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Chapter 1

Modular arithmetic

1.1 Sets and relations
The material in this section is fundamental! Much of mathematics depends en-
tirely on the de�nitions.

Sets
A set is a collection of elements. If S is a set then we write s ∈ S to say that “s
is an element of S,” and we write t 6∈ S to say that “t is not an element of S.” In
this text we usually use capital letters to indicate a set, and minuscule letters to
indicate elements of a set, and an element of a set is often the minuscule letter
of the set’s capital letter.

If a set S has �nitely many elements, then the size of a set is the number of
elements. We write |S| for the size of S

We often use multiple elements of a set, and employ the following conven-
tions when considering successive elements of a set S.

• If we only consider one or two, we’ll start with s ∈ S, then consider t ∈ S.
Similarly we may start with a ∈ A, then consider b ∈ A.

• If there’s some intuitive relationship between s ∈ S and the next element
we consider, we may place a decoration on s and thus consider it a di�erent
element, such as ŝ, s′, and so forth.

• If we take a longer sequence of elements, we’ll write the �rst one as s0, the
next one as s1, the one after that as s2, and so forth. We call the number a

2
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subscript and sometimes we’ll use a letter when we don’t necessarily know
which element of the sequence we mean; for instance, si is the ith element
in s1, s2, . . . .

The basic sets of school mathematics are

• the positive numbers 1, 2, 3, . . . , written N+ for short;

• the natural numbers 0, 1, 2, . . . , written N for short;

• the integers . . . , -2, -1, 0, 1, 2, . . . , written Z for short;

• the rational numbers a/b where a, b are integers and b 6= 0, written Q for
short;

• the real numbers, which we can describe intuitively as “any length of a line
segment,” written R for short.1

Whenever every element a set S is also an element of a set T , we say that S is a
subset of T , written S ⊆ T for short. We say that two sets are equal if each is a
subset of the other, written S = T for short. If we know that S ⊆ T but either
don’t know or don’t care whether S = T , we write S ( T .

Example 1. Every natural number is an integer, allowing us to write N ⊆ Z.
The negatives are not natural, so Z ( N and so N 6= Z.

Example 2. Every rational number of the form a/1 is in identi�ed with the inte-
ger a, so every integer is a rational number, allowing us to write Z ⊆ Q. Some
rationals, like 1/2, are not integers, so Q ( Z and so Q 6= R.

Example 3. Every rational number corresponds to the length of a line, allowing
us to write Q ⊆ R.

Example 4. Is every rational number a real number? This question is said to
have vexed the Pythagoreans. Certainly

√
2 would be a real number, as we can

show that
√
2 is the length of a line segment (see the exercises). But can we write√

2 as a/b, where a and b are integers? If we can do this for every real number,
then we could write R ⊆ Q. We postpone the resolution of this question until
Section 1.4.

1This is not really important, but Z it from the German word for “number” and Q is from the
Italian word for “quotient.”



CHAPTER 1. MODULAR ARITHMETIC 4

Sets are often written using braces and a notation called set-builder notation.
For instance, we could have written the de�nition of Q above as

Q = {a/b : a, b ∈ Z and b 6= 0} .

We would read this as, “Q is the set of all a/b such that a and b are integers and b
is not 0.”

There are three common ways to build one set from two others.

• The union of S and T is the set of elements that are members of S or T ,2
written S ∪ T . In set-builder notation,

S ∪ T = {x : x ∈ S or x ∈ T} .

• The intersection of S and T is the set of elements that are members of S
and T , written S ∩ T . In set-builder notation,

S ∩ T = {x : x ∈ S and x ∈ T} .

• The di�erence of S and T is the set of elements that are members of S but
not of T ,3 written S\T . In set-builder notation,

S\T = {x : x ∈ S and x 6∈ T} .

Relations
From here until the end of the section, S and T are sets.

The Cartesian product of S and T is the set of all ordered pairs whose �rst
entry is an element of S and whose second entry is an element of T . Written
symbolically,

S × T = {(s, t) : s ∈ S, t ∈ T} .
2When we say “or” in common English we typically mean “either-or,” or “exclusive-or.” That

is, “You can have your cake or you can eat it, but you can’t both have your cake and eat it.”
When we say “or” in mathematics, however, we always mean “inclusive-or.” A mathematician
understands that the correct answer to, “Would you like cake or pie?” is “Yes.”

3As the set-builder notation shows, “but” and “and” have the same logical meaning in math-
ematics, and one can usually interchange them. In common English, “but” and “and” are not
typically interchangeable.
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Example 5. The Cartesian product of N with itself is

N× N = {(0, 0) , (0, 1) , (0, 2) , . . . , (1, 0) , (1, 1) , (1, 2) , . . .} .

In a case like this we will write N2 instead of N × N. We call N2 the lattice of
natural numbers.

An interesting aspect of the lattice of natural numbers is that you can plot its
elements rather easily using the �rst quadrant of the real plane, typically drawn
on a grid:

(0,0)

(3,1)

(2,4)

The only points allowed on the lattice are the ones marked with dots. Unlike
an ordinary graph, no points lie between them! We have diagrammed the lattice
points (0, 0), (2, 4), and (3, 1).

A relationR between S and T is a subset of S×T . Given a relationR, we say
that s ∈ S and t ∈ T are related if (s, t) ∈ R. However, it is more common to
write relations di�erently: we typically use symbols such as ≤, ∼, ≡, and write
s ≤ t or s ∼ t or s ≡ t.

If S = T then we call R a relation on S.

Example 6. Consider the relation on N

R =
{
(a, b) ∈ N2 : b− a ∈ N+

}
.

Elements of this set include

(0, 1) , (0, 2) , (2, 4) , (8, 15)

but not elements of the form

(0, 0) , (2, 0) , (−3, 7) .
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You are more likely to think of this as the less-than relation:

0 < 1 0 < 2 . . . 1 < 2 2 < 3 . . . 2 < 3 3 < 4 . . . .

Example 7. Here’s another relation on N:

R = {(0, 0) , (1, 1) , (2, 2) , . . .} .

What familiar relation are you looking at?

Many relations belong to an important class of relations called equivalence
relations. Equivalence relations satisfy three important properties. To describe
them, we need a set S and a relation ∼ on S.

• The re�exive property states that s ∼ s for every s ∈ S.

• The symmetric property states that for every s, t, u ∈ S if s ∼ t and t ∼ u,
then s ∼ u.

• The transitive property states that for every s, t, u ∈ S if s ∼ t and t ∼ u,
then s ∼ u.

Example 8. Look back at Example 6. It does not satisfy the re�exive property,
because 0 6< 0, or, (0, 0) 6∈ R. It is therefore not an equivalence relation. It also
does not satisfy the symmetric property, because 0 < 1 but 1 6< 0, or, (0, 1) ∈ R
but (1, 0) 6∈ R. On the other hand, it does satisfy the transitive property, because
if a < b and b < c then a < c, or, if (a, b) , (b, c) ∈ R then (a, c) ∈ R.

Example 9. Look back at Example 7. You hopefully noticed that R is really the
equality relation: every element of R has the form (a, b) where a = b. We rely
on this to show that R is an equivalence relation.

• For every a ∈ N, we see that (a, a) ∈ R, so R is symmetric.

• For every a, b ∈ N, we see that if (a, b) ∈ R, then a = b, in which case
b = a, so (b, a) ∈ R.

• For every a, b, c ∈ N, if (a, b) , (b, c) ∈ R, then a = b and b = c, so a = c,
in which case (a, c) ∈ R.
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Exercises
Exercise 10. For the sets S = {1, 2, 3} and T = {2, 3, 4}, compute the following
sets.

(a) S ∪ T

(b) S ∩ T

(c) S\T

(d) S × T

Exercise 11. Use the intuitive de�nition of real number as the “length of a line
segment” to explain how we know that 3/8 is a real number. Be as speci�c as pos-
sible; if you know the geometric constructions with ruler and compass, describe
how to construct 3/8.

Exercise 12. De�ne a relation on Q in the following way. For any a/b, c/d ∈ Q,
we say that a/b ∼ c/d if ad = bc.

(a) Show that 4/6 ∼ 6/9.

(b) Show that −2/5 ∼ 10/−25.

(c) Show that a/b ∼ a/b.

(d) Show that if a/b ∼ c/d, then c/d ∼ a/b.

(e) Show that if a/b ∼ c/d and c/d ∼ e/f , then a/b ∼ e/f .

(f) Is ∼ an equivalence relation?

Remember to use the de�nition of the relation in each part! If you aren’t rewriting
fractions as multiplication, then you aren’t doing it right!

Exercise 13. The Euclidean distance between (a, b) , (c, d) ∈ N2 is the value
determined by the ordinary distance formula,

√
(a− c)2 + (b− d)2. This is not

a natural number. It is possible to compute distance a di�erent way, so that it
is a natural number. In this case we consider the distance from (a, b) to (c, d)
to be |(a− c)| + |(b− d)|. We’ll call this the sidewalk distance between two
points, because it indicates the number of sidewalks you’d have to travel when
walking through a city laid out with perpendicular streets from point (a, b) to
point (c, d).
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(a) Compute the sidewalk distance between (0, 0) and (3, 4).

(b) Compute the sidewalk distance between (1, 5) and (7, 2).

(c) Explain why we can �nd the sidewalk distance between (a, b) and (c, d) by
tracing north-south and east-west lines from (a, b) to (c, d), and determining
the shortest path.

Sage supplement
This section shows how to perform some elementary operations in Sage.

Some sets are already de�ned in Sage. For instance, you can type NN, ZZ, and
QQ to obtain the sets N, Z, and Q. If you type them into Sage, it will display a
funny name:

sage: NN
Non negative integer semiring
sage: ZZ
Integer Ring
sage: QQ
Rational Field

Don’t worry too much about the names; we explain later what the names “ring”
and “�eld” mean.

You can de�ne a set using either braces {} or the set() command.

sage: { 3, 5, 7 }
set([3, 5, 7])
sage: set( [ 7, 5, 3, 7, 7, 3, 5 ] )
set([3, 5, 7])

Notice how elements are automatically ordered, and no element can appear more
than twice.

It is also possible to de�ne a set using something akin to set-builder notation,
making use of for and if statements:
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sage: { i^2 for i in { 3, 5, 7 } }
set([9, 49, 25])
sage: { i^2 for i in { 3, 4, 5, 6, 7 } if is_even(

i ) }
set([16, 36])

Notice how all three numbers were squared in the �rst assignment, and how only
the even numbers were taken and squared in the second assignment.

Another useful command for generating a set is range().

• With just one integer between the parentheses, it returns a list of all the
numbers that are between 0 and the speci�ed number, including 0 but not
the speci�ed number.

• With two integers between the parentheses, it returns a list of all the num-
bers between the two, including the �rst but not the last.

sage: range( 8 )
[0, 1, 2, 3, 4, 5, 6, 7]
sage: range( 3, 8 )
[3, 4, 5, 6, 7]

You can assign a name to a set using the = operator. You can assign a name
to any object in this way. You can even assign several objects at a time.

sage: a, b = 3, 4
sage: a + b
7
sage: S = { a, b, 7, 3 }
sage: S
set([3, 4, 7])

Notice that Sage does not display any messages after a successful assignment.
You can test whether two objects are equal using the == operator. This is

not the same as the = operator; comparison uses two equality signs instead of
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one. Be careful when doing this; if you type only one sign, you may accidentally
overwrite an object. In other cases, Sage will report an error. What happens
depends on the context.

sage: 3 + 3 == 6
True
sage: 3 + 3 = 6
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/

smc_sagews/sage_server.py", line 1188, in execute
flags=compile_flags) in namespace, locals
File "<string>", line 1

SyntaxError: can’t assign to operator

Simple set operations are possible: use “dot commands” to accomplish them.

sage: S = { i^2 for i in range(20) if is_even(i) }
sage: T = { 4*i for i in range(100) }
sage: S.intersection(T)
set([0, 64, 4, 16, 256, 144, 196, 324, 36, 100])
sage: S.union(T)
set([0, 256, 392, 4, 8, ... 252])
sage: S.difference(T)
set([])

That last output is how Sage indicates that it has computed an empty set.
You can often discover commands available for an object by typing the ob-

ject’s name, adding a period, then pressing the “tab” key. If you do this with S,
the version of Sage I am using will return 17 commands:

add, clear, copy, difference, difference_update, discard, intersection,
intersection_update, isdisjoint, issubset, issuperset, pop,
remove, symmetric_difference, symmetric_difference_update,
union, update
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You should see commands for union, intersection, and di�erence. To learn more
about a command, you can continue by typing the command after the period,
followed a question mark, then executing the line, Sage will give you some help
on the command. If I do this with pop, the version of Sage I am using will display
the following:

sage: S.pop?
File:
Docstring : Remove and return an arbitrary set
element. Raises KeyError if the set is empty.

This gives you an idea of what happens when you pop an element from a set.
You may have noticed that set objects lack a dot command for a Cartesian

product. A command to compute Cartesian products actually exists; it just isn’t
a dot command. Try this:

sage: CP = cartesian_product((S,T))
sage: CP
The Cartesian product of ({0, 64, 4, 100, 324,
144, 256, 16, 196, 36}, {0, 256, 4, 8, ... 136,
252})

Notice that we used double parentheses; the cartesian_product command ex-
pects as input one argument, which is a pair or list of sets. Here we used paren-
theses to give a pair.

It may not seem especially useful to have a “Cartesian product” that displays
itself only as a “Cartesian product” and not as a set of points, but trust us when
we say that it is very useful.4 In any case, we can use a set builder to transform
CP into a set of ordered pairs: (that’s an x between the S and the T below)

sage: SxT = { P for P in CP }
sage: SxT
set([(100, 36), (100, 324), (4, 264), ... (16,
328), (36, 76), (324, 352)])

4Explaining why is beyond the scope of these notes.
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(We omitted a lot of output this time.)
It is possible to de�ne new commands in Sage. This is not a textbook on

programming; we assume that if you are reading this, then you have some ex-
perience with programming, so we won’t delve into the details of how various
control structures work, but the following will de�ne a command that computes
the sidewalk distance between two points of the lattice, described in Exercise 13.

sage: def sidewalk_dist(P, Q):
return abs(P[0] - Q[0]) + abs(P[1] - Q[1])

The def keyword de�nes a new command, in this case named sidewalk_dist.
Parentheses always follow, and contain arguments that sidewalk_dist requires.
In this case, it requires two arguments, P and Q.5 The �rst line ends with a colon,
and subsequent lines are indented; these two signals indicate that the indented
lines depend on the line that ends with a colon. You will see this in all Sage’s
control structures.

The procedure then computes |p0 − q0|+ |p1 − q1|, where p0 is the �rst entry
of P and p1 is its second entry; we use abs(...) to compute the absolute value
of whatever is in parentheses. The return command indicates that whatever
follows on that line is the result of sidewalk_dist.

Once we de�ne the command, we can use it as follows.

sage: sidewalk_dist((3,5),(7,2))
7

What just happened inside the computer? First it assigned the values (3, 5) to P
and (7, 2) to Q. It then computed

• abs( P[0] - Q[0] ) = |3− 7| = 4;

• abs( P[1] - Q[1] ) = |5− 2| = 3;

• the sum of these numbers, 7;

and then returned the result.
5Sage is like Python 2 or Perl, and unlike Python 3, in that it does not allow you to specify an

argument’s type of an argument. It is very much unlike C or Java, where you must specify the
type.
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Exercises
Exercise 14. Use Sage to verify your answers in Exercise 10.

Exercise 15. Use Sage to verify your answers to Exercise 13.

1.2 Integer division
This class will make heavy use of integer division, so it is important to develop
a solid understanding of this topic.

A function from a set S to a set T is a relation F between S and T such that
if (a, b) ∈ F then (a, c) ∈ F only if b = c. That is, each “input” to F can have
only one “output”. It is common to write F (a) = b instead of (a, b) ∈ F , so we
will do that from now on.

An operation on a set S is a function from S2 to S. It is more common to give
an operation a symbol, such as �, so that instead of saying ((s, t) , u) is in the
operation, we say s � t = u, so we will do that from now on.

An operation is closed if for every s, t ∈ S there exists u ∈ S such that
s � t = u.

Example 16.

• Addition is an operation on N, Z, Q, and R. In fact, it is closed on all four
sets.

• Subtraction is an operation on N, Z, Q, and R. However, closed only on
the latter three; it is not closed on N, since 3− 4 6∈ N.

• Multiplication is an operation on N, Z, Q, and R. In fact, it is closed on all
four sets.

• Division, however, is a little odd. You will probably believe that it is an
operation on Q and R; after all, you’ve done it many times. However, we
show below that division does not satisfy our de�nition of an operation in
N and Z. On these sets it’s a strange little creature.

A Division Algorithm
What is division, and how do we accomplish it? The basic idea is that, given a set
of n distinct objects, we would like to divide it into subsets of d distinct objects.
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We may not be able to do this perfectly, in which case we’ll be greedy and take
as many subsets as we can, and identify the number of objects left over as the
remainder .

If division were an operation on N, we would map from N2 to N. Instead,
division maps from N2 (the dividend n and the divisor d) to N2 (the quotient q
and the remainder r). So division is merely a function on N2 and not an operation
on N!
Example 17. Given a set of 51 elements, we can divide it into 8 sets of 6 elements,
with a remainder of 3.

How can we carry out division? One rather simplistic way is via the following
algorithm.

Algorithm 1.1 Simplistic Division Algorithm
input

• n ∈ N

• d ∈ N+

output

• q, r ∈ N such that n = qd+ r and r < d

do

1. let r = n, q = 0

2. while r ≥ d

(a) increment q by 1
(b) decrement r by d

3. return q and r

Let’s see how this algorithm produces the result of the previous example.
Example 18. We want to divide n = 51 by d = 6. Step 1 of the algorithm
assigns r = 51 and q = 0.
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We proceed to step 2. A “while” statement means that as long as the condition
is true, we perform the steps indented underneath it. Since r = 51 and d = 6,
we have r ≥ d. In step 2(a), we increment q by 1, obtaining q = 1. In step 2(b),
we decrement r by d, obtaining r = 45.

We remain in step 2 because r ≥ d. Increment q to 2 and decrement r to 39.
We remain in step 2 because r ≥ d. Increment q to 3 and decrement r to 33.
. . .
The algorithm continues until q rises to 8 and r falls to 3. At this point, r < d,

so the “while” statement’s condition is false, and the algorithm ends.

Whenever we describe a new algorithm, we have to be sure of two important
properties.

1. Termination: The algorithm eventually produces some result.

2. Correctness: The algorithm’s result is the claimed result.

Unfortunately, we do not yet have enough theory to explain why Algorithm 1.1
terminates correctly. We need to consider the natural numbers a little more care-
fully.

The Well-Ordering Property and some of its consequences
You are familiar with the natural ordering of numbers; in Example 6 we saw that
for any a, b ∈ N

a < b if and only if b− a ∈ N+ .

This characterization works if a, b ∈ Z, as well.
An interesting property of Z is that it has no smallest element. After all, for

any z ∈ Z we know that z − 1 ∈ Z and then

z − (z − 1) = 1 ∈ N+ so z − 1 < z .

What about Z’s subsets? Many of its sets do not have a smallest element. Con-
sider S = {−3,−4, . . .}; the same argument we applied to Z applies to S.

On the other hand, N has 0 as a smallest element: for any nonzero n ∈ N, we
have n− 0 = n ∈ N+, so 0 < n. Let’s highlight this as an important and useful
fact.

Lemma 19. Under the natural ordering, zero is the smallest element of N.
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What about N’s subsets? Intuitively, this seems to be true, but it is not so easy
to prove this deductively. In fact, without assuming anything at all, one cannot
prove that all of N’s subsets have smallest elements. So we take it “on faith” to be
true.6

Axiom (The Well-Ordering Property). Every subset of N has a least element.

The Well-Ordering Property gives us a very useful technique that we will use
repeatedly. A non-increasing sequence of negative numbers like

−5,−9,−12,−14, . . .

might stabilize eventually, but it might not. Without being able to check every
element of the sequence, we can’t say. But a sequence of natural numbers is
di�erent; if you see

14, 12, 9, 5, . . .

then you feel fairly con�dent that the sequence will in fact stabilize.

Theorem 20. Every non-increasing sequence of natural numbers a1, a2, . . . even-
tually stabilizes at a least element.

Proof. Let a1, a2, . . . be a non-increasing sequence of natural numbers. Let A =
{a1, a2, . . .}. Every ai ∈ N, so A ⊆ N. By the Well-Ordering property, A has a
least element; call it â. By de�nition of A, there exists i such that â = ai.

We claim that the sequence stabilizes at ai. By hypothesis, the sequence is
non-increasing, so ai ≥ ai+1 ≥ ai+2 ≥ · · · . By the transitive property, ai ≥ aj
for every j ≤ i. On the other hand, ai is the least element ofA, and by de�nition
of A aj ∈ A for every j ≥ i, so we also have ai ≤ aj . Now, if

ai ≥ aj and ai ≤ aj

then in fact
ai = aj .

(You will prove this in Exercise 24.) This is true for all the j ≥ i, so the sequence
has ai = ai+1 = ai+2 = · · · . In other words, the sequence has stabilized at
ai.

6This is something we try to avoid in mathematics if at all possible, but in some cases it’s
unavoidable. This is one of those cases.
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Theorem 20 gives us the information we need to prove that our simplistic
division algorithm both produces output a result and produces the claimed result.

Corollary 21. Algorithm 1.1 terminates correctly.

Proof. First we show that the algorithm terminates. If the algorithm does not
execute step 2 at all, it certainly terminates, so suppose it continues to step 2.
Enumerate each value of r computed in step 2 as r1, r2, and so forth. By def-
inition, ri+1 = ri − d. Rewrite this as ri − ri+1 = d; since d ∈ N+, we have
ri > ri+1. The sequence of r’s is thus a non-increasing sequence, and by The-
orem 20 it must stabilize eventually at a least element, say rk. If rk ≥ d, the
algorithm would create a smaller rk+1, contradicting our observation that the
sequence has a least element. Hence rk < d, in which case the algorithm has
terminated.

Now we show that the algorithm’s �nal q and r are correct. As before, enu-
merate the r’s of step 2 as r1, r2, . . . , rk, and put r0 = n. This means the algorithm
repeated step 2 k times. We consider the criteria slightly out of order.

• Is 0 ≤ r < d?

– Certainly r < d; otherwise, the algorithm wouldn’t have terminated.
– If r 6∈ N, then r < 0. Since its initial value in step 1 is r0 = n, a

natural number, the algorithm must have performed step 2 at least
once. In particular, it performed step 2 on rk−1, so

rk = rk−1 = d =⇒ rk−1 = rk + d = r + d < 0 + d = d .

That is, rk−1 < d. But the fact that the algorithm performed step 2 on
rk−1 means that rk−1 ≥ d, a contradiction. So 0 ≤ r < d, as claimed.

• Is n = qd+ r?

– If the algorithm does not perform step 2 at all, then
∗ r = n and q = 0, so qd+ r = 0× d+n = n, satisfying the claim

that qd ≤ n; and
∗ since the algorithm did not perform step 2, we must have r < d,

and r = n ∈ N implies that 0 ≤ r.
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– Suppose that the algorithm continues to step 2. Step 2(a) increments
q by 1 each time, so q = k. Also observe that

r1 = n− d
r2 = r1 − d = n− 2d

...
rk = n− kd .

By substitution,

qd+ r = kd+ (n− kd) = n.

We have shown that n = qd+ r and 0 ≤ r < d, so the proof is complete.

The Division Theorem
Algorithm 1.1 applies to natural numbers only. We can extend this fairly easily
to all integers.
Theorem 22 (The Division Theorem). Let n, d ∈ Z with d 6= 0. There exist
q, r ∈ Z such that

• n = qd+ r, and

• 0 ≤ r < |d|.
In addition, q and r are uniquely determined by n and d.

Proof. If n, d ∈ N, then Corollary 21 proves the result. Otherwise, at least one of
n, d < 0. We consider this in three cases. For each case we consider an example.
Case 1. Suppose n < 0 but d > 0.

Example. Suppose n = −51 and d = 6. Algorithm 1.1 requires non-
negative numbers, so what happens if we consider 51 and 6? We get
q = 8 and r = 3. We have 51 = 8 × 6 + 3, but we need an expres-
sion for −51 rather than 51. If we multiply both sides by −1, we have
−51 = − (8× 6 + 3) = (−8)× 6 + (−3). The theorem allows q < 0,
but not r < 0. Can we �x this somehow?
We can, and here’s how: add 0 = 6 + (−6) on the right hand side.
We have −51 = (−8)× 6 + 3 + [6 + (−6)], which we can rewrite as
−51 = (−8− 1)×6+(−3 + 6) = −9×6+3. Now we can set q = −9
and r = 3 and they satisfy the theorem!
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This insight allows us to prove the theorem. If n < 0, then −n ∈ N.
Divide that by d; Corollary 21 tells us that Algorithm 1.1 will give us
q̂, r̂ ∈ N such that −n = q̂d+ r̂ and r̂ < d. Multiply both sides by −1
and we have

n = − (q̂d+ r̂) = (−q̂) d+ (−r̂) .

If we set q = −q̂ and r = r̂, then we have n = qd + r, but r ≤ 0.
This will work in the theorem only if r̂ = 0. Otherwise, we try the
workaround of the example: let q = −q̂ − 1 and r = d − r̂. By
substitution,

qd+ r = (−q̂ − 1)× d+ (d− r̂)
= (−q̂d− d) + (d− r̂)
= −q̂d− r̂
= − (q̂d+ r̂)

= − (−n)
= n .

So n = qd+ r, satisfying the �rst requirement.
As for the second, if r̂ 6= 0, then r̂ ∈ N+, so 0 < r̂ < d. Multiply
through by −1 to obtain 0 > −r̂ > −d. Add d to every item to obtain
0 + d > −r̂ + d > d+ (−d), or d > d− r̂ > 0. Recall that r = d− r̂,
so r ∈ N and r < d, satisfying the second requirement.

Case 2. Suppose n > 0 but d < 0.

Example. Suppose n = 51 and d = −6. Algorithm 1.1 requires non-
negative numbers, so what happens if we consider 51 and 6? We get
d = 8 and r = 3. We have 51 = 8× 6 + 3, but we need an expression
for −6 rather than 6. Instead of multiplying both sides by −1, how-
ever, we notice that 51 = (−8) × (−6) + 3. Now we can set q = −8
and r = 3 and satisfy the theorem!

We leave the generalization of this example to a proof as an exercise
for the reader.

Case 3. Suppose both n, d < 0.
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Example. We leave the creation of an example as an exercise for the
reader.

We leave the generalization of this example to a proof as an exercise
for the reader.

The three cases listed cover all possibilities; in each case we can �nd q, r ∈ Z
such that n = qd+ r and 0 ≤ r < d, proving the existence of q and r.

We still have to show that q and r are unique. To that end, suppose there
exist q, q̂, r, r̂ ∈ Z such that n = qd + r and n = q̂d + r̂ and 0 ≤ r, r̂ < |d|. By
substitution, qd+ r = q̂d+ r̂. Rewrite this equation as (q − q̂) d = r̂ − r. Since
d divides the left hand side, it also divides the right. On the other hand, we can
rewrite 0 ≤ r, r̂ < |d| as 0− |d| < r− r̂ < |d| − 0, or − |d| < r− r̂ < |d|. Recall
that d divides r− r̂; the only multiple of d that lies between − |d| and |d| is 0, so
r − r̂ = 0, or r = r̂. Substitute into (q − q̂) d = r̂ − r to see that (q − q̂) d = 0.
This is possible only if q − q̂ = 0 or d = 0. By the theorem’s hypothesis, d 6= 0,
so we must have q − q̂ = 0, or q = q̂, showing that there is only one possible
choice for q and r to satisfy the theorem.

Exercises
Exercise 23. Show that the set S = {−3,−6,−9, . . .} has no smallest element.

Exercise 24. Show that for any natural numbers a and b, if a ≤ b and b ≤ a
then a = b.
Hint: Use the fact that a ≤ b implies b − a ∈ N, and b ≤ a implies a − b ∈ N.
If both b− a and its opposite are natural numbers, what does that tell you about
b− a?

Exercise 25. Generalize the example for Case 2 of the proof of Theorem 20 to a
proof for arbitrary n > 0 and d < 0.

Exercise 26. Suppose n, d < 0.

(a) Explain how you can rewrite the expression 51 = 8× 6+3 to �nd q, r such
that −51 = q × (−6) + r and 0 ≤ r < 6.

(b) Generalize your work in part (a) to a proof for arbitrary n < 0 and d < 0.
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Exercise 27. The Well-Ordering Property is not true for the rational numbers.
One reason is that Z ⊆ Q, so if every subset of Q had a least element, then Z
would, too, but it does not.

However, the Well-Ordering Property fails even if we consider only nonneg-
ative rational numbers. To see why, describe a sequence of rational numbers that
does not have a least element. Try to choose a sequence whose elements are all
decreasing and never stabilizes. Be sure to prove that the elements really are
decreasing.

Hint: To show the elements are decreasing, it might help to consider that
a/b < c/d if and only if ad < bc.

Exercise 28. We have only considered the natural ordering of integers, but there
are other ways to order them. For instance, de�ne the relation

al b if and only if
{
|a| < |b| , or
|a| = |b| and a < b.

(Remember that when we write a < b with no dot, we mean the natural order-
ing.)

(a) Order the integers −5, −3, −1, 2, 4, 9 according to l.

(b) Explain why Z has a smallest element according to the l ordering. (It will
help to name it explicitly.)

(c) Show that every subset of Z has a smallest element according to the l or-
dering.

In other words, Z satis�es the well-ordering property if you use the l ordering!

Exercise 29. Another way to prove the Division Theorem, albeit less algorith-
mically, is as follows. Fill in the blanks to complete the proof.

• Let n, d ∈ Z and assume d 6= 0. Let S = {n− qd : q ∈ Z}. Let T = S ∩N.

• By ____, T has a least element; call it r.

• By ____, r = n− qd for some q ∈ Z.

• Rewrite to obtain ____, satisfying the theorem’s �rst criterion.

• It remains to show that 0 ≤ r < d.
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– By ____, r ∈ N.
– By ____, 0 ≤ r.
– By way of contradiction, assume d ≤ r.

∗ Rewrite to obtain 0 ≤ ____.
∗ By ____, r − d ∈ T .
∗ On the other hand, r − d < r because ____ < ____.
∗ This contradicts ____.
∗ Hence, r < d.

Exercise 30. Recall the lattice of natural numbers. Suppose we order its ele-
ments in the following way: for any (a, b) , (c, d) ∈ N2 we have

(a, b) ≺ (c, d) if and only if
{
a+ b < c+ d, or
a+ b = c+ d and a < b .

(a) Order the points (3, 7), (2, 5), (4, 1), (0, 0), (4, 6), (3, 2) according to ≺.

(b) Explain why N2 has a smallest element according to the ≺ ordering. (It will
help to name it explicitly.)

(c) Show that every subset of N2 has a smallest element according to the ≺
ordering.

In other words, N2 satis�es the well-ordering property if you use the≺ ordering!

Sage supplement
You can divide integers using the / operator in Sage, but that gives you a rational
number.

sage: 7 / 3
7/3
sage: type( _ )
<type ’sage.rings.rational.Rational’>
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The type command gives us the type of an object in Sage; here we get a long
string that, for all practical purposes, means that the result of 2 / 3 is something
that Sage considers a rational number.

This works if you want rational division, but what if we’re interested in in-
teger division, as we were in this section? Sage o�ers a di�erent command for
that, .quo_rem. From the dot that precedes the command you would be right to
conclude that it is a dot command, and is used accordingly.

sage: 7.quo_rem(3)
(2, 1)

This indicates that the quotient is 2 and the remainder is 1. You can assign names
to these values if you like.

sage: q, r = 7.quo_rem(3)

After this, q and r would have the values 2 and 1, respectively.
This command is perfectly �ne, but to illustrate some more aspects of Sage,

we de�ne a new command that implements the simplistic division algorithm
(Algorithm 1.1).

sage: def simplistic_division(n, d):
r, q = n, 0
while r >= d:

q += 1
r -= d

return q, r

Before trying it out, let’s consider what it should do when we execute it. First,
you should compare it to Algorithm 1.1 and verify that it looks extremely similar
to it. Next, observe the use of keywords you already know: def and return. As
for the lines themselves:

• The �rst line de�nes the function and ends with a colon. Subsequent lines
are indented.
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• The second line assigns the values n and 0 to r and q, as in the �rst line of
Algorithm 1.1’s instructions.

• The third line begins a repetition of statements, called a loop. Sage o�ers
several kinds of loops; this one is called a while loop, and performs the
indented statements only if, and as long as, the stated condition remains
true. Here, the condition is that r ≥ d.

• The fourth line is the �rst line repeated in the loop. The += symbol is an
operator, and it tells Sage to increment the value before it by the value after
it. In this case, it increments q by 1.

• The �fth line is the second line repeated in the loop. The -= symbol be-
haves just like the += symbol, except it decrements the value before it. In
this case, it decrements r by d.

• The sixth line is indented but not as much as the ones before. It lines up
with the while statement. That means that it should be the �rst command
performed after the while statement terminates. In this case, it is a return
statement, so it indicates that the procedure simplistic_division should
terminate and give the result q,r.

One aspect of Sage that it shares with its roots in Python is that you can return
multiple values from a procedure. Here; we return q and r.

Let’s go ahead and try this.

sage: simplistic_division(7, 3)
(2, 1)

We end up with the same result as the quo_rem command.
The simplistic_division command also reveals the importance of the

Well-Ordering Property. If we try to execute it with numbers that are not natural,
strange things will result. For instance:

sage: simplistic_division(-7, 3)
(0, -7)
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Here the result is q = 0 and r = −7. This is incorrect according to our de�nition
of division, because we require r ≥ 0, but it is true that −7 = 0× 3 + (−7).

That said, things can get worse. If you try the following, an “in�nite loop”
will result. The while loop’s condition never becomes false, because we initialize
r = 7 and every time we decrement it by d = −3 the value of r increases, �rst
to 10, then to 13, then to 16, and so forth. You can force the command to stop
either by holding control and pressing C (if you’re using Sage via a command
line terminal), or by pushing the Stop button (if you’re using it via a graphical
interface). You will then encounter an error message similar to the one shown.
Go ahead and try it.

sage: simplistic_division(7, -3)
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/

smc_sagews/sage_server.py", line 1188, in execute
flags=compile_flags) in namespace, locals
File "", line 1, in <module> File "", line 4, in

simplistic_division
File "src/cysignals/signals.pyx", line 265, in

cysignals.signals.python_check_interrupt
File "src/cysignals/signals.pyx", line 98, in

cysignals.signals.sig_raise_exception
KeyboardInterrupt

The phenomenon of the in�nite loop illustrates why we must always prove that
an algorithm terminates. So long as the algorithm is described properly, we
should only need to worry about “while” statements; all other statements should
either be clearly one step, such as an assignment or simple operation, or other-
wise depend on an algorithm already proved to terminate.

You should remember that the proof of the Division Theorem (Theorem 22)
explained how to use Algorithm for unnatural values.7 For instance, Case 1 says
that if n < 0 but d > 0, divide |n| by d, obtaining quotient q̂ and r̂. If r̂ = 0, use
q = −q̂ and r = 0. Otherwise, use the quotient q = −q̂ − 1 and the remainder
r = d− r̂.

7Technically, it explained this for some unnatural values. Others were in the section’s exer-
cises. Guess what’s coming in the exercises to this supplement?
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Let’s write a new command that takes care of this case. Sage has a conve-
nient if statement that, like the while statement, allows us to execute some
lines only if the condition is true. Unlike the while statement, an if statement
does not loop! We’ll test if the condition of Case 1 is true; if it is, we’ll use the
simplistic_division command as speci�ed to compute q̂ and r̂, then adjust
them as Case 1 indicates, and return the adjusted values.

sage: def unnatural_division(n, d):
sage: # case 1

if n < 0 and d > 0:
q_hat, r_hat = simplistic_division(abs(n), d)
if r_hat == 0:

q = -q_hat
r = 0

else:
q = -q_hat - 1
r = d - r_hat

# additional cases would go here
return q, r

If you try this with −7 and 3, you obtain the desired result!

sage: unnatural_division(-7, 3)
(-3, 2)
sage: unnatural_division(-6, 3)
(-2, 0)

In fact, −7 = (−3)× 3 + 2.

Exercises
Exercise 31. While Sage allows you to create new commands using the def
keyword, they will not usually be very e�cient. To see why, compare how long
it takes perform the following commands:
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sage: 100000000.quo_rem(2)
(50000000, 0)
sage: simplistic_division(100000000, 2)
(50000000, 0)

How long does each command take?

Exercise 32. The proof of Theorem 22 describes three cases where division by
negative numbers can happen. The new unnatural_division command im-
plemented only the �rst case. Add additional lines in place of the comment #
additional cases go here to implement the other cases.
Hint: First implement only Case 2, then make sure it works properly. Use your
answers to Exercises 25 and 26.

1.3 Common divisors
Let a, b, c ∈ N. We say that c is a common divisor of a and b if c | a and c | b.

Example 33. The numbers a = 12 and b = 16 have common divisors 1, 2, 4.

It is not hard to show that none of a’s divisors is larger than a itself.

Lemma 34. Let a ∈ N+. If d | a, then d ≤ a.

Proof. Assume d | a. By de�nition, there exists q ∈ N such that qd = a. By way
of contradiction, suppose d > a. Then 2d = d + d > a, 3d = 2d + d > a, . . .
qd > a. By substitution, a > a, a contradiction. The assumption that d > amust
be invalid; we conclude that d ≤ a.

There are only �nitely many numbers smaller than a, and only �nitely many
smaller than b, so if a, b 6= 0 they can have only �nitely many common divisors.
We call the largest of these the greatest common divisor, written gcd (a, b).

Example 35. gcd (12, 16) = 4.

Over two thousand years ago, Euclid described a very nice way to use com-
pute the greatest common divisor via division. This is still considered the most
e�cient general method to compute a gcd.
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Algorithm 1.2 The Euclidean Algorithm
Input

• a, b ∈ N+

Output

• gcd (a, b)

Do

1. let m = max (a, b), n = min (a, b)

2. while n 6= 0

(a) determine q, r that satisfy the Division Theorem
(b) replace m by n, then replace n by r

3. return m

As with Algorithm 1.1, we’ll have to prove that Algorithm 1.2 terminates
correctly. However, let’s look at an example to get an idea for how it works.

Example 36. We compute gcd (142, 64). Step 1 of the algorithm assigns m =
142, n = 64.

Since n 6= 0, we proceed to step 2, compute q = 2 and r = 14, and replace m
by 64 and n by 14.

Since n 6= 0, we repeat step 2, compute q = 4 and r = 8, and replace m by
14 and n by 8.

Since n 6= 0, we repeat step 2, compute q = 1 and r = 6, and replace m by 8
and n by 6.

Since n 6= 0, we repeat step 2, compute q = 1 and r = 2, and replace m by 6
and n by 2.

Since n 6= 0, we repeat step 2, compute q = 3 and r = 0, and replace n by 2
and n by 0.

We now have n = 0, so the algorithm terminates with gcd (142, 64) = 2. You
can con�rm this result by listing all the divisors of 142 and 64.

Theorem 37. The Euclidean Algorithm terminates correctly.
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Proof. Enumerate each m and n in steps 1 and 2 as m0, m1, . . . and n0, n1, n2,
. . . . For convenience, write d = gcd (a, b).

To show that it terminates, consider that for i > 0 we know that ni is the
remainder of dividing mi−1 by ni−1, so ni ≥ ni+1 for each i. This is a non-
increasing sequence of natural numbers; by Theorem 20, it must stabilize at a
least element, say nk. If nk 6= 0, then the algorithm would perform step 2 again,
and obtain a remainder from dividingmk by nk, and assign it to nk+1. That makes
nk > nk+1, contradicting the observation that the sequence stabilized at the least
element nk. The assumption that nk 6= 0 must have been wrong; we conclude
that nk = 0. Yet once nk = 0 the algorithm terminates.

To show that the algorithm terminates correctly, we claim that gcd (mi, ni) =
gcd (mi+1, ni+1) for each i. If this is true, then the last pair is gcd (r, 0) = r, and
we would have gcd (a, b) = gcd (m0, n0) = gcd (mlast, nlast) = r. So it su�ces to
show the claim.

To that end, let d = gcd (mi, ni), and choose x, y ∈ N such that mi = xd
and ni = yd. The algorithm assigns mi+1 = ni and ni+1 to be the remainder of
dividing mi by ni. Let q be the quotient of that division, so that

mi = qni + ni+1 .

By substitution,
xd = q (yd) + ni+1 .

We rewrite this as
d (x− qy) = ni+1 .

By de�nition, d | ni+1, so d is a common divisor of ni+1 and ni = mi+1. So
d ≤ gcd (mi+1, ni+1).

Now let d′ = gcd (mi+1, ni+1) = gcd (ni, ni+1), and choose u, v ∈ N such
that ni = ud′ and ni+1 = vd′. By substitution,

mi = qni + ni+1 =⇒ mi = q (ud′) + vd′ =⇒ mi = d′ (qu+ v) .

By de�nition, d′ | mi, so d′ is a common divisor ofmi andni. So d′ ≤ gcd (mi, ni).
Putting this all together,

d ≤ gcd (mi+1, ni+1) = d′ ≤ gcd (mi, ni) = d .

In short,
d ≤ d′ and d′ ≤ d ;
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by Exercise 24, d = d′. By substitution,

gcd (mi, ni) = gcd (mi+1, ni+1) .

The various quotients and remainders turn out to be even more useful.

Theorem38 (Extended Euclidean Algorithm). For any a, b ∈ N, there exist x, y ∈
Z such that ax+ by = gcd (a, b).

Example 39. For a = 142 and b = 64, we have 142× (−9) + 64× 20 = 2.

We call the equation
ax+ by = gcd (a, b)

the Bézout identity, and we call x and y Bézout coe�cients of gcd (a, b). There are
in�nitely many Bézout coe�cients, but it su�ces to �nd only one pair. We can
�nd these coe�cients by back-substituting through the various divisions of the
Euclidean Algorithm, in reverse order.

Example 40. We found gcd (142, 64) = 2 via the divisions

142 = 2× 64 + 14 (1.1)
64 = 4× 14 + 8 (1.2)
14 = 1× 8 + 6 (1.3)
8 = 1× 6 + 2 .

First we isolate gcd (142, 64) in the last equation,

2 = 8 + (−1)× 6 . (1.4)

Similarly, equation (1.3) tells us that

6 = 14 + (−1)× 8 .

Substitute that into equation (1.4) and we have

2 = 8 + (−1)× [14 + (−1× 8)] ,

or
2 = 2× 8 + (−1)× 14 . (1.5)
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Equation (1.2) tells us that

8 = 64 + (−4)× 14 .

Substitute that into equation (1.5) and we have

2 = 2× [64 + (−4)× 14] + (−1)× 14 ,

or
2 = 2× 64 + (−9)× 14 . (1.6)

Equation (1.1) tells us that

14 = 142 + (−2)× 64 .

Substitute that into equation (1.6) and we have

2 = 2× 64 + (−9)× [142 + (−2)× 64] ,

or
2 = 20× 64 + (−9)× 142 ,

as claimed.

We can use this technique to prove the Extended Euclidean Algorithm.

Proof of Theorem 38. Enumerate the various divisions performed during the Eu-
clidean Algorithm as

m0 = q0n0 + r0 , m1 = q1n1 + r1, . . . , mk = qknk + rk ,

where rk = gcd (a, b) is the last non-zero remainder. Rewrite the last division as

gcd (a, b) = mk − qknk . (1.7)

Recall that mk = nk−1 and nk = rk−1, so rewrite this equation as

gcd (a, b) = nk−1 − qkrk−1 .

Rewrite the previous division as

rk−1 = mk−1 − qk−1nk−1 .
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Substitute into equation (1.7) to obtain

gcd (a, b) = nk−1 − qk (mk−1 − qk−1nk−1) = (1 + qkqk−1)nk−1 + (−qk)mk−1 .

By repeating this process, we eventually obtain an expression

gcd (a, b) = Q0m0 +Q1n0 ,

which by substitution becomes

gcd (a, b) = Q0a+Q1b .

The values x = Q0 and y = Q1 satisfy the theorem.

Algorithm 1.3 describes a step-by-step method for the Extended Euclidean
Algorithm.

Theorem 41. Algorithm 1.3 terminates correctly.

Proof. Termination? Step 1 terminates by Theorem 37. Steps 2, 3, 4, 5(a,b), and 6
are simple statements, so they will not inhibit termination. That brings us to step
5, a while statement. The statement continues as long as i is a natural number;
it starts at i = k − 1 and is changed only by step 5(b), which decreases it by 1.
In other words, step 5 will consider the values i = k − 1, k − 2, . . . , 1, 0,−1, at
which point the condition i ∈ N is no longer true, and the algorithm proceeds to
step 6. Hence the algorithm terminates.

Correctness? The computations of steps 3 and 5(a) replicate the proof of The-
orem 38.

Exercises
Exercise 42. For each pair a, b ∈ N, use the Euclidean Algorithm to compute
gcd (a, b). Then use the Extended Euclidean Algorithm to compute the Bézout
coe�cients of a and b.

(a) a = 4, b = 9

(b) a = 100, b = 112

(c) a = 255, b = 51
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Algorithm 1.3 Extended Euclidean Algorithm
Inputs

• a, b ∈ N+

Outputs

• s, t ∈ Z such that as+ bt = gcd (a, b)

Do

1. apply the Euclidean Algorithm, enumerating the divisions asmi = qini+ri

2. let k be the number of the last division with a nonzero remainder

3. solve mk = qknk + rk for rk, obtaining an expression

gcd (a, b) = mksk + nktk (1.8)

(in the �rst case we have sk = 1 and tk = −qk)

4. let i = k − 1

5. while i ∈ N

(a) substitute ri = mi − qini in place of ni+1 in (1.8)
(b) decrement i by 1

6. return s = s0, t = t0
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Exercise 43. Let n ≥ 2.

(a) Show that gcd (n+ 1, n) = 1.

(b) What is gcd (n+ 2, n)? Explain why.
Hint: It depends on the value of n. Try a few examples before deciding and
explaining.

Exercise 44. In this section we have discussed common divisors only of positive
integers, and the greatest common divisor of two positive integers.

(a) Explain why it makes sense to speak of common divisors of negative num-
bers, as well.

(b) How would you compute the greatest common divisor of two integers if
they are negative?

(c) How would you de�ne gcd (a, 0) where a is nonzero?

(d) Why does gcd (0, 0) not make sense?

Exercise 45. Suppose gcd (a, n) = 1.

(a) Show that if gcd (b, n) = 1, then gcd (ab, n) = 1.

(b) Show that gcd
(
ak, n

)
= 1 for any k ∈ N.

Hint: It can be easy if you use part (a) and induction.

Exercise 46. Let a, b, c ∈ N. Suppose gcd (a, b) = 1 and both a | c and b | c.
Show that (ab) | c.

Exercise 47. Another way to compute the Bézout coe�cients of a, b ∈ Z is by
the algorithm below.

(a) Compute the Bézout coe�cients of gcd (255, 51) using this algorithm, and
compare your result to Exercise 42.

(b) Prove that Algorithm 1.4 terminates. (Don’t worry about correctness. It is
correct, but we won’t consider those details here.)
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Algorithm 1.4 Alternate Extended Euclidean Algorithm
Inputs

• a, b ∈ N+

Outputs

• s, t ∈ Z such that as+ bt = gcd (a, b)

Do

1. set up the following table, which will probably extend by more rows
i si ti mi ni qi ri

−1 1 0
0 0 1 max (a, b) min (a, b)

(m−1, n−1, q−1, r−1 will remain unde�ned)

2. let i = 0

3. repeat. . .

(a) compute qi, ri to satisfy the Division Theorem for dividing mi by ni
(b) let si+1 = si−1 − qisi, ti+1 = ti−1 − qiti, mi+1 = ni, ni+1 = ri

(c) increment i by 1

. . . until ri−1 = 0

4. return s = si, t = ti
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Sage supplement
Sage will compute the greatest common divisor of two integers via the gcd com-
mand. It will compute the Bézout coe�cients at the same time as the gcd via the
xgcd command.

sage: gcd(132, 72)
12
sage: xgcd(132, 72)
(12, -1, 2)

The result of xgcd(a,b) is (d, x, y) where gcd (a, b) = d = ax+ by.
In the last section we illustrated basic programming in Sage by implementing

a simplistic division algorithm, even though Sage already has a division opera-
tor (which is much faster, anyway). In this section we illustrate how to imple-
ment the Extended Euclidean Algorithm, even though Sage already has the xgcd
command. In this case we implement Algorithm 1.4, the Alternate Extended Eu-
clidean Algorithm. One reason is to show how one can keep track of the results
from an iteration.

Line 3(b) of the Alternate Extended Euclidean Algorithm requires us to track
several values of s and t. We can do this using a list. We can create a list in Sage
using the list command or brackets []; we add elements to the end of a list
using the .append command.

sage: L = []
sage: L.append(3)
sage: L.append(5)
sage: L.append(-2)
sage: L.append(5)
[3, 5, -2, 5]

Unlike a set, a list can contain multiple copies of an element, so we see 5 twice
in L.

We access elements using the [] operator. Proper usage of the [] operator
might be a little counterintuitive if you aren’t accustomed to languages like C
and Python where the �rst element is element 0, not element 1.
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sage: L
sage: L[0]
3
sage: L[1]
5
sage: L[2]
-2
sage: L[-1]
-2

As indicated above L[0] gives you 3, the list’s �rst element. Another curiosity
is that negative indices refer to elements from the back of the list. Just as L[-1]
gives us the last element, L[-2] gives us the element before that, and so on.

In a manner similar to sets, we can build lists using Sage’s analogy to set-
builder notation.

sage: L2 = [ i^2 for i in range(20) if is_even(i)
]

sage: L2
[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]

There are a number of useful operations you can perform on a list, but dis-
cussing them lies beyond the scope of our current motivation, which is to im-
plement the Alternative Extended Euclidean Algorithm. Let’s remind ourselves
why we need a list anyway: the instructions in Algorithm 1.4 require us to keep
track of previously computed s and t values. To do this, we will maintain two
lists, s and t. We will initialize them with the values indicated at the beginning
of Algorithm 1.4. The last values in the lists, s[-1] and t[-1], will correspond
to si and ti. We can thus compute the next values — the ones we have to add, or
.append to the lists — by translating

si+1 = si−1 − qisi −→ s.append( s[-2] - q*s[-1] )

and similarly for ti+1. Thus, translating Algorithm 1.4 into Sage code yields the
following.
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sage: def alternate_euclidean(a, b):
s = [ 1, 0 ]
t = [ 0, 1 ]
m, n = max(a, b), min(a, b)
r = n
while r != 0:

q, r = m.quo_rem(n)
s.append( s[-2] - q*s[-1] )
t.append( t[-2] - q*t[-1] )
m, n = n, r

return s[-2], t[-2]

Before testing it, let’s point out an important di�erence. First, Algorithm 1.4
uses a “repeat. . . until” construction in step 3. This tells a computer to perform
steps 3(a)–3(c) at least once, test the subsequent condition (ri−1 = 0), and if it
is false repeat the loop. Sage does not have a command that does this, so when
implementing it we had to convert it to a “while” construction. This typically
involves setting up the variable(s) in the condition so that the while condition
will be true at least once (in this case, r = n should do the trick).

Another thing to notice is the use of the != operator. This is how we tell Sage
to test whether two values are not equal to each other. The statement r != 0
will be true so long as r 6= 0, and becomes false only if r = 0.

Now let’s try the algorithm.

sage: alternate_euclidean(132, 72)
(-1, 2)

These are precisely the Bézout coe�cients that xgcd gave us. While alternate_euclidean
does not return the gcd itself, we can obtain it as follows.

sage: _[0] * 132 + _[1] * 72
12

The _ symbol asks Sage for the result of the last statement. In our case, the last
statement’s result was the pair (-1, 2), so _[0] gives us the number −1, and
_[1] gives us the number 2.
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Exercises
Exercise 48. Use Sage’s gcd and xgcd commands to verify your answers to
Exercises 42 and 43.

Exercise 49. De�ne a procedure that implements Algorithm 1.2 in Sage. Don’t
call your procedure gcd, as that would “overwrite” Sage’s gcd command. Rather,
call it euclidean, then test it with several examples, such as euclidean(132,72).

1.4 Prime and composite numbers
Except for where we explicitly state otherwise, the rest of this chapter deals only
with natural numbers.

The previous section described for us a division algorithm, and proved that
it had several nice properties. The case where the remainder is 0 has several
interesting possibilities. If n, d, q are all integers and n = qd, we say that d
divides n, and write n | d. We also say that n is divisible by d, and that d is a
divisor of n. If d does not divide n, but has a remainder, we write d - n.

Example 50. 4 | 8 but 4 - 6.

An important example of divisibility occurs when 2 divides a number; we call
such a number even.

Prime and composite numbers
Some numbers are very hard to divide evenly. For instance, if you have 5 choco-
lates, you can only divide them without remainder if you have 1 friend or 5; any
other number of friends leaves a remainder. We say that a natural number is
prime if it has exactly two natural divisors: itself and 1. We can also call a prime
number irreducible, because it does not “reduce” by factorization. If a number is
greater than 1 and not prime, we call it composite. These de�nitions deliberately
exclude 0 and 1 from consideration for either.

Example 51. The numbers 2 and 5 are prime. The numbers 4 and 6 are compos-
ite. The numbers 0 and 1 are neither prime nor composite, because they don’t
have exactly two natural divisors (0 has in�nitely many while 1 has only itself),
and they are smaller than 2.
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How can we �nd prime numbers?

Algorithm 1.5 The Sieve of Eratosthenes
Inputs

• n > 2

Outputs

• every prime p ≤ n

Do

1. write the numbers from 2 to n

2. let i = 2

3. while i ≤
√
n

(a) if i is not itself crossed out, cross out all multiples of i except for i
itself

(b) increment i by 1

4. return the numbers that are not crossed out

Theorem 52. Algorithm 1.5 terminates correctly.

Proof. Termination? Steps 1, 2, and 4 can be done in �nite time. Step 3 repeats as
long as i <

√
n, but i starts at 1 and increments by 1 at step 3(b) each time, so

eventually it rises above
√
n. Hence the algorithm terminates.

Correctness? As the algorithm crosses out numbers that are obviously prime,
we need merely show that the remaining numbers are all prime. Suppose 2 <
a ≤ n and a is not prime. By Exercise 61, it has a prime divisor, say p. By Lemma
34, p < a. Choose q ∈ N such that a = pq. By Lemma 34, we also have q < a.
If p ≤

√
n, then we would have encountered p in step 3(a) of the algorithm, and

crossed out a as a result. Otherwise, p >
√
n. If q >

√
n also, then

a = pq >
√
n
2
= n ≥ a ,

a contradiction. So we must have q <
√
n. If q is prime, then we would have

encountered q in step 3(a) of the algorithm, and crossed out a as a result. Oth-
erwise, q is composite, and as before it must have a prime divisor, say r; again,
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r < q. We now have a = (pq) r, and since r < q and q <
√
n we have r <

√
n,

so we would have encountered r in step 3(a) of the algorithm, and crossed out a
as a result.

No matter how we go about it, we crossed out the composite number a, so
the algorithm could not return it in step 4. Hence the algorithm returns only
prime numbers, and is correct.

Prime numbers enjoy a special property that composite numbers do not. Con-
sider the product 4× 3 = 12, and the fact that 6 | 12. It is not the case that 6 | 4
or 6 | 3. That probably doesn’t surprise you.

On the other hand, suppose we know of an even number ab where a, b ∈ N.
If 2 - a and 2 - b, then we can �nd qa, qb such that a = 2qa + 1 and b = 2qb + 1.
By substitution,

ab = (2qa + 1) (2qb + 1) = 4qaqb + 2qa + 2qb + 1 = 2 (2qaqb + qa + qb) + 1 .

This is strange: we started with ab even, but now ab is odd! That’s a contradic-
tion, so one of our assumptions must be wrong. Our only assumptions are “ab is
even” and “2 - a and 2 - b.” The �rst assumption is certainly reasonable; lots of
products are even. The second assumption, however, is not at all clear; it must
have been an invalid assumption. In other words, at least one of a or b is even.

A big di�erence between 6 and 2 is that 2 is prime. Indeed, this property
holds true for any prime divisor, and fails for every composite divisor.

Theorem 53 (Euclid’s Lemma). Let d ∈ N+. Then d is prime if and only if any
time d divides a product ab, we also have d | a or d | b.

Proof. Assume d is prime and d | ab. If d | a, then the statement “d | a or d | b”
is true, and we’re done. Otherwise, d - a, and the de�nition of prime tells us that
d’s only divisors are 1 and itself; inasmuch as d - a, the two can have no common
divisor except 1. Thus gcd (a, d) = 1 and the Euclidean Algorithm tells us we
can �nd x, y ∈ Z such that ax + dy = 1. Multiply both sides by b, and we have
(ab)x + d (by) = b. By hypothesis, d | ab, so we can choose z ∈ Z such that
ab = dz. By substitution, (dz)x + d (by) = b, or d (xz + by) = b. By de�nition,
d | b. We have shown that if d is prime, then d | a or d | b.

Conversely, assume that any time d | ab, we also have d | a or d | b. Choose
any x, y ∈ N such that d = xy. By Lemma 34, x, y ≤ d. On the other hand,
d · 1 = xy as well. By de�nition, d | xy. By hypothesis, d | x or d | y; let’s say
d | x. By Lemma 34, d ≤ x. We now have x ≤ d ≤ x; by Exercise 24, x = d, and
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thus y = 1. Since xy was an arbitrary factorization of d, the only factors of d are
1 and itself. Hence d is prime.

Euclid’s Lemma is actually a special case of a more general fact.

Theorem 54. Let d ∈ Z with d 6= 0 and a, b ∈ Z. If d | ab and gcd (a, d) = 1,
then d | b.

We leave the proof to Exercise 59.
Theorem 54 is just one example of how numbers that are not prime can on

some occasions interact with other numbers as if they were prime. You will see
more examples of this later on. The relationship is so important that we make
the following de�nition: If gcd (a, b) = 1 then we call a and b relatively prime.

Factorization
In Exercise 61 you will show that every composite number has at least one prime
divisor. We can actually say something much stronger.

Theorem 55 (The Fundamental Theorem of Arithmetic). Let n > 2 be an integer.
There exist prime numbers p1, . . . , pk such that n = p1 · · · pk. (The p’s might not
be distinct.) Moreover, if p1 ≤ · · · ≤ pk, then this expression is unique.

Example 56. We can factor 40 = 2 × 2 × 2 × 5. Here p1 = p2 = p3 = 2 and
p4 = 5.

Proof. If n is prime, then put p1 = n and we are done.
Otherwise, let m1 = n and i = 1. While mi is composite, Exercise 61 tells us

that mi has a prime divisor; call it qi, and choose mi+1 such that mi = mi+1qi;
then increment i by 1. By Lemma 34, mi+1 ≤ mi for each i = 1, . . .; since qi
is prime and mi is not, we see that mi+1 < mi. By Theorem 20, the sequence
of m’s stabilizes at a least value, mk. Were mk composite, we could prolong the
sequence, but the sequence has now stabilized, somk must be prime; let qk = mk.

We claim that each qi divides n/ (q1 · · · qi−1). To see why, notice that q1 | m1

and m2 = m1/q1 = n/q1, so n = q1m2. Then if qi | mi and mi+1 = mi/qi, rewriting
and substitution gives us

n = q1 · · · qi−1mi = q1 · · · qi−1 (qimi+1) = (q1 · · · qi)mi+1,

which we can rewrite again as
n

q1 · · · qi−1
= qimi+1,
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as claimed. Moreover,

n = q1 · · · qk−1mk = q1 · · · qk ,

so n factors into prime numbers.
The list of q′s now consists of prime numbers. Let p1 = min (q1, . . . , qk) and

for i = 2, . . . , k let pi = min ({q1, . . . , qk} \ {p1, . . . , pi−1}). By construction,
p1 ≤ . . . ≤ pk. Moreover, each of these corresponds to a unique qi, so n =
p1 · · · pk.

It remains to show uniqueness. Suppose we factorn twice and obtain p1 · · · pk
and q1 · · · q`, with the p’s and q’s prime and not necessarily distinct. Hence
p1 · · · pk = q1 · · · q`. By Euclid’s Lemma, p1 | qi for some i = 1, . . . , `; simi-
larly, q1 | pj for some j = 1, . . . , k. Both p1 and q1 have minimal value on each
side, so p1 | q1 and q1 | p1. This forces p1 = q1. Divide both sides by p1 and we
have p2 · · · pk = q2 · · · q`. Continuing in this fashion we �nd that p2 = q2, . . . ,
pk = qk, and k = `. The factorization is unique.

Irrational numbers
Example 4 of Section 1.1 mentions that the following question vexed the ancient
Greeks:

Is
√
2 rational?

We can now answer this question.

Theorem 57.
√
2 6∈ Q.

Proof. By way of contradiction, suppose
√
2 ∈ Q . By de�nition, there exists

a/b ∈ Q such that
√
2 = a/b. We may suppose that a/b is in simplest form, because

if it weren’t, then we could factor a and b, divide common factors from numerator
and denominator, and obtain thereby a representation in simplest form.

Rewrite
√
2 = a/b as 2 = a2/b2, and again as 2b2 = a2. Notice that 2 | a2. Since

2 is prime, 2 | a. Choose q such that a = 2q and substitute into our equation to
obtain

√
2 = 2q/b. Rewrite as 2 = 4q2/b2, and again as 2b2 = 4q2, or b2 = 2q2.

Notice that 2 | b2. Since 2 is prime, 2 | b. This contradicts our assumption that a/b
is in simplest form. However, this assumption is perfectly reasonable, so it can’t
be mistaken. The mistake must be in assuming that

√
2 ∈ Q.

We conclude that real numbers that are not rational exist, and call them irra-
tional numbers.
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Exercises
Exercise 58. Use the Sieve of Eratosthenes to compute all the prime numbers
smaller than 200.

Exercise 59. Prove Theorem 54. The proof should be similar to that of the �rst
part of Euclid’s Lemma.

Exercise 60. Show that√p 6∈ Q for any prime number p.

Exercise 61. Show that every composite number has at least one prime divisor.
Do not use the Fundamental Theorem of Arithmetic, or anything after that.

Sage supplement
To compute the prime factorization of an integer, use the factor() command.
The .divides() and .is_prime() dot commands return True or False to indi-
cate what their names imply: whether one number divides another, and whether
a number is prime.

sage: factor(100)
2^2 * 5^2
sage: 2.divides(5)
False
sage: 2.divides(4)
True
sage: 2.is_prime()
True
sage: 4.is_prime()
False

Sage will produce a list of primes up to n using a command �ttingly called
eratosthenes().

sage: eratosthenes(100)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
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That said, we will do here the same thing we’ve done in previous sections: im-
plement the Sieve of Eratosthenes as a procedure. This will give us some more
practice manipulating lists.

The Sieve requires only one input, an integer n. Algorithm 1.5 �rst instructs
us to “write the numbers from 2 to n.” We could ask Sage to print the numbers
from to to n, but that won’t actually help us in our task; the algorithm tells us
to write the numbers so that we can manipulate them. To do that in Sage, we
want a list or a set. In step 3(a) we see that we need to test if a number i is in our
list or set of numbers, and cross out its multiples. For both of these types, the
in command tests for membership and the dot command .remove removes an
element. 8 However, sets have the convenient di�erence operation, implemented
in Sage as .difference or .difference_update; using that makes the code
easier to follow, so we’ll go with that.

sage: def sieve(n):
S = set(i for i in range(2,n+1)
i = 2
while i <= sqrt(n):

if i in S:
S.difference_update(
i*j for j in range(2,(n+i)/i)

)
i += 1

return S

Let’s look at what this procedure attempts to do.

• The �rst line de�nes a procedure named sieve, which takes one input, n.

• The second line creates a set S, which contains the numbers from 2 to n.
(Recall that the range command does not include the last number!) This
corresponds to step 1 of Algorithm 1.5.

• The third line corresponds to set 2 of Algorithm 1.5.

• The fourth line begins the same loop that we see in step 3 Algorithm 1.5.
8It’s also more e�cient to test for membership in a set. Depending on the set’s structure, it

may also be more e�cient to remove items from a set than from a list.
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• Lines 5–8 implement Step 3(a) of Algorithm 1.5:

– The �fth line tests if i is a member of S. This corresponds to the
beginning of step 3(a) of Algorithm 1.5!

– Lines 6–8 creates a new set that consists of all multiples of i (com-
puted using i*j) starting from 2*i until (n+i)/i, then use the .difference_update
dot command to remove its elements from S. We have “split up” the
invocation of .difference_update over three lines in part because
we didn’t have much space in the text here, but also to show that Sage
suspends its rules on indentation between parentheses.

• The ninth line corresponds to step 3(b) of Algorithm 1.5.

• The tenth line corresponds to step 4 of Algorithm 1.5.

Let’s try the command.

sage: sieve(100)
set([2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89,
97])

The only di�erence between this result and the one we obtained from eratosthenes
is that this one comes back as a set rather than a list. It’s always good to get the
same result!

Exercises
Exercise 62. Does Sage factor negative numbers? Try it and see if the answer
makes sense.

Exercise 63. Sage has an .is_prime dot command, but we can implement our
own function to test if an integer n is prime by using the Sieve of Eratosthenes,
then testing if any of its elements divides n. Basically, the following algorithm:
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Algorithm 1.6 Naïve primality test
Inputs

• n, an integer

Outputs

• True if n is prime; False otherwise

Do

1. let P be the set of all primes no larger than
√
n

2. for each p ∈ P

(a) if p | n, return False

3. return True

Implement Algorithm 1.6 as a Sage procedure, and test it on several “large” inte-
gers, both prime and not-so-prime.

1.5 Congruence
It’s 10:00pm and I tell you we should meet in 4 hours. At what time will we
meet? Not 14:00pm, but rather 2:00am, for once we move past 12:59 time resets
to 1:00. In algebra we generalize this idea to dials with di�erent settings and later
to polynomials. For the rest of this chapter, let n > 2.

Congruence
Recall that division is not actually an operation on Z, but a function on Z2. The
Division Theorem tells us that any we can divide any integer by any non-zero
integer and obtain a unique quotient and remainder. However, we can re�ne this
function to become an operation. Let a be the remainder after dividing a ∈ Z by
n. Here we have

(a, n)→ a, which is an element of Z2 × Z .
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In other words, a is an operation on Z. Given our assumption that n > 2, it is
also closed: after all, the Division Theorem guarantees us a remainder.

In our example above, 14:00 changes to 2:00 because 2 is the remainder of 14
after division by 12. We say that a is congruent to b, modulo n, written a ≡ b
(mod n), if a and b have the same remainder after division by n. The following
characterization based on divisibility is often more convenient.

Theorem 64. Let a, b ∈ Z. Then a ≡ b (mod n) if and only if n | (a− b).

Proof. By de�nition, a and b have the same remainder after division by n if and
only if we can �nd qa, qb ∈ Z and r ∈ {0, 1, . . . , n− 1} such that a = qan+r and
b = qbn+ r. These equations are true if and only if a− qan = r and b− qbn = r.
These equations are true if and only if a − qan = b − qbn. This equation is
true if and only if a − b = (qa − qb)n. By de�nition, this is true if and only if
n | (a− b).

Example 65. By de�nition, 14 ≡ 2 (mod 12). As the theorem indicates, 12 |
(14− 2).

Congruence is a relation! After all, we can write a ≡ b (mod n) as the
ordered pair (a, b), and de�ne the set

Rn = {(a, b) : a ≡ b (mod n)} .

Example 66. Some elements of R12 would be (3, 15), (−24, 144), (38, 2).

Henceforth, however, we keep with convention and write a ≡ b (mod n)
instead of (a, b) ∈ R12.

The congruence symbol ≡ resembles the equality symbol = for a reason:
congruence shares many interesting properties with equality.

Theorem 67. For any n > 2, congruence modulo n is an equivalence relation.

Proof. Let n > 2. We have to show three properties: re�exive, symmetric and
transitive.

Re�exive: Let a ∈ Z. We want to show a ≡ a (mod n). By Theorem 64,
this is true if and only if n | (a− a), or n | 0. The last statement
is de�nitely true, since n × 0 = 0. Hence a ≡ a (mod n); or,
congruence modulo n is re�exive.
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Symmetric: Let a, b ∈ Z. We want to show that if a ≡ b (mod n), then b ≡ a
(mod n). We leave this as Exercise 82 to the reader.

Transitive: Let a, b, c ∈ Z. We want to show that if a ≡ b (mod n) and b ≡ c
(mod n), then a ≡ c (mod n). Assume that a ≡ b (mod n) and
b ≡ c (mod n). By Theorem 64, n | (b− a) and n | (c− b). By
de�nition, there exist x, y ∈ Z such that nx = b−a and ny = c− b.
We need to show that a ≡ c (mod n). By Theorem 64, this is true if
and only if n | (a− c). By de�nition, this is true if and only if there
exists z ∈ Z such that nz = a− c.
Can we somehow combine nx = b − a and ny = c − b to �nd the
desired z? Indeed we can:

nx− ny = (b− a) + (c− b) = c− a .

If we set z = x− y, then

nz = n (x− y) = c− a .

Hence a ≡ c (mod n); or, congruence is transitive.

Theorem 68. Let a, b, c ∈ Z, and suppose a ≡ b (mod n).

(A) a± c ≡ b± c (mod n).

(B) ac ≡ bc (mod n).

Proof. By Theorem 64, n | (a− b). We leave a proof of (A) to Exercise 83, proving
only (B) here.

We want to show that ac ≡ bc (mod n). By Theorem 64, this is true if and
only if n | (ac− bc), or n | [(a− b) c]. We already know that n | (a− b); by
de�nition, there exists q ∈ Z such that

nq = a− b . (1.9)

Can we �nd another integer x such that nx = (a− b) c? Certainly: just multiply
both sides of (1.9) to obtain

n (qc) = (a− b) c .

Hence n | [(a− b) c], and ac ≡ bc (mod n).
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Example 69. Since 14 ≡ 2 (mod 12), we also have

14− 2 ≡ 2− 2 (mod 0) and 14× 2 ≡ 2× 2 (mod 2) .

You can verify this by computing their remainders.

Does division preserve congruence?
Theorem 68 means that addition, subtraction, and multiplication preserve con-
gruence. What about division? Unfortunately, division does not always preserve
congruence.

Example 70. 14 ≡ 2 (mod 12), but if you divide both sides by 2, 7 6≡ 1
(mod 12).

On the other hand, sometimes it does preserve congruence.

Example 71. Suppose n = 5, and a ≡ b (mod 5). Suppose further that a and b
have a common divisor d, and choose x, y ∈ Z such that a = dx and b = dy. So

dx ≡ dy (mod 5) .

By de�nition,
5 | (dx− dy) , or, 5 | [d (x− y)] .

Now, 5 is a prime number, so by Euclid’s Lemma 5 | d or 5 | (x− y).
If 5 | d, then a ≡ b ≡ 0 (mod 5), and we can’t say anything at all about

x and y. However, if 5 - d, then we must have 5 | (x− y), and by Theorem 64
x ≡ y (mod 5).

In summary, if 5 - d then we can go from dx ≡ dy to x ≡ y.

Does this apply to other numbers? The key to our example is that when 5 - d
we could apply Euclid’s Lemma. Euclid’s Lemma requires only a prime number.
In other words, if p is prime, then we should be able to divide modulo p.

Theorem 72. The number p is prime if and only if dx ≡ dy (mod p) implies
x ≡ y (mod p) for every d, x, y ∈ Z such that p - d.

Proof. Suppose p is prime, and let d, x, y ∈ Z such that dx ≡ dy (mod p) and
p - d. By Theorem 64, p | (dx− dy), or p | [d (x− y)]. By hypothesis, p - d, so
by Euclid’s Lemma we must have p | (x− y). By de�nition, x ≡ y (mod p).

Conversely, suppose p is not prime. By de�nition, p is composite, and we can
�nd a, b ∈ N such that ab = p and 1 < a, b < p. Certainly p | (ab− ap), so
ab ≡ ap (mod p), but it is not the case that b ≡ p ≡ 0 (mod p).
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Just as Euclid’s Lemma generalized to a theorem for relatively prime num-
bers, so does Theorem 72 generalize to a theorem for relatively prime numbers.

Theorem 73. The numbers d and m are relatively prime if and only if dx ≡ dy
(mod m) implies x ≡ y (mod m) for every x, y ∈ Z.

Proof. Suppose d and m are relatively prime, and let x, y ∈ Z such that dx ≡ dy
(mod m). By Theorem 64, m | (dx− dy), or m | [d (x− y)]. By Theorem 54,
m | (x− y). By Theorem 64, x ≡ y (mod m).

The set Zn and its arithmetic
We use our observations in this section to de�ne a new kind of arithmetic. Let

Zn = {0, 1, 2, . . . , n− 1} .

Recall the remainder operation a from page 47. De�ne addition, subtraction, and
multiplication on Zn in the following way:

a± b = a± b
ab = ab .

The Division Theorem theorem tells us that these operations are closed; that is,
their result is always in Zn.

Example 74. In Z12, 10 + 4 = 2, 2− 4 = 10, and 10× 4 = 4.

By which elements can we “divide”? A better way to phrase this might be,
which elements have multiplicative inverses? By Theorem 73, only those num-
bers relatively prime to the modulus.

Example 75. In Z12, only the numbers 1, 5, 7, and 11 have multiplicative in-
verses: 1−1 = 1, 5−1 = 5, 7−1 = 7, and 11−1 = 11.

Example 76. In Z14, the numbers 1, 3, 5, 9, 11, 13 have multiplicative inverses:
1−1 = 1, 3−1 = 5, 5−1 = 3, 9−1 = 11, 11−1 = 9, and 13−1 = 13.

In small moduli like 12 and 14, it isn’t too hard to discover the inverses via
brute force. Often, however, the modulus is very large (for example, 32003). In a
case like this, how can we �nd the multiplicative inverse of a number in Zn?
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We can actually just use one method to determine whether a has a multiplica-
tive inverse modulo n, as well as what the inverse is. Theorem 73 tells us that a
has multiplicative inverse if and only if gcd (a, n) = 1. To compute the gcd, we
perform the Euclidean Algorithm. If in fact gcd (a, n) = 1, then by the Extended
Euclidean Algorithm we can use its divisions to compute the Bézout coe�cients
s and t such that

as+ nt = 1 .

Rewrite this as
nt = 1− as .

By de�nition,
n | (1− as) , or 1 ≡ as (mod n) .

In other words, s is the multiplicative inverse of a, modulo n.
Example 77. In Z14, performing the Euclidean algorithm on 14 and 9 gives us
the divisions

14 = 1× 9 + 5

9 = 1× 5 + 4

5 = 1× 4 + 1

4 = 4× 1 + 0 .

Reversing these according to the Extended Euclidean Algorithm, we obtain the
equations

1 = 5 + (−1)× 4

1 = 5 + (−1)× [9 + (−1)× 5]

= 2× 5 + (−1)× 9

1 = 2× [14 + (−1× 9)] + (−1)× 9

= 2× 14 + (−3)× 9 .

So the Bézout coe�cient of 9 is −3, and −3 ≡ 11 (mod 14). Hence 11 = 9−1 in
Z14.
Example 78. In Z14, performing the Euclidean algorithm on 14 and 12 gives us
the divisions

14 = 1× 12 + 2

12 = 6× 2 + 0 .

This tells us that gcd (14, 12) 6= 0, so 12 has no multiplicative inverse modulo 14.
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Why is Zn interesting? Let a be any integer. By the Division Theorem, there
exists a unique remainder rwhen we divide a by n, and moreover r ∈ Zn. Hence,
every integer is congruent to some element of Zn, so by Theorem 68, Zn gives
us a way to represent arithmetic modulo n in a consistent and unique fashion.
We will make use of this in the next section.

Exercises
Exercise 79. In which of the following congruences does the indicated division
actually work?

(a) 12× a ≡ 12× b (mod 7) implies a ≡ b (mod 7)

(b) 12× a ≡ 12× b (mod 6) implies a ≡ b (mod 6)

(c) 12× a ≡ 12× b (mod 25) implies a ≡ b (mod 25)

Exercise 80. Compute multiplicative inverses of the following numbers, accord-
ing to the given moduli. If an inverse does not exist, explain why not.

(a) 72−1 in Z101

(b) 105−1 in Z539

Exercise 81. Show that every nonzero element of Zm has a multiplicative in-
verse if and only if p is prime.

Exercise 82. Complete the proof of Theorem 67 by showing that congruence
modulo n is transitive.

Exercise 83. Complete the proof of Theorem 68 by showing that if a ≡ b
(mod n), then a± c ≡ b± c (mod n).

Exercise 84. Recall Euclid’s Lemma (Theorem 53).

(a) Use Euclid’s Lemma to show that if p is prime and ab ≡ 0 (mod p), then
a ≡ 0 (mod p) or b ≡ 0 (mod p).

(b) Find a, b,m ∈ N such that ab ≡ 0 (mod m) but neither a ≡ 0 (mod m)
nor b ≡ 0 (mod m).
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(c) For any �xed m ∈ N, the numbers a and b of part (b) above are called zero
divisors. Show that if m > 2 is not prime, then you can always �nd zero
divisors a, b ∈ {1, 2, . . . ,m− 1}.
Hint: Try factoring m.

Exercise 85. Recall the generalization of Euclid’s Lemma (Theorem 54).

(a) Use Theorem 54 to show that if ab ≡ 0 (mod m) and gcd (a,m) = 1, b ≡ 0
(mod m).

(b) Find a, b,m ∈ N+ that satisfy part (a). (Notice b ∈ N+ means b 6= 0.)

This example illustrates further how numbers that are relatively prime interact
with each other as if they were prime.

Sage supplement
You already know that we can compute the remainder of a after division by n
using a.quo_rem(n) and taking the second entry of the result. Another, more
convenient way to do this is by using either the % operator9 or the .mod dot
command.

sage: (-10).quo_rem(3)
(-4, 2)
sage: -10 % 3
2
sage: (-10).mod(3)
2

Sage doesn’t have a command named is_congruent, but we can easily create
one.

sage: def is_congruent(a, b, n):
return (a % n) == (b % n)

9You may recognize the % operator if you are familiar with the C or Java programming lan-
guage.
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The �rst line de�nes our procedure with three arguments, a, b, and c. The second
computes the remainders of a and b after division by n, and returns whether they
are the same.

sage: is_congruent(7, 5, 4)
false
sage: is_congruent(9, 5, 4)
true

There’s also another way: Sage makes it easy to compute in Zn! To do this,
we must set up every number as an element of Zn. There are two steps for this:
one you have to do only once, but the other you have to do every time you work
with a new number.

1. De�ne Zn as the quotient of Z and the modulus.

2. Initialize a number a as elements of Zn by typing Zn(a).

sage: Z3 = ZZ.quo(3)
sage: a = Z3(-10)
sage: a
2

One nice consequence of this is that any arithmetic between a and other numbers
also occurs in Zn:

sage: a + 7
0
sage: a * 7
2

Let’s review what happened in these computations.

• We de�ned a as an element of Z3: originally we set it to −10, but the
remainder of dividing −10 by 3 is 2, so Sage sets a to 2.
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• If a has the value 2, how did Sage �gure a + 7 to be 0? The sum is 9, but
again Sage automatically reduces it modulo 3 to 0.

• In the same way, for a * 7 Sage computes the product 14, then reduces it
modulo 3 to 2.

Sage similarly coerces numbers involved in a comparison, giving us an easier way
to test congruence than the is_congruent command we de�ned earlier. (Make
sure you type two equality signs in the example below, not one. Otherwise you’ll
reassign a.)

sage: a == 5
True

Sage will also compute the multiplicative inverse of a in a very natural man-
ner: use the exponent −1.

sage: a^(-1)
2

Recall that not every number in every modulus has a multiplicative inverse.
Sage has a way to tell you this, too. We’ll look at the same example we conidered
in the text, the number 12 in Z14.



CHAPTER 1. MODULAR ARITHMETIC 57

sage: Z14 = ZZ.quo(14)
sage: a = Z14(12)
sage: a
12
sage: a^(-1)
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/

smc_sagews/sage_server.py", line 1188, in execute
flags=compile_flags) in namespace, locals

File "", line 1, in <module>
File "sage/rings/finite_rings/integer_mod.pyx",

line 2704, in sage.rings.finite_rings.integer_mod.
IntegerMod_int.__pow__ (build/cythonized/sage/
rings/finite_rings/integer_mod.c:30197)

return ~self._new_c(res)
File "sage/rings/finite_rings/integer_mod.pyx",

line 2722, in sage.rings.finite_rings.integer_mod.
IntegerMod_int.__invert__ (build/cythonized/sage/
rings/finite_rings/integer_mod.c:30372)

raise ZeroDivisionError(f"inverse of
Mod({self}, {self.__modulus.sageInteger}) does
not exist")
ZeroDivisionError: inverse of Mod(12, 14) does
not exist

The �rst line to examine for whenever you encounter an error in Sage is ac-
tually the last line. It tells you the precise error is, gives a brief explanation,
and sometimes even suggests how to �x it. In this case, it gives us a Zero-
DivisionError, which seems like a strange thing to get when looking for a
multiplicative inverse; this will make sense later when we talk about zero divi-
sors.

Exercises
Exercise 86. Use Sage to �nd the multiplicative inverse of every invertible ele-
ment of Z100.
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Hint: Doing this one number at a time would be tedious. Use a for loop to make
Sage do them all for you in one go! To avoid a ZeroDivisionError, use an if
statement to check whether the number is relatively prime to 100.

1.6 Linear algebra in Zn
In this section we introduce the reader to linear algebra inZn; that is, we consider
the question of solving a congruence of the form

ax ≡ b (mod n)

or, more generally, a system of congruences of the form{
ax ≡ b (mod m)

cx ≡ d (mod n)
.

These are called linear congruences because the variable, x, is only to the �rst
power.

It turns out that if there is one solution to a linear congruence, there are
always in�nitely many solutions. To see why:

• Suppose y is a solution to ax ≡ b. Then

ay ≡ b (mod n) ,

but also
a (y + n) = ay + an ≡ b+ an ≡ b (mod n) ,

because (b+ an)− b = an ≡ 0 (mod n).

• In a similar fashion, suppose y is a solution to both ax ≡ b (mod m) and
cx ≡ d (mod n). This time, consider the fact that

a (y +mn) = ay + a (mn) ≡ b+ (an)m ≡ b (mod m) ,

and similarly

c (y +mn) = cy + c (mn) ≡ d+ (cm)n ≡ d (mod mn) .

So if there is a solution, there are in�nitely many.
That said, the other solutions given can be viewed as not especially interest-

ing; after all:
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• For a solution y to ax ≡ b (mod n), we know that y + n ≡ y (mod n).
If we consider y as a solution of Zn, it might well be unique; we’re only
guaranteed another solution when we add or subtract a multiple ofn. What
would be interesting is if we don’t have a solution that is congruent to y
modulo n.

• For a solution y to ax ≡ b (mod m) and cx ≡ d (mod n), we know that
y + mn ≡ y (mod mn). If we consider y as a solution of Zmn, it might
well be unique; we’re only guaranteed another solution when we add or
subtract a multiple of mn. What would be interesting is if we don’t have a
solution that is congruent to y modulo mn.

Because of this, this section considers two questions:

• Does a solution exist?

• When it does, is it unique up to congruence?

“Up to congruence” means that the solution is the only one in Zn, where the
value of n depends on the problem.

One linear congruence
We begin by looking at ax ≡ b (mod n). From the previous section we know
that if gcd (a, n) = 1, then a has a multiplicative inverse modulo n; that is, we
can �nd s ∈ Zn such that as ≡ 1 (mod n). This leads to a very simple solution
to the congruence.
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Algorithm 1.7 Solving linear congruences
Inputs

• ax ≡ b (mod n), where

– a, b, n ∈ Z,
– n > 1, and
– gcd (a, n) = 1

Outputs

• x satisfying ax ≡ b

Do

1. let s be the multiplicative inverse of a modulo n

2. return the remainder of bs after division by n

Theorem 87. Algorithm 1.7 terminates correctly. The solution is unique up to
congruence.

Proof. Termination? We can �nd s, t to satisfy step 1 by performing the Extended
Euclidean Algorithm (1.3), which terminates by Theorem 41. Step 2 is a return
statement, so the algorithm terminates.

Correctness? If we substitute x = bs into the left hand side of ax ≡ b (mod n)
we have

a (bs) = a (sb) = (as) b ≡ 1 · b = b (mod n) .

So x = bs would be a correct solution. The algorithm actually returns the re-
mainder after division by n; that is, it returns r where x = qn+ r. Rewrite that
equation to qn = x−r and we see that x ≡ r (mod n). In other words, n is also
a solution.

Is the solution unique up to congruence? Let y, z be solutions to ax ≡ b
(mod n). Then ay ≡ b (mod n) and az ≡ b (mod n). By the transitive prop-
erty of congruence (Theorem 67), ay ≡ az (mod n). By hypothesis, gcd (a, n) =
1, so a has a multiplicative inverse modulo n; call it s. Multiply both sides of the
congruence by s, and we have

(sa) y ≡ (sa) z =⇒ y ≡ z (mod n) .
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By de�nition, n | (y − z), so y ≡ z (mod n), and the solution is unique up to
congruence.

Example 88. Consider the linear congruence 9x ≡ 3 (mod 14). In Example
76 we found that 9−1 ≡ 11 (mod 14). Multiply both sides by 11 and we have
99x ≡ 33 (mod 14). However, 99 ≡ 1 (mod 14), and 33 ≡ 5 (mod 14), so

99x ≡ 33 =⇒ x ≡ 5 (mod 14) .

If you substitute 5 in for x in 9x ≡ 3 (mod 14), you will see that the equation
checks out as true. Moreover, Theorem 87 tells us the solution is unique up to
congruence; that is, none of {0, 1, 2, 3, 4} ∪ {6, 7, . . . , 13} will work for x.

You may have noticed a little wrinkle; Algorithm 1.7 requires gcd (a, n) = 1.
What if this is not true? We consider two examples.

Example 89. Algorithm 1.7 cannot solve 6x ≡ 2 (mod 14) directly, because
gcd (6, 14) = 2 6= 1. However, x is a solution to the congruence if and only
if 14 | (6x− 2), which is true if and only if we can �nd an integer q such that
14q = 6x − 2. Both sides of the equation are divisible by 2, so we divide and
obtain 7q = 3x− 1. This is equivalent to 7 | (3x− 1), which is true if and only
if x is a solution to 3x ≡ 1 (mod 7). Algorithm 1.7 can solve this congruence;
it returns x = 5. You can easily check that this is also a solution to 6x ≡ 2
(mod 14), precisely what all the equivalences imply.

This solution is not, however, unique! We can add 7 to our solution x = 3 to
obtain x = 10 as another solution to 3x ≡ 1 (mod 7). This is not a new solution
modulo 7, but you can easily check that it is another solution modulo 14, and it
is certainly di�erent from 5 in that modulus!

Example 90. Algorithm 1.7 cannot solve 6x ≡ 1 (mod 14) directly, because
gcd (6, 14) = 2 6= 1. In fact, Algorithm 1.7 cannot solve 6x ≡ 1 (mod 14) at
all, because it is equivalent to the equation 6x = 14q + 1, or 6x − 14q = 1, or
2 (3x− 7q) = 1. This latter equation is true if and only if 2 | 1, which it does
not!

These results allow us to answer completely the question of solving ax ≡ b
(mod n).

Theorem 91. Let a, b, n ∈ Z, with n > 1. Let d = gcd (a, b).

• If d = 1, then the linear congruence ax ≡ b (mod n) has one solution, and
the solution is unique up to congruence.
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• If d 6= 1, then:

– If d - b, then there the linear congruence ax ≡ b (mod n) has no
solution.

– If d | b, then the linear congruence ax ≡ b (mod n) has d distinct
solutions modulo n, and we can �nd them by �rst solving (a/d)x ≡ b/d
(mod )(n/d), then enumerating the solutions x, x + n/d, x + 2n/d . . . ,
x+ (d−1)n/d.

Proof. If d = 1, then Theorem 87 applies.
If d 6= 1 and d - b, then we can rewrite ax ≡ b (mod n) as ax + nq = b for

some integer q. Then d divides the left hand side, but it does not divide the right,
so there can be no solution.

If d 6= 1 and d | b, then choose â, b̂, n̂ ∈ Z such that âd = a, b̂d = b,
and n̂d = n. The congruence ax ≡ b (mod n) is equivalent to the equation
ax+ nq = b for some q ∈ Z. Divide both sides by d to see that this is equivalent
to âx + n̂q = b̂. This latter equation is equivalent to âx ≡ b̂ (mod )̂n. We
obtained â and n̂ by dividing a and n by their greatest common divisor, so â
and n̂ can have no common divisor; otherwise, a and n would have a larger one.
Hence gcd (â, n̂) = 1 and Theorem 87 applies; a solution x to âx ≡ b̂ (mod )̂n
exists. As explained above, this congruence is equivalent to ax ≡ b (mod n), so
x is a solution to that one, as well. Moreover, y = x+ kn/d = x+ kn̂ is likewise
a solution to âx ≡ b̂ (mod )̂n for every k ∈ N, so as with x, y is also a solution
to ax ≡ b (mod n).

To show that there are only d distinct solutions modulo n, suppose that y =
x+ in/d and z = x+ jn/d are congruent modulo n. We have

a

(
x+

in

d

)
≡ a

(
x+

jn

d

)
(mod n) .

A little algebra, and we have

ai
(n
d

)
≡ aj

(n
d

)
(mod n) .

By de�nition,
n |
[
a
(n
d

)
(i− j)

]
.

Recall that gcd (a, n) = 1. By Theorem 54,

n |
[(n
d

)
(i− j)

]
.
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Choose q ∈ N such that

nq =
(n
d

)
(i− j) =⇒ qd = i− j .

This tells us that i− j is a multiple of d. If we choose only the solutions

x , x+
n

d
, x+

2n

d
, . . . x+

(d− 1)n

d
,

then we can never encounter two solutions that are congruent modulo n.

Several simultaneous congruences
We consider a system of congruences{

x ≡ a (mod m)

x ≡ b (mod n)
.

This section’s theorems were a little tough, but they lay the groundwork we need
to make the remainder easy (no pun intended).

Theorem 87 tells us that 1 · x ≡ a (mod m) has a solution x = a. Now,
a might not be a solution to x ≡ b (mod n), but we have pointed out several
times that there are in�nitely many solutions to x ≡ a (mod m), all of them
having the form x = a+ km, where k is any integer. We’d like to �nd a value of
k that makes the second congruence true; in other words, we can treat k as an
unknown.

Substitute this expression for x into the second congruence, obtaining

a+ km ≡ b (mod n) .

Rewrite this as
mk ≡ b− a (mod n) .

By Theorem 87, we can solve this congruence so long as gcd (m,n) | (b− a). In
fact, it is very easy to solve if gcd (m,n) = 1, and this is such a useful fact that
the result is very ancient.
Theorem 92 (The Chinese Remainder Theorem). Letm,n ∈ N such thatm,n ≥
2 and gcd (m,n) = 1. The system of linear congruences{

x ≡ a (mod m)

x ≡ b (mod n)

has a solution, and the solution is unique up to congruence modulomn.
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Proof. As we explained before the theorem, this system has a solution if and only
if gcd (m,n) = 1. It remains to show that the solution is unique up to congruence
modulo mn. Let y, z ∈ Z be solutions to the system, so that

y ≡ a ≡ z (mod m) and y ≡ b ≡ z (mod n) .

By the transitive property, y ≡ z under both moduli. By de�nition, m | (y − z)
and n | (y − z). By Exercise 46, mn | (y − z). By de�nition, y ≡ z (mod m)n.

What about the more complicated case{
ax ≡ b (mod m)

cx ≡ d (mod n)
,

which we mentioned at the beginning of the section? As with the Chinese Re-
mainder Theorem, we can �nd solutions to this system using a similar principle.

Example 93. Solve {
5x ≡ 72 (mod 99)

3x ≡ 4 (mod 101)
.

It is easy to verify that gcd (5, 99) = gcd (3, 101) = 1, so we pass through steps
1 and 2 without di�culty. For step 3, we �nd the multiplicative inverses of 5
modulo 99 and of 3 modulo 101 to rewrite the system as{

x ≡ 54 (mod 99)

x ≡ 35 (mod 101)
.

Again, it is easy to see that gcd (99, 101) = 1 (use the result of Exercise 43 to
make it very easy) so we pass through step 4 without di�culty.

We �nally come to something new in step 5. We have to follow step 5(a),
which tells us to solve according to the manner outlined in the proof of the Chi-
nese Remainder Theorem. We rewrite the �rst equation as

x = 99q + 54

and substitute this into the second equation,

99q + 54 ≡ 35 (mod 101) .
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Algorithm 1.8 Solving two linear congruences
Inputs

• a, b, c, d,m, n ∈ N+ such that m,n ≥ 2

Outputs

• a solution to {
ax ≡ b (mod m)

cx ≡ d (mod n)
,

if it exists; otherwise, ∅

Do

1. if gcd (a,m) - b or gcd (c, n) - d, return ∅

2. rewrite the system as {
âx ≡ b̂ (mod m̂)

ĉx ≡ d̂ (mod n̂)
,

where gcd (â, m̂) = gcd (ĉ, n̂) = 1

3. multiply both sides of the �rst congruence by â−1, and both sides of the
second by ĉ−1, to obtain the equivalent system{

x ≡ b′ (mod m̂)

x ≡ d′ (mod n̂)
,

4. if gcd (m̂, n̂) - (b′ − d′), return ∅

5. else

(a) if gcd (m̂, n̂) = 1,
i. compute the unique solution x found by the Chinese Remainder

Theorem
ii. return the resulting solution

(b) else
i. substitute x = b′ +mk into x ≡ d′ (mod n̂)

ii. return the resulting solution
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Now we solve this in the usual manner for linear congruences,

99q ≡ 82 (mod 101)

50× 99q ≡ 50× 82

q ≡ 60 .

Back-substitute to obtain

x = 99× 60 + 54 ≡ 5994 (mod 9999) .

Verifying this answer is straightforward.

Theorem 94. Algorithm 1.8 terminates correctly.

Proof. Termination? Steps 5(a)(ii), 5(b)(i), and 5(b)(iii) do not inhibit termination.
By Theorem 37, computing the gcd terminates, so computing the gcd in steps 1,
2, 4, and 5(a) does not inhibit termination. Computing a multiplicative inverse in
step 3 requires the Extended Euclidean Algorithm, and by Theorem 41 that ter-
minates, so step 3 does not inhibit termination. By Theorem 1.7, step 5(b)(ii) does
not inhibit termination. By the Chinese Remainder Theorem, step 5(a)(i) does not
inhibit termination. This covers all the steps, so the algorithm terminates.

Correctness? If the algorithm returns a result in steps 1, 4, or 5(a)(ii), then the
Chinese Remainder Theorem guarantees correctness. The only other way it re-
turns a result is in step 5(b)(ii), where Theorem 1.7 and the subsequent discussion
imply that the solution is a result to the system.

Remark. The result obtained from steps 5(a)(ii) and 5(b)(ii) in Algorithm 1.8 are
not necessarily unique. Determining all distinct solutions is somewhat more
di�cult than we think is justi�ed at the present time. Nevertheless, see Exercise
.

Exercises
Exercise 95. Solve the following linear congruences. If they cannot be solved,
explain why not. If there is more than one solution among the canonical residues,
list them all.

(a) 4x ≡ 7 (mod 9)

(b) 100x ≡ 18 (mod 112)
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(c) 100x ≡ 20 (mod 112)

Exercise 96. Solve {
5x ≡ 3 (mod 7)

4x ≡ 2 (mod 9)
.

List all distinct solutions modulo 63.
Exercise 97. Solve 

2x ≡ 1 (mod 7)

7x ≡ 5 (mod 11)

4x ≡ 7 (mod 15)

.

Indicate the modulus in which this solution is unique.
Hint: Divide and conquer. First solve the �rst two congruences; by the Chinese
Remainder Theorem, this gives a unique solution modulo 77. Let’s call that so-
lution b; you now know that the solution must satisfy the smaller system{

x ≡ b (mod 77)

4x ≡ 7 (mod 15)
.

You can solve this the same as before, and �nd your solution.
Exercise 98. Show that if gcd (a, b) 6= 1 but divides b, then ax ≡ b (mod n)
still has a solution.
Hint: Consider the equation ax = nq+ b. “Simplify” this to show that a solution
exists. Explain why the solution works for ax ≡ b (mod n).
Exercise 99. Solve {

x ≡ 12 (mod 15)

x ≡ 17 (mod 20)
.

Hint: There is one unique solution modulo 60, and distinct 5 solutions modulo
300.
Exercise 100. Consider the system{

x ≡ a (mod m)

x ≡ b (mod m)

where gcd (a,m) = 1 and gcd (b, n) = 1, but gcd (m,n) 6= 1. Suppose that
gcd (m,n) | (b− a), as in Exercise 99. In this case, step 5(b)(ii) returns the answer
to such a system.



CHAPTER 1. MODULAR ARITHMETIC 68

(a) Use the algorithm, as well as insight from Exercise 99, to compute a symbolic
formula for one solution.

(b) Explain how to �nd all solutions.

(c) The solutions are distinct modulo what number?

Sage supplement
Sage’s solve command will solve regular equations. You need to specify the
name of the variable to solve for.

sage: solve( 5*x == 2, x)
[x == (2/5)]

The result is a list of equations that satisfy the solution. Higher-degree equations
will have multiple solutions.

sage: solve( 5*x^2 == 2, x)
[x == -1/5*sqrt(5)*sqrt(2), x ==
1/5*sqrt(5)*sqrt(2)]

Sage will also solve a linear congruence, but it requires a di�erent command.
Instead of solve, we’ll use solve_mod, which expects an equation as the �rst
argument, and the modulus as the second.

sage: solve_mod( 5*x == 7, 12 )
[(11,)]

The solution is a list of incongruent values for each variable; when substituted
for the variable(s), they make the congruence true. In this case, there is only one
solution, and only one variable, so the list [...] gives us one solution (...)
which lists only one number, 11.

Oftentimes there can be more than one incongruent solution to a linear con-
gruence. In this case, the list will have more entries.
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sage: solve_mod( 4*x == 8, 12 )
[(8,), (5,), (2,), (11,)]

There are four solutions! One of these solutions is obvious: x = 2. What about
the others? It isn’t hard to verify that in fact

4× 8 ≡ 4× 5 ≡ 4× 2 ≡ 4× 11 ≡ 8 (mod 12) ,

but how would you know this in advance? You will explore this in the exercises.
There is also a more traditional way to solve linear congruences. Remember

that Theorem 64 tells us we can think of a linear congruence ax ≡ b (mod n)
as n | (ax− b). Choose q ∈ Z such that ax − b = nq and we’re looking at an
equation whose solutions must be via integers.10 Sage gives us a way to specify
that via an assume command. This command allows us to specify many kinds
of constraints on variables. To specify that the variable x is an integer, we use
assume(x, ’integer’). We can then solve an equation with x, and only inte-
ger solutions will be allowed.

We illustrate this with the congruence 5x ≡ 7 (mod 12). As per the discus-
sion above, we consider the equation 5x = 12q + 7. We need to de�ne a symbol
in Sage for the variable q, which we can do with the var command.

sage: var( ’q’ )
sage: assume( x, ’integer’ )
sage: assume( q, ’integer’ )
sage: solve( 5*x == 12*q + 7 )
12*t_0 + 35

This tells us that for any integer t0, x = 12t0 + 35 will satisfy 5x = 12q + 7. We
know that this means it should satisfy 5x ≡ 7 (mod 12), and in fact

5× (12t0 + 35) = 60t0 + 175 ≡ 0 + 7 (mod 12) ,

as desired. So x ≡ 35 (mod 12), or preferably we use its canonical linear residue,
x ≡ 11 (mod 12).

10Equations of the form ax + by = c where every constant variable is an integer are called
Diophantine equations. Solving them is a major topic in Number Theory.
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Solving Chinese Remainder Theorem problems is also fairly easy in Sage; we
use the crt command. It expects two arguments, and each of those arguments
is to be a list of two integers:

crt( [ a, b ] , [ m, n ] ) corresponds to
{
x ≡ a (mod m)

x ≡ b (mod n)
.

The coe�cients of x must be 1; if they are not, we must �rst rewrite the system.

Example 101. To solve the system in Example 93,{
5x ≡ 72 (mod 99)

3x ≡ 4 (mod 101)
,

we �rst have to rewrite it using the multiplicative inverses. We took care of that
already in Example 93, obtaining{

x ≡ 54 (mod 99)

x ≡ 35 (mod 101)
.

We can �nally apply crt to this form.

sage: crt( [ 54, 35 ], [ 99, 101 ] )
5994

This is the solution we expect.

Exercises
Exercise 102. Use Sage to solve the following linear congruences.

(a) 5123x ≡ 1001 (mod 32003)

(b) 7719x ≡ 10017 (mod 35)

(c) 1024x ≡ 256 (mod 65536)
Hint: In this last case there are a lot of solutions. Don’t write down all of
them: �nd a pattern x = ai+b, where a and b are �xed integers and i ranges
from a smallest to a largest value. Be sure to indicate the smallest and largest
values of i that describe a solution.
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Exercise 103. Try using Sage to solve 6x ≡ 7 (mod 12). What happens? Why?

Exercise 104. Use Sage to solve the following systems of linear congruences. Be
sure to list all incongruent solutions if there are more than one. Be careful with
the latter: Sage will not automatically tell you all incongruent solutions when
there are more than one. You’ll have to think about it a bit!

(a)
{
38x ≡ 52 (mod 101)

82x ≡ 7 (mod 103)

(b)
{
x ≡ 17 (mod 20)

x ≡ 13 (mod 32)

Exercise 105. Sage will not automatically solve systems of linear congruences
of the form {

ax ≡ b (mod m)

cx ≡ d (mod n)
.

We can however outline an algorithm to solve them, based on this section’s dis-
cussions and the procedure of Example 93:
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Algorithm 1.9 CRT with coe�cients
Inputs

• a, b, c, d ∈ N

• m,n ∈ N+

Outputs

• a solution to the system of linear congruences{
ax ≡ b (mod m)

cx ≡ d (mod n)
(1.10)

Do

1. if gcd (a,m) - b or gcd (c, n) - d then return ∅

2. �nd â, b̂ such that the system (1.10) is equivalent to{
x ≡ â (mod m)

x ≡ b̂ (mod n)

3. use Sage to solve the system obtained in step 2 and return that solution

Implement this algorithm as a Sage procedure.
Hint: For step 2, you don’t have to create any equations; you just have to �nd â
and b̂ so that you can use them in step 3. You can do this with Sage by computing
â = a−1b and b̂ = c−1d.

1.7 Public-key encryption
We end this chapter with a famous application of the ideas we have studied:
secret communication. Suppose that Person A and Person B want to exchange
messages, but are afraid that Person E might overhear.11 They need a function

11Authors often use “Alice,” “Bob,” and “Eve” instead of A, B, and E. In our internet economy
one could well use “Amazon,” “Buyer,” and “Eavesdropper.”
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f that transforms a readable message m into an unreadable cipher c, typically
using an encryption key e. That is,

c = f (m, e) .

They also need a way to undo the encryption.
In the modern age we use computers to do this. Computers work with num-

bers, so we need some way to turn letters into numbers. We will adopt a very
simple method where

A 7→ 0, B 7→ 1, . . . Z 7→ 25, ; 7→ 26,

, 7→ 27, . 7→ 28, ␣ 7→ 29, - 7→ 30 .

(The symbol ␣ indicates a space.) This would encode the message

STOP␣—␣DANGER␣AHEAD

as

18 19 14 15 29 30 29 3 0 13 6 4 17 29 0 7 4 0 3 .

The numbers are elements of Z31. We don’t have to use the modulus 31; we can
use any modulus that is su�ciently large to encode the alphabet. The bene�t is
that we can leverage modular arithmetic to �nd a way to communicate secretly.

Classical versus public-key encryption
The “classical” approach to encryption requires A and B to know both the encryp-
tion method f and the private key e. Only the ciphertext c is public knowledge, so
E’s challenge is to determine both f and e. Once E determines this information,
decryption is a snap, since typically

m = f−1 (c, e) .

and it is “easy” to compute f−1 from f . For example;

• The Cæsar cipher consists of choosing some k ∈ Z and using

f (m, e) = m+ e ,
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where the line over m+ e means to divide and take the remainder modulo
31 (or whatever modulus one chooses, only both A and B must know it).
Decryption consists of computing

f−1 (c, e) = c− e .

This cipher takes its name from Julius Cæsar; according to several ancient
Romans, he used a version of this method.

• The Vigenère cipher consists of choosing a short sequence e1, . . . , e` (some-
times corresponding to an easy-to-remember word) and enciphering sev-
eral characters at a time

f ((m1, . . . ,m`) , (e1, . . . , e`)) = (m1 + e1, . . . ,m` + e`) .

Decryption consists of computing

f−1 ((c1, . . . , c`) , (e1, . . . , e`)) = (c1 − e1, . . . , c` − e`) .

It takes its name from Blaise de Vigenère, though Giovan Battista Bella-
sio discovered it. For a long time people considered the Vigenère cipher
indecipherable if E does not know the key.

• A one-time pad uses for its key a sequence of random numbers e1, . . . , e` in
exactly the same fashion as the Vigenère cipher, except that the sequence
must be long, at least as long as the message. It takes its name from the
fact that one uses a one-time pad exactly once, then never again. Because
of this, the cipher has been proved indecipherable if E does not know the
key. Unfortunately, generating and storing sequences of random numbers
is burdensome.

• A stream cipher uses for its key a sequence of pseudo-random numbers
e1, e2, . . . in exactly the same fashion as the one-time pad. Here, “pseudo-
random” means that the numbers are generated according to a formula
designed to produce numbers that look random, even though they are not
— the reasoning being that if you can generate the numbers according to
a formula, then they aren’t truly random.

• TheNavajo code talkers were Navajo men who translated English messages
to Navajo, which was then radioed between airplanes in the Paci�c theater
during World War II. The Japanese Navy had never heard anything like it
before, and was completely unable to make sense of it.
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Again, these techniques require both A and B to know both the method and the
key, and indecipherability depends on keeping at least one of the two secret. This
makes classical encryption practically di�cult, as both A and B must not only
keep a record of the keys — in a codebook, for instance — they must also keep
the record hidden from E. Failure either to use a secure method or to keep the
method secret forfeits the security.

• The American Department of State at one time used an encryption method
so poor that every half-competent intelligence agency was reading our “se-
cret” communications. One history of encryption called us the “laughing
stock of the world.”

• The German military in World War II used an encryption device called
Enigma. The United States and Britain invested heavily into early com-
puter technology precisely to decrypt Nazi communications. These e�orts
received an enormous boost when the Allies captured a codebook that
a captured submarine’s commander was unable to destroy before being
boarded.

By contrast, public-key encryption works as follows.

• A chooses a method f and a “public encryption key e.”

• A broadcasts in public that anyone who wishes to communicate secretly
with A should use the method f and the key e.

• B computes and broadcasts c = f (m, e), so that everyone now knows f ,
c, and e.

• Decryption consists of using a second, private key dwhich A keeps secret.
To decipher the method, E needs to �nd d.

This is much easier to deal with on a large scale than private encryption: A
and B do not need to keep secret, hidden codebooks. Whenever they want to
communicate, they simply broadcast clearly each other’s encryption key. What’s
more, anyone can send messages securely to A using this method, not just B.

RSA encryption
RSA encryption takes its name from “Rivest, Shamir, Adelman,” the mathemati-
cians who �rst described the technique publicly. One convenient aspect of RSA
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is that encryption and decryption use the same mathematical operations; the
only di�erence is in the key. Another convenient aspect is that a computer can
perform the operations relatively quickly.

A does the following in preparation to receive messages.

• Choose two prime numbers, p and q.

• Compute N = pq.

• Let e be a number that is relatively prime to φ = (p− 1) (q − 1).

• Let d be the multiplicative inverse of e, modulo φ.

• Invite everyone to send messages using RSA, encryption key e, moduloN .

To send a message, B does the following.

• Compute, then broadcast, c = me (mod N).

To decrypt the message, A does the following.

• Compute x = cd.

Theorem 106. If A and B perform the steps above, then x ≡ m (mod m).

We postpone the proof until we build up some background theory. To begin
with, you are probably wondering why φ = (p− 1) (q − 1) is special. To explain
this we need a new set: letZ∗n be the subset ofZn whose elements are all relatively
prime to n.

Example 107. Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14} and Z∗31 = {1, 2, . . . , 31}.

Lemma 108. Let p and q be prime, andN = pq. The number φ = (p− 1) (q − 1)
counts the elements of Z∗N . That is, φ =

∣∣Z∗pq∣∣.
To help understand the proof, we illustrate it with an example.

Example 109. Let p = 3 and q = 5. We haveN = 15 and φ = 2×4 = 8. To see
why φ really does count the number of integers in {1, . . . , 15} that are relatively
prime to 15, count the number of integers that are not.

SinceN = 3×5, and both 3 and 5 are prime, a number has a common divisor
with N only if it is a multiple of 3 or 5. These are

3, 6, 9, 12, 15 (multiples of 3)
5, 10, 15 (multiples of 5) .
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The �rst sequence has 5 multiples of 3; the second has 3 multiples of 5. They have
no common elements except the last one, 15. In fact, they should have nothing
in common, since one consists of multiples of 3, the other consists of multiples
of 5, and the least common multiple of 3 and 5 is 15. So the number of integers
in {1, . . . , 15} that share a common divisor with 15 is

5︸︷︷︸
multiples of 3

+ 3︸︷︷︸
multiples of 5

− 1︸︷︷︸
extra 15

.

Hence, the number of integers in {1, . . . , 15} that are relatively prime to 15 is

15− (5 + 3− 1) = 8 ,

which is precisely the value of φ we computed above.

Proof of Lemma 108. Let a ∈ {0, 1, . . . , N − 1}, and suppose that gcd (a,N) 6=
1. By the Fundamental Theorem of Arithmetic, gcd (a,N) has a unique prime
factorization, say

gcd (a,N) = r1 . . . rk .

By de�nition of divisibility, we can �nd s ∈ N such that N = s gcd (a,N), so by
substitution

pq = sr1 . . . rk .

By Euclid’s Lemma, p | s or p | ri for some i = 1, . . . , k. Suppose p - ri for any
i; this forces p | s. We divide both sides by p and obtain the equation

q = r1 . . . rk .

By Euclid’s Lemma, q | ri for some i = 1, . . . , k. Since q is prime, it factors only
as q = q× 1; since the r’s are prime, we can have only one r, with q = r1. Either
way, p or q is a divisor of gcd (a,N), so p or q is a divisor of a.

We have shown that if gcd (a,N) 6= 1, then p or q divides a. How many such
a’s are there in {0, 1, . . . , N − 1}? The multiples of p are

p, 2p, . . . pq ;

the multiples of q are
q, 2q, . . . pq .

The number pq appears in both sequences; are there others? Suppose i, j satisfy
ip = jq. By Euclid’s Lemma, p | j or p | q. Now, q is prime, and p 6= q, so
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p | j. Similarly, q | i. So the smallest number that is a multiple of both p and q is
pq itself. Hence our sequences above are completely distinct except for pq itself,
and there are

q︸︷︷︸
multiples of p

+ p︸︷︷︸
multiples of q

− 1︸︷︷︸
extra pq

common multiples of p and q from {0, 1, . . . , N − 1}. These are the only num-
bers in Z∗N that share a common divisor with N , so the number of integers in
{0, 1, . . . N − 1} that are not multiples of p or q are

N − (p+ q − 1) = pq − p− q − 1

= p (q − 1)− (q − 1)

= (p− 1) (q − 1)

= φ ,

as claimed.

More generally, suppose φ (n) = Z∗n for any integer n. This number has a
useful property.

Theorem 110 (Euler’s Theorem). For any a ∈ Z∗n, aφ(n) ≡ 1 (mod n).

Example 111. In Z15, 28 ≡ 1 (mod 15). One way to compute this is by evalu-
ating

2× 2× · · · × 2︸ ︷︷ ︸
8 times

,

but a more clever way to do it is to realize that 8 = 23 and compute((
22
)2)2

.

If we reduce modulo 15 every chance we get, we see that in fact

22 = 4(
22
)2

= 42 = 16 ≡ 1((
22
)2)2 ≡ 12 = 1 .

Here we encountered 1 at 24, illustrating that we might meet it sooner than the
φ (n) power. Nevertheless, we will still always reach it at φ (n).
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Proof of Euler’s Theorem. Let a ∈ Zn, and suppose a is relatively prime to n. The
set Zn is �nite, so there can be only �nitely many distinct powers of a, modulo
n. Let T =

{
a, a2, . . . , ak

}
be a complete list of the powers of a. We now make

two observations.
Claim. The elements of T are all distinct.

Subproof. Suppose ai = aj in Zn. Let i be the smallest power of a for which this
occurs, so that i ≤ j. Recall that a and n are relatively prime; this means that a
has a multiplicative inverse, call it s. Multiply both sides of ai = aj by si−1 to
obtain

a = aj−i+1 .

Remember that iwas supposed to be the smallest positive power where repetition
occurred, so we have just proved that i = 1. By substitution,

a = aj , a2 = aj+1 , . . . ;

that is, all powers from j on simply repeat powers that already appear in T .
Repetition cannot occur until after we have reached the jth power, which means
k = j − 1 and the elements of T are indeed distinct.

Claim. ak = 1 in Zn.

Subproof. We showed above that ak+1 = a. Multiply both sides by the inverse
of a to see that ak = 1.

We now perform the following iteration.

1. let U1 = T

2. let i = 2

3. while U1 ∪ · · · ∪ Ui−1 6= Z∗n

(a) let bi ∈ Z∗n\ (U1 ∪ · · · ∪ Ui−1)
(b) let Ui = {abi, a2bi, . . . , akbi}
(c) increment i by 1

We claim this iteration terminates with U1 ∪ · · · ∪ Ulast = Z∗n, no pair of distinct
U ’s has even one element in common, and the U ’s all have the same size. We
prove each claim individually.
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Example 112. Before examining the claims, we illustrate the iteration on a con-
crete example. Let n = 15 and a = 4. We have Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}.
We start with

U1 = T =
{
4, 42, 43, . . .

}
= {4, 1} .

Notice that k = 2. Since U1 6= Z∗15, let b = 2 and we have

U2 = {2× 4, 2× 1} = {8, 2} .

Since U1 ∪ U2 6= Z∗15, let b = 7 and we have

U3 = {7× 4, 7× 1} = {13, 7} .

Since U1 ∪ U2 ∪ U3 6= Z∗15, let b = 11 and we have

U4 = {11× 4, 11× 1} = {14, 11} .

The iteration has now terminated with U1 ∪ U2 ∪ U3 ∪ U4 = Z∗15. Distinct U ’s
have no elements in common, and they are all the same size.
Claim. The iteration terminates.

Subproof. Steps 1, 2, 3(a), 3(b), and 3(c) are simple assignments, so by themselves
they do not inhibit termination. Only the repetition of step 3 might lead to a
never-ending task, but that requires U1∪· · ·∪Ui−1 6= Z∗n. There are only �nitely
many elements of Z∗n, and each time we perform steps 3(a) and 3(b) we move at
least one element of Z∗n that is not in some U into a new U . Eventually, we run
out of elements of Z∗n, so the iteration must terminate.

Claim. U1 ∪ · · ·Ulast = Z∗n.

Subproof. We showed in the previous claim that the iteration must terminate,
but by step 3 the iteration terminates only when U1 ∪ · · · ∪ Ulast = Zn.

Claim. Ui ∩ Uj = ∅ only if i = j.

Subproof. Suppose Ui ∩ Uj 6= ∅ and let c be a common element. Without loss
of generality, i ≤ j. By construction, c ∈ Ui implies that c = a`bi for some
j = 1, . . . , k. Similarly, c ∈ Uj implies that c = ambj for some m = 1, . . . , k. By
substitution,

a`bi = ambj .
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If m ≤ `, then
a`−mbi = bj ,

which means that bj ∈ T . This contradicts the choice of bj as not being an
element of U1 ∪ · · · ∪ Uj−1. On the other hand, if m > `, recall that ak = 1 and
m ≤ k, so

a`bi × ak−m = ambj × ak−m = akbj = 1× bj = bj ;

in other words,
a`+k−mbi = bj .

Recall that ` < m, so `+ k −m < m+ k −m = k, so a`+k−mbi ∈ Ui, the same
contradiction as before.

Claim. The U ’s all have the same size.

Subproof. It su�ces to show that eachU has k distinct elements. We have already
shown that U0 = T has k distinct elements. For any other i, suppose there exist
`,m ∈ {1, . . . , k} such that a`bi = ambi. Without loss of generality, ` ≤ m. Let
s be the multiplicative inverse of a in Zn and multiply both sides by a`; we have
bi = am−`bi. Recall that bi ∈ Z∗n; that is, bi is also relatively prime to n, so it has
a multiplicative inverse in Zn. Let t be the multiplicative inverse of b in Zn and
multiply both sides by t; we have 1 = am−`. Since 0 < m, ` ≤ k and k is the
smallest positive power where ak = 1, we must have m− ` = 0; in other words,
` = m. The elements of Ui are thus all distinct, and it has k elements.

Our three claims show that the U ’s “divide” Z∗n into equally-sized sets. Recall
that φ = |Z∗n| If we put ` = last, then

φ = k × ` .

Hence aφ = ak×` =
(
ak
)`

= 1` = 1, as claimed.

We can now prove RSA’s correctness.

Proof of Theorem 106. Observe that

x = cd ≡ (me)d ≡ med (mod N) .

If we can show that med ≡ m (mod N), then we will have proved the theorem.
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By construction, ed ≡ 1 (mod φ). By de�nition, there exists q ∈ N such that
ed = 1 + qφ. Rewrite

x ≡ med = m1+qφ = m×
(
mφ
)q

(mod N) .

Recall that φ = (p− 1) (q − 1) is the number of integers {0, 1, . . . , N − 1} that
are relatively prime to N . By Euler’s Theorem, mφ ≡ 1 (mod N). By substitu-
tion,

x ≡ m× 1q = m (mod N) .

The result of A’s decryption is B’s original message.

Is RSA secure?
Before we consider this question, let’s review what E knows about B’s message.
E knows that:

• B used RSA with the parameters N and e;

• in RSA, N = pq where p and q are both prime;

• in RSA, the decryption exponent d is e’s multiplicative inverse modulo
φ (N);

• by Lemma 108, φ (N) = (p− 1) (q − 1);

• applying the Extended Euclidean Algorithm to e and φ (N) will reveal d.

The one thing E needs is the factorization N = pq. Once E knows p and q, E can
compute φ (N) and d, then apply them to decrypt the message.

How would E determine p and q? Again, E already knows that N is the prod-
uct of p and q, which are both prime. So E’s task is as “easy” as this:

6 = 2× 3 ,

or as “easy” as this:
15 = 3× 5 ,

or as “easy” as this:
33 = 3× 11 .

This is a grade-school problem! How is RSA secure?
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It turns out that factoring is much easier for small numbers than large ones.
In real-world RSA encryption, the primes used are quite large. One of the strange
quirks of mathematics is that many grade-school problems are easy with small
numbers, but unfeasible with large ones. Factoring a number into primes is one
of those! In fact, RSA was �rst described in the late 1970s, and 40 years later
there is still no practical way to defeat it. If you could �nd a practical way to
factor two large primes, you would became very famous, possibly very rich, and
also possibly very dead, depending on whom you informed �rst!

Other methods of public-key encryption exist, such as Elgamal or elliptic
curve encryption. The long-term security of many of these methods is also
not clear in general. Some schemes have been proposed, only to be cracked
very quickly: problems that seem di�cult to do can sometimes be cracked open
quickly once someone �nds the right approach — it’s just that no one was mo-
tivated to �nd that approach before. Modern cryptography is, therefore, an ex-
citing and active �eld of research that grows from number theory and algebra
— two �elds that were once considered as abstract and useless and mathematics
could possibly be!

Exercises
Exercise 113. Encode the message LEAVE␣ME␣ALONE according to the technique
described at the beginning of this section.
Hint: The problem asks you to encode, not to encrypt. Make sure you understand
the di�erence.
Exercise 114. Another way to encode a message as numbers is to pair consec-
utive letters together, adding a random letter at the end if needed to get a pair.
For example, the message

STOP␣—␣DANGER␣AHEAD

pairs up as
ST, OP, ␣-, ␣D, AN, GE, R␣, AH, EA, DX .

We then encode each pair XY as

x× 31 + y ,

where x is the value we’d use for X in the encoding described at the beginning
of this section, and y is the value we’d use for Y. Complete the encoding of the
message.
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Exercise 115. Use a Cæsar cipher with k = 3 to encode LEAVE␣ME␣ALONE.

Exercise 116. The message JUPNKAJADUI has been encoded using a Cæsar ci-
pher with k = 9. Decrypt the message.

Exercise 117. A stream cipher needs a function that generates pseudo-random
numbers. One example generator is the following:

xi =

{
27, i = 1

3xi−1 ∈ Z31, i > 1
.

(Here, the notation y ∈ Z31 means to take the remainder of y after dividing by
31.) Compute the �rst 31 numbers generated by this sequence. Do you think the
sequence looks random? Why or why not?

Exercise 118. In Example 111, we showed a shortcut for computing 28. Adapt
this method to compute the following exponents relatively quickly. If you want
to be really clever, use Euler’s Theorem to make it even faster.

(a) 536 in Z31

(b) 378 in Z38

Exercise 119. Example 112 uses Z∗15 to illustrate the iterative generation of the
U ’s in the proof of Euler’s Theorem. Repeat the example with Z∗31 and a =
2. Observe how the U ’s “cover” Z∗31 completely, how they have no elements in
common, and how they are all the same size.

Exercise 120. Consider the message (without the period)

MEET␣AT␣DAWN.

(a) Encode the message using the encoding described at the beginning of this
section. (Don’t forget to encode the two spaces!)

(b) Use the RSA algorithm to encrypt the message, using parameters N = 33
and e = 3.

(c) What value of d would decrypt the message?
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Sage supplement
Sage already incorporates fast exponentiation modulo n, as long as you ask for it.
As it happens, there is a right way and a wrong way.

The right way is to de�ne an integer in Zn. For instance:

sage: Z35 = ZZ.quo(35)
sage: Z35(2)^1000000000000
16

You’ll notice that this computation resolves very quickly. By specifying that 2 ∈
Z35, you have told Sage that you want to compute the power modulo 35. With
this information, Sage takes advantage of all the mathematics we have described.
On the other hand, suppose we write that second line only slightly di�erently:

sage: Z35(2^1000000000000)

This takes a lot longer, and might not even work on some machines. The author
actually gave up after about a minute passed, so he never saw it produce 16.

What makes the second version take so much longer? The order of opera-
tions.

• The �rst version, explicitly tells Sage that we want 2 ∈ Z35, and only
then do we raise it to the enormous exponent. Sage can �rst divide that
exponent by φ = 24, obtaining a remainder of 16. It then computes 216,
dividing by 35 to keep the numbers small.

• The second version tells Sage that we want to compute 21000000000000 �rst,
and only afterwards should it move the result into Z35. Sage thus tries to
compute 21000000000000 as a regular integer, which takes a really long time12

and requires a lot of memory,13 either of which your machine may lack!

The upshot is that when implementing modular arithmetic, we have to take care
to specify that our numbers are in Zn.

With that in mind, we can illustrate RSA encryption and decryption. We’ll
use p = 5 and q = 7, so that N = 35 and φ = 24. For an encryption exponent

12Try it by hand if you doubt this.
13If you do try it by hand, you will probably run out of paper.
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we’ll choose e = 7; then the decryption exponent is d = 7,14 as Sage itself
informs us via Bézout coe�cients.

sage: euler_phi(35)
24
sage: e = 7
sage: xgcd(e, 24)
(1, 7, -2)

Encryption and decryption is then a simple matter of encoding the messages
and raising them to powers. To encode, we use the Sage command ord, which
converts a letter to a number. Under the default encoding, the letter a has the
value 97, so we will subtract its value from ord(m) in order to obtain numbers
between 0 and 35.

sage: def encode(m):
return ord(m) - ord('a’')

A few examples:

sage: encode('a')
0
sage: encode('m')
12
sage: encode('z')
25

Decoding requires us to perform the reverse operation. For this, Sage o�ers chr,
which converts a number to a character. As before, we deal with numbers be-
tween 0 and 25, inclusive, but the default encoding gives “a” the value 97, so we
need to add its value to whatever number comes in.

14This is a terrible choice of parameters for the RSA algorithm; in no way should you have
e = d. Choosing the right parameters is an art form in itself.



CHAPTER 1. MODULAR ARITHMETIC 87

sage: def decode(n):
return chr(n + ord('a'))

sage: decode(12)
'm'
sage: decode(25)
'z'

Once we have de�ned these procedures, encryption and decryption is a fairly
straightforward matter using a for loop inside a list.

• To encrypt, we tell Sage to encode the letters as numbers, put the numbers
in Z35, and raise them to the 7th power (e).

• To decrypt, we tell Sage to raise the numbers to the 7th power again (d),
then decode the numbers as letters.

We have to take a little care in the second step, because the numbers resulting
from operations in Z35 are not integers in Sage’s opinion: they’re elements of
Z35, which are not quite the same thing. Fortunately, we can convert them back
into integers using a simple command called int.

sage: [ Z35( encode(m) )^7 for m in 'secret']
[32, 4, 23, 3, 4, 19]
sage: [ decode( int(n^7) ) for n in _ ]
['s', 'e', 'c', 'r', 'e', 't']

If you examine this result carefully, you may wonder whether it is in fact
secure. After all, e always turns into the same number (in this case, 4). It is well-
known that some letters appear more often than others in English text, and “e”
typically shows up the most. Hence, a simple frequency analysis would tell us
which letter corresponded to which number, making it a snap to decrypt.

This skepticism is well warranted; real-life use of the RSA algorithm is not
done in quite this fashion. A course on cybersecurity is well beyond the scope
of these notes, but one thing we can do to make the algorithm somewhat more
secure is to combine several letters at a time. We have to be careful here, as this
simultaneously increases the minimum size of the modulus. For instance:

• If we combine two letters at a time, we need N > 262.
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• If we combine three letters at a time, we need N > 263.
. . .

• If we combine ` letters at a time, we need N > 26`.

This requires us to modify the encoding and decoding algorithms. Instead of
encoding or decoding one letter at a time, we’ll take ` at a time, and multiply
each by a power of 26 to move it to the right place.

sage: def encode(M):
result = 0
for m in M:

result *= 26
result += ord('m') - ord('a')

return result

The message ’secret’ now encodes in pairs as:

sage: encode('se'), encode('cr'), encode('et')
(472, 69, 123)

To encrypt it, we need to choose larger values of p and q, since N = 35 is too
small to capture numbers like 472. How large does N need to be? We are encod-
ing two letters at a time, which means we need

N > 262 = 676 .

If we choose p = 29 and q = 31, thenN = 899 is su�ciently large. We have φ =
28 × 30 = 840. For an encryption exponent we choose e = 11; the decryption
exponent will be 611.

sage: euler_phi(29*31)
840
sage: xgcd(11, 840)
(1, -229, 3)
sage: 840 - 229
611
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(We cannot use −229 as an exponent, so we subtract 229 from 840 in order to
�nd a positive multiplicative inverse of 11.)

We can now encrypt as before:

sage: Z899 = ZZ.quo(899)
sage: [ Z899(m)^11 for m in [ 'se', 'cr', 'et'] ]
[206, 764, 371]

When we encoded secret before, the e’s repeated. Here there is no repetition,
which makes a frequency analysis impossible. With a long enough message, we
would encounter some repetition, and some two-letter pairs, such as “an” or “th,”
appear more frequently than others.

Decryption remains a simple matter of applying the decryption exponent to
the result. Decoding, however, requires us to separate the letters which encod-
ing joined; since that involved multiplication, we can decode using the % and /
operators.

sage: def decode(N):
result = ''
for n in N:

m = N % 26
result = chr(m + ord('a')) + result
N -= m
N /= 26

return result
sage: [ decode(int(Z899(n)^611))

for n in [206, 764, 371] ]
['se', 'cr', 'et']

We have successfully decrypted the message!

Exercises
Exercise 121. Reword the encryption of “secret” so that you encrypt and decrypt
three letters at a time. This will require you to rewrite the encode and decode
procedures.
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Algorithm 1.10 Cæsar cipher
Inputs

• M , a list of numbers corresponding to a message

• k ∈ N

Outputs

• C , an encryption (or decryption) of M using a Cæsar cipher with an o�set
of k

Do

1. for each i = 1, 2, . . . , |M |

(a) let ci be the canonical residue of computing mi + k modulo 26

2. Return C =
(
c1, c2, . . . , c|M |

)
Exercise 122. Implement in Sage the following algorithm to encrypt a message
using the Cæsar cipher. Test it against the message leavemealone. There are
no spaces, and the letters are all lower-case.
Exercise 123. In Exercise 117 you experimented with a pseudo-random number
generator which gives us the numbers in the key. The following program will
give us the �rst n numbers in a stream cipher’s key.

sage: def stream(n):
ZZ31 = ZZ.quo(31)
result = [ ZZ31( 27 ) ]
for each in range(2, n+1):

result.append( 3*result[-1] )
return result

The command stream(10) now gives us the following values:

sage: stream(10)
[27, 19, 26, 16, 17, 20, 29, 25, 13]
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Algorithm 1.11 Encryption via stream cipher
Inputs

• A, a sequence of n letters

• N ∈ N+

Outputs

• C , the text M encrypted by a stream cipher

Do

1. let k1, k2, . . . kn be the �rst n numbers of the stream cipher’s key

2. let bi be the encoding of ai (the ith letter of a)

3. for i ∈ {1, . . . , n}

(a) let ci = bi + k1, where the modulus is N

4. return C = (c1, . . . , cn)

Imagine that you have just exchanged the keys for a stream cipher with a friend,
and you want to encrypt the message secret using this cipher. Based on the
discussion in the text, the following algorithm would do the trick.
Use this algorithm with the pseudo-random generator given above to encrypt
the message, secret. For extra credit, implement the algorithm in Sage to verify
your work.
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