PROOFS TO PRESENT (ROUND 2)

MAT 423

- 1. Suppose G and H are groups, and there exists a homomorphism $f: G \rightarrow H$.
 - (a) Show that if f(g) = h and $\operatorname{ord}(g) < \infty$, then $\operatorname{ord}(h) | \operatorname{ord}(g)$.
 - (b) Show that if G is cyclic, H is cyclic, and f is onto, then |H| divides |G|.
- 2. Recall the set of orthogonal matrices, $O(n) \subsetneq \mathbb{R}^{n \times n}$. In Question 3.94 you showed that every orthogonal matrix had determinant ± 1 . Let SO(n) be the subset of O(n) consisting of matrices with determinant 1.
 - (a) Show that SO(n) is a group.
 - (b) Show that any $A \in SO(n)$ has the form

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}$$

for some $\alpha \in \mathbb{R}$. (*Hint:* Use the technique I used in class to obtain a generic form for elements of O(n). One of the resulting equations should look like a circle. What is a "trigonometric" equation of the circle? Proceed from there.)

- 3. Let $m, n \in \mathbb{Z} \setminus \{0\}$. Recall that $\mathbb{Z}_m \times \mathbb{Z}_n$ is a group under addition, with identity (0, 0).
 - (a) Show that $\mathbb{Z}_2 \times \mathbb{Z}_4$ is not cyclic.
 - (b) Are there any values of m, n such that $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic?
 - (c) Show that $\pi_1 : \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{Z}_m$ by $\pi_1(a, b) = a$ and $\pi_2 : \mathbb{Z}_m \times \mathbb{Z}_n \to \mathbb{Z}_n$ by $\pi_2(a, b) = b$ are both homomorphisms. (We call π_1 and π_2 projection homomorphisms.)
 - (d) Can π_2 be an isomorphism?
- Let m, n ∈ Z\{0}. Recall that Z_m × Z_n is a group under addition, with identity (0,0). This problem uses part of #3, so you may want to review its results, but you don't have to prove #3 to do #4.
 - (a) Show that $\iota_1 : \mathbb{Z}_m \to \mathbb{Z}_m \times \mathbb{Z}_n$ by $\iota_1(a) = (a, 0)$ and $\iota_2 : \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_n$ by $\iota_2(b) = (0, b)$ are both homomorphisms. (We call ι_1 and ι_2 injection homomorphisms.)
 - (b) A sequence of homomorphisms

$$G_1 \xrightarrow{f} G_2 \xrightarrow{g} G_3$$

is exact if the image of f is the kernel of g. Show that if $G_1 = \mathbb{Z}_m$, $G_2 = \mathbb{Z}_m \times \mathbb{Z}_n$, $G_3 = \mathbb{Z}_n$, $f = \iota_1$, and $g = \pi_2$ (where ι_1 and π_2 are the injection and projection homomorphisms, respectively) then the sequence is exact.

- 5. Suppose G and H are groups, and there exists a homomorphism $f : G \to H$ such that f is onto.
 - (a) Show that if G is cyclic, then so is H.
 - (b) Recall that \mathbb{Z} is cyclic, and let $d \in \mathbb{N} \setminus \{0\}$. Suppose you didn't already know \mathbb{Z}_d were cyclic; why would (a) show you that it is?
 - (c) Show the converse of (a) is false; that is, H can be cyclic even if G is not. (*Hint: #3* helps.)