m〉, it would be �ne: just check that
m | (a − b). For an ideal that is generated by more than one element, such as 〈2,x〉 from Example
3.21, then at the very least we’d have to check whether 2 | (a − b) and whetherm | (a − b).

Even that isn’t enough. In Example 3.16, we found that the ideal J =
〈
x3 + x2,x2 − 1

〉
con-

tained the polynomialx+1. Beacuse of this, we would want 2 (x + 1) = 2x+2 and 3 (x + 1) = 3x+3
to be congruent modulo J , but there’s no way to detect that using divisibility by x3 +x2 or x2 − 1.
So we do something clever: we state what we want, without saying how we get there.

This is an important technique, and is a key step of abstraction. If we focus too much on
how we compute something, we lose sight of the larger picture — a “miss the forest for the trees”
a�air. Instead, we try to back up and identify the simplest, most generic thing we want, without
worrying whether we can actually accomplish it.
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How, then, shall we de�ne congruence in a ring R? Let I be an ideal of R, and let a,b ∈ R.
We say that

a ≡ b (mod I ) if a − b ∈ I .

Consider some concrete examples to see how this works.

Example 3.31. Recall from Example 3.15 the ideal I = 〈18,−15〉. Are 22 and 3 congruent modulo
I? What about 22 and 4?

Theorem 3.20 tells us that every ideal of Z is a principal ideal ring, generated by the elements’
greatest common divisor. Well, I is an ideal of Z, and gcd (18,−15) = 3, so I = 〈3〉, as we pointed
out at that time. If we look at 22 and 3, we see that 3 - (22 − 3), so 22 − 3 < I , so

22 . 3 (mod I ) .

On the other hand, 3 | (22 − 4), so 22 − 4 ∈ I , so

22 ≡ 4 (mod I ) .

Example 3.32. Recall from Example 3.16 the ideal J =
〈
x3 + x2,x2 − 1

〉
. Are 3x + 3 and 2x + 2

congruent modulo I?
We are not quite so lucky with J as we were with I above — but we are not exactly unlucky,

either, because we do know that x +1 ∈ J (and it wasn’t hard to discover this). If we look at 3x +3
and 2x + 2, we see that x + 1 | [(3x + 3) − (2x + 2)], so (3x + 3) − (2x + 2) ∈ J , so

3x + 3 ≡ 2x + 2 (mod J ) .

Example 3.33. Consider the ideal K = 〈2,x〉. Are x2 − 4 and x2 − 1 congruent modulo K?
Again, we are not quite so lucky with K as we were with I , and we’re also not quite as lucky

as we were with J . However, if we look at x2 − 4 and x2 − 1, we see that(
x2 − 4

)
−

(
x2 − 1

)
= −3 .

Is −3 ∈ K?
Suppose for a moment that it were. By de�nition, 2 ∈ K , and absorption, −2 × 2 ∈ K , and by

closure of subtraction, −3 − (−2 × 2) = 1 ∈ K . We saw in Example 3.21 that 1 < K , so that forces
−3 < K , and thus

x2 − 4 . x2 − 1 (mod K ) .

Notice how this solves our problem: we can “decide” whether a and b are congruent, by
“deciding” whether a −b is an element of I . How do we decide whether a −b ∈ I? Unfortunately,
we had to adapt ad hoc techniques to each case, so in general, who knows? That’s not the point.1

I realize this sounds like a dodge, but in reality our de�nition is surprisingly useful.
1The problem of deciding whether an ideal contains some element turns out to be a surprisingly di�cult problem

in general.
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Cosets
Congruence of integers allowed us to create the rings of modular integer arithmetic, Zm. Con-
gruence of polynomials likewise allowed us to create a ring of modular polynomial arithmetic, S.
We have used ideals to de�ne congruence of ring elements; can we use this foundation to build
new rings using congruence? Indeed, we can.

We’ll use the integers to give us insight on the question. For an example, work withm = 3. Our
goal is to use the ideal 3Z = {. . . ,−3, 0, 3, 6, . . .} to develop an analogue to the ring Z3 = {0, 1, 2}.
Division by 3 is related to the ideal 3Z, in that elements of 3Z have remainder 0, while non-
elements of 3Z have nonzero remainder. The remainders themselves are elements of Z3.

Consider 2 ∈ Z3: which integers have a remainder of 2? That would be the set {. . . ,−1, 2, 5, 8, . . .}.
In some sense, any time we perform mular arithmetic, the number 2 ∈ Z3 “stands in” for this set.
Notice, moreover, that

{. . . ,−1, 2, 5, 8, . . .} = {. . . , 2 + (−3) , 2 + 0, 2 + 3, 2 + 6, . . .} = {2 + t : t ∈ 3Z} .

Every integer in that set of remainders is simply a multiple of 3, o�set by 2! This makes perfect
sense, because division by 3, with a remainder of 2, has the form n = 3q+2: a multiple of 3, o�set
by 2. It makes sense to write this as follows:

{. . . ,−1, 2, 5, 8, . . .} = 2︸︷︷︸
o�set by 2

+ 3Z︸︷︷︸
multiples of 3

.

In general, we can write r + dZ for the integer multiples of d o�set by r :

r + dZ = { . . . , r + (−d ) , r + 0 , r + d , r + 2d , . . . } .

All these numbers have the same remainder2 when dividing by d!
We can now write the same idea three di�erent ways:

• 22 and 4 have the same remainder after division by 3;

• 22 ≡ 4 (mod 3); and

• 22 + 3Z = 4 + 3Z.

This relationship means that we can test each of them the same way, which we describe as an
extension of Theorem 1.80:

Theorem 3.34. Let a,b,d ∈ Z, with d ≥ 2. The following are equivalent.

(A) a and b have the same remainder after division by d ;

(B) a ≡ b (mod d );

(C) d | (a − b); and
2That remainder might not be r . For instance, the elements of 4 + 3Z have remainder 1 when we dividing them

by 3.
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(D) a + dZ = b + dZ.

Proof. (A) is equivalent to (B) by the de�nition in Section 1.5. (B) is equivalent to (C) by Theorem
1.80. It remains to show that (C) is equivalent to (D).

The statement, “a +dZ = b +dZ,” means that the two sets a +dZ and b +dZ are equal. This is
true if and only if every element of a + dZ is an element of b + dZ and vice versa. That is, every
x ∈ a +dZ is an element of b +dZ, and every y ∈ b +dZ is an element of a +dZ. Any x ∈ a +dZ
has the form a + dz for some z ∈ Z, and x ∈ b + dZ if and only if we can �nd some z′ ∈ Z such
that x = b + dz′, in which case a + dz = b + dz′, which we can rewrite as a − b = d (z′ − z). By
de�nition of divisibility, d | a − b. The same is true for y. Hence, a + dZ = b + dZ if and only if
d | (a − b), as desired. �

This is interesting for integers, but what about rings in general?
Let R be a ring, and I an ideal. For any a ∈ R, the coset of I with a, which we also call a’s

coset with I , or simply a’s coset, is the set

a + I = {a + i : i ∈ I } .

(Notice that this looks just like r + dZ, where a �lls in for r and I �lls in for dZ.) Given a coset
a + I , we say that a is I ’s o�set.

The quotient of R modulo I is the set of all cosets of I in R. In symbols, we would write,

R/I = {r + I : r ∈ R} .

Example 3.35. Let R = Z and I = 4Z. By de�nition,

R/I = {r + I : r ∈ R} = {r + 4Z : r ∈ Z} .

Theorem 3.34 tells us that two cosets a + 4Z and b + 4Z are equal if and only if their o�sets have
the same remainder after division by 4. There are only four possible remainders, so there are only
four distinct cosets of 4Z,

0 + 4Z = 4Z , 1 + 4Z , 2 + 4Z , 3 + 4Z .

So
Z/4Z = { 4Z , 1 + 4Z , 2 + 4Z , 3 + 4Z } .

This looks a lot like Z4 = {0, 1, 2, 3}. Eventually we will prove that, for all practical purposes, they
are in fact the same.

That said, remember that 2+ 4Z = 6+ 4Z = −10+ 4Z, since 4 | (2 − 6) and 4 | (6 − (−10)). So
we could also write

Z/4Z = { 4Z , 1 + 4Z , 6 + 4Z , 3 + 4Z } .

In the same line, we could write

Z/4Z = { 12 + 4Z , −3 + 4Z , 6 + 4Z , 27 + 4Z } .
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Example 3.36. Let R = Z [x] and J =
〈
x3 + x2,x2 − 1

〉
. Recall from previous examples that

J = 〈x + 1〉. By substitution, then,

R/J = Z [x] /
〈
x3 + x2,x2 − 1

〉
= Z [x] / 〈x + 1〉 .

By Corollary 2.21, we can actually divide polynomials by x + 1, so by Exercise , two cosets f +
〈x + 1〉 and д + 〈x + 1〉 are the same if and only if f and д have the same remainder after division
by x + 1. So the cosets of 〈x + 1〉 have the form r + 〈x + 1〉, where r is a remainder after division
by x + 1. Since deg (x + 1) = 1, and the remainders have to have smaller degree, the remainders
all have degree 0. That is, the remainders are all constants. Hence

R/J = { . . . , −1 + 〈x + 1〉 , 0 + 〈x + 1〉 , 1 + 〈x + 1〉 , 2 + 〈x + 1〉 , . . . } .

This looks a lot like Z = {. . . ,−1, 0, 1, 2, . . .}. Eventually we will prove that, for all practical
purposes, they are in fact the same.

Example 3.37. Let R = Z [x] and K = 〈2,x〉. Unlike the previous examples, we cannot identify
a single generator of K , but with a bit of cleverness we can still write elements of R/K in a
convenient form.

First, x is a monic polynomial, so by Corollary 2.21 we can divide any element of Z [x] by
x and obtain a remainder of smaller degree. As with the previous example, this smaller-degree
polynomialmust be a constant. Thus, there existq,q′, r , r ′ ∈ Z [x] such that f = qx+r ,д = q′x+r ′,
and deg (r ) , deg (r ′) < deg (x ) = 1. This forces deg (r ) = deg (r ′) = 0, which means that r is a
constant integer.

Now, 2 divides any even number to a remainder of zero, and any odd number to a remainder
of 1. So we can choose d,d′, r ′′, r ′′′ ∈ Z such that r = 2d + r ′′ and r ′ = 2d + r ′′′, where r ∈ {0, 1}.
By substitution, f = qx + 2d + r ′′ and д = q′x + 2d′ + r ′′′.

Suppose that f and д have the same remainder after this process; that is, r ′′ = r ′′′. Then

f − д =
(
qx + 2d +��r ′′

)
−

(
q′x + 2d′ +��r ′′′

)
= (q − q′) x + 2 (d − d′) ∈ 〈2,x〉 .

We said above that this means f ≡ д (mod K ). Theorem 3.38 below shows that this means they
lie in exactly the same coset. The only remainders possible after dividing by x and by 2 are 0 and
1, so we can write all cosets of R/K in the form r + 〈2,x〉, where r is either 0 or an odd constant.
That is,

R/K = { 0 + 〈2,x〉 , 1 + 〈2,x〉 } .

We conclude to what is possibly the most important theorem of this chapter: deciding when
two cosets are equal.

Theorem 3.38 (Coset equality). Let R be a ring, r , s ∈ R, and I an ideal of R.

(A) 0 + I = I .

(B) r ∈ r + I .

(C) The following are equivalent.

(i) r + I = s + I .
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(ii) r − s ∈ I .

(iii) r ≡ s (mod I ).

Proof. We leave the proof of (A) and (B) to Exercise 3.41. For (C), statements (ii) and (iii) are
equivalent by de�nition. It will su�ce to show that (i) and (iii) are equivalent. For the equivalence,
we must as usual show that (ii) =⇒ (iii) and (ii)⇐= (iii).

Assume �rst that r + I = s + I . From (B), we know that r ∈ r + I ; by substitution, r ∈ s + I . By
de�nition, r = s + i for some i ∈ I . Rewrite this as r − s = i , and we see immediately that r − s ∈ I .

Conversely, assume that r − s ∈ I . We need to show that r + I = s + I . These are sets, so we
need to show that two sets are equal, which requires us to show that every x ∈ r + I is also in
s + I , and that every y ∈ s + I is also in r + I . Let x ∈ r + I ; by de�nition, x = r + i for some
i ∈ I . Rewrite this as r = x − i . Recall that r − s ∈ I ; by de�nition, r − s = j for some j ∈ I .
By substitution, (x − i ) − s = j. Rewrite this as x = s + (i + j ). By Exercise 3.26, i + j ∈ I . By
de�nition, x ∈ s + I . The proof that any y ∈ s + I is also in r + I is similar.

We have shown that (ii)⇐⇒(iii), as desired. �

Exercises
Exercise 3.39. List all the elements of Z [x] / 〈24, 30〉. Compare to the elements of Zgcd(24,30) .

Exercise 3.40. List at least ten elements of Z [x] /
〈
x2 + 2

〉
.

Exercise 3.41. Show that for any ideal I of any ring R, and for any r ∈ R,

(a) 0 + I = I ; and

(b) r ∈ r + I .

Exercise 3.42. Determine if the following statements are true.

(a) 128 ≡ 17 mod 7

(b) x5 − 2x ≡ 4x3 − 4x2 (mod x3 + x2,x2 − 1)

(c) (x + 2) + 〈2,x〉 = 〈2,x〉

(d) x5 − 2x + 3 ≡ 7x3 + 5 (mod 〈2,x〉)

Exercise 3.43. Suppose f ∈ Z [x] is monic. By Corollary 2.21, we can divide other polynomials
д ∈ Z [x] by f , and obtain a quotient and remainder such that д = f q + r and deg (r ) < deg ( f ).
Use this to show that the following statements are equivalent:

(a) д +
〈
f
〉
= h +

〈
f
〉;

(b) f | (д − h); and

(c) f and д have the same remainder after division by f .

Hint: This looks intimidating, but it’s really a direct proof from the de�nitions of cosets and of
set equality. In fact, you can imitate the proof of Theorem 3.34.
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3.4 Quotients of rings are also rings
Just as remainders and congruence in Z and Q [x] allowed us to create the rings Zm and S, their
analogues in a general ring — cosets and ideals — allow us to create new rings.

Let R be a set and I an ideal of R. Recall that R/I is the set of I ’s cosets in R:

R/I = { r + I : r ∈ I } .

We show in due course that R/I is also a ring, but �rst we need to identify addition and multipli-
cation operations for this ring. We do so as follows:

• Let X ,Y ∈ R/I .

• By de�nition, X and Y are cosets, so we can �nd x ,y ∈ R such that X = x + I and Y = y + I .

• The sum and product of X and Y should also be cosets. We de�ne

X + Y = (x + y) + I and XY = xy + I .

In other words, the sum (or product) of two cosets is the coset whose o�set is the sum (or product)
of their o�sets.

Example 3.44. Let R = Z and I = 〈4〉 = {. . . ,−4, 0, 4, 8, . . .}. We saw in Example 3.35 that the
set R/I has four elements: 0 + I = I , 1 + I , 2 + I , 3 + I . By de�nition,

+ I 1 + I 2 + I 3 + I
I I 1 + I 2 + I 3 + I

1 + I 1 + I 2 + I 3 + I I
2 + I 2 + I 3 + I I 1 + I
3 + I 3 + I I 1 + I 2 + I

× I 1 + I 2 + I 3 + I
I I I I I

1 + I I 1 + I 2 + I 3 + I
2 + I I 2 + I I 2 + I
3 + I I 3 + I 2 + I 1 + I

If you look closely, you’ll see some strange things are happening in the multiplication table:
(2 + I ) + (2 + I ) = I , (2 + I ) × (3 + I ) = 2 + I . . . really? Indeed they are: By de�nition,

(2 + I ) + (2 + I ) = 4 + I = I and (2 + I ) × (3 + I ) = 6 + I ,

and 6 − 2 = 4 ∈ I , so by Theorem 3.38, 6 + I = 2 + I .
This multiplication table looks a lot like the multiplication table of Z4. Eventually we’ll prove

that they are in fact the same.

Example 3.45. Let R = Z [x] and I = 〈2,x〉. We saw in Example 3.35 that the set R/I has two
elements: 0 + I = I , 1 + I . By de�nition,

+ I 1 + I
I I 1 + I

1 + I 1 + I I

× I 1 + I
I I I

1 + I I 1 + I

If you look closely, you’ll see some strange things are happening in the multiplication table:
(1 + I ) + (1 + I ) = I , I × (1 + I ) = I . . . really? Indeed they are: By de�nition,

(1 + I ) + (1 + I ) = 2 + I and I × (1 + I ) = (0 + I ) × (1 + I ) = 0 + I ,
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and by Theorem 3.38, 0 + I = 2 + I = I because 0, 2 ∈ I .
This multiplication table looks a lot like the multiplication table of Z2. Eventually we’ll prove

that they are in fact the same.

Example 3.46. Let R = Z100 and I = 〈4〉 = {0, 4, 8, . . . , 96}. The set R/I has four elements:
0 + I = I , 1 + I , 2 + I , 3 + I . By de�nition,

+ 0 + I 1 + I 2 + I 3 + I
0 + I 0 + I 1 + I 2 + I 3 + I
1 + I 1 + I 2 + I 3 + I 0 + I
2 + I 2 + I 3 + I 0 + I 1 + I
3 + I 3 + I 0 + I 1 + I 2 + I

× 0 + I 1 + I 2 + I 3 + I
0 + I 0 + I 0 + I 0 + I 0 + I
1 + I 0 + I 1 + I 2 + I 3 + I
2 + I 0 + I 2 + I 0 + I 2 + I
3 + I 0 + I 3 + I 2 + I 1 + I

If you look closely, you’ll see some strange things are happening in the multiplication table:
(2 + I ) × (3 + I ) = 2 + I . . . really? Indeed they are: By de�nition,

(2 + I ) × (3 + I ) = 6 + I ,

and 6 − 2 = 4 ∈ I , so by Theorem 3.38, 6 + I = 2 + I .

Given such strange results,3 we should ask ourselves two important questions:

1. whether these operations are “well-de�ned”; and if so,

2. whether we really are in a ring.

We need to think about the �rst question because a coset can have multiple representations. For
instance, in the example above, we only wrote four cosets, but as we pointed out near the end,
6+ I = 2+ I . We run the risk, then, that if we happen to choose a di�erent o�set for a coset, we’ll
give a di�erent answer — but that shouldn’t happen.

This may be a bit confusing, so to illustrate it, we’ll use the multiplicaiton above. We examined
(2 + I ) × (3 + I ); that gave us 6 + I . However, 2 + I = 6 + I , so in fact we are claiming that

6︸︷︷︸
2×3
+ I = (2 + I ) × (3 + I ) = (6 + I )︸ ︷︷ ︸

substitution

× (3 + I ) = 18︸︷︷︸
6×3
+ I .

How can that possibly be true, since 6 , 18?
In this case, it’s true for the same reason that 2 + I = 6 + I : coset equality (Theorem 3.38). If

we look at the di�erence between the o�sets, 18 − 6 = 12, we see that it is an element of I = 〈4〉.
Is this true in general? The following theorem shows that it is.

Theorem 3.47. Coset addition and multiplication are well-de�ned.

Proof. Let X ,Y ∈ R/I . By de�nition, there exist x ,y ∈ R such that X = x + I and Y = y + I .
Suppose that we can also �nd x′,y′ ∈ R such that X = x′ + I and Y = y′ + I . By substitution,
x + I = x′ + I , and by coset equality, x − x′ ∈ I . Similarly, y − y′ ∈ I . Keep these in mind as we
complete the proof.

3This shouldn’t bother you if you played around with Z4, since 2 × 3 = 6 ≡ 2 (mod 4) there, so 2 × 3 = 2.
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Is coset addition well-de�ned? We need (x + y) + I = (x′ + y′) + I ; that is, we have to have the
same result, no matter which o�sets we choose. This is true if and only if (x + y) − (x′ + y′) ∈ I .
If we consider the expression, we can write

(x + y) − (x′ + y′) = (x + y) +
[
(−1) (x′ + y′)] = (x + y) +

[
(−x′) + (−y′)

]
.

(Notice our reliance here on Theorem 3.9.) By the associative and commutative properties, we
can rewrite the right-hand side as

(x + y) − (x′ + y′) =
[
x + (−x′)

]
+

[
y + (−y′)

]
= (x − x′) + (y − y′) .

Recall that x −x′,y −y′ ∈ I . By Exercise 3.26, their sum is also in I ; that is, (x − x′) + (y − y′) ∈ I .
By substitution, (x + y) − (x′ + y′) ∈ I . By coset equality, (x + y) + I = (x′ + y′) + I . Hence
addition of cosets is well-de�ned.

Is coset multiplication well-de�ned? We need xy + I = x′y′ + I ; that is, we have to have the
same result, no matter which o�sets we choose. This is true if and only if xy − x′y′ ∈ I . If we
consider the expression, we can write

xy − x′y′ = (x + y) +
[
(−1) (x′ + y′)] = (x + y) +

[
(−x′) + (−y′)

]
.

By the associative and commutative properties, we can rewrite the right-hand side as

(x + y) − (x′ + y′) =
[
x + (−x′)

]
+

[
y + (−y′)

]
= (x − x′) + (y − y′) .

Recall that x −x′,y −y′ ∈ I . By Exercise 3.26, their sum is also in I ; that is, (x − x′) + (y − y′) ∈ I .
By substitution, (x + y) − (x′ + y′) ∈ I . By coset equality, (x + y) + I = (x′ + y′) + I . Hence
addition of cosets is well-de�ned. �

Now we consider whether the operations mean that quotient R/I really is a ring.

Theorem 3.48. Let R be a ring, and I an ideal. If we de�ne addition and multiplication as above,
then the quotient R/I satis�es the property of a ring.

(Because of this, from now on we call R/I the quotient ring of R modulo I .)

Proof. We have to prove ten properties: 5 for addition, 4 for multiplication, and distribution. This
is a lot, but they’re relatively easy; you basically apply and re-apply de�nitions. We’ll show four
of them here, and leave the rest to the reader to complete in the exercises. For all the properties
we show, let X ,Y ,Z ∈ R/I . By de�nition, we can �nd x ,y ∈ R such that X = x + I , Y = y + I , and
Z = z + I .

Addition is closed: By de�nition of the operation, X + Y = (x + y) + I . By closure of addition
in R, we know that x + y ∈ R. Elements of R/I consist of cosets of I whose o�sets are in R. By
de�nition, (x + y) + I is a coset, so (x + y) + I ∈ R/I .

Addition is commutative: We leave this to Exercise 3.50.
Addition is associative: We need to show that X + (Y + Z ) = (X + Y ) + Z . Substituting the

de�nition of coset addition for the inner sum, we have X + (Y + Z ) = X + [(y + z) + I ] and
(X + Y ) + Z = [(x + y) + I ] + Z . Substituting the de�nition of coset addition for the outer sum,
we have X + [(y + z) + I ] = [x + (y + z)]+ I and [(x + y) + I ]+Z = [(x + y) + z]+ I . Addition is
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associative in R, so we can rewrite the right-hand side of the �rst equation as [x + (y + z)] + I =
[(x + y) + z]+I . This is the right-hand side of the second equation, so we can chain our equations
together:

X + (Y + Z ) = X + [(y + z) + I ]
= [x + (y + z)] + I
= [(x + y) + z] + I
= [(x + y) + I ] + Z
= (X + Y ) + Z .

(Be sure you understand why each of those equalities is true!) We link the �rst and last expres-
sions in this chain of equalities to conclude that X + (Y + Z ) = (X + Y ) + Z .

Addition has an identity: We need to �nd an element of R/I that acts as an additive identity.
Since R/I ’s elements are cosets, we need to �nd a coset. The natural coset to consider is 0 + I , or
just plain I if you prefer (by Theorem 3.38), but we don’t. By de�nition of coset addition and the
additive identity property of R,

X + (0 + I ) = (x + 0) + I = x + I ,

and similarly
(0 + I ) + X = (0 + x ) + I = x + I ,

so 0 + I is indeed an additive identity of R/I .
Addition is invertible: We leave this to Exercise 3.51.
Multiplication is closed: We leave this to Exercise 3.52.
Multiplication is commutative: We leave this to Exercise 3.53.
Multiplication is associative: We leave this to Exercise 3.54.
Multiplication has an identity: We leave this to Exercises 3.55.
Multiplication distributes over addition: We need to show that X (Y + Z ) = XY + XZ .
We’ll start with the left-hand side. By de�nition of coset addition,X (Y + Z ) = X [(y + z) + I ].

By de�nition of coset multiplication,X [(y + z) + I ] = [x (y + z)]+ I . By the distributive property
of R’s operations, [x (y + z)] + I = (xy + xz) + I .

Now we look at the right-hand side. By de�nition of coset multiplication,XY+XZ = (xy + I )+
(xz + I ). By de�nition of coset addition, (xy + I ) + (xz + I ) = (xy + xz) + I .

The right-hand sides of the last equations in the previous two paragraphs are the same, so we
can chain our equations together:

X (Y + Z ) = X [(y + z) + I ]
= [x (y + z)] + I
= (xy + xz) + I

= (xy + I ) + (xz + I )

= XY + XZ .

(Be sure you understand why each of those equalities is true!) We link the �rst and last expres-
sions in this chain of equalities to conclude that X (Y + Z ) = XY + XZ . �
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Exercises
Exercise 3.49. Let R = Z14 and I = 〈7〉. Compute addition and multiplications tables for R/I .
Look carefully at the multiplication table: is R/I an integral domain? What about a �eld?

Exercise 3.50. Show that addition in a quotient ring is commutative.

Exercise 3.51. Show that addition in a quotient ring is invertible.

Exercise 3.52. Show that multiplicaiton in a quotient ring is closed.

Exercise 3.53. Show that multiplication in a quotient ring is commutative.

Exercise 3.54. Show that multiplication in a quotient ring is associative.

Exercise 3.55. Show that multiplication in a quotient ring has an identity.

3.5 Polynomial rings
So far we have worked with polynomials whose coe�cients were integers or rational numbers:
Z [x] and Q [x]. Those behaved like rings.

What if we wanted to study polynomials whose coe�cients are real numbers? Or, what if
their coe�cients come from a ring like Zm? Organizing those polynomials in sets also gives us a
ring.

Theorem 3.56. Let R be any ring, and R [x] the sets of all polynomials whose coe�cients are ele-
ments of R. This, too, is a ring, where addition and multiplication are de�ned by adding and multi-
plying coe�cients of like terms.

The proof is long and somewhat tedious, but there’s nothing particularly hard about it. If
you’re like most of us, you could always use more practice reading mathematics, so take the time
to read through each part of the proof. Make sure you understand each step. If you don’t, ask!
There’s no shame in asking about something like this — though you should of course make sure
that your question isn’t answered simply by looking up a de�nition.

Proof. Let f ,д,h ∈ R [x]. By de�nition, there existsmr ∈ N anda1, . . . ,am,b1, . . . ,bm, c1, . . . , cm ∈
R such that f =

∑m
i=0 aix

i , д = ∑m
i=0 bix

i , and h =
∑m

i=0 cix
i . (It is possible that one or more of

deg ( f ) < 0, deg (д) < 0, deg (h) < 0.) We prove the ten properties of a ring.
Addition is closed: By de�nition, f + д = ∑m

i=0 aix
i +

∑m
i=0 bix

i =
∑m

i=0 (ai + bi ) x
i . Addition is

closed in R, so ai +bi ∈ R, and each term of f +д has a coe�cient in R. By de�nition, f +д ∈ R [x].
Addition is commutative: As above, f + д = ∑m

i=0 (ai + bi ) x
i . Addition is commutative in R,

so ai + bi = bi + ai . By substitution, f + д = ∑m
i=0 (bi + ai ) x

i . On the other hand, we know by
de�nition that д + f =

∑m
i=0 (bi + ai ) x

i . By substitution, f + д = д + f .
Addition is associative: We need to show that ( f + д) +h = f + (д + h). By de�nition, f +д =∑m

i=0 (ai + bi ) x
i , so by substitution, ( f + д) + h =

[∑m
i=0 (ai + bi ) x

i
]
+ h. By de�nition,

( f + д) + h =


m∑
i=0

(ai + bi ) x
i

+ h =

m∑
i=0

[(ai + bi ) + ci]xi . (3.10)
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Similar reasoning gives us

f + (д + h) = f +


m∑
i=0

(bi + ci ) x
i

=

m∑
i=0

[ai + (bi + ci )]xi . (3.11)

The right-hand sides of equations (3.10) and (3.10) look nearly identical. Fortunately, addition is
associative inR, and this tells us that they are equal. By substitution, then, ( f + д)+h = f +(д + h).

Addition has an identity: We claim that 0, the zero polynomial (whose coe�cients are all 0), is
the identity of R [x]. To do that, we need to show that f + 0 = f and 0 + f = f for all f ∈ R [x].
By de�nition,

f + 0 = *
,

m∑
i=0

aix
i+
-
+

m∑
i=0

0 · xi =
m∑
i=0

(ai + 0) xi .

Since 0 is an identity in R, we know that each ai + 0 = ai , so f + 0 = f . Similar reasoning shows
that 0 + f = f , so that the zero polynomial is an identity in R [x].

Addition is invertible: We claim that the additive inverse of f is the polynomial whose coe�-
cients are the opposites of f ’s coe�cients. We will use −f as a shorthand; that is,

−f =
m∑
i=0

(−ai ) x
i .

To show that it is indeed an inverse, we need to show that f + (−f ) = 0 and (−f ) + f = 0. By
de�nition,

f + (−f ) = *
,

m∑
i=0

aix
i+
-
+ *

,

m∑
i=0

(−ai ) x
i+
-
=

m∑
i=0

[ai + (−ai )]xi =
m∑
i=0

0 · xi = 0 .

Similar reasoning shows that (−f ) + f = 0.
Multiplication is closed: By de�nition,

f д = *
,

m∑
i=0

aix
i+
-

*
,

m∑
i=0

bix
i+
-
=

2m∑
i=0

*.
,

∑
j+k=i

ajbk
+/
-
xi .

(Remember where we �rst addressed this in equation (2.1) on page 80.) Multiplication is closed
in R, so each ajbk ∈ R. Addition is closed in R, so each sum ∑

j+k=i ajbk ∈ R, so that each term of
f д has a coe�cient in R. By de�nition, f д ∈ R [x].

Multiplication is associative: By de�nition,

( f д) h =

*
,

m∑
i=0

aix
i+
-

*
,

m∑
i=0

bix
i+
-


*
,

m∑
i=0

cix
i+
-

=



2m∑
i=0

*.
,

∑
j+k=i

ajbk
+/
-
xi


*
,

m∑
i=0

cix
i+
-

=

3m∑
i=0




∑
`+`′=i



*.
,

∑
j+k=`

ajbk
+/
-
c`′





xi .
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Multiplication distributes over addition, so

( f д) h =
3m∑
i=0




∑
`+`′=i



∑
j+k=`

(
ajbk

)
c`′





xi .

We can combine the sum of sums as follows:

( f д) h =
3m∑
i=0




∑
(j+k )+`′=i

(
ajbk

)
c`′



xi . (3.12)

Similar reasoning gives us,

f (дh) =
3m∑
i=0




∑
`+(j+k )=i

a`
(
bjck

)

xi .

The trick here is to notice that we can rename `, j,k in this last equation to j,k, `′, respectively,
and the equation is still true. That is,

f (дh) =
3m∑
i=0




∑
j+(k+`′)=i

aj (bkc`′ )


xi .

This looks an awful lot like equation (3.12), except for the parentheses in the wrong place. But,
multiplication is associative in R, so the two are in fact the same.

Multiplication has an identity: We claim that 1, the polynomial whose constant term is 1 and
whose other coe�cients are all 0, is the identity of R [x]. To see why, observe that

f × 1 = *
,

m∑
i=0

aix
i+
-
(0 · xm + · · · + 0 · x + 1)

= (am · 0) x2m + (am · 0 + am−1 · 0) x2m−1 + · · · + (a1 · 1 + a0 · 0) x + a0 · 1 ,

which simpli�es as f × 1 = f . Similarly, 1 × f = f , so 1 is indeed the multiplicative identity of
R [x].

Multiplication distributes over addition: By de�nition,

f (д + h) = *
,

m∑
i=0

aix
i+
-

*
,

m∑
i=0

bix
i +

m∑
i=0

cix
i+
-

= *
,

m∑
i=0

aix
i+
-



m∑
i=0

(bi + ci ) x
i


=

2m∑
i=0



∑
j+k=i

aj (bk + ck )


xi .
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Multiplication distributes over addition in R, so

f (д + h) =
2m∑
i=0



∑
j+k=i

(
ajbk + ajck

)
xi . (3.13)

On the other hand,

f д + f h = *
,

m∑
i=0

aix
i+
-

*
,

m∑
i=0

bix
i+
-
+ *

,

m∑
i=0

aix
i+
-

*
,

m∑
i=0

cix
i+
-

=



2m∑
i=0

*.
,

∑
j+k=i

ajbk
+/
-
xi


+



2m∑
i=0

*.
,

∑
j+k=i

ajck
+/
-
xi



=

2m∑
i=0



∑
j+k=i

(
ajbk + ajck

)
xi .

The right hand side of this equation is identical to the right hand side of equation (3.13), so
f (д + h) = f д + f h, as desired. �

Example 3.57. The ring Z3 [x] has 18 polynomials of degree 2:

x2 2x2 x2 + x 2x2 + x
x2 + 1 2x2 + 1 x2 + x + 1 2x2 + x + 1
x2 + 2 2x2 + 2 x2 + x + 2 2x2 + x + 2

x2 + 2x 2x2 + 2x
x2 + 2x + 1 2x2 + 2x + 1
x2 + 2x + 2 2x2 + 2x + 2

Other degree-2 polynomials you might imagine simplify to one of these. For instance, −17x2 + 7
simpli�es to x2 + 2, thanks to congruence modulo 3.

Polynomial division
You will recall that polynomial division in Q [x] worked out �ne (Theorem 2.18) but not quite for
Z [x] (Corollary 2.21). This was because division of rational numbers is a proper operation — two
rationals in, one rational out — but division of integers is not a proper operation — two integers
in, two integers out. The same parallel carries over for the general ring setting: if a ring has a
proper division operation, then the proof of Theorem 2.18 should carries over with only minor
modi�cations.

But what sorts of rings have a “proper division operation”? Certainly any ring that behaves
like Q, where every nonzero element has a multiplicative inverse: �elds, of course! For instance,
we replace quotients of rational numbers by the product of a �eld element and its multiplicative
inverse. Writing and proving a theorem for this becomes a mere exercise in copying Theorem
2.18 and replacing Q with a symbol for an arbitrary �eld.
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Theorem 3.58 (The division theorem for polynomial rings over a �eld). Let F be a �eld, and
f ,d ∈ F [x]. There exist q, r ∈ F [x] such that

f = qd + r and either r = 0 or deg (r ) < deg (d ) .

In addition, q and r are uniquely determined by f and d .

Algorithm 3.1 on the following page, which is based on Algorithm 1.1 on page 16, produces
the result we want.

Example 3.59. Suppose F = Z7, which is a �eld by Theorem 3.4. We apply Algorithm 3.1 to
f = x5 + 2x2 + 1 and d = 2x3 + x .

• In step 1 we set r = x5 + 2x2 + 1 and q = 0.

• Since r , 0 and deg (r ) = 5 > 3 = deg (d ), we perform step 2.

– We set t = 1 × 2−1 × x5−3 = 4x2.
– Add t to q, resulting in q = 4x2.
– Subtract td from r , resulting in

r =
(
x5 + 2x2 + 1

)
− 4x2

(
2x3 + x

)
= 3x3 + 2x2 + 1 .

(Recall that −4 = 3 in Z7.)

• Since r , 0 and deg (r ) = 3 = deg (d ), we perform step 2.

– We set t = 3 × 2−1 × x3−3 = 5.
– Add t to q, resulting in q = 4x2 + 5.
– Subtract td from r , resulting in

r =
(
3x3 + 2x2 + 1

)
− (5)

(
2x3 + x

)
= 2x2 + 2x + 1 .

(Recall that −5 = 2 in Z7.)

• At this point r , 0 but deg (r ) = 2 < deg (d ), so we proceed to step 3 and return q and r .

It is easy to verify that

qd + r =
(
4x2 + 5

) (
2x3 + x

)
+

(
2x2 + 2x + 1

)
=

(
8x5 +��

�*0
14x3 + 5x

)
+

(
2x2 + 2x + 1

)
= x5 + 2x2 +��>

0
7x + 1

= f .
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Algorithm 3.1 Polynomial division
inputs

• f ,d ∈ F [x], where F is a �eld

outputs

• q,d ∈ F [x] such that

– f = qd + r , and
– either r = 0 or deg (r ) < deg (d )

do

1. let r = f , q = 0

2. while r , 0 and deg (r ) ≥ deg (d )

(a) let t = lc (r ) × lc (d )−1 × xdeg(r )−deg(d )

(b) add t to q

(c) subtract td from r

3. return q and r

Proof of Theorem 3.58. If Algorithm 3.1 terminates correctly, the resultingq and r will satisfy The-
orem 3.58, so we prove that Algorithm 3.1 terminates correctly.

Termination? If f = 0, then step 1 sets q = 0 and r = f = 0, so nothing happens at step 2, and
step 3 returns q = r = 0, in which case

qd + r = 0 = f .

Not only has the algorithm terminated, we see that the output is correct.
Otherwise, f , 0. Step 1 sets q = 0 and r = f . If deg ( f ) < deg (d ), then nothing happens at

step 2, and step 3 returns q = 0 and r = f , in which case

qd + r = f ,

and deg (r ) = deg ( f ) < deg (d ). Not only has the algorithm terminated, we see that the output
is correct.

That leaves the case f , 0 and deg ( f ) ≥ deg (d ). We claim that every time we perform step
2, the degree of r decreases. To see why, notice that we choose t such that, by substitution,

t × lt (d ) =
[
lc (r ) × lc (d )−1 × xdeg(r )−deg(d )

]
×

[
lc (d ) × xdeg(d )

]

= lc (r ) ×
[
lc (d )−1 × lc (d )

]
× xdeg(r )−deg(d )+deg(d )

= lt (r ) .
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Subtracting td from r thus cancels lt (r ), leaving us with a polynomial of smaller degree.
Recall that the degree of a polynomial is a natural number. If we denote the degrees of r on

each pass through the loop of step 2 as n0, n1, . . . , then n0 > n1 > · · · . This is a nonincreasing
sequence of natural numbers. By Theorem 1.28, this sequence must eventually stabilize, so we
cannot perform step 2 inde�nitely. Eventually we must pass on to step 3, which terminates the
algorithm.

Correctness? We have two things to prove: that f = qd+r , and that r = 0 or deg (r ) < deg (d ).
We consider the second one �rst.

• To show that r = 0 or deg (r ) < deg (d ) we have two subcases.

– If the returned value is r = 0, then we are done.
– Otherwise, the condition on step 2 requires the algorithm to continue as long as

deg (r ) ≥ deg (d ). We now know the algorithm terminates, so the loop cannot con-
tinue inde�nitely, so the values returned in step 3 satisfy deg (r ) < deg (d ).

• To show that f = qd + r we again have two subcases.

– If the algorithm does not perform step 2, then we saw already that f = qd + r .
– Otherwise, enumerate each t computed in step 2(a) of the algorithm as t0, t1, . . . , tlast.

The algorithm returns

q = t0 + t1 + · · · tlast and r = f − t1d − t2d − · · · − tlastd .

By substitution,

qd + r = (t0 + · · · + tlast) d + ( f − t1d − · · · − tlastd )

= (t0d + · · · + tlastd ) + ( f − t1d − · · · − tlastd )

= f .

We still have to show that q and r are unique. Suppose that in addition to q and r , we can �nd
q̂, r̂ ∈ Q [x] that satisfy the theorem. By substitution,

qd + r = q̂d + r̂ .

Rewrite as
(q − q̂) d = r̂ − r .

By Theorem 2.4, either r̂ − r = 0 or deg (r̂ − r ) ≤ max (deg (r̂ ) , deg (r )) < degd . Similarly,4
q − q̂ = 0 or deg ((q − q̂) d ) = deg (q − q̂) + deg (d ) ≥ deg (d ). The degree of the left hand side
cannot be smaller than the degree of the right hand side; they have to be equal. We conclude that
r̂ − r = 0 and q − q̂ = 0; or, r = r̂ and q = q̂.

Regardless of the situation, the outputs of Algorithm 3.1 satisfy the stated requirements. The
algorithm terminates correctly. As per the discussion at the beginning of the proof, this proves
Theorem 3.58. �

4Once again, the zero product property has an implied role here; see if you can spot it!
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A neat consequence of Theorem 3.58 is that polynomials over a �eld always form principal
ideal rings.

Theorem 3.60. If F be a �eld, then F [x] is a principal ideal ring.

Proof. Let F be a �eld, and let I be any idea of F [x]. Consider the following steps:

• Let D = {deg ( f ) : f ∈ I\ {0}}; that is, D is the set of degrees of all nonzero polynomials.

• The degree of a polynomial is a natural number. By the Well-Ordering Principle, it has a
minimum element; call that element d .

• Let д ∈ I be any polynomial of degree d .

By absorption, any multiple of д is also in I , so 〈
д
〉
⊆ I .

We claim that I = 〈
д
〉. To see why, let f ∈ I , and apply Theorem 3.58 to compute q,d ∈ F [x]

such that f = qд + r and either r = 0 or deg (r ) < deg ( f ). Rewrite f = qд + r as r = f − qд. By
absorption, qд ∈ I , and by closure of subtraction, f −qд ∈ I , so in fact r ∈ I . If r = 0, then f = qд,
which implies f ∈

〈
д
〉, and we are �ne. Otherwise, deg (r ) < deg (д), so we have a found in I a

nonzero polynomial, r , whose degree is smaller than the degree of д.
This contradicts the construction of д, whose degree is minimal! The only assumption we

made that was not well-founded was the assumption that r , 0. It follows that r = 0. As we
wrote above, this implies f ∈

〈
д
〉. Since f was arbitrary in I , we see that I ⊆ 〈

д
〉. We already

showed that 〈
д
〉
⊆ I , so we must actually have 〈

д
〉
= I . �

The proof of Theorem 3.60 uses a neat trick that is important enough to highlight.5

Lemma 3.61. Let F be a �eld, I an ideal of F [x], and д the generator of I . Let f ∈ F [x], and r the
remainder of dividing f by д. Then f ∈ I if and only if r is.

Proof. Let q be the quotient associated with dividing f by д, so that f = qд + r . By absorption,
qд ∈ I . If r ∈ I , then Exercise 3.26 tells us that qд + r ∈ I , and by substitution, f ∈ I as well.
Conversely, if f ∈ I , then by closure of subtraction, f − qд ∈ I , and by substitution, r ∈ I as
well. �

Quotient rings from polynomial rings
Once we have polynomial rings, we can make ideals from them, and thus quotient rings. We will
show that the remainders from polynomial division make it easy to think about quotient rings —
just as it helps with congruence.

Example 3.62. Let R = Z3 [x] and I =
〈
x2 + 1

〉
. The notation “Z3 [x]” means the set of polyno-

mials whose coe�cients are elements of Z3; by Theorem 3.56, this set is also a ring.
Consider two elements of R/I . They have the form f + I and д + I , where f and д are polyno-

mials whose coe�cients are elements of Z3. By Theorem 3.38, f + I = д+ I if and only if f −д ∈ I .
But how do we decide whether f − д ∈ I? By Lemma 3.61, f − д ∈ I if and only if its remainder
after division by x2 + 1 is 0.

5In fact, this lemma is an very important tool in higher algebra.
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We can also take a di�erent route. Rather than divide f − д, let’s divide each of f and д by
x2 + 1, �nding quotients q f ,qд and remainders r f , rд. If f + I = д + I , then f − д ∈ I , and by
substitution,

f − д =
[
q f

(
x2 + 1

)
+ r f

]
−

[
qд

(
x2 + 1

)
+ rд

]
=

(
q f − qд

) (
x2 + 1

)
+

(
r f − rд

)
.

Rewrite this as
r f − rд = ( f − д) −

(
q f − qд

) (
x2 + 1

)
.

By absorption and closure of subtraction, the right-hand side is in I , and that forces the left-hand
side to be in I . If r f − rд = 0, then the remainders of dividing f and д by x2 + 1 are the same.
Otherwise

deg
(
r f − rд

)
≤ max

{
deg

(
r f

)
, deg

(
rд

)}
< deg

(
x2 + 1

)
,

but this cannot be, because r f − rд ∈ I , and
(
x2 + 1

)
-

(
r f − rд

)
if they are nonzero and of smaller

degree. Hence r f − rд = 0.
In other words, we can �nd whether two cosets are the same by dividing their o�sets by x2+1.

For instance, suppose

p = x7 + x5 + 4x3 + 2x2 + 5x + 6 ,
q = x5 + 2x3 + x2 + 2x + 5 , and
r = x7 + x5 + 3x2 + 3x + 5 .

After dividing by x2 + 1, we �nd that

p = (x + 4) + I , q = (x + 4) + I , and r = (3x + 2) + I .

Hence, p + I = q + I and p ≡ q (mod I ), while p + I , r + I and p . q (mod I ).

This holds true in general.

Theorem 3.63 (Coset equality for F [x]). Let F be a �eld, and I an ideal of F [x]. Let д be the
generator of I , and let f ,h ∈ F [x]. The cosets f + I and h + I are identical if and only if the
remainders of dividing f and h by д are identical.

Proof. The proof is nearly identical to the discussion in Example 3.62, so be sure you understand
that �rst.

Throughout the proof, let q f , r f ∈ F [x] and qh, rh ∈ F [x] be the quotients and remainders of
dividing f and h by д, respectively.

Assume that h+ I and h+ I are identical. By coset equality, f −h ∈ I . By Theorem 3.60, F [x] is
a principal ideal ring, so I =

〈
д
〉, so f −h is a multiple of д. Let q f −h, r f −h ∈ F [x] be the quotient

and remainder of dividing f − h by д. We just said that f − h is a multiple of д, so r f −h = 0; that
is, f − h = q f −hд. By substitution,

f − h =
(
q f д + r f

)
− (qhд + rh ) =

(
q f − qh

)
д +

(
r f − rh

)
.

Also by substitution,
q f −hд =

(
q f − qh

)
д +

(
r f − rh

)
.
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Rewrite this as [
q f −h −

(
q f − qh

)]
д = r f − rh .

If r f − rh , 0, then the left-hand side of the equation is not 0, so the two sides have equal degree.
However,

deg
( [
q f −h −

(
q f − qh

)]
д
)
= deg

[
q f −h −

(
q f − qh

)]
+ deg (д)

≥ deg (д)
> max

{
deg

(
r f

)
, deg (rh )

}

= deg
(
r f − rh

)
,

so the two sides must have di�erent degrees, a contradiction. Hence r f − rh = 0, and the remain-
ders from dividing f and h by д are the same.

Conversely, assume that the remainders of dividing f and h by д are the same. We can rewrite
the equation f = q f д + r f as f − r f = q f д. By absorption, q f д ∈ I , so by substitution, f − r f ∈ I ,
and by coset equality, f + I = r f + I . Similarly, h + I = rh + I . By substitution, r f + I = rh + I . Also
by substitution, f + I = h + I , as claimed. �

Exercises
Exercise 3.64 (The Freshman’s Dream). Show that (x + 1)2 = x2+1 if we perform the arithmetic
in Z [x].
Remark: The name of this exercise is inspired by the unfortunate phenomenon where freshmen
who supposedly know algebra think it’s always true.

Exercise 3.65. List all the degree-3 polynomials of Z2 [x]. (There are 8 of them.)

Exercise 3.66. There are exactly 4 elements of Z2 [x] /
〈
x2 + x + 1

〉
. List them all.

Exercise 3.67. In Exercise 3.66, you found four elements of Z2 [x] /
〈
x2 + x + 1

〉
. Construct ad-

dition and multiplication tables for this ring.

Exercise 3.68. Which of the following polynomials are congruent, if any?

• 3x7 + 3x5 + 4x3 + 2x2 + 4

• 3x5 + 4x4 + 4x3 + 6x2 + 4x + 4

• 4x9 + 4x7 + 2x6 + 4x4 + 5x2 + 3x + 5

Exercise 3.69. The following exercises illustrate how polynomial roots behave di�erently when
the �eld is di�erent.

(a) Find a root of x2 + 1 in Z2 [x].

(b) Show that x2 + x + 1 does not have a root in Z2 [x].

(c) In Exercise 3.67, you constructed addition and multiplication tables for Z [x] /
〈
x2 + x + 1

〉
.

Use this table to show that Z [x] /
〈
x2 + x + 1

〉
contains a root of x2 + x + 1.
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Exercise 3.70. Show that the Factor Theorem (Exercise 2.25) remains true regardless of the un-
derlying �eld. That is, let F be any �eld. Show that if f ∈ F [x] and s ∈ F is a root of f , then x − s
is a factor of f .
Hint: The proof should be more or less identical.

Exercise 3.71. Show that the Remainder Theorem (Exercise 2.26) remains true regardless of the
underlying �eld. That is, let F be any �eld. Show that if f ∈ F [x] and s ∈ F, then the remainder
of dividing f by x − s is f (s ).
Hint: The proof should be more or less identical.

Exercise 3.72. Prove the Euclidean Algorithm works in a polynomial ring F [x], where F is any
�eld.
Hint: Follow the proof of Theorem 2.34, changing only what you absolutely have to change.

Exercise 3.73. Polynomial division does not work when the coe�cients come from an arbitrary
ring. You’ve already seen this with Z [x]. However, we were able to adapt division to work in
Z [x]; see Corollary 2.21. This does not work in an arbitrary ring. Even though Z is a not a �eld,
it still satis�es an important property which all �elds satisfy, but arbitrary rings do not. What is
it, and why does it matter?
Hint: There is more than one way to answer this. For a more speci�c hint, try to divide 2x + 2
by itself in Z6. — More speci�cally, see if you can �nd more than one quotient. Once you can do
that, ask yourself why. It might help to review the introduction to Zm.

3.6 Isomorphism
In Examples 3.44 and 3.45 we saw that some quotient rings have addition and multiplication tables
that look exactly like the addition and multiplication tables of rings we’re more familiar with. In
that case, Z/ 〈4〉 looked like Z4,

+ I 1 + I 2 + I 3 + I
I I 1 + I 2 + I 3 + I

1 + I 1 + I 2 + I 3 + I I
2 + I 2 + I 3 + I I 1 + I
3 + I 3 + I I 1 + I 2 + I

× I 1 + I 2 + I 3 + I
I I I I I

1 + I I 1 + I 2 + I 3 + I
2 + I I 2 + I I 2 + I
3 + I I 3 + I 2 + I 1 + I︸                                                                                         ︷︷                                                                                         ︸

Z/〈4〉
Z4︷                                                                                         ︸︸                                                                                         ︷

+ I 1 + I 2 + I 3 + I
I I 1 + I 2 + I 3 + I

1 + I 1 + I 2 + I 3 + I I
2 + I 2 + I 3 + I I 1 + I
3 + I 3 + I I 1 + I 2 + I

× I 1 + I 2 + I 3 + I
I I I I I

1 + I I 1 + I 2 + I 3 + I
2 + I I 2 + I I 2 + I
3 + I I 3 + I 2 + I 1 + I
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. . . and Z [x] / 〈2,x〉 looked like Z2,

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1︸                           ︷︷                           ︸

Z2

⇔

+ I 1 + I
I I 1 + I

1 + I 1 + I I

× I 1 + I
I I I

1 + I I 1 + I︸                                                  ︷︷                                                  ︸
Z[x]/〈2,x〉

.

They have the same number of elements, and their addition and multiplication tables have the
same shape. Mathematicians call this property “isomorphism”, from the Greek words for “iden-
tical form.” We use the � symbol as a shorthand, which means that we can write

Z/ 〈4〉 � Z4 and Z [x] / 〈2,x〉 � Z2 .

It’s not a challenge to compare the addition and multiplication tables of two small rings like
Z4 and Z/ 〈4〉. However, this is infeasible when the rings are large, and impossible when they are
in�nite. We need another technique to determine whether rings like this are isomorphic.

The isomorphism function
An important tool that mathematicians use to study in�nite sets is the function. Way back in
Section 1.2 we stated that a function f from a set S to a set T is a subset of S × T such that if
(s, t ) , (s,u) ∈ f , then t = u. A more traditional way of writing this is that f (s ) = t and f (s ) = u
only if t = u. In “plain English,” we’re saying that we can always predict the result of applying f
to an object.

For example, you have probably seen the function f (x ) = x2. Regardless of the value of x we
start with, f will give us only one result: (−2, 4), (1, 1), (2, 4), and so forth. Contrast this to the
relationy2 = x . For every positive value of x , the relation gives us twoy-values: (2, 4) and (−2, 4),
(1, 1) and (−1, 1), and so forth. This behavior is non-deterministic, and we don’t generally like it.

Functions by themselves aren’t enough to de�ne isomorphism, but we can use them to check
for isomorphism in the following way. Let R and S be two rings that we want to check for
isomorphism. First determine a function f that maps from R to S .

1. Check whether the sets have the same size:

(a) f doesn’t confuse any two elements in R with the same element in S ; the technical
phrase is that f is one-to-one. Distinct inputs have distinct outputs; put another way,
if two things seem to give you the same result, they must be the same thing.
In symbols, write this as follows: for every a,b ∈ R, if f (a) = f (b), then a = b. (We
call a the preimage of b.)

(b) f misses nothing in S ; the technical phrase is that f maps onto S . In symbols, we
write this as follows: for every c ∈ S , we can �nd a ∈ R such that f (a) = c .

2. Check the corresponding elements add or multiply to corresponding elements. In symbols,
we write this as follows:

f (a + b)︸    ︷︷    ︸
what a+b corresponds to

= f (a)︸︷︷︸
what a corresponds to

+ f (b)︸︷︷︸
what b corresponds to
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and
f (ab)︸︷︷︸

what ab corresponds to

= f (a)︸︷︷︸
what a corresponds to

· f (b)︸︷︷︸
what b corresponds to

.

All told, we have four things to check.

Example 3.74. Is Z4 � Z/ 〈4〉? We already know that it is, but let’s try using this four-step
de�nition. First we need a function that maps from Z4 to Z/ 〈4〉. Let’s try this one:

f : Z4 → Z/ 〈4〉 by f (a) = a + 〈4〉 .

one-to-one? Let a,b ∈ Z4, and assume that f (a) = f (b). By substitution, a + 〈4〉 = b + 〈4〉.
By coset equality, a − b ∈ 〈4〉. By de�nition of a principal ideal, 4 | (a − b). By de�nition of
congruence, a ≡ b (mod 4). By de�nition of Z4, a = b.

onto? Let A be any coset of Z/ 〈4〉. We saw in Example 3.35 that A = a + 〈4〉 for some a ∈
{0, 1, 2, 3}. By de�nition of f , we see that f (a) = a + 〈4〉. Hence every element of Z [x] / 〈x + 1〉
has a preimage in Z.

preserves addition? Let a,b ∈ Z4. By de�nition of Z4, a + b = c where c is the remainder
of dividing a + b by 4. Hence, we need f (c ) = f (a + b) = f (a) + f (b). By de�nition of the
function, f (a) = a + 〈4〉, f (b) = b + 〈4〉, and f (c ) = c + 〈4〉. By de�nition of coset arithmetic,
f (a) + f (b) = (a + b) + 〈4〉. To �nish the proof, we work backwards. We need to show that
(a + b)+ 〈4〉 = c+ 〈4〉. This is true only if [(a + b) − c] ∈ 〈4〉, which is true only if 4 | [(a + b) − c];
and this is true only if a+b ≡ c (mod 4), which is true only if a+b and c have the same remainder
after dividing by 4 — but we de�ned c as the remainder of dividing a + b by 4, so we are done.

preserves multiplication? Let a,b ∈ Z4. By de�nition of Z4, ab = c where c is the remainder
of dividing ab by 4. Hence, we need f (c ) = f (ab) = f (a) f (b). By de�nition of the function,
f (a) = a + 〈4〉, f (b) = b + 〈4〉, and f (c ) = c + 〈4〉. By de�nition of coset arithmetic, f (a) f (b) =
(ab) + 〈4〉. To �nish the proof, we work backwards. We need to show that (ab) + 〈4〉 = c + 〈4〉.
This is true only if (ab − c ) ∈ 〈4〉, which is true only if 4 | (ab − c ); and this is true only if ab ≡ c
(mod 4), which is true only if ab and c have the same remainder after dividing by 4 — but we
de�ned c as the remainder of dividing ab by 4, so we are done.

The next example recalls a di�erent similarity.

Example 3.75. In Example 3.36, we determined that the cosets of Z [x] / 〈x + 1〉 have the form

{ . . . , −1 + 〈x + 1〉 , 〈x + 1〉 , 1 + 〈x + 1〉 , 2 + 〈x + 1〉 , . . .} ,

and we remarked that it looked an awful lot likeZ. Unfortunately, we cannot build comprehensive
addition and multiplication tables for an in�nite set. Fortunately, we now have the isomorphism
tool to help us out. First, we need a function that maps from Z to Z [x] / 〈x + 1〉. Let’s try this
one:

f : Z→ Z [x] / 〈x + 1〉 by f (a) = a + 〈x + 1〉 .

one-to-one? Let a,b ∈ Z, and assume that f (a) = f (b). By substitution, a + 〈x + 1〉 =
b + 〈x + 1〉. By coset equality, a − b ∈ 〈x + 1〉. By de�nition of a principal ideal, (x + 1) | (a − b).
If a,b ∈ Z, they are constant scalars, and deg (a) = deg (b) = 0, so deg (a − b) = 0, whereas
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deg (x + 1) = 1. A polynomial like x + 1 can only divide a smaller-degree polynomial like a − b
if the second polynomial is zero. That is, a − b = 0, or, a = b.

onto? Let A be any coset of Z [x] / 〈x + 1〉. From Example 3.36 we know that A = a + 〈x + 1〉
for some a ∈ Z. By de�nition of f , f (a) = a + 〈x + 1〉. Hence every element of Z [x] / 〈x + 1〉 has
a preimage in Z.

preserves addition? Let a,b ∈ Z. We need f (a + b) = f (a) + f (b). By de�nition, f (a) =
a+ 〈x + 1〉, f (b) = b+ 〈x + 1〉, and f (a + b) = (a + b)+ 〈x + 1〉. By de�nition of coset arithmetic,
f (a) + f (b) = (a + b) + 〈x + 1〉. By substitution, f (a + b) = f (a) + f (b).

preserves multiplication? Let a,b ∈ Z. We need f (ab) = f (a) · f (b). By de�nition, f (a) =
a + 〈x + 1〉, f (b) = b + 〈x + 1〉, and f (ab) = ab + 〈x + 1〉. By de�nition of coset arithmetic,
f (a) · f (b) = ab + 〈x + 1〉. By substitution, f (ab) = f (a) · f (b).

Is the isomorphism relation like equality or congruence?
Now that we have shown that Z4 � Z/ 〈4〉, you might be tempted to write Z/ 〈4〉 � Z4. Unfor-
tunately, we can’t do that quite yet. The de�nition of isomorphism requires that we identify a
function that maps from the �rst ring to the second, and the function f that we found in Example
3.74 maps from Z4 to Z/ 〈4〉, not the other way around! In this case, it’s not too hard to �nd an
isomorphism from Z/ 〈4〉 to Z4, but is that true in general?

Here’s something else you might like to do. Suppose that R, S,T are all rings, and you know
that R � S and S � T . You may be tempted to write R � T ; after all, if R “has the same shape”
as S , and S “has the same shape” as T , shouldn’t R “have the same shape” as T ? Intuitively, this
makes sense, but it can happen in mathematics that things that look intuitive don’t pan out when
we investigate them further. (Recall, for instance, Exercise 3.64, “The Freshman’s Dream.”)

What we’re asking is whether the isomorphism relation behaves like equality, or, whether the
isomorphism relation is an equivalence relation. We talked about that back in Section 1.1; then
revisited it for Theorem 1.84 in Section 1.5. If you forgot it, it might be advisable to review the
speci�cs of the de�nition, but the ideas are all in the theorem below.

Theorem 3.76. Isomorphism is an equivalence relation.

Proof. We have to show that isomorphism is re�exive, symmetric, and transitive. Let R be a ring.
re�exive? We need to show that R � R. First we need a function from R to itself. The most

obvious candidate is the identity function, ι : R → R by ι (r ) = r . If this is an isomorphism, then
we are done. But is it? Let’s check the properties.

To show that ι is one-to-one, let a,b ∈ R and assume that ι (a) = ι (b). By de�nition of ι,
ι (a) = a and ι (b) = b. By substitution, a = b, so ι has not confused two di�erent inputs for the
same output, so ι is one-to-one.

To show that ι is onto, let b ∈ R. We need to �nd a ∈ R such that ι (a) = b. By de�nition,
ι (a) = a, so if we choose a = b then we have what we need. Every element of R has a preimage
in R under ι, so ι is onto.

To show that ι preserves the operations, let a,b ∈ R. By de�nition, ι (a) = a, ι (b) = b,
ι (a + b) = a + b, and ι (ab) = ab. By substitution, ι (a + b) = ι (a) + ι (b) and ι (ab) = ι (a) ι (b);
that is, ι preserves the operations. We already showed that ι is one-to-one and onto, so ι is an
isomorphism, and R � R.



CHAPTER 3. RINGS AND FIELDS 147

symmetric? Let S be a ring, and assume that R � S . We need to show that S � R, also. For
that, we need to �nd an isomorphism that maps from S to R. Why not use information we already
have? We already know that there’s a isomorphism f that maps from R to S . If we could reverse
f and preserve the isomorphism property, then we’d be done. But how do we “reverse” a function
f ? If it has an inverse function, that will do the trick. Does f have an inverse function? After
all, only one-to-one funtions have inverse functions. Recall that the de�nition of an isomorphism
like f is that it must be one-to-one: so, yes, f has an inverse function, f −1, and it maps from S to
R, just as we need. It remains to show that f −1 satis�es the isomorphism properties.

To show that f −1 is one-to-one, let c,d ∈ S and assume that f −1 (c ) = f −1 (d ). By de�nition
of an inverse function, there exist a,b ∈ R such that f (a) = c , f (b) = d , and thus a = f −1 (c )
and b = f −1 (d ). By substitution, a = b. But f is a function, so f (a) = f (b), which implies that
c = d . The inverse function f −1 has not confused two di�erent inputs for the same output, so
f −1 is one-to-one.

To show that f is onto, let a ∈ R. We need to �nd c ∈ S such that f −1 (c ) = a. Let c = f (a);
by de�nition of an inverse function, f −1 (c ) = a. Every element of R has a preimage in S under
f −1, so f −1 is onto.

To show that f −1 preserves the operations, let c,d ∈ S . We need to show that f −1 (c + d ) =
f −1 (c ) + f −1 (d ) and f −1 (cd ) = f −1 (c ) f −1 (d ). To do this, let a = f −1 (c ) and b = f −1 (d ).
By de�nition of an inverse function, f (a) = c and f (b) = d . Recall that f is an isomorphism,
so f (a + b) = f (a) + f (b) and f (ab) = f (a) · f (b). By substitution, f (a + b) = c + d and
f (ab) = cd . By de�nition of an inverse function, a + b = f −1 (c + d ) and ab = f −1 (cd ). By a
chain of subsitutions, then,

f −1 (c + d ) = a + b = f −1 (c ) + f −1 (d ) and f −1 (cd ) = ab = f −1 (c ) f −1 (d ) ;

that is, f −1 preserves the operations. We already showed that f −1 is one-to-one and onto, so f −1

is an isomorphism.
transitive? We leave this to Exercise 3.83.
We have show that isomorphism is re�exive, symmetric, and transitive. It satis�es the re-

quirements of an equivalence relation. �

The Isomorphism Theorem
Finding an isomorphism from R to S can be di�cult. In fact, it might well be that R is not in fact
isomorphic to S . Amazingly, we can often use a ring that is not isomorphic to another to �nd a
ring that is.

Example 3.77. Z is not isomorphic to Z4, as the former is in�nite, while the latter is very �nite.
Nevertheless, there is a similarity between their operations. For instance, 2 + 3 = 5 in Z, and
while 5 < Z4, it is the case that 2 + 3 = 1 in Z4, and 5 ≡ 1 (mod 4).

By now you know that congruence is only a hop, skip, and a jump away from coset equality:
in this case,we can translate the action above as

(2 + 〈4〉) + (3 + 〈4〉) = 5 + 〈4〉 = 1 + 〈4〉 .

As it happens, we found that the quotient ring Z/ 〈4〉 turned out isomorphic to Z4.
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One of the key requirements of our theorem will be that the function preserve the operations;
this is so important that we give this property a name, homomorphism. With this in hand, we
can give isomorphism a simpler de�nition: an isomorphism is a homomorphism that is one-to-
one and onto.

Theorem 3.78 (The Isomorphism Theorem). Let R and S be rings, and suppose that we can �nd a
homomorphism f : R → S that maps onto S , but might not satisfy the one-to-one property.

(A) The set K =
{
r ∈ R : f (r ) = 0} is an ideal.

(B) The quotient ring R/K is isomorphic to S . In symbols, R/K � S .

(C) We can �nd an onto homomorphism ν : R → R/K and an isomorphism µ from R/K to S such
that f is the composition of µ with ν ; that is, f = µ ◦ ν .

We call K the kernel of a homorphism. It’s an important object of study in higher algebra.
Meanwhile, the relationship between f , ν , and µ satis�es the following diagram:

R
f //

ν !!

S

R/K

µ

==

The idea is that if you pick an element r ∈ R, you get the same s ∈ S regardless of the arrows
you choose to take: both f (r ) = s and (µ ◦ ν ) (r ) = µ (ν (r )) = s . Mathematicians would say that
“this diagram commutes.”

Proof. We leave (A) to the exercises, and show (C) before (B). We actually get (B) for free, since
the isomorphism µ of (C) shows that R/K � S .

De�ne ν : R → R/K by ν (r ) = r + K . We claim that ν is a homomorphism, and that ν is onto
R/K . To see that ν is a homomorphism, let a,b ∈ R. We need to show that ν (a + b) = ν (a)+ν (b).
By de�nition, ν (a) = a + K , ν (b) = b + K , and ν (a + b) = (a + b) + K . By the de�nition of coset
addition, (a + K ) + (b + K ) = (a + b) +K . By substitution, ν (a) + ν (b) = ν (a + b), so ν is indeed
a homomorphism. To see that ν is onto, let A ∈ R/K . By de�nition of coset, there exists a ∈ R
such that A = a +K . By de�nition, ν (a) = a +K = A, so every coset of R/K has a preimage in R,
and ν is thus an onto homomorphism.

De�ne µ : R/K → S in the following way: for any A ∈ R/K , choose an o�set a ∈ R such that
A = a + K , then set µ (A) = f (a). That is, µ maps A to whatever f would map A’s o�set.

Before we show that µ is the isomorphism we want, we have to make sure that it’s actually a
function. After all, any coset A ∈ R/K can have multiple representations: in Z/ 〈4〉 , for example,
we can write the coset 3 + 〈4〉 as 7 + 〈4〉, −13 + 〈4〉, or an in�nite number of other ways, too! If
f (3) , f (7) or f (7) , f (−13), then µ would not be a function, as it would give us di�erent
answers for the same coset, depending on which o�set we chose!

Proving that µ is in fact a function is called showing µ is well-de�ned: we have to show that
for any coset, µ produces one and only one result. Let A ∈ R/K be a coset, and suppose we can
write it two di�erent ways: A = a +K = b +K for some a,b ∈ R. We need to show that µ (A) has
only one value, regardless of whether we look at µ (a + K ) or µ (b + K ). Since µ is de�ned via f ,
we need to show that f (a) = f (b).
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How do we show that? Our di�culty is that a + K = b + K . By coset equality, a − b ∈ K . By
de�nition, we can �nd k ∈ K such that a−b = k . Rewrite this as a = b +k . Now apply de�nitions
and properties to reveal that

f (a) = f (b + k ) = f (b) + f (k ) = f (b) + 0 = f (b) . (3.14)

Linking the ends of the chain together, we have f (a) = f (b). It doesn’t matter how we write A:
whether we write it as a +K or as b +K , we still have µ (A) = f (a) = f (b), so µ is well-de�ned.

We still have to show that µ is a homormophism. To show that it’s one-to-one, letA,B ∈ R/K ,
and assume that µ (A) = µ (B). By de�nition, there exist a,b ∈ R such thatA = a+K and B = b+K .
By substitution, µ (a + K ) = µ (b + K ). By de�nition, µ (a + K ) = f (a) and µ (b + K ) = f (b). By
substitution, f (a) = f (b). Rewrite as f (a) − f (b) = 0. By Lemma (3.79) below, f (a − b) = 0.
By de�nition, a − b ∈ K : it maps to 0, and K contains all elements of R that map to 0. By coset
equality, a + K = b + K . By substitution, A = B. We have now shown that µ is one-to-one.

To show that it’s onto, let s ∈ S . Recall that f is itself onto, so there exists r ∈ R such that
f (r ) = s . By de�nition, µ (r + K ) = f (r ) = s , so s has a preimage in R/K under µ, and µ maps
onto S .

To show that it preserves the operations, let A,B ∈ R/K . We need to show that µ (A + B) =
µ (A) + µ (B) and µ (AB) = µ (A) µ (B). By de�nition, there exist a,b ∈ R such that A = a +K and
B = b + K . The de�nition of coset arithmetic tells us that A + B = (a + b) + K and AB = ab + K .
By de�nition, µ (A + B) = f (a + b) and µ (AB) = f (ab). Recall that f is a homomorphism. By
de�nition, f (a + b) = f (a) + f (b) and f (ab) = f (a) f (b). By de�nition, f (a) = µ (a + K ) and
f (b) = µ (b + K ). Linking the ends of the chains of equations, as well as making use of a �nal
substitution, we obtain

µ (A + B) = µ (A) + µ (B) and µ (AB) = µ (A) µ (B) .

We have shown that µ is a homomorphism. We already showed that it was one-to-one and onto,
so µ is an isomorphism.

Finally, we show that f = µ ◦ ν . Let r ∈ R, and s = f (r ). Applying de�nitions obtains

(µ ◦ ν ) (s ) = µ (ν (s )) = µ (s + K ) = f (s ) ,

as desired. �

Lemma 3.79. If f is a homomorphism from a ring R to a ring S , then

(A) f (0) = 0;

(B) f (−a) = −f (a); and

(C) f (a − b) = f (a) − f (b).

Proof. (A) By the identity property, 0 + 0 = 0. By substitution, f (0 + 0) = f (0). By the homor-
mophism property, f (0 + 0) = f (0) + f (0). By subsitution, f (0) + f (0) = f (0). Add −f (0) to
both sides, and we have −f (0) + [f (0) + f (0)] = −f (0) + f (0). By the associative property, we
can rewrite the left-hand side as [−f (0) + f (0)]+ f (0) = −f (0)+ f (0). By the inverse property,
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we can rewrite the equation as 0 + f (0) = 0, and by the identity property we can rewrite it as
f (0) = 0, as desired.

(B) By the inverse property, a + (−a) = 0. By substitution and (A), f (a + (−a)) = f (0) = 0,
so f (a + (−a)) = 0. By the homomorphism property, f (a) + f (−a) = 0. Rewrite as f (−a) =
−f (−a), and we are done.

(C) By the de�nition of subtraction, Exercise (3.9) and Theorem (3.7), f (a) − f (b) = f (a) +
[−f (b)]. By part (B), f (a) + [−f (b)] = f (a) + f (−b). By the homorphism property, f (a) +
f (−b) = f (a + (−b)). As above, f (a + (−b)) = f (a − b). Linking the ends of this chain of
equations together, we have f (a) − f (b) = f (a − b). �

Exercises
Exercise 3.80. State the de�nition or property that justi�es each equality of the chain of equa-
tions (3.14).

Exercise 3.81. Show that Z2 � Z [x] / 〈2,x〉.
Hint: Imitate Examples 3.74 and 3.75

Exercise 3.82. Let R be a ring, and r ∈ R.

(a) If 1 × r = 0, then r = 0. In other words, the Zero Product Rule always applies to 1, even if it
does not generally apply in R.
Hint: What do we already know is special about 1?

(b) If f is a homomorphism from R to a ring S , then f (1) = 1.
Hint: Try something similar to Lemma (3.79)(A), only using multiplication instead of addi-
tion. You’ll also need part (a) of this exercise.

Exercise 3.83. Show that isomorphism is transitive. That is, show that if R, S , and T are rings
with R � S and S � T , then R � T .
Hint: Use the isomorphisms f : R → S and д : S → T to build a new isomorphism h : R → T .
Don’t forget to prove the four isomorphism properties.

Exercise 3.84. Let f be a homomorphism from a ring R to a ring S , and let K be its kernel; that
is,

K =
{
r ∈ R : f (r ) = 0} .

Show that K is an ideal of R.
Hint: This really ought to spill out from applying the de�nitions of homomorphism, ideal, and
kernel.

3.7 Factorization
Section 2.4 introduced the idea of units and associates in order to bring some precision to the
factorization of polynomials. These ideas carry over to an arbitrary ring. Given a ring R and
nonzero elements a, r , s, t ∈ R, we say that:
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• r is a unit of R if it has a multiplicative inverse in R;

• a is an associate of r if there is a unit u ∈ R such that a = ur ;

• r factors in R if r = st and neither s nor t is a unit; and

• r is irreducible over R if it is not a unit of R and does not factor in R.

Example 3.85. You might think that 6 = 2 × 3 means that “6 factors,” but in fact it depends on
the ring we’re working in. If we consider 6 as an element of of Z, then 6 factors indeed, because
neither 2 nor 3 is a unit.

However, if we consider 6 as an element ofQ, then 6 does not factor, because every expression
6 = ab involves units. For instance, 6 = 2 × 3, but 2 is a unit with inverse 1/2, and 3 is also a unit
with inverse 1/3. On the other hand, 6 is not irreducible, either, because 6 is itself a unit with
inverse 1/6.

Example 3.86. In a similar way, whether 2x + 2 = 2 (x + 1) is a factorization depends on the
ring we’re working it. If we consider 2x + 2 as an element of Z [x], then it factors indeed, because
neither 2 nor x + 1 is a unit.

However, if we consider 2x + 2 as an element of Q [x], then 2x + 2 does not factor, because
every expression 2x + 2 = pq involves units. For instance, 2x + 2 = 2 (x + 1), but 2 is a unit with
inverse 1/2.

More generally, if 2x + 2 = pq, then by substitution, 1 = deg (2x + 2) = deg (pq) = deg (p) +
deg (q). Linking the ends of the chain, we have 1 = deg (p) + deg (q). This is possible only if
deg (p) = 0 or deg (q) = 0, but in that case p or q is a nonzero constant polynomial, which always
has a multiplicative inverse in Q [x], and is thus a unit.

Sometimes, irreducible , prime
At this point we encounter a distinction with a di�erence. Recall from Theorem 1.64 that a prime
number, or an irreducible number, always satis�ed Euclid’s Lemma,

p | ab =⇒ p | a or p | b .

Theorem 2.45 gave us a similar result for polynomials. You might think, then, that this is true in
general.

Example 3.87. Let R =
{
a + b

√
−5 : a,b ∈ Z

}
. You will show in Exercise 3.97 that R is a ring.

However, something strange happens. To explain why takes several steps.
We �rst claim that 1 +

√
−5 and 1 −

√
−5 are irreducible. To see why, suppose there exist

a + b
√
−5, c + d

√
−5 ∈ R such that

1 +
√
−5 =

(
a + b

√
−5

) (
c + d

√
−5

)
.

Expanding the right-hand side gives us

1 +
√
−5 = (ac − 5bd ) + (ad + bc )

√
−5 .
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Rewrite this again as
1 − (ac − 5bd ) =

√
−5 × [(ad + bc ) − 1] .

The left- and right-hand sides are equal, but the left-hand side is an integer, while the right-hand
side is not, unless both are 0:

1 − (ac − 5db) = 0 and (ad + bc ) − 1 = 0 .

Rewrite as
1 = (ac − 5db) and (ad + bc ) = 1 .

Suppose we know a and b. (We don’t, but pretend we do; that’s what “suppose” means.) We can
solve for c and d using a technique similar to elimination:

ac − 5bd = 1
ad + bc = 1 =⇒

acd − 5bd2 = d
− acd + bc2 = c

−b
(
c2 + 5d2

)
= d − c

=⇒ b
(
c2 + 5d2

)
= c − d .

Look at the left- and right-hand sides of that last equation. For any integer, c2 + 5d2 ≥ c2 ≥ c ,
with equality only if c = 1 and d = 0. Those values give us c + d

√
−5 = 1, and 1 is a unit, so we

don’t care about that case. Hence c , 1 or d , 0, and c2 + 5d2 > c , which means b
(
c2 + 5d2

)
> c .

The only way we can have b
(
c2 + 5d2

)
= c − d is if d < 0, but then |d | = −d , b > 0, and

b
(
c2 + 5d2

)
≥ c2 + 5d2 > c + 5 |d | > c − d ,

a contradiction. We conclude that 1+
√
−5 does not in fact factor. The proof for 1−

√
−5 is similar.

Notice that
(
1 +
√
−5

) (
1 −
√
−5

)
= 6. As you well know, 2 × 3 = 6. Are 2 and 3 irre-

ducible in R? Indeed they are. Suppose there exist a + b
√
−5, c + d

√
−5 ∈ R such that 3 =(

a + b
√
−5

) (
c + d

√
−5

)
. Expanding the right-hand side gives us

3 = (ac − 5bd ) + (ad + bc )
√
−5 .

Rewrite this again as
3 − (ac − 5bd ) = (ad + bc )

√
−5 .

As before, the left- and right-hand sides are equal if and only if they are both 0, so

3 − (ac − 5bd ) = 0 and ad + bc = 0 .

Rewrite this again as
ac − 5bd = 3 and ad + bc = 0 .

Once again, suppose we know a and b. We can solve for c and d using a technique similar to
elimination:

ac − 5bd = 3
ad + bc = 0 =⇒

acd − 5bd2 = 3d
− acd + bc2 = 0
−b

(
c2 + 5d2

)
= 3d

=⇒ b
(
c2 + 5d2

)
= −3d .
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Right away we see that b < 0. However,

���b
(
c2 + d2

) ��� = |b |
(
c2 + d2

)
≥ |b | d2 and |−3d | = 3 |d | .

The left-hand sides of each must be equal, so

3 |d | ≥ |b | d2 .

This is possible only if d ∈ {0,±1}, and if d = ±1 then 3 ≥ |b |, so b ∈ {0,±1,±2,±3}. Recall that
what we actually have to satisfy is b

(
c2 + 5d2

)
= −3d ; which values of b, c , and d satisfy this?

By testing each, we �nd that only one combination works:

(b, c,d ) = (0, c, 0) .

are the only possibilities. The factorization now becomes

3 = a × c .

Recall that a and c are integers, but 3 is irreducible as an integer. We conclude that it does not
factor in R, either. The proof that 2 does not factor in R is similar.

We have now show that 1 ±
√
−5, 2, and 3 are irreducible in R. Recall that(

1 +
√
−5

)
×

(
1 −
√
−5

)
= 6 = 2 × 3 .

Neither factor on the left divides either factor on the right, and vice-versa. This contradicts
Euclid’s Lemma in this ring.

Prime elements of a ring
We have seen that Euclid’s Lemma is valid in Z and Q [x] (Theorems 1.64 and 2.45), but not for
an arbitrary ring. Given that it is a very useful property, mathematicians made the following
choice. They kept the name “irreducible” to mean what we’ve called it all along, but gave the
word “prime” a di�erent meaning in ring theory. In a ring R, we say that a nonzero r ∈ R is
prime if it is not a unit and it satis�es Euclid’s Lemma; that is, for any a,b ∈ R such that r | ab,
at least one of r | a or r | b must be true.

Now that we’ve distinguished these two ideas, how do we decide when they are the same in
a ring?

Theorem 3.88. “Prime” and “irreducible” mean the same thing in Z, Zm ifm is a prime integer, and
F [x] whenever F is a �eld.

Proof. Theorem 1.64 proves this for Z. Theorem 2.45 proves it for Q [x] , but the proof works for
F [x] as well, so long as we also prove the Euclidean Algorithm for F [x], which you should have
done in Exercise 3.72.

That leaves Zm. Letm ≥ 2 be a prime integer and a ∈ Zm be nonzero. Every nonzero element
of Zm is a unit (Theorem 1.94). Both prime and irreducible elements of a ring are nonunits, so Zm
has neither prime nor irreducible elements, so it satis�es the claim “vacuously” (there is nothing
in Zm to contradict it). �
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Does Zm guarantee that primes are irreducible even whenm is not prime?

Example 3.89. Primes and irreducibles need not be the same thing in Zm. For example, suppose
m = 6. We claim that 2 is prime, but not irreducible.

It is certainly not a unit, as gcd (2, 6) , 1.
To see that 2 is prime, suppose 2 | ab inZ6. Chooseq ∈ Z6 such that 2q = ab inZ6. By Theorem

1.80, 6 | (2q − ab) in Z. Choose r ∈ Z such that 6r = 2q − ab and rewrite as ab = 2 (q − 3r ), so
2 | ab in Z. We know that 2 is irreducible in Z, and by Euclid’s Lemma it is prime in Z, so 2 | a or
2 | b in Z. We’ll say that 2 | a; choose s ∈ Z such that 2s = a. Then 2s − a = 0, and 6 | (2s − a), so
2s = a in Z6, as well. In other words, 2 | a, satisfying the de�nition of prime.

However, 2 = 2 × 4 in Z6, and neither 2 nor 4 is a unit, so 2 is not irreducible.

As it happens, Z6 has no irreducible elements at all: 1 and 5 are units, while 2 = 2×4, 3 = 3×3,
and 4 = 2 × 2. These are strange factorizations, but that’s what happens sometimes. If Zm does
have irreducible elements, however, those elements are in fact prime.

Theorem 3.90. Irreducible elements of Zm are also prime.

(The real issue in Zm, then, is whether it even has irreducible elements!)

Proof. Let a ∈ Zm, and assume a is irreducible. Assume further that there exist b, c ∈ Zm such
that a | bc . Choose q ∈ Zm such that aq = bc in Zm. By Theorem 1.80,m | (aq − bc ) in Z. Choose
r ∈ Z such thatmr = aq − bc in Z.

First let d = gcd (a,m). If d = 1, then by Theorem 1.94, a would be a unit, and units are by
de�nition not irreducible. So d , 1. We now consider two cases.

Case 1. Suppose a is irreducible in Z, as well; that is, d = a. Choose s ∈ Z such that m = as .
By substitution, (as ) r = aq − bc in Z. Rewrite as a (sr − q) = bc in Z. By de�nition,
a | bc in Z. By Euclid’s Lemma, a | b or a | c in Z. Say that a | b in Z, and choose
t ∈ Z such that at = b in Z. Recall that 1 < a,b < m, so 1 < t < m, as well, so t ∈ Zm.
Moreover, at − b = 0, som | (at − b), so at = b in Zm. By de�nition, a | b in Zm. Recall
that b, c ∈ Zm are any pair such that a | bc in Zm. By de�nition, a is prime.

Case 2. Suppose a is not irreducible in Z; that is, it factors as a = xy for some x ,y ∈ Z. Without
loss of generality, we may assume that 1 < x ,y < a, so that x ,y ∈ Zm, as well, so
a = xy in Zm, as well. By hypothesis, a is irreducible in Zm, so if a = xy in Zm, one of
x or y is a unit. Without loss of generality, assume that y is a unit.
It cannot be that x is also a unit, because then a would be a unit itself, with inverse
x−1y−1. So x is not a unit, and it cannot factor; otherwise, a would factor, as well. So x
is itself irreducible in Zm.
So far, we have shown that if a = xy in Z, where x is irreducible in Z, then x must also
be irreducible in Zm. By Case 1, x is prime. By substitution, x | bc in Zm, and by the
de�nition of prime, x | b or x | c in Zm. Say that x | b in Zm. Choose s ∈ Zm such that
xs = b in Zm. Recall that a = xy in Zm, where y is a unit. Rewrite as ay−1 = x in Zm.
By substitution,

(
ay−1

)
s = b in Zm. By the associative property, a

(
y−1s

)
= b in Zm.

By closure of multiplication, y−1s ∈ Zm, and by de�nition of divisibility, a | b in Zm.
Recall that b, c ∈ Zm are any pair such that a | bc in Zm. By de�nition, a is prime.
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�

Let’s sum up what we’ve seen so far.

1. Irreducible elements are not always prime, as we saw with 1 +
√
−5.

2. Prime elements are not always irreducible, as we saw in Z6.

3. However, prime and irreducible often are the same thing, as we saw in Z, F [x], and in any
Zm that actually has irreducible elements.

Principal ideals of irreducible elements
We’ve spent some time looking at principal ideals, so let’s look at how principal ideals generated
by prime or irreducible elements behave. Since “prime” and “irreducible” are both de�ned in
terms of divisibility, let’s look �rst at how divisibility relates to principal ideals.

Example 3.91. First let’s consider how divisibility and principal ideals interact in a ring that’s
easy to consider, such as Z. We know that 2 | 6. The corresponding principal ideals are

〈2〉 = {. . . ,−2, 0, 2, 4, . . .} and 〈6〉 = {. . . ,−6, 0, 6, 12, . . .} .

Every element of 〈6〉 is also in 〈2〉, but not vice versa. In this particular case, 〈6〉 ( 〈2〉. (We could
also write 〈6〉 ⊆ 〈2〉.)

In a similar way, 〈2〉 ( 〈a〉 only if a | 2 and a , 2. By 2’s irreducibility, that means a = ±1. . .
but 〈1〉 = Z. So 〈2〉 is in some sense a “maximal” ideal, and this is due to its being irreducible.

Let’s see how this works in general.

Lemma 3.92. Let R be a ring, and a,b ∈ R. Then a | b if and only if 〈b〉 ⊆ 〈a〉.

Proof. Assume a | b, and let x ∈ 〈b〉. By Theorem 3.18, we can choose r ∈ R such that x = rb.
By de�nition of divisibility, we can �nd q ∈ R such that b = sa. By substitution, x = r (sa) =
(rs ) a. By closure of multiplication, rs ∈ R. By absorption and Theorem 3.18, (rs ) a ∈ 〈a〉. By
substitution, x ∈ 〈a〉. As x was an arbitrary element of 〈b〉, we have shown that 〈b〉 ⊆ 〈a〉.

Conversely, suppose 〈b〉 ⊆ 〈a〉. By de�nition of subset, b ∈ 〈a〉. By Theorem 3.18, b = ra for
some r ∈ R. By de�nition of divisibility, a | b. �

How is this result useful?

Theorem 3.93. Let R be a principal ideal ring, and r ∈ R. If r is irreducible, then 〈r 〉 is maximal
in the sense that the only ideal that contains 〈r 〉 is 〈1〉 = R: the ring itself.

Proof. Assume r is irreducible. Let I be any idea of R, and assume that 〈r 〉 ⊆ I . Assume that
〈r 〉 , I . By de�nition of subset, r itself is in I . Recall that R is a principal ideal ring, so I = 〈i〉 for
some i ∈ R. By Lemma 3.92, i | r . Choose q ∈ R such that r = iq.

By de�nition of irreducible, one of i or q is a unit. If i is a unit, then by Exercise 3.99 below,
〈i〉 = R. Otherwise, q is a unit, and i is an associate of of r . By Exercise below, 〈i〉 = 〈r 〉.

We have shown that if r is irreducible and I is any ideal that contains 〈r 〉, then I = 〈r 〉 or
I = R. That leaves no room for an ideal to “squeeze in between” 〈r 〉 and R! Hence 〈r 〉 is maximal
in the sense de�ned by the theorem. �
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A principal ideal domain is a principal ideal ring that satis�es the Zero Product Property.

Corollary 3.94. Let R be a principal ideal domain, and r ∈ R a nonzero element. The following are
equivalent.

(A) The element r is irreducible.

(B) The ideal 〈r 〉 is maximal (in the sense de�ned above).

(C) The quotient ring R/ 〈r 〉 is a �eld.

In fact, (A)=⇒(B)⇐⇒(C) even in a principal ideal ring.

Proof. We have already shown that (A)=⇒(B) in Theorem 3.93. We will show that (B)=⇒(A), and
then that (B)⇐⇒(C).

(B) =⇒(A)? Assume (B); that is, the quotient ring R/ 〈r 〉 is maximal. To show that r is irre-
ducible, assume that there exist a,b ∈ R such that r = ab. We must show that one of a or b is a
unit. If a is a unit, then we are done, so assume that a is not a unit. We must show that b is a unit.

By absorption, r ∈ 〈a〉. By Theorem 3.18, every element x ∈ 〈r 〉 has the form x = qr for some
q ∈ R, so by substitution x = q (ab). By the associative and commutative properties, x = (qb) a.
By closure of multiplication, qa ∈ R; by absorption, (qb) a ∈ 〈a〉; by substitution, x ∈ 〈a〉. As
x ∈ 〈r 〉 was arbitrary, 〈r 〉 ⊆ 〈a〉.

If 〈r 〉 = 〈a〉, then a ∈ 〈r 〉. By Theorem 3.18, a = sr for some s ∈ R. By substitution, sr = s (ab).
By the associative and commutative properties, sr = (sb) a. By susbtitution, a = (sb) a. Rewrite
as a (1 − sb) = 0. Recall that R is a principal ideal domain; it satis�es the Zero Product Property,
so a = 0 or 1 − sb = 0. If a = 0, then r = 0, a contradiction. Hence 1 − sb = 0. Rewrite as 1 = sb,
so that b is a unit, as desired: r is irreducible.

(B)⇐⇒(C)? First assume (B); that is, the ideal 〈r 〉 is maximal. Let X ∈ R/ 〈r 〉 be nonzero. By
de�nition, there exists x ∈ R such that X = x + 〈r 〉. By coset equality, x < 〈r 〉. Let I = 〈x , r 〉.
By construction, 〈r 〉 ( I . By de�nition of maximal, I = R. By Exercise 3.27, I = 〈1〉, and by
substitution, 〈x , r 〉 = 〈1〉. By de�nition, 1 ∈ 〈x , r 〉. By Theorem 3.18, there exist a,b ∈ R such that
1 = ax+br . Rewrite as 1−ax = br . By de�nition, r | (1 − ax ). By coset equality, 1+〈r 〉 = ax+〈r 〉.
By coset arithmetic, ax + 〈r 〉 = (a + 〈r 〉) (x + 〈r 〉). By substitution, 1 + 〈r 〉 = (a + 〈r 〉) (x + 〈r 〉).
By de�nition, a + 〈r 〉 is the multiplicative inverse of x + 〈r 〉 = X , so X is a unit. As X was an
arbitrary nonzero element of R/ 〈r 〉, we conclude that R/ 〈r 〉 is a �eld.

Conversely, assume (C); that is, the quotient ring R/ 〈r 〉 is a �eld. Let I be any ring of R such
that 〈r 〉 ( I . By hypothesis, R is a principal ideal ring, so I = 〈i〉 for some i ∈ R. If i ∈ 〈r 〉, then
I = 〈i〉 ⊆ 〈r 〉, a contradiction, so i < 〈r 〉. By coset equality, i + 〈r 〉 , 〈r 〉; that is, i + 〈r 〉 is nonzero
in R/ 〈r 〉. Recall that R/ 〈r 〉 is a �eld; choose a multiplicative inverse of i + 〈r 〉 and suppose that
we can write it as j + 〈r 〉 ∈ R/ 〈r 〉. By de�nition, 1 + 〈r 〉 = (i + 〈r 〉) (j + 〈r 〉). By coset arithmetic,
1 + 〈r 〉 = ij + 〈r 〉. By coset equality, 1 − ij ∈ 〈r 〉. By Theorem 3.18, 1 − ij = rs for some s ∈ R.
Rewrite as 1 = ij + rs . Recall that r ∈ 〈i〉, so by absorption both ij, rs ∈ I . By Exercise 3.26,
ij + rs ∈ I . By substitution, 1 ∈ I . By Exercise 3.27, I = R. Recall that I was any ring of R such
that 〈r 〉 ( I ; we saw that I = R regardless. By de�nition, 〈r 〉 is maximal. �

The requirement that R be a principal ideal domain is essential for (A)⇐⇒(B), but it’s not
essential for (B)⇐⇒(C) to have a principal ideal ring; that just makes the proof more uniform
(and arguably less abstract). We outline a more general proof in the exercises.
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Constructing the complex numbers
The end of Section 2.5 showed that we could construct the complex number using polynomial
congruence with x2 + 1. Here we construct a ring that behaves like the complex numbers using
the same idea, only in the terminology of ideals. In addition, we use isomorphism to prove that
we really have constructed C, or at least something equivalent to it.

Theorem 3.95. Let R = R [x] and I =
〈
x2 + 1

〉
. Then R/I � C.

Proof. Let a ∈ R; then a2 + 1 ≥ 1 > 0, so by the Factor Theorem (Exercise 3.70), x2 + 1 does not
factor in R [x]. By de�nition, x2 + 1 is irreducible in R. By Corollary 3.94, R/I is a �eld.

Let f : R [x]→ C by

f (anx
n + · · · + a1x + a0) = ani

n + · · · + a1i + a0 .

We claim that f is a homomorphism. To see why, let p,q ∈ R [x]. By de�nition, we can choose
am, . . . ,a0,bm, . . . ,b0 ∈ R such that p = amx

m + · · · + a1x + a0 and q = bmx
m + · · · + b1x + b0. By

polynomial arithmetic and the de�nition of f , we have

f (p + q) = f ((am + bm ) x
m + · · · + (a1 + b1) x + (a0 + b0))

= (am + bm ) i
m + · · · + (a1 + b1) i + (a0 + b0)

while
f (p) + f (q) = (amx

m + · · · + a1x + a0) + (bmx
m + · · · + b1x + b0) .

By the associative, commutative, and distributive properties of a ring, the last expressions of the
previous two equations are equal, so f (p + q) = f (p) + f (q). Similarly,

f (pq) = f *.
,

2m∑
j=1

*.
,

∑
k+`=j

akb`
+/
-
x j+/

-
=

2m∑
j=1

*.
,

∑
k+`=j

akb`
+/
-
i j

while

f (p) f (q) = (ami
m + · · · + a1i + a0) (bmi

m + · · · + b1i + b0)

=

2m∑
j=1

*.
,

∑
k+`=j

akb`
+/
-
i j .

By the associative, commutative, and distributive properties of a ring, the last expressions of the
previous two equations are equal, so f (pq) = f (p) f (q), and f is indeed a homomorphism.

Recall that the kernel of f is the set of all elements ofR [x] that f maps to 0 inC. By de�nition,
f (0) = 0, but also f

(
x2 + 1

)
= i2 + 1 = −1 + 1 = 0, so x2 + 1 is in the kernel of f . Since f is a

homomorphism, every multiple of x2 + 1 is in the kernel, as

f
(
д ×

(
x2 + 1

))
= f (д) × f

(
x2 + 1

)
= f (д) × 0 = 0 .
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On the other hand, for any h ∈ R [x] that is not a multiple of x2+1, then by the Division Theorem
we can write h =

(
x2 + 1

)
· q + r for some q, r ∈ R [x], with r , 0 and deg (r ) < 2. Applying the

homomorphism property, we have

f (h) = f
((
x2 + 1

)
· q + r

)
= f

(
x2 + 1

)
· f (q) + f (r )

= 0 · f (q) + f (r )

= f (r ) .

Since deg (r ) < 2, we can choose c,d ∈ R such that r = cx + d , and by de�nition of f , we have

f (r ) = f (cx + d ) = ci + d , 0 .

By de�nition, r is not in the kernel, so h is not in the kernel.
The kernel of f thus consists exclusively of multiples of x2 + 1; that is, the kernel of f is

K =
〈
x2 + 1

〉
. By the Isomorphism Theorem, there exists an isomorphism µ from R/K to C, so

that R/K � C. �

In other words, if we look at the o�sets of
〈
x2 + 1

〉
, all of which can be written in the form

ax + b for a,b ∈ R, we are really looking at C itself. In addition, x2 + 1 is equivalent to 0, which
means x2 is equivalent to −1, which means x is equivalent to i , the square root of −1. In short,
we have again constructed the imaginary number, but this time we constructed it in the process
of constructing all of C. . . and we used ideals to do it, which allows us to conclude that

The “imaginary” number is most certainly “real”.

We have now laid the essential foundation of higher algebra, which seems like as good a place
as any to wrap things up.

Exercises
Exercise 3.96. In the ring Z12, show that:

(a) 1, 5, 7, and 11 are units;

(b) 2 and 10 are associates;

(c) 2 and 10 are irreducible;

(d) 3 is not irreducible.

Exercise 3.97. Let R =
{
a + b

√
−5 : a,b ∈ Z

}
.

(a) Simplify
(
1 + 2

√
−5

)
+

(
−3 +

√
−5

)
and

(
1 + 2

√
−5

)
×

(
−3 +

√
−5

)
.

(b) Show that R is a ring under ordinary addition and multiplication.

(c) Show that 1 −
√
−5 is irreducible in R.
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(d) Show that 2 is irreducible in R.

Exercise 3.98. Show that Z14 has a prime element that is not irreducible. What does that tell you
about the irreducible elements of Z14?

Exercise 3.99. Let R be a ring, and u ∈ R. Show that u is a unit if and only if 〈u〉 = R.
Hint: Exercise 3.27 would be useful.

Exercise 3.100. LetR = R [x] and I =
〈
x2 + 1

〉
. Simplify the following expressions ofR/I . O�sets

should have minimal degree.

(A) (x + I ) · (x + I )

(B)
[(
x3 + 1

)
+ I

]
+ [(x − 1) + I ]

(C)
[(
x2 + 1

)
+ I

]
×

[(
x2 − 1

)
+ I

]

Exercise 3.101. It is possible to show that the quotient ring of a maximal ideal is always a �eld,
regardless of the original ring. The following lines sketch out a proof; �ll in the details.

First, show that if R is a ring whose only ideals are {0} and R itself, then it is a �eld. (Exercise
3.27 will help.)

Now, let R be any ring, and I any ideal of R. Let Q = R/I . Suppose A is an ideal of Q ; show
that there is some ideal J of R such that A = {j + I : j ∈ J } and I ⊆ J . Hint: Every ideal contains
the zero element, so A contains I , and I = 0 + I , so 0 ∈ J . It remains to show that J is an ideal.

Finally, suppose that I is maximal in R. What does that say about any J that contains I? What
does that say about any ideal A of Q = R/I? What does that say about Q itself?
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