PROOFS TO PRESENT

MAT 423

- 1. Suppose *R* is a ring, and $f : R \to \mathbb{Z}$ is a one-to-one homomorphism. Show that *R* is an integral domain.
- 2. Let $f : \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3$ by the rule $f(a) = ([a]_2, [a]_3)$. For instance, $f(4) = ([4]_2, [4]_3) = (0, 1)$.
 - (a) Compute the image of \mathbb{Z}_6 .
 - (b) How do you know f is one-to-one and onto?
 - (c) Show that f is a homomorphism.
 - (d) Show that f is an isomorphism; that is, $\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$.
 - (e) Show that it is *not* always true that $\mathbb{Z}_{m \times n} \cong \mathbb{Z}_m \times \mathbb{Z}_n$. Why is \mathbb{Z}_6 special?
- 3. Let $R = \mathbb{Q}[x]$, the ring of integer polynomials, and $f(x) = x^2 2$.
 - (a) Explain why f has no root in \mathbb{Z} .
 - (b) Let P be the set of remainders of elements of R after division by f.
 - (i) What form do the elements of *P* have?
 - (ii) Simplify x^2 , (x + 1)(x 1), (x + 2)(x 2), x^4 as elements of *P*.
 - (iii) Show that x is a root of $y^2 2 \in P[y]$.
 - (iv) Show that *P* is a ring.
 - (v) Show that P is a field.
- 4. Let $R = \mathbb{Z}_2[x]$, the ring of polynomials whose coefficients are integers, modulo 2, and $f(x) = x^2 + x + 1$.
 - (a) Explain why f has no root in \mathbb{Z}_2 .
 - (b) Let P be the set of remainders of elements of R after division by f.
 - (i) What form do the elements of *P* have?
 - (ii) Compute x^2 , $x^2 + 1$, x(x + 1), x^3 , $x(x^2 + 1)$ as elements of *P*.
 - (iii) Show that x is a root of $y^2 + y + 1 \in P[y]$.
 - (iv) Show that P is a ring.
 - (v) Show that P is a field.
- 5. Let $R = \mathbb{Z}[x]$, the ring of integer polynomials, and $f(x) = x^4 4$.
 - (a) Explain why f has no root in \mathbb{Z} .
 - (b) Let P be the set of remainders of elements of R after division by f.
 - (i) What form do the elements of *P* have?
 - (ii) Simplify x^4 , $(x^2+2)(x^2-2)$, $(x^2+2)(x^3-2)$, x^5 as elements of *P*.
 - (iii) Show that x is a root of $y^4 4 \in P[y]$.
 - (iv) Show that *P* is a ring.
 - (v) Show that *P* is *not* an integral domain.
 - (vi) Explain why *P* cannot be a field.