AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION

Recall that RSA works as follows. A wants B to communicate with A, but without E understanding the transmitted message. To do so:

- A broadcasts "RSA method, encryption exponent e, modulus N " where $N=p q, p$ and q are large primes, and $\operatorname{gcd}(e, \phi(N))=1$. (Here, $\phi(N)$ indicates the number of integers between 0 and N that are relatively prime to N.)
- B encrypts a message m by computing $c=m^{e}$, and broadcasts c.
- A decrypts c by computing $c^{d}=\left(m^{e}\right)^{d}$, modulo N. (Here, d is the Bézout coefficient of e in the linear combination $e d+t \phi(N)=1$.)
So RSA successfully encrypts and decrupts if $m^{e d} \equiv m(\bmod N)$. To show this, we proceed through several claims.

Definition. Let \mathbb{Z}_{n}^{*} be the subset of \mathbb{Z}_{n} whose elements are relatively prime to n.
Example. $\mathbb{Z}_{35}^{*}=\{1,2,3,4,6,8,9,11,12,13,16,17,18,19,22,23,24,26,27,29,31,32,33,34\}$. Observe that $\phi(N)=24=(5-1) \times(7-1)$, where $35=5 \times 7$.

Claim 1. Every $a \in \mathbb{Z}_{n}^{*}$ has a multiplicative inverse $s \in \mathbb{Z}_{n}^{*}$; that is, as $\equiv 1(\bmod n)$.
Proof. Let $a \in \mathbb{Z}_{n}^{*}$. By Theorem 1.35 in the text, there exist $s, t \in \mathbb{Z}$ such that $a s+n t=1$. Rewrite as $n(-t)=a s-1$. By definition of divisibility, $n \mid(a s-1)$. By definition of congruence, as $\equiv 1$ $(\bmod n)$. That is, s is a multiplicative inverse of a. In addition, the linear combination $a s+n t=1$ shows that $\operatorname{gcd}(s, n)=1$, so $s \in \mathbb{Z}_{n}^{*}$, as claimed.

Example (continued). It is easy to verify that the multiplicative inverse of 18 in \mathbb{Z}_{35}^{*} is 2 .

Claim 2. For every $a \in \mathbb{Z}_{n}^{*}$, the set $S=\left\{a b: b \in \mathbb{Z}_{n}^{*}\right\}$ has $\phi(n)$ distinct elements. In fact, $S=\mathbb{Z}_{n}^{*}$.

Proof. Let $a \in \mathbb{Z}_{n}^{*}$ and compute S. For each $b \in \mathbb{Z}_{n}^{*}$, we have $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$; by Exercise 1 below, $\operatorname{gcd}(a b, n)=1$. Hence each $a b \in S$ is also an element of \mathbb{Z}_{n}^{*}, and $S \subseteq \mathbb{Z}_{n}^{*}$. Since \mathbb{Z}_{n}^{*} has $\phi(n)$ elements, the only way S can have fewer is if $a b=a c$ for distinct $b, c \in \mathbb{Z}_{n}^{*}$. By way of contradiction, assume that such b and c exist. By Claim 1, a has a multiplicative inverse $s \in \mathbb{Z}_{n}^{*}$. Multiply both sides of our congruence by s, and we see that

$$
s(a b) \equiv s(a c) \quad \Longrightarrow \quad(s a) b=(s a) c \quad \Longrightarrow \quad 1 \cdot b \equiv 1 \cdot c \quad \Longrightarrow \quad b \equiv c .
$$

However, we chose $b, c \in \mathbb{Z}_{n}^{*}$ to be distinct, so we have a contradiction. It must be that S has $\phi(n)$ distinct elements, and since we knew $S \subseteq \mathbb{Z}_{n}^{*}$ we actually have $S=\mathbb{Z}_{n}^{*}$.

Example (continued). Let $a=13$. Then the set S of Claim 2 is

$$
S=\{13,26,4,17,8,34,12,3,16,29,33,11,24,2,6,19,32,23,1,27,18,31,9,22\}
$$

This is precisely \mathbb{Z}_{35}^{*}.

Claim 3. For every $a \in \mathbb{Z}_{n}^{*}$, there is some $k \in \mathbb{N}^{+}$such that $a^{k} \equiv 1(\bmod n)$, and for the smallest such k there are k distinct powers of a, modulo n.
Proof. Let $a \in \mathbb{Z}_{n}^{*}$ and let $T=\left\{a, a^{2}, a^{3}, \ldots\right\}$. By Exercise 2 below, for each a^{k} we have $\operatorname{gcd}\left(a^{k}, n\right)=1$. Each $a^{k} \in T$ is thus an element of \mathbb{Z}_{n}^{*}, so $T \subseteq \mathbb{Z}_{n}^{*}$. Now, \mathbb{Z}_{n}^{*} is a finite set; to be precise, it has $\phi(n)$ elements. That forces T to be a finite set; there must be distinct $i, j \in \mathbb{N}$ such that $a^{i} \equiv a^{j}(\bmod n)$. Without loss of generality, $i<k$. Since $a^{i} \in \mathbb{Z}_{n}^{*}$, Claim 1 tells us it has a multiplicative inverse $b \in \mathbb{Z}_{n}^{*}$. Multiply both sides of the congruence by b, we see that

$$
a^{i} b \equiv a^{j} b \quad \Longrightarrow \quad a^{i} b \equiv\left(a^{j-i} \cdot a^{i}\right) b \quad \Longrightarrow \quad a^{i} b \equiv a^{j-i}\left(a^{i} b\right) \quad \Longrightarrow \quad 1 \equiv a^{j-i}
$$

Recall that $i<j$, so $j-i \in \mathbb{N}^{+}$and $k=j-i$ satisfies $a^{k} \equiv 1$.
By the Well-Ordering Property, we can identify a smallest positive k such that $a^{k} \equiv 1$. To show that there are k distinct powers of a, modulo n, suppose that $a^{i} \equiv a^{j}$, where $0<i \leq j \leq k$. As before, $1 \equiv a^{j-i}$. We chose k to be the smallest positive integer such that $a^{k} \equiv 1$, and $j-i<k$, so $j-i$ cannot be positive. Instead, $j-i=0$, which means $i=j$. In other words, $a^{i} \equiv a^{j}$ only if $i=j$. So the powers $a, a^{2}, \ldots a^{k}$ must all be distinct.

Corollary. For any $a \in \mathbb{Z}_{35}^{*}$, a 's inverse is a power of itself.
Example (continued). Let $a=13$. The set T computed in the proof of Claim 3 is

$$
T=\{13,29,27,1\}
$$

So $a^{4} \equiv 1$. Notice that $|T|=4$, a divisor of $\phi(35)$. Also, $13^{3} \equiv 27$ is the multiplicative inverse of 13.

Let's do another. Let $a=26$. The set T computed in the proof of Claim 3 is

$$
T=\{26,11,6,16,31,1\}
$$

So $a^{6} \equiv 1$. Again, we notice that $|T|=6$, a divisor of $\phi(35)$. Also, $26^{5} \equiv 31$ is the multiplicative inverse of 26 .

Notice that if $26^{2} \equiv 26^{4}$, then we would have $1 \equiv 26^{2}$, but we already saw that $k=6$ is the smallest positive number such that $26^{k} \equiv 1$.

Claim 4. For every $a \in \mathbb{Z}_{n}^{*}$, the number of distinct powers of a in \mathbb{Z}_{n}^{*} is a divisor of $\phi(n)$.
Proof. Let a, k, and T be as in the proof of Claim 3. Define U_{1}, U_{2}, \ldots iteratively as follows:

- $U_{1}=T$, and
- for $i=1,2, \ldots$,
- if $U_{1} \cup \cdots \cup U_{i}=\mathbb{Z}_{n}^{*}$, then stop;
- otherwise, choose $b_{i} \in \mathbb{Z}_{n}^{*}$ that is not in $U_{1} \cup \cdots \cup U_{i}$, and let $U_{i+1}=\left\{a b_{i}, a^{2} b_{i}, \ldots, a^{k} b_{i}\right\}$.

We proceed through several subclaims.
Subclaim 1. The sequence of U_{i} 's is finite.
Subproof. Each U_{i+1} is defined using an element of $\mathbb{Z}_{n}^{*} \backslash\left(U_{1} \cup \cdots U_{i}\right)$. As \mathbb{Z}_{n}^{*} has finitely many elements, we can create a new set with an element not already taken only finitely many times.

Let $U_{\text {last }}$ be the last one generated.

Subclaim $2 . \mathbb{Z}_{n}^{*}=U_{1} \cup \cdots U_{\text {last }}$.
Subproof. Were this not the case, the iteration would continue beyond $U_{\text {last }}$.
Subclaim 3. If $i \neq j$, then $U_{i} \cap U_{j}=\emptyset$.
Subproof. By way of contradiction, assume $i \neq j$ and $U_{i} \cap U_{j} \neq \emptyset$. Let $c \in U_{i} \cap U_{j}$. By construction, there exist $b_{i-1}, b_{j-1} \in \mathbb{Z}_{n}^{*}$ and $\ell, m \in \mathbb{N}^{+}$such that $c \equiv a^{\ell} b_{i-1} \equiv a^{m} b_{j-1}$. Without loss of generality, suppose $i<j$. By construction of the U 's, we cannot have $b_{j-1} \in U_{i}$, as that would contradict the choice of b_{j-1}, which cannot be in $U_{1} \cup \cdots \cup U_{j-1}$, and U_{i} would be among them. However, $b_{j-1} \equiv a^{\ell-m} b_{i-1}$. If $\ell-m \geq 0$, then $b_{j-1} \in U_{i}$, a contradiction, so we must have $\ell-m<0$. By Exercise 3 below, we know that $b_{j-1} \equiv$ $a^{k+(\ell-m)} b_{i-1}$. In this case $k+(\ell-m)>0$, and again $b_{j-1} \in U_{i}$, a contradiction. Hence $U_{i} \cap U_{j}=\emptyset$.
Subclaim 4. For each $i=1,2, \ldots$ we have $\left|U_{i}\right|=|T|$.
Subproof. For $U_{1}=T$ this is true by definition. Any other U_{i} is constructed by multiplying $a^{j} b_{i-1}$ for some $b_{i-1} \in \mathbb{Z}_{n}^{*}$ and some $j=1,2, \ldots, k$. By Claim 2 , $a^{j} b_{i-1} \neq a^{\ell} b_{i-1}$ if $1 \leq$ $j, \ell \leq k$ and $j \neq \ell$.
Subclaim 2 tells us that the elements of \mathbb{Z}_{n}^{*} are all contained among the U 's, which by Subclaim 3 have no common elements, and by Subclaim 4 are the same size. This is the basic model of division, so each $\left|U_{i}\right|$ divides $\left|\mathbb{Z}_{n}^{*}\right|$. In particular $|T|=\left|U_{1}\right|$ divides $\left|\mathbb{Z}_{n}^{*}\right|=\phi(n)$, and $|T|$ is the number of distinct powers of a.

Example (continued). Earlier we showed that in \mathbb{Z}_{35}^{*}, with $a=13$ we have $U_{1}=T=\{13,29,27,1\}$. Clearly $\mathbb{Z}_{35}^{*} \neq U_{1}$; let $b_{1}=2 \in \mathbb{Z}_{35}^{*} \backslash U_{1}$. Then

$$
U_{2}=\{13 \times 2,29 \times 2,27 \times 1,1 \times 2\}=\{26,3,34,2\}
$$

Notice that $U_{1} \cap U_{2}=\emptyset$. Again, $Z_{35}^{*} \neq U_{1} \cup U_{2}$; let $b_{2}=3 \in \mathbb{Z}_{35}^{*} \backslash\left(U_{1} \cup U_{2}\right)$. Then

$$
U_{3}=\{13 \times 3,29 \times 3,27 \times 3,1 \times 3\}=\{4,17,11,3\}
$$

Notice that $U_{1} \cap U_{3}=U_{2} \cap U_{3}=\emptyset$. Again, $Z_{35}^{*} \neq U_{1} \cup U_{2} \cup U_{3}$; let $b_{3}=6 \in \mathbb{Z}_{35}^{*} \backslash\left(U_{1} \cup U_{2} \cup U_{3}\right)$.
Then

$$
U_{4}=\{13 \times 6,29 \times 6,27 \times 6,1 \times 6\}=\{8,34,22,6\} .
$$

Notice that $U_{1} \cap U_{4}=U_{2} \cap U_{4}=U_{3} \cap U_{4}=\emptyset$. Again, $Z_{35}^{*} \neq U_{1} \cup U_{2} \cup U_{3} \cup U_{4}$; continuing in this fashion, we choose and construct

$$
\begin{aligned}
b_{4}=9 \text { and } U_{5} & =\{12,16,33,9\} \\
b_{5}=18 \text { and } U_{6} & =\{24,32,31,18\} .
\end{aligned}
$$

The iteration has ended, illustrating Subclaim 1. We have $\mathbb{Z}_{35}^{*}=U_{1} \cup \cdots \cup U_{6}$, illustrating Subclaim 2. The U's are disjoint, illustrating Subclaim 3. ("Disjoint" means their intersection is empty.) The U 's all have $|T|=4$ elements, illustrating Subclaim 4. In fact,

$$
\phi(35)=24=6 \times 4=(\text { number of } U \prime s) \times|T| .
$$

Claim 5 (Euler's Theorem). For any $a \in \mathbb{Z}_{n}^{*}, a^{\phi(n)} \equiv 1(\bmod n)$.
Proof. By Claim 3, there is some $k \in \mathbb{N}^{+}$such that $a^{k} \equiv 1(\bmod n)$, and the smallest such k is the number of distinct powers of a in $\left\{a, a^{2}, \ldots\right\}$. By Claim 4, $k \mid \phi(n)$. Choose $q \in \mathbb{N}$ such that $k q=\phi(n)$. By substitution,

$$
a^{\phi(n)}=a^{k q}=\left(a^{k}\right)^{q} \equiv 1^{q}=1 .
$$

Example (continued). Previously we saw that $13^{4} \equiv 1(\bmod 35)$. Since $4 \times 6=24$,

$$
13^{\phi(35)}=13^{24}=13^{4 \times 6}=\left(13^{4}\right)^{6} \equiv 1^{6}=1
$$

Claim 6. The final step of the RSA algorithm deciphers B's message.
Proof. As explained at the beginning, we need to show that $m^{e d} \equiv m(\bmod N)$. By construction, $e d+t \phi(N)=1$. Without loss of generality, we may assume d is positive and t is negative. Rewrite the equation as $e d=1-t \phi(N)$. Let $u=-t>0$ and we have $e d=1+u \phi(N)$. By substitution into the congruence,

$$
m^{e d}=m^{1+u \phi(N)}=m^{1} \times m^{u \phi(N)}=m \times\left(m^{\phi(N)}\right)^{u}=m \times 1^{u}=m
$$

Example. This time we encrypt and decrypt the word DOGS a little more realistically.
Pair the word's letters as DO and GS. Transform DO into the number $3 \times 26+14=92$ and transform GS into the number $6 \times 26+18=174$. Let

$$
p=23 \text { and } q=31 \quad \Longrightarrow \quad N=p q=713 \quad \text { and } \quad \phi(N)=(23-1) \times(31-1)=660 .
$$

Choose $e=511$; it is easy to verify that $\operatorname{gcd}(511,660)=1$ via the Euclidean algorithm. The encryption is then

$$
\begin{aligned}
\text { DO: } 92^{511} & \equiv 92^{1+2+4+8+16+32+64+128+256} \equiv 92 \\
\text { GS: } 174^{511} & \equiv 50
\end{aligned}
$$

B thus broadcasts 92 and 50 to A .
To decrypt, A determines the decryption exponent $d=31$ using the Euclidean algorithm, then computes

$$
\begin{aligned}
92^{31} & \equiv 92 \\
50^{31} & \equiv 174
\end{aligned}
$$

A then transforms the numbers back into letters by dividing by 26 :

$$
\begin{aligned}
92 & =3 \times 26+14 \\
174 & =6 \times 26+18
\end{aligned}
$$

Observe that $3,14,6,18$ are precisely the numbers corresponding to $\mathrm{D}, \mathrm{O}, \mathrm{G}, \mathrm{S}$.

Exercises

Exercise 1. Show that if $\operatorname{gcd}(a, n)=1$ and $\operatorname{gcd}(b, n)=1$, then $\operatorname{gcd}(a b, n)=1$.
Exercise 2. Show that if $\operatorname{gcd}(a, n)=1$, then $\operatorname{gcd}\left(a^{k}, n\right)=1$.
Exercise 3. Show that if $T=\left\{a, a^{2}, \ldots, a^{k}\right\}$ is a complete list of distinct powers of a modulo n, then $x \equiv a^{k} x(\bmod n)$.
Exercise 4. For \mathbb{Z}_{35}^{*} and $a=13$ compute the sets $U_{1}, U_{2}, \ldots U_{\text {last }}$ of Claim 4.
Exercise 5. Use the Euclidean algorithm to verify that 31 is the decryption exponent for $N=713$ and $e=511$.

