PROOFS TO PRESENT (ROUND 2)

MAT 423

1. Suppose G and H are groups, and there exists a homomorphism $f: G \rightarrow H$.
(a) Show that if $f(g)=b$ and $\operatorname{ord}(g)<\infty$, then $\operatorname{ord}(h) \mid \operatorname{ord}(g)$.
(b) Show that if G is cyclic, H is cyclic, and f is onto, then $|H|$ divides $|G|$.
2. Recall the set of orthogonal matrices, $O(n) \subsetneq \mathbb{R}^{n \times n}$. In Question 3.94 you showed that every orthogonal matrix had determinant ± 1. Let $S O(n)$ be the subset of $O(n)$ consisting of matrices with determinant 1.
(a) Show that $S O(n)$ is a group.
(b) Show that any $A \in S O(n)$ has the form

$$
A=\left(\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)
$$

for some $\alpha \in \mathbb{R}$. (Hint: Use the technique I used in class to obtain a generic form for elements of $O(n)$. One of the resulting equations should look like a circle. What is a "trigonometric" equation of the circle? Proceed from there.)
3. Let $m, n \in \mathbb{Z} \backslash\{0\}$. Recall that $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a group under addition, with identity $(0,0)$.
(a) Show that $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ is not cyclic.
(b) Are there any values of m, n such that $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is cyclic?
(c) Show that $\pi_{1}: \mathbb{Z}_{m} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ by $\pi_{1}(a, b)=a$ and $\pi_{2}: \mathbb{Z}_{m} \times \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ by $\pi_{2}(a, b)=b$ are both homomorphisms. (We call π_{1} and π_{2} projection homomorphisms.)
(d) Can π_{2} be an isomorphism?
4. Let $m, n \in \mathbb{Z} \backslash\{0\}$. Recall that $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is a group under addition, with identity (0,0). This problem uses part of \#3, so you may want to review its results, but you don't have to prove \#3 to do \#4.
(a) Show that $\iota_{1}: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ by $\iota_{1}(a)=(a, 0)$ and $\iota_{2}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ by $\iota_{2}(b)=(0, b)$ are both homomorphisms. (We call ι_{1} and ι_{2} injection homomorphisms.)
(b) A sequence of homomorphisms

$$
G_{1} \xrightarrow{f} G_{2} \xrightarrow{g} G_{3}
$$

is exact if the image of f is the kernel of g. Show that if $G_{1}=\mathbb{Z}_{m}, G_{2}=\mathbb{Z}_{m} \times \mathbb{Z}_{n}, G_{3}=\mathbb{Z}_{n}$, $f=\iota_{1}$, and $g=\pi_{2}$ (where ι_{1} and π_{2} are the injection and projection homomorphisms, respectively) then the sequence is exact.
5. Suppose G and H are groups, and there exists a homomorphism $f: G \rightarrow H$ such that f is onto.
(a) Show that if G is cyclic, then so is H.
(b) Recall that \mathbb{Z} is cyclic, and let $d \in \mathbb{N} \backslash\{0\}$. Suppose you didn't already know \mathbb{Z}_{d} were cyclic; why would (a) show you that it is?
(c) Show the converse of (a) is false; that is, H can be cyclic even if G is not. (Hint: \#3 helps.)

