AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION

Recall that RSA works as follows. A wants B to communicate with A, but without E understanding
the transmitted message. To do so:

e A broadcasts “RSA method, encryption exponent e, modulus N,” where N = pq, p and ¢
are large primes, and ged (e, ¢ (N)) = 1. (Here, ¢ (N) indicates the number of integers
between 0 and N that are relatively prime to NV.)

e B encrypts a message m by computing ¢ = m®, and broadcasts c.

e A decrypts ¢ by computing ¢? = (me)d, modulo N. (Here, d is the Bézout coefficient of e
in the linear combination ed + t¢ (N) = 1.)

So RSA successfully encrypts and decrupts if m°> = m (mod N). To show this, we proceed
through several claims.

Definition. Let Z; be the subset of Z,, whose elements are relatively prime to n.

Example. Z3, = {1,2,3,4,6,8,9,11,12,13,16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34}
Observe that ¢ (N) =24 =(5—1) x (7 — 1), where 35 =5 x 7.

*

Claim 1. Every a € Z! has a multiplicative inverse s € Z; thatis, as = 1 (mod n).

Proof. Let a € Z;. By Theorem 1.35 in the text, there exist s,¢ € Z such that as+nt = 1. Rewrite
asn (—t) = as — 1. By definition of divisibility, n | (as — 1). By definition of congruence, as = 1
(mod n). That is, s is a multiplicative inverse of a. In addition, the linear combination as+nt = 1
shows that ged (s,n) = 1, s0 s € Z;, as claimed. O

Example (continued). It is easy to verify that the multiplicative inverse of 18 in Zj; is 2.

Claim 2. For every a € Z, the set S = {ab:b € Z!} has ¢ (n) distinct elements. In fact,
S =17

Proof. Let a € 7! and compute S. For each b € Z}, we have gcd (a,n) = ged (b,n) = 1; by
Exercise 1 below, gcd (ab,n) = 1. Hence each ab € S is also an element of Z7, and S C Z. Since
Z! has ¢ (n) elements, the only way S can have fewer is if ab = ac for distinct b, ¢ € Z!. By
way of contradiction, assume that such b and c exist. By Claim 1, a has a multiplicative inverse
s € Z;. Multiply both sides of our congruence by s, and we see that

s(ab) =s(ac) = (sa)b=(sa)¢c = 1-b=1l-¢ = b=c.

However, we chose b, ¢ € 7 to be distinct, so we have a contradiction. It must be that S has
¢ (n) distinct elements, and since we knew S C Z} we actually have S = Z. O

Example (continued). Let a = 13. Then the set S of Claim 2 is
S ={13,26,4,17,8,34,12,3,16,29,33,11,24,2,6,19, 32,23,1,27,18,31,9,22} .
This is precisely Z3;.
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Claim 3. For every a € Z7, there is some k € N* such that a* = 1 (mod n), and for the smallest
such k there are k distinct powers of a, modulo n.

Proof. Let a € Z' and let T = {a,a? d®, ...}. By Exercise 2 below, for each a* we have
ged (ak,n) = 1. Each ¢ € T is thus an element of Z,soT C Z. Now, Z; is a finite set;
to be precise, it has ¢ (n) elements. That forces 7 to be a finite set; there must be distinct i, j € N
such that a’ = ¢’ (mod n). Without loss of generality, i < k. Since a’ € Z}, Claim 1 tells us it
has a multiplicative inverse b € Z}. Multiply both sides of the congruence by b, we see that

ab=db = a'b= (aj*i . ai) b — ab=d"’ (aib) — 1l=d .
Recall thati < j,s0j —i € NT and k = j — i satisfies a* = 1.
By the Well-Ordering Property, we can identify a smallest positive & such that a* = 1. To show
that there are k distinct powers of a, modulo n, suppose that a* = a?, where 0 < 1 < j < k. As

before, 1 = a/~*. We chose k to be the smallest positive integer such that a*=1,andj —i < k,

so j — ¢ cannot be positive. Instead, j — ¢« = 0, which means ¢ = j. In other words, at = a’ only

if i = j. So the powers a, a?, ... a® must all be distinct. OJ

Corollary. For anya € Z35, a’s inverse is a power of itself.

Example (continued). Let a = 13. The set 7" computed in the proof of Claim 3 is
T ={13,29,27,1} .

So a' = 1. Notice that |T'| = 4, a divisor of ¢ (35). Also, 13% = 27 is the multiplicative inverse of
13.
Let’s do another. Let a = 26. The set 7' computed in the proof of Claim 3 is

T = {26,11,6,16,31,1} .

So a® = 1. Again, we notice that |T'| = 6, a divisor of ¢ (35). Also, 26° = 31 is the multiplicative
inverse of 26.

Notice that if 26 = 26%, then we would have 1 = 262, but we already saw that £ = 6 is the
smallest positive number such that 26* = 1.

Claim 4. For every a € Z, the number of distinct powers of a in Z is a divisor of ¢ (n).

Proof. Let a, k, and T be as in the proof of Claim 3. Define U, Uy, ... iteratively as follows:
e U, =T, and

e fori=1,2,.. .,
- itU; U---UU; = Z;, then stop;
— otherwise, choose b; € Zthatisnotin U;U- - -UU;, andlet U; ;1 = {ab,», a’b;, . .. ,akbi}.

We proceed through several subclaims.
Subclaim 1. The sequence of U;’s is finite.

Subproof. Each U, is defined using an element of Z}\ (U; U---U;). As Z has finitely
many elements, we can create a new set with an element not already taken only finitely
many times.

Let Ul,s be the last one generated.
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Subclaim 2. 7] = Uy U - - - Ulag.
Subproof. Were this not the case, the iteration would continue beyond Ul,g.
Subclaim 3. If i # j,then U; N U; = 0.

Subproof. By way of contradiction, assume ¢ # j and U; N U; # (. Let ¢ € U; N U,. By
construction, there exist b;_1,b;_1 € Z} and {,m € N+ such that ¢ = a‘b;_; = a™bj_.
Without loss of generality, suppose ¢« < j. By construction of the U’s, we cannot have
bj—1 € Uj, as that would contradict the choice of b;_;, which cannot be in U; U - -- U U;_1,
and U; would be among them. However, b;_; = a~™mb,_1. If ¢ —m > 0, then bj—1 € Ui,
a contradiction, so we must have { — m < (. By Exercise 3 below, we know that b;_; =
a®+(&=mp, . In this case k + (¢ —m) > 0, and again b; ; € U, a contradiction. Hence
Uu,nu; =0.
Subclaim 4. For each i = 1,2, ... we have |U;| = |T|.
Subproof. For U; = T this is true by definition. Any other U; is constructed by multiplying
a’b;_, for some b;_; € Z; and some j = 1,2,... k. By Claim 2, by # a'b_; if 1 <
j, 0 < kandj # (. O
Subclaim 2 tells us that the elements of Z; are all contained among the U’s, which by Subclaim
3 have no common elements, and by Subclaim 4 are the same size. This is the basic model of
division, so each |U;| divides |Z}|. In particular |T'| = |U;| divides |Z}| = ¢ (n), and |T'| is the
number of distinct powers of a. O
Example (continued). Earlier we showed that in Z},, witha = 13wehave U; = T = {13,29,27,1}.
Clearly Z%; # Uy; let by = 2 € Z5;\U,. Then
Uy ={13x2,29 x 2,27 x 1,1 x 2} = {26,3,34,2} .
Notice that U1 N U2 = @ Again, Z§5 7é U1 U UQ; let b2 =3 € Z§5\ (Ul U UQ) Then
Us ={13x3,29 x 3,27 x 3,1 x 3} = {4,17,11,3} .
Notice that Ul ng = UQﬂU3 == @ Again, Z§5 7& U1 UUQUUS, let b3 =6 € Z§5\ (Ul U U2 U Ug)
Then
Uy ={13x6,29 x 6,27 x 6,1 x 6} = {8,34,22,6} .
Notice that Uy N U, = U, N U, = U3 N U, = (). Again, Z3s # Uy U Uy U Us U Uy; continuing in
this fashion, we choose and construct
by =9 and Us = {12, 16, 33,9}
bs = 18 and Us = {24, 32,31,18} .
The iteration has ended, illustrating Subclaim 1. We have Z3; = U; U --- U Us, illustrating

Subclaim 2. The U’s are disjoint, illustrating Subclaim 3. (“Disjoint” means their intersection is
empty.) The U’s all have |T'| = 4 elements, illustrating Subclaim 4. In fact,

¢ (35) =24 =06 x 4 = (number of U’s) x |T| .
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Claim 5 (Euler’s Theorem). For any a € Z*, a®™ =1 (mod n).

Proof. By Claim 3, there is some k € N* such that ¢ = 1 (mod n), and the smallest such k is
the number of distinct powers of a in {a,da?,...}. By Claim 4, k | ¢ (n). Choose ¢ € N such that
kq = ¢ (n). By substitution,

Example (continued). Previously we saw that 13* =1 (mod 35). Since 4 x 6 = 24,
13767 = 132 = 136 = (13%)° =19 = 1.

Claim 6. The final step of the RSA algorithm deciphers B’s message.

Proof. As explained at the beginning, we need to show that m* = m (mod N). By construction,
ed+t¢ (N) = 1. Without loss of generality, we may assume d is positive and ¢ is negative. Rewrite
the equation as ed = 1 —t¢ (N). Let u = —t > 0 and we have ed = 1 + u¢ (V). By substitution
into the congruence,

met = mItuolN) — 1 s mueN) — gy % (m¢(N))u =mx1“=m.

O

Example. This time we encrypt and decrypt the word DOGS a little more realistically.
Pair the word’s letters as DO and GS. Transform DO into the number 3 x 26 + 14 = 92 and
transform GS into the number 6 x 26 + 18 = 174. Let

p=23and g = 31 = N=pg=713 and ¢(N)=(23—-1)x (31—1)=660.

Choose e = 511; it is easy to verify that gcd (511,660) = 1 via the Euclidean algorithm. The
encryption is then

DO: 92511 = 921+2+4+8+16+32+64+128+256 = 92
GS: 174°11 = 50 .

B thus broadcasts 92 and 50 to A.
To decrypt, A determines the decryption exponent d = 31 using the Euclidean algorithm, then
computes

92°! = 92
50% =174
A then transforms the numbers back into letters by dividing by 26:

92 =3x26+14
174 =6 x 26 + 18..

Observe that 3, 14, 6, 18 are precisely the numbers corresponding to D, O, G, S.
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EXERCISES
Exercise 1. Show that if gcd (a,n) = 1 and ged (b, n) = 1, then ged (ab, n) = 1.
Exercise 2. Show that if ged (a,n) = 1, then ged (a*,n) = 1.

Exercise 3. Show thatif 7' = {a, a’, ..., ak} is a complete list of distinct powers of @ modulo n,
then x = a*z (mod n).

Exercise 4. For Z3; and a = 13 compute the sets Uy, Us, ... Uj,s of Claim 4.

Exercise 5. Use the Euclidean algorithm to verify that 31 is the decryption exponent for N = 713
and e = 511.
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