PROOFS TO PRESENT

MAT 423

1. Suppose R is a ring, and $f: R \rightarrow \mathbb{Z}$ is a one-to-one homomorphism. Show that R is an integral domain.
2. Let $f: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2} \times \mathbb{Z}_{3}$ by the rule $f(a)=\left([a]_{2},[a]_{3}\right)$. For instance, $f(4)=\left([4]_{2},[4]_{3}\right)=(0,1)$.
(a) Compute the image of \mathbb{Z}_{6}.
(b) How do you know f is one-to-one and onto?
(c) Show that f is a homomorphism.
(d) Show that f is an isomorphism; that is, $\mathbb{Z}_{6} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3}$.
(e) Show that it is not always true that $\mathbb{Z}_{m \times n} \cong \mathbb{Z}_{m} \times \mathbb{Z}_{n}$. Why is \mathbb{Z}_{6} special?
3. Let $R=\mathbb{Q}[x]$, the ring of integer polynomials, and $f(x)=x^{2}-2$.
(a) Explain why f has no root in \mathbb{Z}.
(b) Let P be the set of remainders of elements of R after division by f.
(i) What form do the elements of P have?
(ii) Simplify $x^{2},(x+1)(x-1),(x+2)(x-2), x^{4}$ as elements of P.
(iii) Show that x is a root of $y^{2}-2 \in P[y]$.
(iv) Show that P is a ring.
(v) Show that P is a field.
4. Let $R=\mathbb{Z}_{2}[x]$, the ring of polynomials whose coefficients are integers, modulo 2 , and $f(x)=$ $x^{2}+x+1$.
(a) Explain why f has no root in \mathbb{Z}_{2}.
(b) Let P be the set of remainders of elements of R after division by f.
(i) What form do the elements of P have?
(ii) Compute $x^{2}, x^{2}+1, x(x+1), x^{3}, x\left(x^{2}+1\right)$ as elements of P.
(iii) Show that x is a root of $y^{2}+y+1 \in P[y]$.
(iv) Show that P is a ring.
(v) Show that P is a field.
5. Let $R=\mathbb{Z}[x]$, the ring of integer polynomials, and $f(x)=x^{4}-4$.
(a) Explain why f has no root in \mathbb{Z}.
(b) Let P be the set of remainders of elements of R after division by f.
(i) What form do the elements of P have?
(ii) Simplify $x^{4},\left(x^{2}+2\right)\left(x^{2}-2\right),\left(x^{2}+2\right)\left(x^{3}-2\right), x^{5}$ as elements of P.
(iii) Show that x is a root of $y^{4}-4 \in P[y]$.
(iv) Show that P is a ring.
(v) Show that P is not an integral domain.
(vi) Explain why P cannot be a field.
