PROOFS TO PRESENT (ROUND 3)

MAT 423

1. Let M be a monoid. A monoid (left) ideal of M is a set A such that $A \subseteq M$ and $m a \in A$ for any $m \in M$ and for any $a \in A$. We say that a monoid ideal A is generated by a set $B \subseteq A$ if for every $a \in A$ we can find $m \in M$ and $b \in B$ such that $a=m b$.
(a) Let $N=\{0,2,4, \ldots\}$. Show that N is not a monoid ideal of \mathbb{N}.
(b) Let $N=\{3,4,5, \ldots\}$. Show that N is a monoid ideal of \mathbb{N}.
(c) Show that any monoid ideal of \mathbb{N} has the form $\{a, a+1, a+2, \ldots\} \exists a \in \mathbb{N}$. (Hint: WOP.)
(d) Explain why this means every monoid ideal of \mathbb{N} has exactly one generator.
2. Let $(G, \times),(H, \otimes)$, and $(K, *)$ be groups.
(a) Show that the identity funciton $I(g)=g$ is an isomorphism on G.
(b) Suppose we know $G \cong H$. That means there is an isomorphism $f: G \rightarrow H$. Every isomorphism is one-to-one and onto. That means f has an inverse function $f^{-1}: H \rightarrow G$, also one-to-one and onto. Show that f^{-1} is also a homomorphism, so that $H \cong G$.
Hint: You need to show that $f^{-1}(x y)=f^{-1}(x) f^{-1}(y)$ for every $x, y \in G$. You already know f is an isomorphism, so you can find $a, b \in G$ such that $f(a)=x$ and $f(b)=y$. Use these facts, along with the fact that f is an isomorphism, to finish the job.
(c) Suppose we know $G \cong H$ and $H \cong K$. That means there exist isomorphisms $\mu: G \rightarrow H$ and $\varphi: H \rightarrow K$. Let $\psi=\varphi \circ \mu$; that is, ψ is the composition of the functions g and h. Explain why $\psi: G \rightarrow K$, and show that ψ is also a homomorphism.
3. Define a relation \bowtie on \mathbb{Q}, the set of rational numbers, in the following way:

$$
a \bowtie b \quad \text { if and only if } a-b \in \mathbb{Z} \text {. }
$$

(a) Is $2 / 3 \bowtie 1 / 2$? Is $12 / 5 \bowtie-3 / 5$?
(b) Show that \bowtie is an equivalence relation: reflexive, symmetric, transitive.
(c) How do we know that \bowtie partitions \mathbb{Q} ?
(d) Show that $a \bowtie b$ if they have the same sign and the same fractional part. (The "fractional part" of a number is part that appears in the decimal expansion after the decimal point.)
4. This problem considers divisibility of ring elements as a relation. Recall that $a \mid b$ if and only if we can find $q \in R$ such that $a q=b$.
(a) Show that divisibility is both reflexive and transitive.
(b) Now show that divisibility is not symmetric.
(c) So divisibility is not an equivalence relation. Can it be a partition?
5. These questions concern Lagrange's Theorem and its consequences.
(a) Suppose a group has order 8, but is not cyclic. Why must g^{4} be the identity for every g in the group?
(b) Let g be a finite group, and $g \in G$. Why must $g^{|G|}$ be the identity?
(c) Suppose a group G has prime order; that is, $|G|=p$ where p is prime. Show that G has no proper subgroup.

