PROOFS TO PRESENT (ROUND 3)

MAT 423

- 1. Let *M* be a monoid. A monoid (left) ideal of *M* is a set *A* such that $A \subseteq M$ and $ma \in A$ for any $m \in M$ and for any $a \in A$. We say that a monoid ideal *A* is generated by a set $B \subseteq A$ if for every $a \in A$ we can find $m \in M$ and $b \in B$ such that a = mb.
 - (a) Let $N = \{0, 2, 4, ...\}$. Show that N is *not* a monoid ideal of \mathbb{N} .
 - (b) Let $N = \{3, 4, 5, \ldots\}$. Show that N is a monoid ideal of \mathbb{N} .
 - (c) Show that any monoid ideal of \mathbb{N} has the form $\{a, a + 1, a + 2, ...\} \exists a \in \mathbb{N}$. (Hint: WOP.)
 - (d) Explain why this means every monoid ideal of \mathbb{N} has exactly one generator.
- 2. Let (G, \times) , (H, \otimes) , and (K, *) be groups.
 - (a) Show that the identity function I(g) = g is an isomorphism on G.
 - (b) Suppose we know G ≃ H. That means there is an isomorphism f : G → H. Every isomorphism is one-to-one and onto. That means f has an inverse function f⁻¹: H → G, also one-to-one and onto. Show that f⁻¹ is also a homomorphism, so that H ≃ G. Hint: You need to show that f⁻¹(xy) = f⁻¹(x) f⁻¹(y) for every x, y ∈ G. You already know f is an isomorphism, so you can find a, b ∈ G such that f (a) = x and f (b) = y. Use these facts, along with the fact that f is an isomorphism, to finish the job.
 - (c) Suppose we know $G \cong H$ and $H \cong K$. That means there exist isomorphisms $\mu : G \to H$ and $\varphi : H \to K$. Let $\psi = \varphi \circ \mu$; that is, ψ is the composition of the functions g and h. Explain why $\psi : G \to K$, and show that ψ is also a homomorphism.
- 3. Define a relation \bowtie on \mathbb{Q} , the set of rational numbers, in the following way:

 $a \bowtie b$ if and only if $a - b \in \mathbb{Z}$.

- (a) Is $\frac{2}{3} \bowtie \frac{1}{2}$? Is $\frac{12}{5} \bowtie -\frac{3}{5}$?
- (b) Show that \bowtie is an equivalence relation: reflexive, symmetric, transitive.
- (c) How do we know that \bowtie partitions \mathbb{Q} ?
- (d) Show that $a \bowtie b$ if they have the same sign and the same fractional part. (The "fractional part" of a number is part that appears in the decimal expansion after the decimal point.)
- 4. This problem considers divisibility of ring elements as a relation. Recall that $a \mid b$ if and only if we can find $q \in R$ such that aq = b.
 - (a) Show that divisibility is both reflexive and transitive.
 - (b) Now show that divisibility is not symmetric.
 - (c) So divisibility is not an equivalence relation. Can it be a partition?
- 5. These questions concern Lagrange's Theorem and its consequences.
 - (a) Suppose a group has order 8, but is not cyclic. Why must g^4 be the identity for every g in the group?
 - (b) Let g be a finite group, and $g \in G$. Why must $g^{|G|}$ be the identity?
 - (c) Suppose a group G has prime order; that is, |G| = p where p is prime. Show that G has no proper subgroup.