
AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION

Recall that RSA works as follows. A wants B to communicate with A, but without E understanding

the transmitted message. To do so:

• A broadcasts “RSA method, encryption exponent e, modulus N ,” where N = pq, p and q
are large primes, and gcd (e, φ (N)) = 1. (Here, φ (N) indicates the number of integers

between 0 and N that are relatively prime to N .)

• B encrypts a message m by computing c = me
, and broadcasts c.

• A decrypts c by computing cd = (me)d, modulo N . (Here, d is the Bézout coe�cient of e
in the linear combination ed+ tφ (N) = 1.)

So RSA successfully encrypts and decrupts if med ≡ m (mod N). To show this, we proceed

through several claims.

De�nition. Let Z∗
n be the subset of Zn whose elements are relatively prime to n.

Example. Z∗
35 = {1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34}.

Observe that φ (N) = 24 = (5− 1)× (7− 1), where 35 = 5× 7.

Claim 1. Every a ∈ Z∗
n has a multiplicative inverse s ∈ Z∗

n; that is, as ≡ 1 (mod n).

Proof. Let a ∈ Z∗
n. By Theorem 1.35 in the text, there exist s, t ∈ Z such that as+nt = 1. Rewrite

as n (−t) = as−1. By de�nition of divisibility, n | (as− 1). By de�nition of congruence, as ≡ 1
(mod n). That is, s is a multiplicative inverse of a. In addition, the linear combination as+nt = 1
shows that gcd (s, n) = 1, so s ∈ Z∗

n, as claimed. �

Example (continued). It is easy to verify that the multiplicative inverse of 18 in Z∗
35 is 2.

Claim 2. For every a ∈ Z∗
n, the set S = {ab : b ∈ Z∗

n} has φ (n) distinct elements. In fact,

S = Z∗
n.

Proof. Let a ∈ Z∗
n and compute S. For each b ∈ Z∗

n, we have gcd (a, n) = gcd (b, n) = 1; by

Exercise 1 below, gcd (ab, n) = 1. Hence each ab ∈ S is also an element of Z∗
n, and S ⊆ Z∗

n. Since

Z∗
n has φ (n) elements, the only way S can have fewer is if ab = ac for distinct b, c ∈ Z∗

n. By

way of contradiction, assume that such b and c exist. By Claim 1, a has a multiplicative inverse

s ∈ Z∗
n. Multiply both sides of our congruence by s, and we see that

s (ab) ≡ s (ac) =⇒ (sa) b = (sa) c =⇒ 1 · b ≡ 1 · c =⇒ b ≡ c .

However, we chose b, c ∈ Z∗
n to be distinct, so we have a contradiction. It must be that S has

φ (n) distinct elements, and since we knew S ⊆ Z∗
n we actually have S = Z∗

n. �

Example (continued). Let a = 13. Then the set S of Claim 2 is

S = {13, 26, 4, 17, 8, 34, 12, 3, 16, 29, 33, 11, 24, 2, 6, 19, 32, 23, 1, 27, 18, 31, 9, 22} .
This is precisely Z∗

35.
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Claim 3. For every a ∈ Z∗
n, there is some k ∈ N+

such that ak ≡ 1 (mod n), and for the smallest

such k there are k distinct powers of a, modulo n.

Proof. Let a ∈ Z∗
n and let T = {a, a2, a3, . . .}. By Exercise 2 below, for each ak we have

gcd
(
ak, n

)
= 1. Each ak ∈ T is thus an element of Z∗

n, so T ⊆ Z∗
n. Now, Z∗

n is a �nite set;

to be precise, it has φ (n) elements. That forces T to be a �nite set; there must be distinct i, j ∈ N
such that ai ≡ aj (mod n). Without loss of generality, i < k. Since ai ∈ Z∗

n, Claim 1 tells us it

has a multiplicative inverse b ∈ Z∗
n. Multiply both sides of the congruence by b, we see that

aib ≡ ajb =⇒ aib ≡
(
aj−i · ai

)
b =⇒ aib ≡ aj−i

(
aib

)
=⇒ 1 ≡ aj−i .

Recall that i < j, so j − i ∈ N+
and k = j − i satis�es ak ≡ 1.

By the Well-Ordering Property, we can identify a smallest positive k such that ak ≡ 1. To show

that there are k distinct powers of a, modulo n, suppose that ai ≡ aj , where 0 < i ≤ j ≤ k. As

before, 1 ≡ aj−i. We chose k to be the smallest positive integer such that ak ≡ 1, and j − i < k,

so j − i cannot be positive. Instead, j − i = 0, which means i = j. In other words, ai ≡ aj only

if i = j. So the powers a, a2, . . . ak must all be distinct. �

Corollary. For any a ∈ Z∗
35, a’s inverse is a power of itself.

Example (continued). Let a = 13. The set T computed in the proof of Claim 3 is

T = {13, 29, 27, 1} .
So a4 ≡ 1. Notice that |T | = 4, a divisor of φ (35). Also, 133 ≡ 27 is the multiplicative inverse of

13.

Let’s do another. Let a = 26. The set T computed in the proof of Claim 3 is

T = {26, 11, 6, 16, 31, 1} .
So a6 ≡ 1. Again, we notice that |T | = 6, a divisor of φ (35). Also, 265 ≡ 31 is the multiplicative

inverse of 26.

Notice that if 262 ≡ 264, then we would have 1 ≡ 262, but we already saw that k = 6 is the

smallest positive number such that 26k ≡ 1.

Claim 4. For every a ∈ Z∗
n, the number of distinct powers of a in Z∗

n is a divisor of φ (n).

Proof. Let a, k, and T be as in the proof of Claim 3. De�ne U1, U2, . . . iteratively as follows:

• U1 = T , and

• for i = 1, 2, . . .,
– if U1 ∪ · · · ∪ Ui = Z∗

n, then stop;

– otherwise, choose bi ∈ Z∗
nthat is not inU1∪· · ·∪Ui, and letUi+1 =

{
abi, a

2bi, . . . , a
kbi

}
.

We proceed through several subclaims.

Subclaim 1. The sequence of Ui’s is �nite.

Subproof. Each Ui+1 is de�ned using an element of Z∗
n\ (U1 ∪ · · ·Ui). As Z∗

n has �nitely

many elements, we can create a new set with an element not already taken only �nitely

many times.

Let Ulast be the last one generated.
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Subclaim 2. Z∗
n = U1 ∪ · · ·Ulast.

Subproof. Were this not the case, the iteration would continue beyond Ulast.

Subclaim 3. If i 6= j, then Ui ∩ Uj = ∅.

Subproof. By way of contradiction, assume i 6= j and Ui ∩ Uj 6= ∅. Let c ∈ Ui ∩ Uj . By

construction, there exist bi−1, bj−1 ∈ Z∗
n and `,m ∈ N+

such that c ≡ a`bi−1 ≡ ambj−1.

Without loss of generality, suppose i < j. By construction of the U ’s, we cannot have

bj−1 ∈ Ui, as that would contradict the choice of bj−1, which cannot be in U1 ∪ · · · ∪ Uj−1,

and Ui would be among them. However, bj−1 ≡ a`−mbi−1. If ` − m ≥ 0, then bj−1 ∈ Ui,
a contradiction, so we must have ` − m < 0. By Exercise 3 below, we know that bj−1 ≡
ak+(`−m)bi−1. In this case k + (`−m) > 0, and again bj−1 ∈ Ui, a contradiction. Hence

Ui ∩ Uj = ∅.

Subclaim 4. For each i = 1, 2, . . . we have |Ui| = |T |.

Subproof. For U1 = T this is true by de�nition. Any other Ui is constructed by multiplying

ajbi−1 for some bi−1 ∈ Z∗
n and some j = 1, 2, . . . , k. By Claim 2, ajbi−1 6= a`bi−1 if 1 ≤

j, ` ≤ k and j 6= `. �

Subclaim 2 tells us that the elements of Z∗
n are all contained among the U ’s, which by Subclaim

3 have no common elements, and by Subclaim 4 are the same size. This is the basic model of

division, so each |Ui| divides |Z∗
n|. In particular |T | = |U1| divides |Z∗

n| = φ (n), and |T | is the

number of distinct powers of a. �

Example (continued). Earlier we showed that inZ∗
35, with a = 13we haveU1 = T = {13, 29, 27, 1}.

Clearly Z∗
35 6= U1; let b1 = 2 ∈ Z∗

35\U1. Then

U2 = {13× 2, 29× 2, 27× 1, 1× 2} = {26, 3, 34, 2} .
Notice that U1 ∩ U2 = ∅. Again, Z∗

35 6= U1 ∪ U2; let b2 = 3 ∈ Z∗
35\ (U1 ∪ U2). Then

U3 = {13× 3, 29× 3, 27× 3, 1× 3} = {4, 17, 11, 3} .
Notice that U1∩U3 = U2∩U3 = ∅. Again, Z∗

35 6= U1∪U2∪U3; let b3 = 6 ∈ Z∗
35\ (U1 ∪ U2 ∪ U3).

Then

U4 = {13× 6, 29× 6, 27× 6, 1× 6} = {8, 34, 22, 6} .
Notice that U1 ∩ U4 = U2 ∩ U4 = U3 ∩ U4 = ∅. Again, Z∗

35 6= U1 ∪ U2 ∪ U3 ∪ U4; continuing in

this fashion, we choose and construct

b4 = 9 and U5 = {12, 16, 33, 9}
b5 = 18 and U6 = {24, 32, 31, 18} .

The iteration has ended, illustrating Subclaim 1. We have Z∗
35 = U1 ∪ · · · ∪ U6, illustrating

Subclaim 2. The U ’s are disjoint, illustrating Subclaim 3. (“Disjoint” means their intersection is

empty.) The U ’s all have |T | = 4 elements, illustrating Subclaim 4. In fact,

φ (35) = 24 = 6× 4 = (number of U ’s)× |T | .
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Claim 5 (Euler’s Theorem). For any a ∈ Z∗
n, aφ(n) ≡ 1 (mod n).

Proof. By Claim 3, there is some k ∈ N+
such that ak ≡ 1 (mod n), and the smallest such k is

the number of distinct powers of a in {a, a2, . . .}. By Claim 4, k | φ (n). Choose q ∈ N such that

kq = φ (n). By substitution,

aφ(n) = akq =
(
ak
)q ≡ 1q = 1 .

�

Example (continued). Previously we saw that 134 ≡ 1 (mod 35). Since 4× 6 = 24,

13φ(35) = 1324 = 134×6 =
(
134

)6 ≡ 16 = 1 .

Claim 6. The �nal step of the RSA algorithm deciphers B’s message.

Proof. As explained at the beginning, we need to show thatmed ≡ m (mod N). By construction,

ed+tφ (N) = 1. Without loss of generality, we may assume d is positive and t is negative. Rewrite

the equation as ed = 1− tφ (N). Let u = −t > 0 and we have ed = 1+ uφ (N). By substitution

into the congruence,

med = m1+uφ(N) = m1 ×muφ(N) = m×
(
mφ(N)

)u
= m× 1u = m .

�

Example. This time we encrypt and decrypt the word DOGS a little more realistically.

Pair the word’s letters as DO and GS. Transform DO into the number 3 × 26 + 14 = 92 and

transform GS into the number 6× 26 + 18 = 174. Let

p = 23 and q = 31 =⇒ N = pq = 713 and φ (N) = (23− 1)× (31− 1) = 660 .

Choose e = 511; it is easy to verify that gcd (511, 660) = 1 via the Euclidean algorithm. The

encryption is then

DO: 92511 ≡ 921+2+4+8+16+32+64+128+256 ≡ 92

GS: 174511 ≡ 50 .

B thus broadcasts 92 and 50 to A.

To decrypt, A determines the decryption exponent d = 31 using the Euclidean algorithm, then

computes

9231 ≡ 92

5031 ≡ 174 .

A then transforms the numbers back into letters by dividing by 26:

92 = 3× 26 + 14

174 = 6× 26 + 18 .

Observe that 3, 14, 6, 18 are precisely the numbers corresponding to D, O, G, S.
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Exercises

Exercise 1. Show that if gcd (a, n) = 1 and gcd (b, n) = 1, then gcd (ab, n) = 1.

Exercise 2. Show that if gcd (a, n) = 1, then gcd
(
ak, n

)
= 1.

Exercise 3. Show that if T =
{
a, a2, . . . , ak

}
is a complete list of distinct powers of a modulo n,

then x ≡ akx (mod n).

Exercise 4. For Z∗
35 and a = 13 compute the sets U1, U2, . . . Ulast of Claim 4.

Exercise 5. Use the Euclidean algorithm to verify that 31 is the decryption exponent forN = 713
and e = 511.
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