AN ALGEBRAIC PROOF OF RSA ENCRYPTION AND DECRYPTION

Recall that RSA works as follows. A wants B to communicate with A, but without E understanding the transmitted message. To do so:

- A broadcasts "RSA method, encryption exponent e, modulus N," where N = pq, p and q are large primes, and $gcd(e, \phi(N)) = 1$. (Here, $\phi(N)$ indicates the number of integers between 0 and N that are relatively prime to N.)
- B encrypts a message m by computing $c = m^e$, and broadcasts c.
- A decrypts c by computing $c^d = (m^e)^d$, modulo N. (Here, d is the Bézout coefficient of e in the linear combination $ed + t\phi(N) = 1$.)

So RSA successfully encrypts and decrupts if $m^{ed} \equiv m \pmod{N}$. To show this, we proceed through several claims.

Definition. Let \mathbb{Z}_n^* be the subset of \mathbb{Z}_n whose elements are relatively prime to n.

Example. $\mathbb{Z}_{35}^* = \{1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34\}.$ Observe that $\phi(N) = 24 = (5-1) \times (7-1)$, where $35 = 5 \times 7$.

Claim 1. Every $a \in \mathbb{Z}_n^*$ has a multiplicative inverse $s \in \mathbb{Z}_n^*$; that is, $as \equiv 1 \pmod{n}$.

Proof. Let $a \in \mathbb{Z}_n^*$. By Theorem 1.35 in the text, there exist $s, t \in \mathbb{Z}$ such that as + nt = 1. Rewrite as n(-t) = as - 1. By definition of divisibility, $n \mid (as - 1)$. By definition of congruence, $as \equiv 1 \pmod{n}$. That is, s is a multiplicative inverse of a. In addition, the linear combination as + nt = 1 shows that gcd(s, n) = 1, so $s \in \mathbb{Z}_n^*$, as claimed.

Example (continued). It is easy to verify that the multiplicative inverse of 18 in \mathbb{Z}_{35}^* is 2.

Claim 2. For every $a \in \mathbb{Z}_n^*$, the set $S = \{ab : b \in \mathbb{Z}_n^*\}$ has $\phi(n)$ distinct elements. In fact, $S = \mathbb{Z}_n^*$.

Proof. Let $a \in \mathbb{Z}_n^*$ and compute S. For each $b \in \mathbb{Z}_n^*$, we have gcd(a, n) = gcd(b, n) = 1; by Exercise 1 below, gcd(ab, n) = 1. Hence each $ab \in S$ is also an element of \mathbb{Z}_n^* , and $S \subseteq \mathbb{Z}_n^*$. Since \mathbb{Z}_n^* has $\phi(n)$ elements, the only way S can have fewer is if ab = ac for distinct $b, c \in \mathbb{Z}_n^*$. By way of contradiction, assume that such b and c exist. By Claim 1, a has a multiplicative inverse $s \in \mathbb{Z}_n^*$. Multiply both sides of our congruence by s, and we see that

$$s(ab) \equiv s(ac) \implies (sa) b = (sa) c \implies 1 \cdot b \equiv 1 \cdot c \implies b \equiv c$$

However, we chose $b, c \in \mathbb{Z}_n^*$ to be distinct, so we have a contradiction. It must be that S has $\phi(n)$ distinct elements, and since we knew $S \subseteq \mathbb{Z}_n^*$ we actually have $S = \mathbb{Z}_n^*$.

Example (continued). Let a = 13. Then the set S of Claim 2 is

 $S = \{13, 26, 4, 17, 8, 34, 12, 3, 16, 29, 33, 11, 24, 2, 6, 19, 32, 23, 1, 27, 18, 31, 9, 22\} \ .$ This is precisely $\mathbb{Z}_{35}^*.$

Claim 3. For every $a \in \mathbb{Z}_n^*$, there is some $k \in \mathbb{N}^+$ such that $a^k \equiv 1 \pmod{n}$, and for the smallest such k there are k distinct powers of a, modulo n.

Proof. Let $a \in \mathbb{Z}_n^*$ and let $T = \{a, a^2, a^3, \ldots\}$. By Exercise 2 below, for each a^k we have $gcd(a^k, n) = 1$. Each $a^k \in T$ is thus an element of \mathbb{Z}_n^* , so $T \subseteq \mathbb{Z}_n^*$. Now, \mathbb{Z}_n^* is a finite set; to be precise, it has $\phi(n)$ elements. That forces T to be a finite set; there must be distinct $i, j \in \mathbb{N}$ such that $a^i \equiv a^j \pmod{n}$. Without loss of generality, i < k. Since $a^i \in \mathbb{Z}_n^*$, Claim 1 tells us it has a multiplicative inverse $b \in \mathbb{Z}_n^*$. Multiply both sides of the congruence by b, we see that

$$a^{i}b \equiv a^{j}b \implies a^{i}b \equiv (a^{j-i} \cdot a^{i})b \implies a^{i}b \equiv a^{j-i}(a^{i}b) \implies 1 \equiv a^{j-i}$$

Recall that i < j, so $j - i \in \mathbb{N}^+$ and k = j - i satisfies $a^k \equiv 1$.

By the Well-Ordering Property, we can identify a smallest positive k such that $a^k \equiv 1$. To show that there are k distinct powers of a, modulo n, suppose that $a^i \equiv a^j$, where $0 < i \le j \le k$. As before, $1 \equiv a^{j-i}$. We chose k to be the smallest positive integer such that $a^k \equiv 1$, and j - i < k, so j - i cannot be positive. Instead, j - i = 0, which means i = j. In other words, $a^i \equiv a^j$ only if i = j. So the powers $a, a^2, \ldots a^k$ must all be distinct.

Corollary. For any $a \in \mathbb{Z}_{35}^*$, a's inverse is a power of itself.

Example (continued). Let a = 13. The set T computed in the proof of Claim 3 is

$$T = \{13, 29, 27, 1\}$$
.

So $a^4 \equiv 1$. Notice that |T| = 4, a divisor of $\phi(35)$. Also, $13^3 \equiv 27$ is the multiplicative inverse of 13.

Let's do another. Let a = 26. The set T computed in the proof of Claim 3 is

$$T = \{26, 11, 6, 16, 31, 1\}$$

So $a^6 \equiv 1$. Again, we notice that |T| = 6, a divisor of $\phi(35)$. Also, $26^5 \equiv 31$ is the multiplicative inverse of 26.

Notice that if $26^2 \equiv 26^4$, then we would have $1 \equiv 26^2$, but we already saw that k = 6 is the smallest positive number such that $26^k \equiv 1$.

Claim 4. For every $a \in \mathbb{Z}_n^*$, the number of distinct powers of a in \mathbb{Z}_n^* is a divisor of $\phi(n)$.

Proof. Let a, k, and T be as in the proof of Claim 3. Define U_1, U_2, \ldots iteratively as follows:

- $U_1 = T$, and
- for i = 1, 2, ...,

- if $U_1 \cup \cdots \cup U_i = \mathbb{Z}_n^*$, then stop;

- otherwise, choose $b_i \in \mathbb{Z}_n^*$ that is not in $U_1 \cup \cdots \cup U_i$, and let $U_{i+1} = \{ab_i, a^2b_i, \ldots, a^kb_i\}$. We proceed through several subclaims.

Subclaim 1. The sequence of U_i 's is finite.

Subproof. Each U_{i+1} is defined using an element of $\mathbb{Z}_n^* \setminus (U_1 \cup \cdots \cup U_i)$. As \mathbb{Z}_n^* has finitely many elements, we can create a new set with an element not already taken only finitely many times.

Let U_{last} be the last one generated.

Subclaim 2. $\mathbb{Z}_n^* = U_1 \cup \cdots \cup U_{\text{last}}$.

Subproof. Were this not the case, the iteration would continue beyond U_{last} .

Subclaim 3. If $i \neq j$, then $U_i \cap U_j = \emptyset$.

Subproof. By way of contradiction, assume $i \neq j$ and $U_i \cap U_j \neq \emptyset$. Let $c \in U_i \cap U_j$. By construction, there exist $b_{i-1}, b_{j-1} \in \mathbb{Z}_n^*$ and $\ell, m \in \mathbb{N}^+$ such that $c \equiv a^{\ell}b_{i-1} \equiv a^m b_{j-1}$. Without loss of generality, suppose i < j. By construction of the U's, we cannot have $b_{j-1} \in U_i$, as that would contradict the choice of b_{j-1} , which cannot be in $U_1 \cup \cdots \cup U_{j-1}$, and U_i would be among them. However, $b_{j-1} \equiv a^{\ell-m}b_{i-1}$. If $\ell - m \geq 0$, then $b_{j-1} \in U_i$, a contradiction, so we must have $\ell - m < 0$. By Exercise 3 below, we know that $b_{j-1} \equiv a^{k+(\ell-m)}b_{i-1}$. In this case $k + (\ell - m) > 0$, and again $b_{j-1} \in U_i$, a contradiction. Hence $U_i \cap U_j = \emptyset$.

Subclaim 4. For each $i = 1, 2, \ldots$ we have $|U_i| = |T|$.

Subproof. For $U_1 = T$ this is true by definition. Any other U_i is constructed by multiplying $a^j b_{i-1}$ for some $b_{i-1} \in \mathbb{Z}_n^*$ and some j = 1, 2, ..., k. By Claim 2, $a^j b_{i-1} \neq a^\ell b_{i-1}$ if $1 \leq j, \ell \leq k$ and $j \neq \ell$.

Subclaim 2 tells us that the elements of \mathbb{Z}_n^* are all contained among the U's, which by Subclaim 3 have no common elements, and by Subclaim 4 are the same size. This is the basic model of division, so each $|U_i|$ divides $|\mathbb{Z}_n^*|$. In particular $|T| = |U_1|$ divides $|\mathbb{Z}_n^*| = \phi(n)$, and |T| is the number of distinct powers of a.

Example (continued). Earlier we showed that in \mathbb{Z}_{35}^* , with a = 13 we have $U_1 = T = \{13, 29, 27, 1\}$. Clearly $\mathbb{Z}_{35}^* \neq U_1$; let $b_1 = 2 \in \mathbb{Z}_{35}^* \setminus U_1$. Then

$$U_2 = \{13 \times 2, 29 \times 2, 27 \times 1, 1 \times 2\} = \{26, 3, 34, 2\}$$

Notice that $U_1 \cap U_2 = \emptyset$. Again, $Z_{35}^* \neq U_1 \cup U_2$; let $b_2 = 3 \in \mathbb{Z}_{35}^* \setminus (U_1 \cup U_2)$. Then

$$U_3 = \{13 \times 3, 29 \times 3, 27 \times 3, 1 \times 3\} = \{4, 17, 11, 3\}$$
.

Notice that $U_1 \cap U_3 = U_2 \cap U_3 = \emptyset$. Again, $Z_{35}^* \neq U_1 \cup U_2 \cup U_3$; let $b_3 = 6 \in \mathbb{Z}_{35}^* \setminus (U_1 \cup U_2 \cup U_3)$. Then

$$U_4 = \{13 \times 6, 29 \times 6, 27 \times 6, 1 \times 6\} = \{8, 34, 22, 6\}$$

Notice that $U_1 \cap U_4 = U_2 \cap U_4 = U_3 \cap U_4 = \emptyset$. Again, $Z_{35}^* \neq U_1 \cup U_2 \cup U_3 \cup U_4$; continuing in this fashion, we choose and construct

$$b_4 = 9 \text{ and } U_5 = \{12, 16, 33, 9\}$$

 $b_5 = 18 \text{ and } U_6 = \{24, 32, 31, 18\}$

The iteration has ended, illustrating Subclaim 1. We have $\mathbb{Z}_{35}^* = U_1 \cup \cdots \cup U_6$, illustrating Subclaim 2. The U's are disjoint, illustrating Subclaim 3. ("Disjoint" means their intersection is empty.) The U's all have |T| = 4 elements, illustrating Subclaim 4. In fact,

$$\phi(35) = 24 = 6 \times 4 = (\text{number of } U's) \times |T|$$
.

Claim 5 (Euler's Theorem). For any $a \in \mathbb{Z}_n^*$, $a^{\phi(n)} \equiv 1 \pmod{n}$.

Proof. By Claim 3, there is some $k \in \mathbb{N}^+$ such that $a^k \equiv 1 \pmod{n}$, and the smallest such k is the number of distinct powers of a in $\{a, a^2, \ldots\}$. By Claim 4, $k \mid \phi(n)$. Choose $q \in \mathbb{N}$ such that $kq = \phi(n)$. By substitution,

$$a^{\phi(n)} = a^{kq} = (a^k)^q \equiv 1^q = 1$$
.

Example (continued). Previously we saw that $13^4 \equiv 1 \pmod{35}$. Since $4 \times 6 = 24$,

$$13^{\phi(35)} = 13^{24} = 13^{4 \times 6} = (13^4)^6 \equiv 1^6 = 1$$
.

Claim 6. The final step of the RSA algorithm deciphers B's message.

Proof. As explained at the beginning, we need to show that $m^{ed} \equiv m \pmod{N}$. By construction, $ed+t\phi(N) = 1$. Without loss of generality, we may assume d is positive and t is negative. Rewrite the equation as $ed = 1 - t\phi(N)$. Let u = -t > 0 and we have $ed = 1 + u\phi(N)$. By substitution into the congruence,

$$m^{ed} = m^{1+u\phi(N)} = m^1 \times m^{u\phi(N)} = m \times (m^{\phi(N)})^u = m \times 1^u = m$$
.

Example. This time we encrypt and decrypt the word DOGS a little more realistically.

Pair the word's letters as DO and GS. Transform DO into the number $3 \times 26 + 14 = 92$ and transform GS into the number $6 \times 26 + 18 = 174$. Let

$$p = 23 \text{ and } q = 31 \implies N = pq = 713 \text{ and } \phi(N) = (23 - 1) \times (31 - 1) = 660.$$

Choose e = 511; it is easy to verify that gcd(511, 660) = 1 via the Euclidean algorithm. The encryption is then

DO:
$$92^{511} \equiv 92^{1+2+4+8+16+32+64+128+256} \equiv 92$$

GS: $174^{511} \equiv 50$.

B thus broadcasts 92 and 50 to A.

To decrypt, A determines the decryption exponent d=31 using the Euclidean algorithm, then computes

$$92^{31} \equiv 92$$
$$50^{31} \equiv 174$$

A then transforms the numbers back into letters by dividing by 26:

$$92 = 3 \times 26 + 14$$

 $174 = 6 \times 26 + 18$.

Observe that 3, 14, 6, 18 are precisely the numbers corresponding to D, O, G, S.

Exercises

Exercise 1. Show that if gcd(a, n) = 1 and gcd(b, n) = 1, then gcd(ab, n) = 1.

Exercise 2. Show that if gcd(a, n) = 1, then $gcd(a^k, n) = 1$.

Exercise 3. Show that if $T = \{a, a^2, ..., a^k\}$ is a complete list of distinct powers of a modulo n, then $x \equiv a^k x \pmod{n}$.

Exercise 4. For \mathbb{Z}_{35}^* and a = 13 compute the sets $U_1, U_2, \dots U_{\text{last}}$ of Claim 4.

Exercise 5. Use the Euclidean algorithm to verify that 31 is the decryption exponent for N = 713 and e = 511.