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A Gröbner basis and a variety



Nomenclature

rrs the element r ` nZ of Zn

〈g〉 the group (or ideal) generated by g

я the identity element of a monoid or group

}P}sq the sqare distance of the point P to the origin

a ”d b a is equivalent to b (modulo d)

A3 the alternating group on three elements

AŸ G for G a group, A is a normal subgroup of G

AŸ R for R a ring, A is an ideal of R

AutpSq the group of automorphisms on S

rG, Gs commutator subgroup of a group G

rx, ys for x and y in a group G, the commutator of x and y

Dn pRq the set of all diagonal matrices whose values along the diagonal is constant

dZ the set of integer multiples of d

F pαq field extension of F by alpha

G{A the set of left cosets of A

GzA the set of right cosets of A

gA the left coset of A with g

GLm pRq the general linear group of invertible matrices

g
z

for G a group and g, z P G, the conjugation of g by z, or zgz
´1

H ă G for G a group, H is a subgroup of G

lcmpt, uq the least common multiple of the monomials t and u

vi



CONTENTS vii

lmppq the leading monomial of the polynomial p

lv ppq the leading variable of a linear polynomial p

N2
the two-dimensional lattice of natural numbers, on which we play Ideal Nim.

NGpHq the normalizer of a subgroup H of G

Ωn the nth roots of unity; that is, all roots of the polynomial x
n ´ 1

ord pxq the order of x

PpSq the power set of S

Q8 the group of quaternions

〈r1, r2, . . . , rm〉 the ideal generated by r1, r2, . . . , rm

R the set of real numbers, or all possible distances one can move along a line

Sn the group of all permutations of a list of n elements

sqdpP, Qq the sqare distance between the points P and Q

ω typically, a primitive root of unity

X the set of monomials, in either one or many variables (the latter sometimes as Xn

ZpGq centralizer of a group G

Zris the Gaussian integers, a` bi : a, b P Z

Z˚
n

the set of elements of Zn that are not zero divisors



Preface

A wise man speaks because he has something to say; a fool because he has to say

something.

— Plato

Why this text?

This text has three goals.

The first goal is to introduce you to the algebraic view of the world. This view reveals

strange mathematical creatures that connect seemingly unrelated mathematical ideas. I have

tried to organize the excursion so that, by the time you’re done reading at least the first chap-

ter or two, you will understand that the world we inhabit is not merely different, but wonder-

fully different.

The second goal is to take you immediately into this wonderful world. While it is possible

to teach algebra without ever mentioning polynomials, and that is in fact how I learned it, a

student can find himself left with a gnawing question: What do groups, rings, etc. have to

do with “algebra”? Surely they hold some relationship to polynomials and solving equations?

The algebraic world strikes the newcomer as exotic, but there’s no reason it has to be esoteric.

You will encounter polynomials and their roots in the very first chapter — indeed, in the very

first pages, though how they appear won’t be clear until later.

The third goal is to lead you on an intuitive path into this world. Higher algebra is often

called “abstract” algebra, with reason. Abstraction is difficult, and requires a certain amount

of maturity, patience, and perseverance. Proofs are a big part of algebra, but many students

arrive in the course with no more experience than a survey on proof techniques. One class

on proofs does not a proof-writer make! Reflecting on my own experience as a student: I

reached the requisite maturity later than many of my fellow students. This initially deterred

me from pursuing doctoral studies, and even then it took me a while. I like to tell students

that I don’t have a PhD because I’m smart; I have a PhD because I was too dumb to quit. There’s

truth to that, but I was also lucky to have had two graduate professors who spent a lot of time

elaborating on both how to find justification for an idea, and how to write the proof. I try to

do that in class myself, and many exercises provide hints on how to begin and where to look.

What should you do?

Algebra is probably different from the math classes you’ve had before. Rather than computa-

tion, it expects explanation.

viii
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The word “proof” frightens students,
1

but it’s really just another word for “explanation.”

The “Questions” in this text are not here to give you practice with a narrowly-tailored skill,

but to develop your ability to speak the algebraic language. Sometimes you’ll “see” an answer,

but find it difficult to put into words. That makes sense, because you don’t have much experi-

ence giving flesh to your ideas. It’s one thing to repeat someone else’s words; it’s altogether

something else to come up with your own. I would advise you to adopt a habit of memoriz-

ing the definitions! After all, you can’t answer algebraic questions if you don’t know what the

words mean.

Many students recoil from this suggestion, in part because lower-level mathematics classes

tend to emphasize computation over definition.
2

Here, if you don’t know the definitions, you

won’t understand the question, let alone find the answer, so start by reviewing definitions.

When a student comes to me for help on a problem, I typically start with the question, “What

does [very important term in the problem] mean?” More often than not, the student will

shrug. Well, of course you can’t solve it: you don’t know what the words mean! Yet the defini-

tion is in the text; why didn’t you start there?

Don’t get the wrong idea: Knowing the definitions may be necessary, but it is rarely suffi-

cient.
3

It is no less discouraging when the excitement of a seemingly great idea gives way to

the crushing realization that it won’t work out. That’s okay. You will likely see your instruc-

tor goof up from time to time, unless he’s the sort of stick-in-the-mud who comes to class

perfectly prepared with detailed, impeccable notes. My students don’t see that; there are

days where I ask them to believe ten impossible things before breakfast.
4

I usually figure out

they’re impossible and set things straight, but that’s part of the point! Students without much

experience figuring things out need to see their professors do it.

You may be tempted to look up solutions elsewhere. Don’t do that. To start with, it’s often

futile; some of the problems are uniquely mine. If you do find one somewhere, you cheat your-

self out of both the pleasure of discovery, and the benefit of training your mind at problem-

solving skills. A better idea is to talk about the problem with other students, or to question

the instructor. Sometimes instructors are actually helpful.

Some of you won’t like to read this, but you also need to put aside your expectation of the

grades you’ve typically received heretofore. I’m not saying you won’t earn the grade you’re

accustomed to earn; you may well do so, and I’d be glad for it. Statistically speaking, though,

you won’t — and that’s okay. It makes you no less a person, no less a mathematician. I received

an F on one of my graduate-level algebra tests, yet here I am, teaching it & publishing the

occasional research article. Worry instead about this: did you learn something new every

time you sat to work on it? That includes mistakes — if you learned only that such-and-such

approach doesn’t work with this-or-that problem, you learned something! Even that is closer to

the end than it was before you started.

1
When I started my PhD studies, I was astonished to learn that many of my classmates had earned their

undergraduate degrees without ever writing a proof.
2
If you doubt me, ask the average A student in Calculus I for the definition of a derivative — not how to

compute it, so not the formula, but the honest-to-goodness definition.
3
Well-begun is half done. . . but only half-done.

4
With apologies to Humpty-Dumpty. For that matter, there are days when I discover these notes assert the

truth of “facts” that are, in “fact,” impossible.



Chapter 1

Noetherian behavior

This is a class on algebra, not on games, but we will allow ourselves a few moments now and

again with two games that distill some important ideas of algebra into a convenient, easily-

accessible package. The games are simple enough that children can play them, but some

rather deep questions lie behind them.

The unifying theme of this chapter is “Noetherian behavior,” named in honor of Emmy

Noether, a brilliant mathematician of the early 20th century. Noetherian behavior occurs

whenever an ordered chain of events must stabilize. For instance, consider the statement

a1 ě a2 ě a3 ě ¨ ¨ ¨

In certain contexts, this sequence must eventually “stabilizes,” by which we mean that

ai “ ai`1 “ ai`2 “ ¨ ¨ ¨

This is an example of Noetherian behavior. It should be obvious that Noetherian behavior is

not a universal principle; after all, the sequence

0 ą ´1 ą ´2 ą ´3 ą ¨ ¨ ¨

continues without stabilizing. Yet this behavior, when it does occur, is one of the most im-

portant tools of modern algebra.

1¨1 Two games

Mathematics is a game played according to certain simple rules with meaningless

marks on paper.

— David Hilbert, quoted by N. Rose, Mathematical Maxims and

Minims

You may have played Nim before, perhaps as part of a computer game; it’s rather famous in

the theory of games. You have almost certainly not played Ideal Nim before. Both are fairly

easy to play, and Nim turns out to be a special case of Ideal Nim. Yet while Nim is fairly easy to

analyze, Ideal Nim is not, even though you can play it according to the same basic principles.

1
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Both Nim and Ideal Nim involve fundamental ideas of algebra, so we use them as tools to

introduce and illustrate these ideas.

Nim

The basic game of Nim has three rows of pebbles. The first row has seven pebbles; the

second row, five; the third row, three.

Players take turns doing the following:

1. Choose a row that still has pebbles in it, and choose a pebble.

2. Remove from that row all pebbles beneath and to the right of your finger.

The player who takes the last pebble wins.

In our examples, we always refer to the first player as Emmy, and the second player as David.

The “first” pebble lies leftmost, and we count pebbles from there.

Suppose Emmy chooses the last pebble in the first row, leaving six in that row.

David chooses the first pebble in the second row, leaving none in that row.

This was a terrible move,
1

as Emmy now chooses the fourth pebble in the first row,

1
To be fair, David has no good moves, so he might as well make that one and minimize the pain.
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and David’s done for.

Question 1¨1 .
Explain why we say, “David’s done for.” One way to explain this is to show that no matter

what move David makes from here on, Emmy always has at least one move left – not just on

the first turn, but on every turn from here on.

Question 1¨2 .
Try playing several games of Nim against a friend (preferably one who has never played the

game before). See if you can work out any strategies for winning. Write them out in words.

(Surely you can find something, at least something similar to Question 1.1.)

A common mathematical technique is generalization: take a scenario with specific num-

bers, replace them with symbols that stand for general numbers, and see how the scenario

changes.

We can generalize Nim in the following way. Choose a number of rows, call it m, then

choose m numbers of pebbles, call them n1, n2, . . . , nm.
2

Aside from that, the rules stay the

same.

For example, Emmy and David might choosem “ 4 and n1 “ 3, n2 “ 4, n3 “ 5, and n4 “ 6.

That gives them the following game:

As you can imagine, there is no end to the number of ways you can play Nim.

Question 1¨3 .
What values of m and n1, . . . , nm give us the game of Nim with that started the section?

Question 1¨4 .
Games of Nim where m “ 1 are boring. Why?

Question 1¨5 .
Suppose m “ 2.

(a) A game with n1 ‰ n2 is easy for one of the players. Which player, and why?

(b) A game with n1 “ n2 is also easy for one of the players. Which player, and why?

(c) So, really, games of Nim where m “ 2 are also boring. Why?

2
Don’t let the subscripts frighten you; they’re just labels. The symbol n1 means “the first n,” the symbol n2

means “the second n,” and so forth. Mathematicians often use subscripts to list and distinguish related values.
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Question 1¨6 .
Suppose m ą 2 and ni “ nj for some i, j where i ‰ j.

(a) What do we mean by the phrase “m ą 2 and ni “ nj for some i, j where i ‰ j?” Try to

explain without using the symbols n, i, or j.

(b) With the given assumption, a player trying to decide on a good move might as well con-

sider rows i and j to be have been completely played out already. Why?

Question 1¨7 .
Suppose you generalize Nim further by letting a row of pebbles extend without end to the

right. When this happens, we’ll say
3

the number of pebbles in the row is ω. For example, the

Nim game with m “ 3 and n1 “ 3, n2 “ 5, and n3 “ ω would look like this:

Is it possible to play such a game indefinitely, making turns so that it never ends? If so, de-

scribe a sequence of moves that would never end. If, however, this is impossible, explain why.

Ideal Nim

Ideal Nim is another generalization of Nim. The playing board consists of points with

integer values in the first quadrant of the x-y axis. Choose a few
4

points for a set F. Any point

not northeast of at least one point in F lies within a Forbidden Frontier. Shade those points

red. More precisely, pc, dq is red if for each pa, bq P F, we have 0 ď c ă a or 0 ď d ă b. There

is also a gray region G, which is “Gone from Gameplay,” but it begins empty.

Players take turns doing the following:

1. Choose a point pa, bq that is in neither the Forbidden Frontier, nor Gone from Gameplay.

2. Add to G the region of points pc, dq that are northeast of pa, bq. More precisely, add to G

all points pc, dq that satisfy c ě a and d ě b.

The player who makes the last move wins.

3
The last symbol in this sentence is a letter in the Greek alphabet called “omega,” not the letter w in the

“Latin” alphabet. The letter ω will show up repeatedly in these notes, often with very different meanings, and

the letter w will show up, also with different meanings, so be careful.
4
Not too many points, nor too large in value. Certainly not infinitely many. It doesn’t change the properties

of the game, but you’d waste an awwwwful lot of time trying to figure out the gameplay.
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In the example below, Emmy and David have chosen the points p0, 3q, p1, 2q, p4, 1q, and

p5, 0q for F. Emmy chose the position p3, 2q on her first turn; David chose p2, 5q on his first

turn; and Emmy chose p8, 0q on her second turn.

Don’t overlook a difference in the definition of the regions. Players may choose a point on

the border of the Forbidden Frontier; such points are northeast of a point in F. They may not

choose a point on the border of the region Gone from Gameplay, as such points are considered

northeast of G, and thus in G. So, Emmy was allowed to choose the point p3, 2q, which borders

the red region, but may not now choose the point p3, 3q, because it borders the current gray

region. She could, of course, choose the point p2, 2q, or even the point p1, 2q, as they border

the red region, but not the gray.
5

When playing this game, certain questions might arise. They may not seem mathematical,

but all of them are! In fact, all of them are related to algebraic ideas!

• Must the game end? or is it possible to have a game that continues indefinitely? Why,

or why not? Does the answer change if we play in three dimensions, or more?

• Is there a way to count the number of moves available, even when there are infinitely

many?

• What strategy wins the game?

We consider these questions (and more!) throughout the text. We will not be able to answer

all of them; at least one is an open research question.
6

Maybe you can solve them someday.

You should take from this introduction three main points.

• Mathematics can apply to problems that do not appear mathematical.

• Questions that seem unrelated to mathematics can be very important for mathematics.
7

• It is a very, very good thing to ask questions!

5
The game can be played so that players may not dance along the Forbidden Frontier, but then we’d have to

interpret the word “northeast” differently for this region than for the other.
6
An amazing aspect of mathematics is that simple questions can lead to profound results in research!

7
This is not the same as the previous point. Make sure you understand why.
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Meanwhile, play the game! A few example games appear below to help you along; some of

them will be “partially” played.

But don’t play thoughtlessly. As a student of mathematics, you should prepare yourself to

think carefully and precisely. Intuition and insight are good and necessary, but deduction and

dogged determination are no less required. When someone wins, talk about which moves

seemed “obvious,” and think about the strategy used. With enough effort, you should find a

winning strategy for all the games given, but don’t feel bad if you don’t.

Your explanations to the questions need not look “mathematical”, but they should be yours,

and they should be convincing, or at least reasonable. If you can formulate reasonable answers,

you will have succeeded at important tasks that helped solve important problems in mathe-

matics. That’s no small feat for someone just starting out in algebra!

Question 1¨8 .
Play the following games with a friend. If you play carefully, you should find that Emmy (the

starting player) is guaranteed a win for each game.

Question 1¨9 .
What characteristic do all the games in Question 1.8 share? How does that characteristic

guarantee Emmy a win? Hint: Think geometrically.

Question 1¨10 .
Play the following games with a friend. They have already been partially played. It is Emmy’s

turn, but this time David is guaranteed a win for each game. Try to find how.

Question 1¨11 .
What characteristic do all the games in Question 1.10 share? How does that characteristic

guarantee David a win? Hint: Think geometrically.
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Question 1¨12 .
What move guarantees Emmy a win in the following game? Why does that move guarantee

her a win? Hint: Try to use the previous two problems.

Question 1¨13 .
Suppose two players with infinite lifespan and patience are presented with an arbitrary game

of Ideal Nim (the heavenly emanations of David Hilbert and Emmy Noether, perhaps). Does

their game have to end, or could it go on for ever? Why or why not?

1¨2 Sets
The fear of infinity is a form of myopia that destroys the possibility of seeing the

actual infinite, even though its highest form has created and sustains us, and its

secondary, transfinite forms occur all around us and even inhabit our minds.

— Georg Cantor

One of the fundamental objects of mathematical study, if not the fundamental object of math-

ematical study, is the set. We assume you’ve seen sets before, so we won’t go into much detail,

and in some cases will content ourselves with intuitive discussion rather than precise rigor.

Definition 1¨14. A set consists of all objects that share a certain property. This property may

simply be membership.

• Any object with that property is an element of the set.

• A set S is a subset of a set T if every element of S is also an element of T.

• Two sets are equal if and only if each is a subset of the other.

We typically write a set explicitly by enclosing or describing its elements within braces. I

emphasize “describing” because it is typically burdensome, even impossible, to list all ele-

ments of a set explicitly. For instance, we can list explicitly the set of names for the fingers

on one’s hand as F “ tthumb, index, middle, ring, pinkyu, but any set with infinitely many

elements requires description. Sometimes, that simply means listing a few elements, then

concluding with an ellipsis to show that the pattern should continue. Other times, it requires

a description in words. It may amaze you that words can encapsulate ideas about infinity

within a few marks on paper, but it’s true.

Fundamental sets
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The fact that they are “fundamental” is a pretty big hint that you’ll need to remember the

following sets.

• The set of natural numbers is
8

N “ t0, 1, 2, 3, . . . u .

The funny-looking N is a standard symbol to represent the natural numbers; the style

is called “blackboard bold”.
9

• Since even a small plus sign can make a big difference, we adopt a similar symbol for

the set of positive numbers
N` “ t1, 2, 3, . . . u .

The set of integers is

Z “ t. . . ,´2,´1, 0, 1, 2, . . . u .

We can also define it in set-builder notation,

Z “ NY t´x : x P Nu .

Don’t pass over that set-builder notation too quickly. Take a moment to decipher it, as this

notation pops up from time to time. Don’t let it intimidate you! The world is a complex place,

and it’s amazing how a good choice of words can simplify complexity.
10

Transliterated, the

set-builder definition says,

The set of integers (Z) is (“) the union (Y) of the naturals (N) and

the set of elements (t. . . u) that are the opposite (´x) of any natural number (: x P N).

Translated, the integers are the union of the naturals with their opposites.

Some readers might think it clearer to write, “Z “ N Y p´Nq”, and I suppose we could

have, but then we’d have to explain what´N means, because that construction won’t always

make obvious sense. (Think about´F, where F is the set of fingers.) In fact, some authors use

´S to mean the complement of S, which you may have seen as„S or S
c
, something completely

different from “the set of negatives.” Not everyone writes mathematics the same way.

Elements of a set can appear in other sets, as well; when all elements of one set appear

in another, the first is a subset of the second. When S is a subset of T, we write S Ď T; the

bottom bar emphasizes that a subset can equal its containers, in the same way thatď applies

to two equal numbers. You can chain these, so our fundamental sets so far satisfy

N` Ď N Ď Z.
8
Not everyone starts N with 0, and some authors refer to t0, 1, 2, 3, . . . u as the “whole numbers”. While this

can be confusing, it’s not uncommon, and highlights how you have to pay careful attention to definitions.
9
I’ve read somewhere (can’t remember where) that textbooks originally indicated these sets with bold char-

acters. Professors can’t write bold at the blackboard, or at least not easily, so they resorted to doubling the

letters. Textbooks nowadays have adopted the professors’ notation.
10

“Brevity is the soul of wit.” — Shakespeare, Hamlet



CHAPTER 1. NOETHERIAN BEHAVIOR 9

When we know a subset S is not equal to its container T, and we want to emphasize this, we

cross out the bottom bar and write S Ĺ T.
11

You can chain these, as well, so that

N` Ĺ N Ĺ Z.

Subsets of this latter variety are called proper subsets. Don’t confuse this with S Ę T, which

means that S is not a subset of T. This happens when at least one element of S is not in T,

whereas S Ĺ T means every element of S is in T, but at least one element of T is not in S.

Set arithmetic

We assume you’ve seen unions and intersections. We can define them with set-builder

notation:

SY T “ tx : x P S or x P Tu ;

SX T “ tx : x P S and x P Tu .

You may not have seen set difference; the difference of S and T is the set of elements in A

that are not in B. That is,

SzT “ ts P S : s R Tu .

For example, we could describe the set of negative numbers as ZzN.

A very useful construction is the Cartesian product, which creates new objects from two

sets, in the form of a sequence of two elements:

Sˆ T “ tps, tq : s P S and t P Tu .

You’ve already see an example of this; the playing field of Ideal Nim isNˆN, since any position

is a point “with integer values in the first quadrant of the x-y axis.” Points are pairs pa, bq, and

the qualified, “the first quadrant,” tells us that both a, b P N. The set N ˆ N is important

enough to remember by a name, and will appear again (at least when we play the game) so

we will call it the natural lattice, or just the lattice when we’re feeling a bit lazy, which we

usually are, since in any case we don’t typically deal with other lattices in this text.

Question 1¨15 .
Suppose S “ t1, 3, 5, 7u, T “ t2, 4, 6, 8u, and U “ t3, 4, 5, 6u. Construct (a) S Y T, (b) S X T, (c)

pSY Tq zU, and (d) Sˆ T.

A “real-life” example of a Cartesian product that the author is all too familiar with is the

absent-minded tic of touching a hand’s fingers to each other. (Guess what I was doing a few

moments ago.) Each touch is a pairing of fingers, such as pthumb, middleq or ppinky, pinkyq.

Inasmuch as pairings correlate to Cartesian products, we can describe the pairings of all fin-

gers as F ˆ F, where F is again the set of all fingers.

Question 1¨16 .
How large is F ˆ F? That is, how many elements does it have?

11
Some authors useĂ, but other authors useĂ when the two sets are equal, so we avoidĂ altogether.
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Question 1¨17 .
If a set S has m elements and a set T has n elements, how many elements will S ˆ T have?

Explain why.

If S “ T, we can write S
2

instead of SˆT. Hence we can abbreviate the lattice of Ideal Nim

as N2
.

When needed, we can chain sets in the Cartesian product to make sequences longer than

mere pairs; we can even describe all infinite sequences of integers as

Z8 “
8
ź

i“1

Z “ Zˆ Zˆ Zˆ ¨ ¨ ¨ “ tpa, b, c, . . . q : a, b, c, . . . P Zu .

That new symbol,
ś

, means “product”, much as Σ means “sum”. Writing phrases like “the

first element of P” or “the four hundred twenty-fifth element of P” all the time grows cum-

bersome, so we’ll adopt the convention that if P is a sequence of numbers, then pi will stand

for the ith element of P. For example, if P “ p5, 8, 3,´2q then p1 “ 5 and p4 “ ´2.

Definition 1¨18. Two sets S and T have the same size (or cardinality) if you can match each

element of S to a unique element of T, covering all the elements of T in the process. More

precisely, S and T have the same cardinality if you can create a mapping from S to T where

• each element of Smaps to a unique element of T (so the function is one-to-one), and

• for any element of T, you can find an element of S that maps there (so the function is

onto).

For example, the sets A “ t1, 2u and B “ t´1,´2u have the same cardinality because I

can match them as follows, while the sets C “ t1, 2, 3u and D “ t4, 5u do not, because I cannot

find a unique target for at least one element of C:

A B C D

1 // ´1 1 // 4

2 // ´2 2 // 5

3 // ?
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Question 1¨19 .

(a) Show that S and T of Question 1.15 have the same cardinality. Don’t just count the ele-

ments; exhibit a unique matching. Is there more than one matching? If so, list a couple

more. How many do you think there are?

(b) Show that E “ t0, 2, 4, 6, . . . u and O “ t1, 3, 5, 7, . . . u have the same cardinality. In this

case, the number of elements is infinite, so you can’t count them, nor draw a complete

picture, so use words to describe the matching, or even a formula.

(c) Show that an arbitrary set S has the same size as itself. This may seem silly, but it forces

you to think about using the definition of cardinality, since you don’t know what the ele-

ments of S are. Don’t forget to think about the case where S is empty.

(d) Show that N and Z have the same cardinality. It helps if you map negative integers to O
and positive integers to E. This is a little weird, because N Ĺ Z, so you wouldn’t expect

them to be the same size, but weird things do happen when you start mucking around in

infinite sets.

1¨3 Orderings

The mathematical sciences particularly exhibit order, symmetry, and limitation;

and these are the greatest forms of the beautiful.

— Aristotle

A relation between two sets S and T is a subset of Sˆ T. For instance, the pairings of fingers

is a relation on F ˆ F, where the set of fingers, while Sˆ T is itself a relation.

A function is any relation F Ĺ S ˆ T such that every s P S corresponds to exactly one

ps, tq P F. Put another way, any two pa, bq and pc, dq in F satisfy a ‰ c (but b “ d is okay). If F is

a function, we write F : SÑ T instead of F Ď Sˆ T, and F psq “ t instead of ps, tq P F.

Two kinds of relations are essential to algebra. The first is a homomorphism, which is a

special kind of function; we talk about those later on, so pretend I didn’t mention them for

now. The second is a special subset of Sˆ S, called an ordering on S. There are several types

of orderings, so it’s important to make precise the kind of ordering you mean.

Partial orderings

A partial ordering on S is an ordering P that satisfies three properties. Let a, b, c P S be

arbitrary.

Reflexive? Every element is related to itself; that is, pa, aq P P.

Antisymmetric? Symmetry implies equality; that is, if pa, bq P P and pb, aq P P, then a “ b.
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Transitive? If pa, bq P P and pb, cq P P, then pa, cq P P.

Suppose we let P be the ordering of your fingers from left to right, or in set-builder notation,

P “ tpx, yq P F ˆ F : x lies to the left of yu .

Then pthumb,middleq P P and pring,pinkyq P P but pindex,indexq R P. This is a partial order-

ing.

It is highly inconvenient to write orderings this way, so usually mathematicians adopt a

notation involving “ordering symbols” such as ď, ă, and so forth. This allows us to write

pa, bq P P more simply as a ă b, and we will do this from now on. That allows us to rewrite

the properties of a partial ordering as follows, using ĺ as our ordering:

Reflexive? a ĺ a.

Antisymmetric? If a ĺ b and b ĺ a, then a “ b.

Transitive? If a ĺ b and b ĺ c, then a ĺ c.

Now that things are a little easier to read, we introduce a few important orderings.

One example of a partial ordering is in the subset relation. If we fix a set S, then we can

viewĎ as a relation on the subsets of S. For instance, if S “ N then t1, 3u is “less than” t1, 3, 7u

inasmuch as t1, 3u Ď t1, 3, 7u.

Definition 1¨20. For any set S, let P pSq denote the set of all subsets of S. We call this the

power set of S.

Fact 1¨21. Let S be any set. The relation on P pSq defined byĎ is a partial ordering.

Why? Let A, B P P pSq. We need to show that Ď satisfies the three properties of a partial

ordering.

Reflexive? Certainly A Ď A, since any a P A is by definition an element of A. So Ď is

reflexive.

Antisymmetric? Assume A Ď B and B Ď A. By definition of set equality, A “ B.

Transitive? Assume A Ď B and B Ď C. We want to show A Ď C. The definition ofĎ tells us

this is true if every a P A is also in C, so let a P A be arbitrary. We know A Ď B, so by definition

a P B. We know B Ď C, so by definition a P C. Since a was arbitrary, A Ď C, as desired.

Next we look at the ordering you’re most accustomed to.

Definition 1¨22 (The natural ordering of Z). For any a, b P Z, we write a ď b if b´ a P N. We

can also write b ě a for this situation. If a ď b but a ‰ b, we write a ă b, or b ą a.

Figure 1¨1 illustrates this relationship by for the relation x ď y on N by plotting on the

lattice the elements of the set ď. Elements of ď are the black points whose y-value equals

or exceeds the x-value. White points are not in the set O. It’s worth asking yourself: which

ordering do those white points describe?

Fact 1¨23. The natural ordering of Z is a partial ordering.
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Figure 1¨1: Diagram of the relationď on N.

Question 1¨24 .
Fill in the blanks of Figure 1¨2 to show why Fact 1¨23 is true.

In the future, you can think of theď ordering in the intuitive manner you’re accustomed

to. Use it to answer the following questions.

Question 1¨25 .
One of our claims in the proof amounts is equivalent to saying that if i, s, t P Z, then s ď t if

and only if s` i ď t ` i. Why is this true?

Question 1¨26 .
Show that a ď |a| for all a P Z. Hint: You need to consider two cases: one where |a| “ a, the

other where |a| “ ´a. (Yes, the second case is quite possible! Look at some “small” integers

to see why.)

Question 1¨27 .
Let a, b P N and assume that 0 ă a ă b. Let d “ b´ a. Show that d ă b.

Question 1¨28 .
Let a, b, c P Z and assume that a ď b. Prove that

(a) a` c ď b` c;

(b) if c P N, then a ď a` c;

(c) if c P N, then ac ď bc; and

(d) if c P N` and also a P N`, then c ď ac.

What about the lattice?

Definition 1¨29 (The x-axis, y-axis, and lex orderings of the lattice). For any P, Q P N2
, we

write

• P ăx Q if p1 ă q1;
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Claim: The natural ordering of Z is a partial ordering.

Proof:

1. We claim thatď is reflexive. To see why, let a P Z.

(a) Observe that a´ a “____.

(b) This difference is an element of ____.

(c) By definition, a ď a.

(d) We chose a from Z arbitrarily, so this is true of ____ element of Z.

2. We claim thatď is antisymmetric. To see why, let a, b P Z.

(a) Assume that a ď b and ____.

(b) By definition, b´ a P N and ____.

(c) By the distributive property,´pb´ aq “____. (Write it as subtraction.)

(d) In (b), we explained that b´ a P N. In (c), we showed that´pb´ aq P N. The only

natural number whose opposite is also natural is ____.

(e) By substitution, b´ a “____.

(f) By definition, a “ b.

(g) We chose a and b from Z arbitrarily, so this is true of ____ pair of elements of Z.

3. We claim thatď is transitive. To see why, let a, b, c P Z.

(a) Assume that a ď b and ____.

(b) By definition, b´ a P N and ____.

(c) Elementary properties of arithmetic tell us that ____+____“ c ´ a.

(d) The sum of any two natural numbers is ____.

(e) By (c) and (d), then, c ´ a P____.

(f) By definition, ____.

(g) We chose a, b, and c from Z arbitrarily, so this is true of any three elements of Z.

Figure 1¨2: Material for Question 1.24
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??

?

The ordering ăx judges

one point smaller than

another if the first is fur-

ther left. If the two

points are on the same

vertical line (p1 “ q1), it

makes no decision.

The ordering ăy judges

one point smaller than

another if the first is

below the second. If

the two points lie on

the same horizontal line

pp2 “ q2q, it makes no de-

cision.

The ordering ălex judges

one point smaller than

another if the first is fur-

ther left. If the two

points are on the same

vertical line, it judges the

lower point smaller.

Figure 1¨3: Diagrams of the lattice orderingsăx,ăy, andălex. Arrows point from larger points

to smaller ones.

• P ăy Q if p2 ă q2;

• P ălex Q if p1 ă q2, or if p1 “ q1 and q1 ă q2.

We also write P ĺx Q, Q ąx P, Q ľx P with meaning analogous toď, ą, andě; that is, P ĺx Q

if P ĺx Q or P “ Q, and so forth.

These orderings have natural visualizations; see Figure 1¨3.

Question 1¨30 .
Order each set of lattice points according to the ăx, ăy, and ălex orderings. Indicate when

the ordering cannot decide which of two points is smaller.

(a) tp7, 2q , p1, 3q , p0, 8q , p2, 2qu

(b) tp2, 4q , p1, 5q , p5, 1q , p0, 6qu

The first question we want to consider is whether the orderings are partial orderings.

Determining whether an object has a certain property is very important in mathematics; ex-

plaining why it has that property is fundamental. Let’s consider that a moment.

Theorem 1¨31. The ordering ĺlex is a partial ordering of the lattice. The orderings ĺx and ĺy are

not.
12

12
As you should know, a theorem asserts that a claim is always true. This is also true about lemmas, propo-

sitions and facts. Most of the assumptions involved are implicit rather than explicit. If we cannot explain

convincingly that a claim is always true, we call it a conjecture. If you get far enough in your studies, you’ll find

that a lot of conjectures are themselves widely believed, though remain unproven, and mathematicians use in

day-to-day life. Students, however, are not generally allowed to do this on purpose!
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Proof. Let P, Q, R P N2
.

Reflexive? It is easy to verify that P ĺx P, P ĺy P, and P ĺlex P, so the orderings are reflexive.

Antisymmetric? Suppose P ĺlex Q and Q ĺlex P. By definition of the ordering, p1 ă q1 or

p1 “ q1 and p2 ď q2. Similarly, Q ĺlex P gives q1 ă p1 or q1 “ p1 and q2 ď p2. We consider

several cases. If p1 ă q1, then Q łlex P, contradicting a hypothesis. Similarly, if q1 ă p1,

then P łlex Q, contradicting a hypothesis. That leaves p1 “ q1 and p2 ď q2 and q2 ď p2. By

antisymmetry of the natural ordering, p2 “ q2, so P “ Q.

As for ĺx and ĺy, antisymmetry is the property they both fail. We leave it to you to find a

counterexample.

Transitive? Suppose P ĺx Q and Q ĺx R. Then p1 ď q1 and q1 ď r1. As in the antisymmetric

case, previous work implies p1 ď r1, so P ĺx Q. We assumed that P ĺx Q and Q ĺx R and found

that P ĺx R, so ĺx is transitive. A similar argument shows that ĺy and ĺlex are transitive.

Question 1¨32 .

(a) In the proof of Theorem 1¨31, we claimed that neither ĺx nor ĺy are antisymmetric. To

verify this claim, find P, Q P N2
such that P ĺx Q and Q ĺx P, but P ‰ Q.

(b) In the proof of Theorem 1¨31, we claimed that the reason ĺx is transitive is similar to the

reasons ĺy and ĺlex are transitive. Show this explicitly for ĺlex.

Question 1¨33 .
Define an ordering ĺx,y on N2

as follows. We say that P ĺx,y Q if p1 ď q1 and p2 ď q2. Is this a

partial ordering? Why or why not?

Question 1¨34 .
Define an orderingăsums as follows. We say that P ăsums Q if p1`p2 ă q1`q2 or p1`p2 “ q1`q2

and p1 ă q1.

(a) Order each set of lattice points according to the ăx, ăy, and ălex orderings. Indicate

when the ordering cannot decide which of two points is smaller.

(i) tp7, 2q , p1, 3q , p0, 8q , p2, 2qu

(ii) tp2, 4q , p1, 5q , p5, 1q , p0, 6qu

(b) Is ăsums a partial ordering? Why or why not?

Hint: Try to look at it geometrically. In the spirit of Figure 1¨3, pick a not-too-large point

P, then determine which points are smaller than P.

Linear orderings

You can see from Figure 1¨3 that there is some ambiguity in the first two orderings, but not

in the last one — or not with the points diagrammed, at any rate. The absence of ambiguity

is always useful.



CHAPTER 1. NOETHERIAN BEHAVIOR 17

Definition 1¨35. An ordering ĺ on a set S is linear if for any s, t P S we can decide whether

s ĺ t or t ĺ s (or both).

Fact 1¨36. The orderingď on N is linear.

Why? Subtraction of naturals gives us an integer, and the opposite of a non-natural integer is a

natural integer. So, for anym, n P N, we know that eitherm´n P N or n´m “ ´pm´ nq P N.

In other words, either n ď m or m ď n.

We can extend the orderingď on N to an ordering on Z by using the same definition. For

example, we can argue that ´5 ď 3 because 3 ´ p´5q “ 8, and 8 is natural. On the other

hand,´10 ę ´15 because´15´ p´10q, and´5 is not natural.

Fact 1¨37. The orderingď on Z is also linear.

The reasoning is identical, so we omit it.

Question 1¨38 .
Show that the ordering ă of Z generalizes “naturally” to an ordering ă of Q that is also a

linear ordering. Hint: Think of how you would decide that 24{35 ă 20{28, or that 3{51 ă 4{53, and

go from there.

On the other hand, the orderings ĺx and ĺy are not linear, since ĺx cannot decide if

p4, 1q ĺ p4, 3q or p4, 3q ĺ p4, 1q, and ĺy cannot decide if p1, 3q ĺ p4, 3q or p4, 3q ĺ p1, 3q.

The lex ordering is able to sort the points diagrammed in Figure 1¨3, but is this true for

any set of points?

Theorem 1¨39. The lex ordering is a linear ordering on the lattice.

Proof. Let P, Q P N2
. If p1 ă q1, then P ĺlex Q, and we are done. If p1 ą q1, then Q ĺlex P, and

we are done. So suppose that p1 “ q1; we consider p2 and q2, instead. If p2 ă q2, then P ĺlex Q,

and we are done. If p2 ą q2, then Q ĺlex P, and we are done. So suppose that p2 “ q2. We

now have p1 “ q1 and p2 “ q2, so P “ Q. This satisfies the definition of P ĺlex Q, so we are

done.

Question 1¨40 .
In the proof of Theorem 1¨39, we used implicitly the fact that ď is a linear ordering of the

natural numbers. We really ought to give some flesh to that argument, so fill in the blanks of

Figure with the correct reasons. (Notice that we actually prove it for Z, a superset of N. This

automatically proves it for N. It is often a good idea to prove a fact for a superset, if you can

succeed at doing so.)

Question 1¨41 .
Is the ordering ĺx,y of Question 1.33 a linear ordering? Why or why not?
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Let a, b P Z.

1. Suppose b´ a P N. By ______, a ď b.

2. Otherwise, b´a R N. We know from previous work that b´a P Z. That means

´pb´ aq P ______.

(a) By ______,´pb´ aq “ a´ b.

(b) By ______, a´ b P N.

(c) By ______, b ď a.

3. We assume that a, b P Z, and showed that a ď b or b ď a. By ______, we are

done.

Figure 1¨4: “Flesh” for Question 1.40.

Question 1¨42 .
Is ăsums a linear ordering? Why or why not? Hint: Try to look at it geometrically. In the spirit

of Figure 1¨3, pick a not-too-large point P, then figure out which points are smaller than P,

shade that region, then ask yourself: “Do I know that all the unshaded points must be larger

than P?” That should give you some insight into how to answer the question.

1¨4 Well ordering and division

Can you do division? Divide a loaf by a knife — what’s the answer to that?

— Lewis Carroll

Well ordering

You know from experience that the ordering ď has a smallest element in N; namely, 0.

Rather interestingly, every subset of N has a smallest element. There is no largest element,

but The fact that any subset of N has a smallest element is very interesting.

Definition 1¨43. Awell ordering on a set S is a linear ordering on S for which each subset of

S has a smallest element.

You might assume that we are going to prove that N is well-ordered by ď, and in a way

we will, but in another way we won’t.

Axiom 1¨44 (The Well-Ordering Principle). N is well-ordered byď.

An “Axiom” is a statement you assume without proof. So, we are only going to assume this

property. In fact, it is impossible to prove it, unless you assume something else.

That “something else” is the proof-by-dominoes technique, also called induction.
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Axiom 1¨45 (The Induction Principle). Let S be a subset ofN that satisfies the following properties.

(inductive base) 0 P S; and

(inductive step) for any s P S, we also have s` 1 P S.

Then S “ N.

Now, why should induction be true? You can’t prove that, unless you assume the well-

ordering of N. Do you see where this is going?

Fact 1¨46. Axiom 1¨44 is logically equivalent to Axiom 1¨45; that is, you can’t have one without the

other.

We put off an actual proof of this to the end of the section, and in fact you need not con-

cern yourself too much with it. Typically you won’t read that in this text, and I’m afraid that

you can’t appeal to such a judge yourself, but believe you me, this has been something mathe-

maticians hashed out pretty thoroughly in the early 20th century. Some things you just have

to accept on faith — which, contrary to popular belief, is not the opposite of reason, since

these things work out pretty well in practice, and it’s pretty reasonable to infer that things

that work out in practice really are true.

Example 1¨47. We will define a different ordering ĺ on N according to the following rule:

• even numbers are always smaller than odd numbers;

• otherwise, if a and b are both even or both odd, then a ĺ b if and only if a ď b in the

natural ordering.

This ordering sorts the natural numbers roughly so:

0, 2, 4, 6, . . . , 1, 3, 5, 7, . . . .

Is ĺ a well ordering? Indeed it is. Why?

First we show ĺ is a partial ordering:

• Is the ordering reflexive? Let a P N; we need to show that a ĺ a. We use the second

part of the rule here, since b “ a: since a ď a in the natural ordering, a ĺ a.

• Is the ordering symmetric? Let a, b P N, and assume a ĺ b and b ĺ a. If both numbers

are even or both numbers are odd, then our rule tells us a ď b and b ď a in the natural

ordering; since that is symmetric, we infer a “ b. Otherwise, a ĺ b implies a is even

while b is odd, whereas b ĺ a implies a is odd while b is even. That is a contradiction,

so a “ b is indeed the only possibility.

• Is the ordering transitive? Let a, b, c P N, and assume a ĺ b and b ĺ c. We consider

several subcases:
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– a even?

Either c is odd, in which case a ĺ c, or c is even. If c is even, then b must also

be even; to be otherwise would contradict b ĺ c. All three numbers are even, in

which case our ordering tells us the natural ordering applies: a ď b and b ď c.

The natural ordering is transitive, so a ď c.

– a odd?

In this case, a ĺ b implies b is odd, and b ĺ c implies c is odd. All three numbers

are odd, in which case our ordering tells us the natural ordering applies: a ď b

and b ď c. The natural ordering is transitive, so a ď c.

Now we show ĺ is a linear ordering. Let a, b P N; we need to show that a ĺ b or b ĺ a.

Without loss of generality, we may assume that a is even. If b is odd then our rule tells us

a ĺ b, and we are done. Otherwise, b is even; in this case, our rule tells us to look at the

natural ordering. The natural ordering is linear, so a ď b or b ď a. By the definition of our

rule, then, a ĺ b or b ĺ a.

Finally, we show ĺ is a well ordering. Let S Ď N; we need to show that S has a least

element. Let E be the set of even elements of S, and O the set of odd elements. Observe that

E, O Ĺ N.

• If E ‰ H, the well-ordering property tells us that it has a least element; call it e. Let

s P S; if s is even, then s P E and by our choice of e, e ď s, so e ĺ s; otherwise, s is odd,

and our rule tells us e ĺ s.

• Otherwise, E “ H. The well-ordering property tells us that O has a least element; call

it o. Let s P S; if s is even, then s P E, a contradiction to E “ H, so s is odd, which puts

s P O, and by our choice of o, o ď s, so o ĺ s.

As S was an arbitrary subset of N, and we found a smallest element with respect to the new

ordering, every subset of N has a smallest element with respect to the new ordering.

What about the set Z? The ordering ď has neither smallest nor largest element, since

¨ ¨ ¨ ď ´3 ď ´2 ď ´1 ď 0 ď 1 ď ¨ ¨ ¨ . It is possible to order Z a different way, so that it

does have a smallest element, and in some cases that might be useful. That’s an interesting

question to ponder, and we leave it to you to pursue.

Question 1¨48 .
Devise a different ordering of Z for which every subset of Z has a smallest element. Call this

orderingÌ, and prove that it really is a well ordering on Z.

So the definition depends on both the ordering and the set; change one of the two, and

the property may fail.

Let’s turn to a different set, the lattice N2
. We have three different orderings to choose

from; we’ll start withĺx. Do subsets ofN2
necessarily have smallest elements? Clearly not, as

ĺx is not even a linear ordering! We already saw that ĺx fails to order two points on a vertical

line, such as p2, 0q and p2, 1q. Elements like these are incomparable, so subsets containing

them lack a smallest element.
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What if we try a different ordering? Again, ĺy is not linear, so that’s out. On the other

hand, ĺlex is linear, so it stands a chance of being a well-ordering.

Question 1¨49 .
Show that the lex orderingĺlex is a well ordering of the latticeN2

. Hint: Use the Well-Ordering

Principle in one dimension to find a subset of elements that are smallest from a particular

point of view. Then use the Well-Ordering Principle in the other dimension to polish it off.

Question 1¨50 .
While Question 1.49 refers to a two-dimensional lattice, explain that it doesn’t really matter;

you can use the same basic proof to show that Nn
is well-ordered by a similar ordering. Also

describe the ordering.

Here’s another useful consequence of well ordering.

Fact 1¨51. Let S be a set well ordered byĺ, and s1 ľ s2 ľ ¨ ¨ ¨ be a nonincreasing sequence of elements

of S. The sequence eventually stabilizes; that is, at some index i, si “ si`1 “ ¨ ¨ ¨ .

Why? Let T “ ts1, s2, . . . u. By definition, T Ď S. By the definition of a well-ordering, S has

a least element; call it t. Let i P N` such that si “ t, and let j ą i. The sequence decreases,

which means si ľ sj. By substitution, t ľ sj. Remember that t is the smallest element of T; by

definition, sj ľ t. We have t ľ sj ľ t, which is possible only if t “ sj. We chose j ą i arbitrarily,

so every element of the sequence after t must equal t. In other words, si “ si`1 “ ¨ ¨ ¨ , as

claimed.

Question 1¨52 .
We asserted that t ľ sj ľ t “is possible only if t “ sj.” This isn’t necessarily obvious, but

it is true. Why ? Hint: It’s one of the properties of the ordering. As to which property, you

may need to look further afield than the properties of well orderings; remember that a well

ordering is also a linear ordering, which is also a partial ordering. Those three give you a few

properties to consider!

We can use this fact to show one of the desired properties of the game.

Dickson’s Lemma. Ideal Nim terminates after finitely many moves.
13

Before going into the details, let’s point out a basic, geometrically intuitive argument.

Let P “ pa, bq be the first position chosen, and Q1, Q2, . . . the subsequent positions chosen.

According to the rules, no move Q “ pc, dq can satisfy c ě a and d ě b, so c ă a or d ă b. In

the first case, Q is closer to the x-axis than P, or, Q ăx P. The set of their x-coordinates would

be a nonincreasing sequence of natural numbers, which allows us to apply Fact 1¨51. In the

second case, Q is closer to the y-axis than P, or, Q ăy P. That also allows us to apply Fact 1¨51.

Superficially, then, it looks as if only finitely many moves are possible. However, if we

play enough games, we see that players can sometimes choose positions Q1, Q2, . . . such that

Q1 ąx Q2 ¨ ¨ ¨ ąx Qi, but Qi ăx Qi`1. If Qj ąy Qi`1 for each j “ 1, 2, . . . , i, then, as mentioned

13
Dickson actually proved an equivalent statement.
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already, we’re dealing with Fact 1¨51. As long as we’re dealing with one of the two cases, we

can see that the game is ending.

What if some Qj ăy Qi`1? In this case, Qi`1 decreases neither the minimum x-coordinate

nor the minimum y-coordinate, and the chain is no longer a nondecreasing sequence. This is

really a temporary problem, though; sketch such a game on paper, and we see that any such

Qi`1 must lie in a rectangle:

min x value
{
Qi

}min y value
{
Qi

}

This rectangle has only finitely many positions, and that finiteness means the players will

eventually have to break out, at which point either the smallest x-value or the smallest y-

value will decrease anew. Writing this precisely is a bit of a bear, but intuitively, it works

well.

That said, it’s simpler to try the following approach, which works both intuitively and

precisely. Essentially, we count the number of positions left. There can be infinitely many

positions left, so we organize the points in finite-sized bins. How? Use diagonals of the lattice.

Proof. For any points P of the lattice, let d pPq “ p1 ` p2 be the degree of P. Basically, d pPq

tells you how far away P is from the lower left corner, using lines of slope ´1. Recall that

the game is defined by a finite set of points F, which defines the red, forbidden region of the

gameboard. Let m be the sum of largest x and y values of points in F; notice that m ě deg Q

for any point Q P F.

Suppose we are the beginning of the ith turn of the game. Define Hi as the function on N
such that H pnq is the number of playable points P whose degree is n.

14
For instance, in the

game illustrated by

14
This function is related to an important function in commutative algebra, called theHilbert function, which

measures a different phenomenon which we can visualize in a fashion similar to this one.
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the number of moves available on each blue diagonal, where d pPq is constant, tells us

H1 pnq “ p0, 0, 0, 2, 3, 6, 7, 8, 9, 9, 9. . . q

H2 pnq “ p0, 0, 0, 2, 3, 5, 5, 5, 5, 5, 5, . . . q
H3 pnq “ p0, 0, 0, 2, 3, 5, 4, 4, 4, 4, 4, . . . q
H4 pnq “ p0, 0, 0, 2, 3, 5, 4, 3, 2, 2, 2, . . . q .

Suppose that on the ith turn, a player chooses position P. Let m “ d pPq; since we have

removed available positions, Hi pmq ă Hi´1 pmq. Let’s focus on a fixed n P N. The game’s

rules make it clear that no move can add playable positions, which means that Hj pnq ď Hi pnq

whenever j ą i. In other words, n satisfies

H1 pnq ě H2 pnq ě ¨ ¨ ¨ .

This is a nondecreasing sequence, so Fact 1¨51 tells us it must stabilize eventually. We made

no assumption on n, so Hi pnq stabilizes for every value of n.

We are not quite done; it is possible that, for some n, we can find i, k P N` such that

Hi pnq “ 0 but Hi pn` kq ‰ 0, and j, ` such that Hj pn` kq “ 0 but Hj pn` k` `q ‰ 0, and so

forth. In this case, the game could proceed indefinitely. Let’s call such values of n irregular

degrees. To see why there are only finitely many irregular degrees, suppose that we can find

such i, j, k, `, . . . . Let pa, bq be the last point of degree n chosen in the game, which occurs on

the ith turn; at this point, Hi pnq “ 0. The fact that Hi pn` kq has not stabilized yet means that

at least one point of degree n ` k is still in play; call it pc, dq. It cannot lie northeast of pa, bq,

so c ă a or b ă d. Likewise, once Hj pn` kq “ 0, the fact that Hj pn` `q ‰ 0 means that at

least one point of degree n ` ` is still in play; call it pe, f q. It cannot lie northeast of pa, bq or

of pc, dq, so f ă a or e ă b and f ă c or e ă d. We see that the x- and y-values of these points

give us two nonincreasing sequences of natural numbers. Fact 1¨51 tells us these sequences

must stabilize eventually. Were there infinitely many irregular degrees, we could proceed

through these degrees from left to right indefinitely, which would prolong these sequences

indefinitely; so, there must be finitely many irregular degrees.

Once we exhaust the last irregular degree, on the ith turn, there are finitely many degrees

n with Hi pnq ‰ 0. As noted, these must all stabilize eventually, which is possible only if the

game ends, since wheneverHi pnq ‰ 0, the players can choose at least one position that would

decrease Hi pnq.

Division

Four mathematicians are talking about a problem. They have 11 sheets of scratch paper

between them. How many pages will each mathematician get, and how many will be left

over? If you answered two sheets for each, with three sheets left over, then you were not only

correct,
15

but you were, of course, performing division: 4 is the divisor, 3 the quotient, and

2 the remainder. This illustrates a big difference between division and the other arithmetic

15
Not really. In my experience, the actual answer would be “two each, more or less,” but as often happens in

mathematics, we care more about the truth than about reality. That is not a typo!
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operations. Addition, subtraction, and multiplication all give one result, but division gives

two: a quotient and a remainder.

It probably won’t surprise you that we can always divide two integers.
16

The Division Theorem. Let n and d (the divisor) be two integers. If d ‰ 0, we can find exactly

one integer q (the quotient) and exactly one natural number r (the remainder) satisfying the two

conditions

D1) n “ qd` r, and

D2) r ă |d|.

Try to remember the meaning of “divisor”, “quotient”, and “remainder”, since I’ll use

them quite a bit from now on. Also try to remember the second criterion, since students have

a habit of forgetting it, especially in those moments when it’s most useful.

Example 1¨53. Division of 12 by 7 gives us a quotient of 1 and a remainder of 5. Division of

´12 by 7 gives us a quotient of´2 and a remainder of 2. (You can’t use a quotient of´1 and

a remainder of´5 because the Division Theorem wants a nonnegative remainder.)

Question 1¨54 .
Identify the quotient and remainder when dividing:

(a) 10 by´5;

(b) ´5 by 10;

(c) ´10 by´4.

Proof of the Division Theorem. The proof relies on some concepts we just discussed, such as the

well ordering of N. Since it’s often easier to think about positive numbers, we consider two

cases: d P N` (positive), and d P ZzN (negative). First we consider d P N`; by definition of

absolute value, |d| “ d. We must show two things: first, that we can find a quotient q and

remainder r; second, that r is unique. We work on each claim separately.

Existence of q and r: First we show that we can find q and r that satisfy (D1). Again, we split

this into two cases: n nonnegative, and n negative.

First assume n is nonnegative; that is, n P N. We create a sequence of natural numbers in

the following way. Let r0 “ n. For i P N` we define

ri`1 “

#

ri ´ d, d ď ri;

ri, otherwise.
(1.1)

We claim this sequence is nondecreasing. Why? If ri`1 ‰ ri, then by definition d ď ri, in

which case

ri`1 “ ri ´ d P N, which we rewrite as ri ´ ri`1 “ d P N, so ri ě ri`1.

16
That’s a lie. Find the lie. (Hint: It’s a subtle detail.)
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Fact 1¨51 tells us that this sequence of r’s must stabilize with a minimal element, r. This must

satisfy r ă d, since otherwise d ď r, which would allow us to create a subsequent, different

ri`1, contradicting the choice of r as the stable one. In addition, the definition of the sequence

requires r P N. Combining them, we see that r satisfies (D2). Let q be the index such that

rq “ r; a proof by induction shows that n “ qd` r, satisfying (D1).

Question 1¨55 .
Provide this proof of induction. Use induction on q to show that the sequence of natural

numbers defined in formula 1.1 satisfies the property n “ qd ` rq. You’ll want to start with

q “ 0.

Proof (continued). Now suppose n P ZzN, so n is negative. As |n| is nonnegative, we can apply

the previous argument to find q
1
and r

1
satisfying (D1) and (D2) for |n|. Unfortunately, we need

these statements for n, not |n|. Fortunately, n “ ´ |n|, so we can write

n “ ´ |n| “ ´ pq
1
d` r

1
q “ p´q

1
q d´ r

1
.

Let q “ ´pq1 ` 1q and r “ d´ r1; we now have

qd` r “ r´ pq
1
` 1qs d` pd´ r

1
q “ rp´q

1
q d` ds ` pd´ r

1
q “ p´q

1
q d´ r

1
“ n.

Written backwards and condensed, this equation says n “ qd ` r, satisfying (D1) for n. Cer-

tainly q is an integer by definition of Z, while r “ d´ r1 is natural because r
1 ď d. So we have

0 ď r, and r ă d from Question 1.27. Combining them, we have 0 ď r ă d, satisfying (D2).

Uniqueness of q and r: Here we have to show that no other combination of an integer q
1

and a natural number r
1
satisfy both (D1) and (D2). Suppose to the contrary that there exist

q
1
, r
1 P Z such that n “ q1d` r1 and 0 ď r1 ă d. By substitution,

r
1
´ r “ pn´ q

1
dq ´ pn´ qdq

“ pq´ q
1
q d. (1.2)

Subtraction of integers is closed, so r
1 ´ r P N and pq´ q1q d are both integers. If 0 “ q ´ q1,

then substitution into equation (1.2) shows that r ´ r
1 “ 0, as desired. If 0 ‰ q ´ q

1
, we

consider two cases. If q´ q1 P N`, then Question 1.28 tells us that d ď pq´ q1q d (replacing a

by d and b by q´ q1). This gives us

0 ď r
1
´ r ď r ă d ď pq´ q

1
q d “ r

1
´ r,

a contradiction, so q´ q1 R N`. Likewise, if q´ q1 is negative, we have q
1´ q P N`, so we play

the same game with r´ r1 to obtain a contradiction. (That is, we negate both sides of equation

(1.2).) Hence q´ q1 “ 0 and r ´ r1 “ 0.

We have shown that if d P N`, then there exist unique q, r P Z satisfying (D1) and (D2).

We still have to show that this is true for d P ZzN. In this case, |d| P N`, so we can apply the

former case to find unique q, r P Z such that n “ q |d| ` r and 0 ď r ă |d|. By properties of

arithmetic, q |d| “ q p´dq “ p´qq d, so n “ p´qq d` r.
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Question 1¨56 .
Another way to prove the existence part of the Division Theorem is to form two sets S “

tn´ qd : q P Zu and R “ S X N, prove that R ‰ H, and then use the well-ordering property

to identify the smallest element of R, which is the remainder from division. Fill in the blanks

of Figure 1¨5 to see why R is nonempty.

Question 1¨57 .
If a and b are both natural numbers, and 0 ď a´ b, then (a) why is b ď a? Similarly, if |d| ď r,

then why are (b) 0 ď r ´ |d| and (c) r ´ |d| ď r?

Notation. If the Division Theorem tells us that the remainder is zero, then we write d | n. This

is shorthand for saying, d divides n. For instance, 2 | 6. Try not to confuse this with 6{2, which

means something 6 divided by 2. That is a completely different idea.

Question 1¨58 .
Prove that if a P Z, b P N`, and a | b, then a ď b.

Definition 1¨59. We define lcm, the least common multiple of two integers, as

lcm pa, bq “ min
 

n P N` : a | n and b | n
(

.

This is a set-builder expression of the definition that you should already be familiar with: it’s

the smallest (min) positive (n P N`) multiple of a and b (a | n, and b | n).

Question 1¨60 .

(a) Fill in each blank of Figure 1¨6 with the justification.

(b) One part of the proof claims that “A similar argument shows that b | r.” State this argu-

ment in detail.

The equivalence of the Well-Ordering Principle and Induction

Fact 1¨46 claims that the Well-Ordering Principle is equivalent to the Induction Principle.

Why? First we show the Induction Principle implies the Well-Ordering Principle. Assume that

the Induction Principle is true, and let S be any subset of N. Recall thatď is a linear ordering

of N, so we can compare any two elements of S. If S is finite with n elements, then we can

enumerate its elements as s1, . . . , sn, and sort them according to ď, so we can find a smallest

element.

Otherwise, suppose S is infinite. We proceed by induction. If 0 P S, then for any s P S, we

know that s ´ 0 “ s, and s is a natural number, so 0 ď s. That makes 0 a minimal element.

Now let i P N, and suppose that none of 0, . . . , i ´ 1 is in S, but i is. We claim that i is a
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Let n, d P Z, where d P N`. Define S “ tn´ qd : q P Zu and R “ SX N.

Claim: R ‰ H.

Proof: We consider two cases.

1. First suppose n P N.

(a) Let q “_____. By definition of Z, q P Z.

(You can infer this answer by looking down a couple of lines.)

(b) By properties of arithmetic, qd “_____.

(c) By _____, n´ qd “ n.

(d) By hypothesis, n P_____.

(e) By _____, n´ qd P N.

2. It’s possible that n R N, so now let’s assume that, instead.

(a) Let q “_____. By definition of Z, q P Z.

(Again, you can infer this answer by looking down.)

(b) By substitution, n´ qd “_____.

(c) By _____, n´ qd “ ´n pd´ 1q.

(d) By _____, n R N, but it is in Z. Hence,´n P N`.

(e) Also by _____, d P N`, so arithmetic tells us that d´ 1 P N.

(f) Arithmetic now tells us that´n pd´ 1q P N. (posˆnatural=natural)

(g) By _____, n´ qd P N.

3. In both cases, we showed that n´ qd P N. By definition of _____, n´ qd P S.

4. By definition of _____, n´ qd P SX N.

5. By definition of _____, SX N ‰ H. Hence R ‰ H.

Figure 1¨5: Material for Question 1.56
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Let a, b, c P Z.

Claim: If a and b both divide c, then lcm pa, bq also divides c.

Proof:

1. Let d “ lcm pa, bq. By _____, we can choose q, r such that c “ qd` r and 0 ď r ă d.

2. By definition of _____, both a and b divide d.

3. By definition of _____, we can find x, y P Z such that c “ ax and d “ ay.

4. By _____, ax “ q payq ` r.

5. By _____, r “ a px´ qyq.

6. By definition of _____, a | r. A similar argument shows that b | r.

7. We have shown that a and b divide r. Recall that 0 ď r ă d, and _____. By definition of

lcm, r “ 0.

8. By _____, c “ qd “ qlcm pa, bq.

9. By definition of _____, lcm pa, bq divides c.

Figure 1¨6: Material for Question 1.60
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minimal element of S. To see why, consider the set T “ ts´ i : s P Su. This is also a subset of

N, because the definition of subtraction tells us s ´ i R N only when s P t0, . . . , i´ 1u, and

none of those numbers is in S by hypothesis. In addition, 0 P T because i P S, so putting s “ i

in the definition of T gives us i´ i P T. We already showed that any subset of N that contains

0 has 0 as a least element, so 0 is the least element of T. We return to S. Let s P S; we claim

that i ď s. To see why, consider i´ i “ 0 and s´ i. As previously discussed, both elements are

in T, and 0 ď s´ i. This is true if and only if 0` i ď ps´ iq ` i, or, i ď s. Since swas arbitrary,

i is indeed the smallest element of S.

We have shown that any subset S of N has a smallest element with respect to ď. This

proves that N is well ordered byď.

Now we show that the Well-Ordering Principle implies the Induction Principle. Assume

that the Well-Ordering Principle is true, and let S Ď N, satisfying both the inductive hypoth-

esis and the inductive step. Let N be the set of all such natural numbers that are not in S. If

N “ H, we are done. Otherwise, the Well-Ordering Principle tells us N has a smallest ele-

ment, which we call n. We cannot have n “ 0, as that would violate the inductive hypothesis,

which we assumed was true. Hence n ‰ 0, which means n ´ 1 P N. The choice of n as the

smallest element of N implies that n ´ 1 P S, since after all n ´ 1 ă n (this is easy to see if

you think about the definition). However, we also assumed S satisfies the inductive step, so

pn´ 1q ` 1 P S, but n “ pn´ 1q ` 1, contradicting the hypothesis that n P N. Hence N “ H,

and S “ N.

1¨5 Division on the lattice (optional)

Algebra is nothing more than geometry, in words;

geometry is nothing more than algebra, in pictures.

— Sophie Germain

We have shown that we can divide both integers and natural numbers to obtain a quotient

and remainder. Can we divide on the lattice, identifying a quotient and a remainder? If so, is

the result unique?

We can in fact perform division on the lattice. To do that, we first have to think about the

other operations: addition, subtraction, and multiplication. Let P “ pp, qq and R “ pr, sq be

points on L. We’ll define addition in a natural way,

P` R “ pp` r, q` sq .

For subtraction, use

P´ R “ pp´ r, q´ sq ,

but notice that this doesn’t always give us a point in the natural lattice. So, let’s expand our

view to the integer lattice, Z2; as with division of natural numbers, we can work first in Z2,
then switch back to N2

once that’s out of the way.

What of multiplication? Since the lattice is two-dimensional, we’d like multiplication to

move us in two dimensions. We adopt the following convention:

• pp, qq ¨ pc, 0q “ ppc, qcq, the point on the line that connects the origin to pp, qq, but with

a length c times that from the origin to pp, qq;
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(1,1)

(3,0) ·(1,1)

(−2,0) ·(1,1)

(1,1)

(0,3) ·(1,1)

(0,−2) ·(1,1)

Figure 1¨7: Multiplication on the lattice.

• pp, qq ¨ p0, dq “ p´qd, pdq, the point on the line perpendicular to the line that connects

the origin to pp, qq, but with a length d times that from the origin to pp, qq;

• pp, qq ¨ pc, dq “ pp, qq ¨ pc, 0q ` pp, qq ¨ p0, dq “ ppc ´ qd, pd` qcq, the vector sum of the

previous two.

See Figure 1.61. This may look odd, but it extends well to other problems, as you will learn

later.

Question 1¨61 .
Suppose P “ p3, 1q.

(a) Calculate P ¨ pc, 0q for several different values of c. Sketch the resulting points on Z2.
Observe how the results conform to the description in the text.

(b) With the same value of P, calculate P ¨ p0, dq for several different values of d. Sketch the

resulting points on Z2. Observe how the results conform to the description in the text.

(c) With the same value of P, calculate P ¨pc, dq for several different combinations of values of

c and d that you used in parts (a) and (b). Sketch the resulting points on Z2. How would

you describe the results geometrically?

As with division of natural numbers, the goal of dividing P “ pp, qq by D “ pc, dq will be

to move D “closer and closer” to P via subtraction from P, until the remaining distance is so

small that subtraction no longer makes it smaller. If we measure our distance with integers,

we can then apply the Well Ordering Principle via Fact 1¨51 to guarantee the division ends.

But how can we measure distance with integers? The traditional distance formula is based

on the Pythagorean Theorem, and relies on radicals:

the distance between pp, qq and pr, sq is

b

pp´ rq
2
` pq´ sq

2
.
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That’s bad, because Fact 1¨51 does not apply to radicals. For instance, the sequence

c

1

2
ą

c

1

3
ą

c

1

4
ą

c

1

5
ą ¨ ¨ ¨

consists of positive numbers, and continues indefinitely.

Don’t let that discourage you! It’s actually easy to get around this; we’ll just use a different

distance formula, modifying the traditional one so that it doesn’t use radicals,

the “square distance” between pp, qq and pr, sq is pp´ rq
2
` pq´ sq

2
.

The square distance is always natural, opening the way to use Fact 1¨51. It’s a bit tedious to

write “square distance” all the time, so we’ll write sqd pP, Qq for the square distance between

P and Q. We consider the distance from a point to the origin to be its size, much like absolute

value, so we will write }R}sq to indicate this value.

The Division Theorem for the lattice. Let N and D be two points of Z ˆ Z. If D ‰ 0, we can

find Q P Zˆ Z (the quotient) and R P Nˆ N (the remainder) satisfying the two conditions

D1) N “ QD` R, and

D2) 0 ď }R}sq ă }D}sq.

. However, the points Q and R may not be unique.

Proof. Let S0 “ N, and for i P N` define Si “ N ´ pi, 0q D. Let S “
 

}Si}sq : i P N
(

. This is a set

of natural numbers, so by the well ordering of N, S has a smallest element, corresponding to

a particular Sa. Let T0 “ Sa. For j P N`, define Tj “ S0 ´ pa, jq D. Let T “
 

}Tj}sq : j P N
(

. It

also has a smallest element, corresponding to a particular Tb. Let Q “ pa, bq and R “ Tb; by

definition and substitution, we have R “ N ´ Q ¨ D, or N “ QD` R. This satisfies (D1).

To show that Q and R also satisfy (D2), suppose the contrary, that is, }R}sq ě }D}sq. The set

U “ trQ˘ p1, 0qs ¨ D, rQ˘ p0, 1qs ¨ Du is finite, so one of its points has a distance to N that is

no larger than the other three. Now consider Figure 1¨8. At least two points of U form angles

with the line N ´ QD that are no larger than 90
˝
.

We consider two cases. If α “ β “ 45˝, the Law of Cosines tells us

a
2
“ b

2
“ d

2
` pd` kq

2
´
?
2 ¨ d pd` kq .

We assumed }R}sq ě }D}sq. By substitution, }N ´ QD}sq ě }D}sq. We chose Q to minimize the

square distance between QD and N, so }N ´ QD}sq ď a
2
. By substitution,

`

d` k
2
˘

ď d
2
` pd` kq

2
´
?
2 ¨ d pd` kq .

Rewrite this as

0 ď d
2
´
?
2 ¨ d pd` kq .

Since d is positive, we can rewrite again as

0 ď d´ pd` kq
?
2,
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QD N

QD+(1,0)D

QD+(0,−1)D

α

β

d+k

d

d

a

b

Figure 1¨8: Illustration of the proof of existence for the Division Theorem in N2
. Let the Eu-

clidean distance from QD to QD`p1, 0q D and to QD`p0,´1q D be d. Suppose d is smaller than

the square distance from QD to N, which is then d ` k with some positive k. In this diagram,

α and β form acute angles between two extensions from QD to the segment joining QD and

N. Our task is to show that one of a or b is less than d ` k, contradicting the choice of Q to

minimize this distance.

but k ě 0 implies that d´ pd` kq
?
2 ă 0, contradicting the choice of Q.

In the case that α, β ‰ 45
˝
, one of the segments lengthens, while the other shortens,

making it smaller than d ` k; hence, one of them is closer to N than QD, contradicting the

choice of Q.

Figure 1¨8 also hints at why we might have two distinct quotients and remainders of the

same size. If two possible remainders are p1, 0q and p0, 1q, with }D}sq ą 1, we cannot get closer,

and either solution works.

We can thus extend the notion of “division” that we gave above to anything we can “view” as

an integer lattice.

Question 1¨62 .
Suppose N “ p10, 4q.

(a) Let D “ p3, 1q, and R “ N ´ p3, 0q ¨ D. Show that }R}sq ă }D}sq.

(b) Let D “ p1, 3q, and R “ N ´ p3,´3q ¨ D. Show that }R}sq ă }D}sq.

(c) Explain how the results of parts (a) and (b) conform to those described in the text.

(d) SupposeN “ p10, 4q andD “ p2, 2q. FindQ P L such that ifR “ N´Q¨D, then }R}sq ă }D}sq.

Sketch the geometry of N, D, QD, and R.

(e) Is the result unique? That is, could you have found Q
1 P L such that R “ N ´ Q

1 ¨ D,

}R}sq ă }D}sq, and Q
1 ‰ Q?

(f) Show that for any N, D P L with D ‰ p0, 0q, you can find Q, R P L such that N “ Q ¨ D ` R

and }R}sq ă }D}sq. Again, try to build on the geometric ideas you gave in (e).
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1¨6 Polynomial division

He who can properly define and divide is considered to be a god.

— Plato

You may be wondering how the material we’ve studied so far is related to algebra, which you

probably associate more with polynomials than with games. Take a look back at Ideal Nim’s

playfield, the latticeN2
. This game is related to polynomials, or at least tomonomials, which

are products of variables.

• Any point pa, bq on the lattice corresponds in unique fashion to a monomial in two vari-

ables, x
a
y
b
.

• The choice pa, bq disqualifies other points pc, dq; we called them Gone from Gameplay.

The rule was that pc, dq is Gone from Gameplay if a ď c and b ď d. In this case, the

corresponding monomial x
c
y
d

is divisible by x
a
y
b
.

• Just as the lex ordering ĺlex is a well ordering of N2
, it is a well ordering of monomials

in two variables.

By this reasoning, we could extend division with quotient and remainder on the lattice to

define division with quotient and remainder of monomials. Whether such a division with

remainder is useful, we leave to others to ponder; we merely point out that it exists.

Question 1¨63 .
If you are so inclined, however, translate the results of Question 1.62 to monomials. “Multi-

plication” and “subtraction” in the Division Theorem actually translate to what operations

on monomials?

We turn instead to division with quotient and remainder of polynomials. When one poly-

nomial is a multiple of another, we would like the quotient and remainder to be consistent

with previous choices. For instance, dividing px` 1q px´ 1q by x´ 1 should clearly give us a

quotient of x` 1 and a remainder of 0.

We would also like to replicate the distinct behavior of integer division: that is, the re-

mainder r should in some manner be “smaller” than the divisor g. This isn’t too hard to grasp

if you think about what comes naturally: we want to subtract multiples of g in such a way as

to make f smaller.

Example 1¨64. Suppose f “ x
2 ` 1 and g “ x ´ 1. A natural way to make f “smaller” is to

multiply x´ 1 by x and subtract:

f ´ xg “
`

x
2
` 1

˘

´ x px´ 1q “ x` 1.

We end up with x` 1 as a remainder.

That hardly seems complete, as we can subtract another multiple of x´ 1:

pf ´ xgq ´ g “ px` 1q ´ px´ 1q “ 2.

Putting them together, we have

f “ px` 1q g` 2.

We now have 2 as our remainder, and it is not possible to remove any more multiples of x´ 1.
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What the example should show you is that we make f “smaller” by reducing its largest

exponent. We call this largest exponent the degree of a polynomial. The degree makes a

“natural” target, not only because it seems to shrink the polynomial, but also because it re-

lates polynomial division to the Well Ordering Principle, which we used to set up division on

both the integers and the lattice.

We have to be a little careful here: what is deg 0? You might be tempted to say that

deg 0 “ 1 because 0 is a constant, so 0 “ 0 ¨ 1 “ 0 ¨ x0, but we could just as easily say that

0 “ 0 ¨ x1 or 0 “ 0 ¨ x2 or . . . You get the idea. To avoid this pickle, we agree that the term

“degree” applies only to nonzero polynomials, and that the zero polynomial has no degree.

Another complication lies hidden in the weeds. It isn’t too hard to divide 7 by 5, but what

do we do with 7x and 5x? Writing 7x “ 5 ¨ x ` 2x does not decrease the degree, and the joy

of decreasing the coefficient evaporates when we realize that we can decrease the coefficient

even more by writing 7x “ 5¨x`0x. In any case, this problem grows even more annoying when

dividing binomials, trinomials, and so forth. We will content ourselves to restrict divisors to

polynomials whose leading coefficients is 1. We call such polynomialsmonic.
The Division Theorem for polynomials. Let f, g be polynomials in one variable with integer

coefficients, with the leading coefficient of g being 1. We can find exactly one polynomial q and exactly

one polynomial r, also with integer coefficients, satisfying the conditions

D1) f “ qg` r, and

D2) r “ 0 or 0 ď deg r ă deg g.

Proof. First we show that some sort of quotient and remainder exist. If deg f ă deg g, then

let r “ f and q “ 0; this satisfies both properties. For the case deg f ě deg g, we proceed by

induction on the difference in degree.

Question 1¨65 .
Suppose that f “ 3x2` 2 and g “ x2´ x` 2. These have the same degree, so we can subtract

from f a constant multiple of g to obtain a remainder of smaller degree. Do that, then use the

result to follow through the next paragraph of the proof.

Continuation of proof. For the inductive base, assume deg f´deg g “ 0; that is, the polynomials

have the same degree. Write c for the leading coefficient of f . Let q “ c, and r “ f ´ cg. We

have

qg` r “ cg` pf ´ cgq “ f,

satisfying (D1). In addition, if deg f “ d, we can write f “ cxd ` f 1 and g “ xd ` g1, where the

degrees of f
1
and g

1
are smaller than those of f and g, respectively. That gives us

f ´ cg “
`

cx
d
` f

1
˘

´ c
`

x
d
` g

1
˘

“

´

��cx
d
` f

1
¯

´

´

��cx
d
` cg

1
¯

“ f
1
´ cg

1
.

We may not know the degree of f
1 ´ cg1 with precision, but we can say that it’s smaller than

d. Since deg g “ deg f “ d, either r “ 0 or 0 ď deg r ă deg d, satisfying (D2).
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Question 1¨66 .
Suppose that f “ 2x3` x2` 4x` 2 and g “ x2´ x` 2. These have different degree. Subtract

from f a polynomial multiple of g to obtain a remainder of smaller degree. Do that, then use

the result to follow through the next paragraph of the proof. The remainder should look quite

familiar.

Continuation of proof. Now assume that the claim holds for deg f ´ deg g “ i whenever i “

0, 1, 2, . . . , n´1. What about i “ n? Again, write c for the leading coefficient of f . Let q
1 “ cxn,

and r
1 “ f ´ q1g. As before, if deg f “ d, we can write f “ cx

d ` f 1, where deg f
1 ă d. If

deg g “ a, we can write g “ xa ` g1, where deg g
1 ă a. We have

r
1
“
`

cx
d
` f

1
˘

´ cx
n
px
a
` g

1
q “

`

cx
d
` f

1
˘

´
`

cx
a`n
` cx

n
g
1
˘

.

Recall that a` n “ deg g` pdeg f ´ deg gq “ deg f “ d, so substitution gives us

r
1
“

´

��cx
d
` f

1
¯

´

´

��cx
d
` cx

n
g
1
¯

“ f
1
´ cx

n
g
1
.

We already pointed out that deg f
1 ă deg d; we also have deg pcxng1q “ n`deg g

1 ă n`a “ d.

Again, r “ 0 or deg r
1 ă deg f “ n. If r “ 0, we are done, so suppose r ‰ 0, in which case

deg r ă n. By the inductive hypothesis, we can find q
2

and r
2

such that r
1 “ q

2
g ` r2 and

deg r
2 ă deg g. By substitution and rewriting,

f “ q
1
g` r

1
“ q

1
g` pq

2
g` r

2
q “ pq

1
` q

2
q g` r

2
.

Let q “ q1 ` q2 and r “ r2, and we satisfy both (D1) and (D2).

How about the result’s uniqueness? Suppose we can find polynomials q1, q2, r1, and r2 such

that

f “ q1g` r1 “ q2g` r2 and for i “ 1, 2 ri “ 0 or 0 ď deg ri ă deg g.

Rewrite the first equations as

pq1 ´ q2q g “ r2 ´ r1.

If the polynomial on the left is nonzero, then its degree is no smaller than deg g. If the poly-

nomial on the right is nonzero, then its degree is smaller than deg g. It’s not possible to have

a nonzero polynomial with two different degrees — the definition of degree is unambiguous

— so the polynomials must be zero. That means r1 “ r2, which forces q1 “ q2; otherwise, the

degree on the left would be nonzero.

As with integer division, the proof of this theorem outlines an algorithm to compute the quo-

tient and remainder. (An algorithm is a finite list of instructions with a well-specified output,

which is guaranteed to terminate after finitely many operations.) We know that the method

will end after finitely many steps, because the degrees of the remainders form a decreasing

sequence of natural numbers, and the well-ordering applies. Indeed, this algorithm is some-

times called “long division” of polynomials.

Question 1¨67 .
Divide f “ 10x6 ´ 3x4 ` 1 by g “ x3 ` x` 1.
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In all these questions, both f and g are polynomials with integer coefficients.

Question 1¨68 .
Sometimes we can divide f by a non-monic g, if we’re willing to surrender the requirements

that the resulting quotient and remainder have integer coefficients. Can you find an example

where g is non-monic, but the quotient and remainder do have integer coefficients? Try to

find a non-trivial example; that is, you should have f ‰ 0 and f ‰ qg for any polynomial q.

Question 1¨69 .
The Factor Theorem claims that if we divide f by g and have a zero remainder, then any root

of g is a root of f . Why is this true?

(A root of a polynomial g is any value a of x such that g paq “ 0. So the problem is really

asking why g paq “ 0 implies f paq “ 0 under the given hypothesis.)

Question 1¨70 .
The Remainder Theorem claims that if we let a be any integer, and divide f by g “ x´ a, the

remainder is a constant that has the same value as f paq. Why is this true?

Question 1¨71 .
The Division Theorem requires that the polynomials be in one variable only. What if two

polynomials have two or more variables? You first have to decide how to determine a leading

monomial; for instance, what should be the leading monomial of x
2 ` xy` y2?

(a) Describe a way of choosing a leading monomial.

(b) Try to divide polynomials in several variables. Use several examples. Are you able to

identify a quotient and remainder that satisfy (MD1) f “ qg ` r and (MD2) r “ 0 or r is

somehow smaller than g? (You have to explain how r is smaller.)

(c) If it does work, describe a Multivariate Polynomial Division Theorem, and try to prove it.

If it doesn’t work, explain why not.

Question 1¨72 .
Where in this chapter did Noetherian behavior show up? List as many places as you can; I can

think of four off the top of my head. (Go ahead and count those occasions where we explained

how one system could be viewed as a more fundamental system, since that really does count.)



Chapter 2

Algebraic systems and structures

In the previous chapter, we using decreasing sequences of natural numbers to formulate di-

vision in several different contexts. We already pointed out that division is rather unusual

as an operation, because rather than producing only one result, it produces two, the quotient

and a remainder.

Many mathematics courses treat division differently: they ignore remainders, and treat

quotient exclusively as a position on the real line. This can give students the impression that

remainders are a mostly useless artifact. In fact, it is often the case that the quotient is useless,

and what really matters is the remainder!

That is mostly the case in the course, and this chapter will use remainders as an example

to introduce you to some very elegant properties, as well as to one of the most elegant and

useful objects ever devised, the finite field.

2¨1 From symmetry to arithmetic

Those who assert that the mathematical sciences say nothing of the beautiful or

the good are in error. . . . The chief forms of beauty are order and symmetry and

definiteness, which the mathematical sciences demonstrate in a special degree.

— Aristotle, Metaphysics, Book XIII

We return a few moments to Nim and Ideal Nim, as a fun way to help motivate some material

that follows. In this section, we want to consider the question,

How do we decide what makes a “winning move” for Nim or Ideal Nim?

“Nimbers”

If you’ve played Nim enough, you’ll notice that whenever David faces two rows with an equal

number of pebbles, say

37
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he might as well give up: if he sees a visually symmetric game in two rows, then Emmy can

undo any move he makes. Of course, interesting games are not visually symmetric; for them

Emmy wants to impose a chronological symmetry. By this we mean that Emmy wants her first

move to change the game in such a way that whatever David does, she can undo — not visually,

but in such a way that she always has an advantage, and can explain why, in the same way

that the two equal rows above are visually symmetric.

To do this, we’ll assign values to different game configurations. We call these values nim-
bers because they are numbers that correspond to different configurations of nim.

It makes sense to say that a game with no moves left has value 0. A game with 1 pebble

left is not equivalent to a game with value 0; it makes sense to call its value 1. A game with 2

pebbles in one row is equivalent to neither a game with 1 pebble nor a game with 2 pebbles;

it makes sense to call its value 2. And so forth; we’ll agree that a game with n pebbles in one

row is has value n. This covers all games of Nim with just one row.

What about games with two rows? We’ve already run out of numbers, so it might help

to look at the game above differently. The first thing to remember is that whenever a player

sees that configuration, he might as well give up, because anything he does will break the

symmetry, and the other player can easily restore the symmetry. So in some sense, that game

is equivalent to a game with no moves left.

Mind the vocabulary! We did not say the game above is equal to a game with no moves

left; it plainly is not, as it has quite a few moves left. We said it is equivalent to a game with no

moves yet. We will dignify this situation with a special term: a zero game is either a game

with no moves left at all, or a game where no matter what the current player does, the other

player will always have a winning strategy.

Notice that if Emmy’s turn ends with a zero game, then David has no way to end his turn

with a zero game. (After all, if he could, then Emmy could not herself have finished her turn

with a way that guaranteed her a win.)

In addition to viewing the game above as one game of Nim with two rows of four pebbles,

we can look at it as a “sum” of two games, each with one row of four pebbles. This makes sense

inasmuch as moving in one row doesn’t affect the number of pebbles in the other row, so it

really is as if you’re playing two games at the same time. This point of view can help us break

harder problems into smaller ones, always a goal in mathematics.

This insight gives us two guidelines, which we turn into definitions:

• A general game of Nim has value 0 if and only if it is a zero game; that is, if and only if

any move the current player makes has a response by the other player that results in a

zero game. If the game has value x, we indicate this by x ” 0.

• If a game of Nim has value x, another game has value x if and only if their sum (playing

both games together as one) is a zero game. Using” to indicate the values of equivalent

games, we write

x` y ” 0 if and only if x ” y.

We can use these definitions to define the value of the sum of two games.

Definition 2¨1. Suppose two games have values x and y. We say that x ` y ” z if and only if

px` yq ` z ” 0; that is, playing all three games as one single game guarantees a win for the

second player.
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Example 2¨2. Let X be a game of Nim with two rows of 4 pebbles each. We have already

pointed out that the value of X is x ” 0.

Next let Y be a game of Nim with one row of 5 pebbles. From what we argued above, the

value of Y is y ” 5.

Finally, let Z be a game of Nim with one row of 5 pebbles. From what we argued above, the

value of Z is z ” 5.

Clearly y ` z “ 0, since a game with two rows of 5 pebbles each has value 0. Likewise,

x` py` zq ” 0` 0 ” 0. That is, the following game has value 0:

Z Z Z Z Z

Y Y Y Y Y

X X X X

X X X X

You should be able to verify that this games is, indeed, a win for the second player: any move

Emmy makes in one row of the X game, David can reply symmetrically in the other row of the

X game; whereas any move she makes in the Y game, David can reply symmetrically in the Z

game (and vice versa).

So far, so good. What about the following game?

In this case, we have a row of 1 pebble and a row of n pebbles. Does it makes sense to say

that its equivalent value is n ` 1? Not always! To start with, we already know that 1 ` 1 ı 2,

because our rule x` x ” 0 implies 1` 1 ” 0. On the other hand, we can verify that 1` 2 ” 3

and, oddly enough, 1` 3 ” 2.

Question 2¨3 .
Verify that 1` 2 ” 3 and 1` 3 ” 2 by playing:

(a) a game with two rows of 1 pebble and 2 pebbles at the same time as a game with 3 pebbles

— or, one game with three rows of 1, 2, and 3 pebbles — and showing that no matter how

Emmy starts, David can always win; and then,

(b) arguing that part (a) shows both 1 ` 2 ” 3 and 1 ` 3 ” 2, perhaps moving some rows

around to make it obvious.
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Question 2¨4 .
Explain why addition of Nim games is always commutative; that is, if x and y are the values of

games X and Y, then x` y ” y` x. It may be helpful to move rows around in a game, so as to

obtain symmetry.

Question 2¨5 .
Explain why addition of Nim games is always associative; that is, if x, y, and z are the values

of games X, Y, and Z, then px` yq ` z ” x` py` zq.

This pattern continues indefinitely; that is, if n is even, then 1`n ” 1`n and 1`p1` nq ”

n. Rather than prove that, however, we argue for something more general.

Nimber equivalence

Lemma 2¨6. Suppose a Nim gameX has value x. Write x as a sum of powers of 2: x “ an2
n`ai´12

i´1`

¨ ¨ ¨ ` a12` a0 where an “ 1 and the remaining ai satisfy ai P t0, 1u. Then X is equivalent to the game

Y played with n rows and ai ˆ 2
i
pebbles in the i-th row.

We’ll use an example to illustrate the idea behind the proof of the lemma. Suppose X has

value x “ 13 “ 8 ` 4 ` 1 “ 2
3 ` 22 ` 20. The lemma claims that the sum of X and a 3-row

game Y of 1, 4, and 8 pebbles, is a zero game.

X X X X X X X X X X X X X

Y Y Y Y Y Y Y Y

Y Y Y Y

Y

Assume we know the lemma is true for every x less than 13, and let’s think about what happens

when we remove something from X.

If Emmy removes 4 pebbles from X, she reduces X to the game W with value w “ 9 ą 2
3
.

David finds that there is a row in Y with 4 pebbles, and removes that entire row, obtaining a

2-row game Z of 1 and 8 pebbles. We now have the situation where w “ 9 “ 8 ` 1, which

corresponds precisely to Z. In other words, David leaves a zero game.

W W W W W W W W W

Z Z Z Z Z Z Z Z

Z
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What if Emmy removes 5 pebbles from X, instead? This reduces X to the game W with

value w “ 8 “ 2
3
. In this case, David cannot reduce Y to one row of 8 pebbles in one move.

Instead, he has to look at ways to reduce Y to a sum of rows that adds to 8; that is, he has

to create some cancellations which yield 8. He can do this by remove enough pebbles from

the next-smaller row of length 4 to add up to the sum of the remaining rows. In this case, he

should take 3 pebbles from the middle row of Y, reducing it to the 3-row game Z of 1, 1, and 8

pebbles.

W W W W W W W W

Z Z Z Z Z Z Z Z

Z

Z

We see immediately from the game’s visual symmetry that David leaves a zero game.

Finally, what if Emmy removes 7 pebbles from X? This reduces X to the gameW with value

w “ 6 ă 2
3
. In this case, David can remove pebbles from the longest row of Y in such a way

that it cancels with shorter rows to obtain w. In this case, he should take 10 pebbles from the

longest row of Y, reducing it to the 3-row game of Z of 1, 4, and 3 pebbles.

W W W W W W

Z Z Z

Z Z Z Z

Z

To see that this does indeed work out to 0, we could explore every possible move, but that

would take far to long. It’s much better to argue that the value of Z is indeed z “ 6. To do this,

we rely on the commutative and associative properties, as well as the fact that we already

know 1 ` 3 ” 2 and the inductive assumption that the claim above is true for every game

whose value is smaller than 13:

z “ 1` 4` 3 ” p1` 3q ` 4 ”
shown

2` 4 “ 2` 2
2
”
6ă13

6.

That is, the new game is really equivalent to this one:

W W W W W W

Z Z Z Z

Z Z
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This process of simplifying Z from a game whose rows are not powers of 2 to one whose rows

are powers of 2 we will call row simplification, and when a game is arranged in rows of powers

of 2, we call it row simplified. Because this is a matter of game equivalence, it is free whenever

we know it is true; a player can rearrange several rows in this fashion at any time.

Proof of Lemma 2¨6. Let X and Y be the games described in the Lemma. The lemma’s claim is

that X`Y ” 0; that is, if Emmy and David play X`Y, then David always wins. To see that this

is true, assume that the analogous statement is true for any game whose value is less than

x, and suppose Emmy removes r pebbles from X, reducing it to the game W, which has value

w “ x´ r. Before proceeding, observe that Y is currently row simplified, because it is already

arranged in rows whose lengths are powers of 2.

If r is a power of 2, David can reduce Y to Z by removing r pebbles from the shortest row

that is at least r pebbles long. (So if r “ 2 and there is a row of length 2, he removes it from that

row; otherwise, if there is a row of length 4, he removes it from that row, and so forth.) Recall

that Y was row simplified before David moved. If he removes an entire row, as he did in the

example above withw “ 9, it is obvious that Z remains row simplified; he has simply removed

a row. Otherwise, David has removed from one row fewer than half the number of pebbles,

and some row simplification is in order — but this does not affect any other existing row. To

see why, observe that r “ 2
k

for some natural k, and we are removing r from a row whose

length is 2
`
, with ` ą k. The result is a row whose length is 2

` ´ 2k; just as with subtracting 1

from a power of 10, this simplifies to 2
`´1`2`´2`¨ ¨ ¨`2k`1`2k. Row simplification can only

affect rows 2
`

through 2
k
, but the only reason we chose row 2

`
is that there were no pebbles

in rows 2
`´1

through row 2
k
, so even if we do this, Z remains row simplified.

From here on, assume r is not a power of 2. If w “ x ´ r ě 2
i
, let s “ w ´ 2i ă 2

i
. This

is the “surplus” in W above the longest row of Y; that is, that w “ 2
i ` s. (In the example

above where w “ 9, we have s “ w ´ 23 “ 1.) All David needs to do is remove pebbles from

one of the remaining rows of Y such that he reduces it to the game Z whose value is z “ s.

The inductive hypothesis tells us the lemma is true for values less than x, and s ă x, so David

should start by considering the shortest row of Y that is longer than s; suppose its length is

2
j
. He can remove enough pebbles from this row to cancel any powers of 2 smaller than s that

do not already appear in Y; suppose this reduces the row 2
j
to k. David should reduce the row

this way only if there are no rows between this row of length 2
j
and the one of length 2

i
. If

there are, David should instead “cascade” his choice to longer rows of Y except the longest,

rewriting 2
j`1 “ 2

j ` rk` p2j ´ kqs, 2j`2 “ p2j`1 ` 2jq ` rk` p2j ´ kqs, and so forth, so that

now the rows of length 2
j
, 2

j`1
, etc. also cancel, leaving k as needed. This cascade will end in

the last row of Y before the longest, allowing David to reduce the rows shorter than 2
i
to the

value s, obtaining a row-simplified game Z of value 2
i ` s “ w, as claimed.

Finally, suppose w “ x ´ r ă 2
i
. (We see this in the last example above, with w “ 6.) In

this case, remove from the longest row of Y enough pebbles so that, after row simplification

with the smaller rows, the modified Y now has value w: canceling powers of 2 that appear in

y but not in w, and preserving those that do appear, as claimed.

Suppose on the other hand that Emmy moves in the Y game, instead of X. David need

merely the make the corresponding move in X that was described in the cases above. This

covers all the cases, and we have shown that X ` Y ” 0.
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Question 2¨7 .
To see why this trick with powers of 2 not work with higher powers, suppose you try to write

a Nim game which consists or one row of 2 pebbles as a series of rows of the powers of 3 that

add up to 2. What goes wrong? (This also show why it won’t work with larger powers, either.)

Nimber addition

Now we have determined that we can always write the value of a game as sums of powers

of 2, it becomes easy to add and subtract them.

Nim Addition Theorem. Let x and y be the respective values of Nim games X and Y. We know

x ` x ” 0, so without loss of generality, suppose x ą y, suppose 2
i ď x ă 2

i`1
, and 2

j ď y ă 2
j`1

.

Choose r and s such that x “ 2i ` r and y “ 2j ` s. Then:

• if i “ j, then x` y ” r ` s;

• otherwise, x` y ” 2i ` pr ` yq.

Proof. First we claim that r ă 2
i
and s ă 2

j
. If one of them were false, say r ě 2

i
, then we

could write r “ 2i ` t and then x “ 2i ` p2i ` tq “ 2ˆ 2i ` t “ 2i`1 ` t. This contradicts the

choice of i as the largest power of 2 that is smaller than x.

We now consider the sum x ` y “ p2i ` rq ` p2j ` sq. By Questions 2.4 and 2.5, the com-

mutative and associative properties hold. If i “ j, they allow us to rewrite the sum as

x` y ”
`

2
i
` 2

j
˘

` pr ` sq ” 0` pr ` sq ” r ` s,

as claimed. Otherwise, they allow us to rewrite the sum as

x` y ” 2
i
`
“

r `
`

2
j
` s

˘‰

” 2
i
` pr ` yq ,

as claimed.

Example 2¨8. Consider the Nim games with values 3 and 5. We can apply the Nim Addition

Theorem several times on these values:

5` 3 “ p4` 1q ` 3

” 4` p1` 3q

” 4` p3` 1q

” 4` rp2` 1q ` 1s

” 4` r2` p1` 1qs

“ 4` p2` 0q

” 4` 2

” 6.

The Nim Addition Theorem gives us an easy, recursive algorithm to add the values x and y

of two games: cancel or “pop out” the largest power of two. Recursive algorithms are a little

difficult, but this one is easy to “flatten,” as follows:



CHAPTER 2. ALGEBRAIC SYSTEMS AND STRUCTURES 44

• Write x and y in terms of powers of 2.

• Cancel out equal powers.

• Simplify the result.

Example 2¨9. Earlier you showed that 1 ` 3 ” 2. The algorithm we just defined would have

you do it this way:

1` 3 “ 1` p1` 2q “ p1` 1q ` 2 ” 0` 2 ” 2.

We can do this more generally. Look at the original Nim game with 3, 5, and 7 pebbles in each

row. Its value is

3` 5` 7 “ p�1` A2q ` p�1` �A4q ` p1` A2` �A4q ” 1.

Question 2¨10 .
Use the Nim Addition Theorem to show that if X and Y are games with values x “ 1 and y “ n,

where n is even, then x` y ” 1` n and 1` p1` nq ” n.

Question 2¨11 .
Write a Nim Addition table for the game values from 0 to 10.

What about Ideal Nim?

Ideal Nim exhibits a similar phenomenon. Eventually, the players divide the natural lat-

tice into two parts. If a player divides the playing field into two, visually symmetric regions,

she can force a win. For instance, suppose the game starts in this form, which you should

recognize as the first game in Question 1.8:

If Emmy chooses the position p2, 2q, then she can reply to David’s subsequent choices with a

symmetric choice:



CHAPTER 2. ALGEBRAIC SYSTEMS AND STRUCTURES 45

Again, not every game is visually symmetric, but sometimes a player can force a chronological

symmetry. That is, you can turn the game into something that is effectively symmetric. For

instance, suppose the game starts in this form, which you should recognize as the beginning

of the game that leads to the second configuration in Question 1.10:

If Emmy chooses the position p0, 2q — giving precisely the second configuration in Ques-

tion 1.10 — then she can force a chronological symmetry in the following way:

• if David chooses pa, 0q, Emmy should choose pa´ 1, 1q;

• if David chooses pa, 1q, Emmy should choose pa` 1, 0q.

Try this a few times to make sure you see how it works.

So the game can be won by chronological symmetry — in fact, the game is always won by

chronological symmetry. Can we model this strategy arithmetically? What sort of properties

should this arithmetic enjoy? The case of a visually symmetric game suggests the following.

Fact 2¨12. If x is a value of a configuration of the game, then x cancels itself.

You can sort-of see this in the first game above: if we start with the choice of p2, 2q, then

we can mirror any subsequent choice of pa, bqwith pb, aq, which is really the same move in an

independent game.

This is not so easy to see in the second game, which is not visually symmetric. One way

of seeing this property in the non-symmetric case is to define a new game, say “Dual Ideal

Nim” (DIM), where players play two games of Ideal Nim, on two different lattices, at the same

time. Were the Forbidden Frontier identical in each game, David would always win: whatever

position Emmy selects in one game, David can select the exact same position in the second,

showing that any move cancels itself. Again, it will help to draw a game of DIM that is based

on the non-symmetric configuration to see what is going on.

As with Nim, the self-canceling symmetry of Ideal Nim implies a self-canceling arithmetic

where x ` x ” 0 for any value of x. It is possible, though not easy, to assign values to every

game of Ideal Nim; while it bears similarities to the technique we outlined for Nim, the fact

that we cancel in two directions makes it extraordinarily difficult to compute more than the

simplest values. Because of this there is no feasible way to decide how to play most games of

Ideal Nim.

Self-canceling arithmetic

This self-canceling property x` x ” 0 seems odd: how can you add x to itself and obtain

zero, unless x “ 0 already? Is there a more serious mathematical ground for this?
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As a matter of fact, yes, and you use it every day! For instance, if you want to know the

time 12 hours from now, and the time 12 hours after that, you could add 12 twice, working

out the special aspects of a clock — or you could take advantage of the fact that adding x “ 12

twice has the effect of canceling itself out! Indeed, if you want to know the time after y hours

has passed, just add y and divide by 24; the remainder (!) tells you the current time.

Technically, time goes on and on without end, so we could list the hours from here to

eternity as t0, 1, 2, . . . u, which just so happens to be N. But when you actually compute the

hour of a day, you only work with the hours t1, 2, 3, . . . , 11u (if you use the conventional 12-

hour clock) or t0, 1, 2, . . . , 23u (if you use a 24-hour clock). But aside from the fact that there

are 24 hours in a day, from a mathematical point of view there’s nothing really special about
12 or 24. In other situations and applications, it could be useful to play the same game with

almost any other integer.

Example 2¨13. The Roman general Julius Cæsar used a system called the Cæsar cipher to

encrypt messages between separated army units. We can describe it mathematically in this

fashion:

• replace the letters in the message with the numbers A “ 1, B “ 2, C “ 3, . . . , Z “ 26;

• add 3 to each number in the message;

• if the value of a number is greater than 26, subtract 26 from that number;

• obtain the encrypted message by replacing the numbers with the letters 1 “ A, 2 “ B,

3 “ C, . . . , 26 “ Z.

Decryption consists of the very straightforward process of subtracting 3 from the letters’ val-

ues, rather than adding. This is just like the clock, but using 26 instead of 24 (or 12).

Question 2¨14 .
Can you decrypt the following message, written using the Cæsar cipher?

GDCCOHPHZLWKPDWK

Question 2¨15 .
The Romans varied the Cæsar cipher by changing the second step. Rather than add 3 to each

number in the message, they might add a different number instead, or even subtract. Know-

ing that the following message was generated using a Cæsar cipher, though you don’t know

what number was added or subtract, nor even whether it was added or subtracted, can you

identify the precise technique and decrypt it?

THAOLTHAPJZPZAOLXBLLUVMAOLZJPLUJLZ

Hint: The most frequently used letters in English are e, t, and a. Look for a letter that appears

frequently in the message, and see if assigning it to one of those three does the trick.
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Clockwork arithmetic of integers

Through the rest of this chapter, d is a fixed, nonzero integer. We use Z for the integers,

so we’ll adopt Zd for the set of all remainders from dividing by d. We’ll use d “ 4 for most

examples, and an undetermined d for general reasoning. The Division Theorem tells us that

remainders must be both nonnegative and smaller than d, so in the examples we look at Z4 “
t0, 1, 2, 3u, while in general we think about Zd “ t0, 1, 2, . . . , d´ 1u.

Let a, b P Z. Suppose the Division Theorem gives us quotients p, q and remainders r, s such

that a “ pd ` r and b “ qd ` s. What can we say about the remainder of a ` b? On the one

hand, substitution gives us

a` b “ pp` qq d` pr ` sq ,

so we might be tempted to say that the remainder is r` s. Unfortunately, that’s not always a

remainder.

Example 2¨16. With d “ 4, a “ 7, and b “ ´22, we have r “ 3 and s “ 2. The remainder of

a` b “ ´15 is 1, but r ` s “ 5, which isn’t even a remainder!

Let’s not give up quite yet. You may have noticed a relationship between 1 (the actual

remainder of a` b) and 5 (the sum of the remainders of a and b): the remainders are equal. If

you try different values of a and b, you will observe a similar result: even if r` s isn’t equal to

the remainder of a` b, the remainders of r` s and a` b are equal. If you try different values

of d, you will observe the same phenomenon.

Theorem 2¨17. Let r and s be the remainders of dividing integers a and b by d. The remainder of a`b

is the same as the remainder of r ` s (both when divided by d).

Proof. Let u be the remainder of r ` s. Let qa, qb, qr`s be the quotients of division of a, b, and

r ` s by d. By definition,

r ` s “ qr`sd` u.

By substitution,

a` b “ pqad` rq ` pqbd` sq

“ pqa ` qbq d` pr ` sq

“ pqa ` qbq d` pqr`sd` uq

a` b “ pqa ` qb ` qr`sq d` u. (2.1)

Closure of addition means qa`qb`qr`s is an integer, so line (2.1) satisfies criterion (D1) of the

Division Theorem. But u is a remainder, so it also satisfies criterion (D2)! Division of integers

gives us a unique remainder, so the remainder of a` b is u, the remainder of r ` s.

It’s nice to know that the remainders of a ` b and r ` s are the same, but the theorem

doesn’t tell us any relationship between the a ` b and r ` s, or at least not an obvious one. In

fact, we can specify this relationship with precision.

Example 2¨18. The remainders in the Example 2¨16 were 1 and 5. Notice that 5 ´ 1 “ 4. In

fact, for any number c and its remainder r, their difference c ´ r will be a multiple of 4.
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Again, this applies to any non-zero integer d. This is almost obvious, since we can rewrite

criterion (D1) of the Division Theorem as

dq “ c ´ r,

an explicit statement that d divides c ´ r. We can visualize this in the following way:

0 ¨ ¨ ¨ r ¨ ¨ ¨ d´ 1 0` d ¨ ¨ ¨ r ` d ¨ ¨ ¨ pd´ 1q ` d ¨ ¨ ¨ 0` qd ¨ ¨ ¨ r ` qd “ a ¨ ¨ ¨ pd´ 1q ` qd

loooooooooooooooooooooooomoooooooooooooooooooooooon

d

looooooooooooooooomooooooooooooooooon

d

¨ ¨ ¨
loooooooooooooomoooooooooooooon

d

Division by d involves repeated subtraction of d. Each of the values r, r ` d, . . . , r ` qd is a

distance of d values from the next. So, of course d divides the difference of a number and its

remainder from division by d.

This relationship further extends to any two numbers with the same remainder.

Theorem 2¨19. Two integers a and b have the same remainder after division by d if and only if d

divides a´ b.

Proof. Assume that a and b have the same remainder r after division by d. The Division Theo-

rem tells us that we can find integers p, q such that a “ pd` r and b “ qd` r. By substitution,

a´ b “ ppd` rq ´ pqd` rq “ pp´ qq d.

By definition, d divides a´ b.

Conversely, assume that d divides a´ b. Let r and s be the remainders after dividing a and

b by d, respectively. Find p, q P Z such that a “ pd` r and b “ qd` s, and choosem P Z such

that dm “ a´ b. By substitution and a little algebra,

dm “ ppd` rq ´ pqd` sq

d pm´ p` qq “ r ´ s.

The left hand side is a multiple of d. As the difference of two remainders, the right hand side

is strictly between ´d and d; as it equals the left hand side, it must also be a multiple of d.

This is possible only if r´ s “ 0, or r “ s. So a and b have the same remainder r after division

by d.

This relationship is sufficiently important that we write a ”d bwhenever a and b have the

same remainder after division by d— or, equivalently, whenever d divides a´ b. We call d the

modulus of the expression a ”d b. When the divisor is obvious, we simply write a ” b. This

is sometimes pronounced, “b is equivalent to b (modulo d).”

This is similar to adding time. On a traditional clock, adding 8 hours to ten o’clock doesn’t

give you 18 o’clock; it gives you 6 o’clock: and the 6 comes from subtracting 12, the modulus.

Put another way, 18 ”12 6.

How does this relate to Nim and Ideal Nim? Recall that we wanted an arithmetic where

x` x “ 0. Consider the set Z2 “ t0, 1u; in this case, 0` 0 ” 0 and 1` 1 ” 0. This isn’t large

enough to model all the possible values of our games, but it does show that at least one set has

an arithmetic where this makes sense. Eventually we will find more.
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Question 2¨20 .
Show that clockwork multiplication is consistent; that is, if r and s are the respective remain-

ders of dividing integers a and b by d, then the remainder of ab is the same as the remainder

of rs. In short, ab ”d rs.

Question 2¨21 .
On the other hand, show that clockwork division has the following undesirable behavior: for

at least one d P N`, you can find nonzero integers a, b, c P Zd such that ab ”d ac but b ıd c.

This shows that you cannot divide by a, even though it is non-zero. This will be a big deal

later.

Question 2¨22 .
Continuing from Question 2.21, can you find a particular d P N` where clockwork division

does behave desirably? You’re looking for a d where every nonzero a, b, c P Zd satisfying

ab ” ac also satisfy b ” c.

Hint: Neither of the previous two problems requires a large value of d.

2¨2 Properties and structure

If people do not believe that mathematics is simple, it is only because they do not

realize how complicated life is.

— John von Neumann

We just saw that addition of remainders is in some sense “sensible.” Just how similar are

addition of integers and addition of remainders? Both are examples of operations; but what

are those? Let S and T be sets. A binary operation from S to T is any function f : Sˆ SÑ T.

If S “ T, we say that f is a binary operation on S. We will call the combination of a set with

one or more binary operations an algebraic system.

The most familiar algebraic system is the natural numbers under addition. You’ve met

many other algebraic systems:

• polynomials under addition and multiplication;

• rational numbers under addition and multiplication;

• matrices under addition and multiplication; and just recently you met

• Zd under addition.

Over the remainder of this course, you will meet and study a number of other algebraic sys-

tems.

Properties with one operation

The “fundamental” sets we’ve looked at so far are N, N`, and Z. Let’s look at the naturals

first; the operation we associate with them is addition. What do we know about that addition?
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• The sum of two natural numbers is also natural. We call this closure, and say that N is

closed under addition.

• For the sum of three natural numbers, it doesn’t matter if we add the first two numbers

first, or the last two numbers first; the answer is always the same. We call this the

associative property, and say that N is associative under addition.

• The sum of 0 and a natural number n is always n. We call 0 the identity of N, and say

that N satisfies the identity property under addition..

Before looking at remainders, let’s ask ourselves: do N2
and the monomials in x and y satisfy

this property?

Let’s look at monomials first. Right away, we see a problem: the sum of two monomials is

not a monomial; if they are unlike, we get a binomial; and if they are alike, we get a term with

a coefficient. If you look back at our definition of monomials, you’ll notice that we allow only

the product of variables, and not a coefficient, as well. So monomial addition is not closed.

However, monomial exponents are natural numbers, and we add exponents when we mul-

tiply polynomials. Does monomial multiplication satisfy the above properties?

• The product of two monomials t “ x
a
y
b

and u “ x
c
y
d

is v “ x
a`b
y
c`d

. The naturals are

closed, so a ` b and c ` d are natural, so v is in fact a monomial. Since t and u were

arbitrary, monomial multiplication is closed.

• The product of three monomials t “ xayb, u “ xcyd, and v “ xmyn gives

ptuq v “
`

x
a`c
y
b`d

˘

v “ x
pa`cq`m

y
pb`dq`n

if we multiply the first two first, and

t puvq “ t
`

x
c`m
y
d`n

˘

“ x
a`pc`mq

y
b`pd`nq

if we multiply the second two first. These two products are equal if pa` cq ` m “

a` pc ` mq and pb` dq ` n “ b` pd` nq. These are natural numbers, which we know

to be associative, so they are equal! Monomial multiplication is associative.

• What about an identity? It makes sense that the multiplicative identity should be 1,

since 1 ˆ xayb “ x
a
y
b
, but is 1 a monomial? Of course! 1 “ x

0
y
0
, an empty product. So

monomial multiplication has an identity.

Don’t let yourself be tempted to think that the identity should be 0, as with natural number

addition. What matters is not an element’s appearance, but its behavior. “Judge not a book by

its cover,” they say; neither should you judge a number by its appearance. Not only is 0 not

obviously a monomial, but it doesn’t behave under multiplication the way an identity should

behave: 0 ¨ t “ 0, but we need 0 ¨ t “ t. Fortunately, 1 fits the bill.

The correspondence between monomials and the lattice suggests that addition on the

lattice also satisfies these properties:

• If we add two lattice points pa, bq and pc, dq, the sum pa` c, b` dq is also a lattice point.

So the lattice is closed under addition.
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• If we add three lattice points pa, bq, pc, dq, and pm, nq, the sum from adding the first two

first is

rpa, bq ` pc, dqs ` pm, nq “ pa` c, b` dq ` pm, nq “ ppa` cq ` m, pb` dq ` nq ,

while the sum from adding the second two first is

pa, bq ` rpc, dq ` pm, nqs “ pa, bq ` pc ` m, d` nq “ pa` pc ` mq , b` pd` nqq .

These two sums are equal on account of the associative property of natural number

addition.

• What about an identity? The lattice point corresponding to the monomials’ identity,

1 “ x0y0, is p0, 0q. In fact, p0, 0q ` pa, bq “ pa, bq “ pa, bq ` p0, 0q.

The operations on the three sets are superficially different: we add naturals and lattice points,

but multiply monomials. Nevertheless, they share the same substantive structure.

You can probably remember other sets that share this structure, so it must be important.

Let’s give it a special name. We’ll use the letter S to stand in for a generic set, and adopt

the symbol ˙ to stand in for a generic operation, a symbol that combines both addition and

multiplication. We say that S is a monoid under ˙ if together they satisfy the following

operations.

closure if s, t P S, then s˙ t P S also;

associative if s, t, u P S, then s˙ pt˙ uq “ ps˙ tq˙ u; and

identity we can find я P S such that if s P S, then я ˙ s “ s “ s˙ я.
1

Take note of an important point: for closure, it’s important that s˙ t be not only defined, but

an element of S! If it isn’t an element of S, then S is not closed under the operation, and can’t

be a monoid. Also notice that we use я to stand in for a generic identity element, rather than

risking 1 or 0.

You may have noticed that monoids lacks some useful properties. To start with,

commutative if s, t P S, then s˙ t “ t˙ s.

While many monoids do enjoy that property, many don’t. You’ll meet some non-commutative

monoids later on. When a monoid is commutative, we call it a commutative monoid.

What about this property?

inverse if s P S, then we can find t P S such that s˙ t “ я “ t˙ s.

1
Depending on the set and operation, the identity could be the number 0, the number 1, a matrix, a function,

or something elese entirely. When we don’t know (and we often don’t) we will use я to stand for a generic

identity. This letter which looks like a backwards R is a Cyrillic letter “ya”; that already helps it stand out, but it

has the added benefit that in some Slavic languages it means “I,” which makes it apt for the “identity.”
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A monoid that enjoys the inverse property is a group. We usually write s
´1

for the inverse of

s, so we can rewrite the equation s˙ t “ я as s˙ s
´1 “ я. . . with one exception. If we know

a group’s operation is addition, we write its identity as 0, and the inverse of s as ´s; in that

case, we rewrite the equation s˙ t “ я as s` p´sq “ 0.

Groups that enjoy the commutative property are usually called abelian groups, not com-

mutative groups.

Question 2¨23 .
Consider the set B “ tF, Tu with the operation_ where

F _ F “ F

F _ T “ T

T _ F “ T

T _ T “ T.

This operation is called Boolean or.
Is pB,_q a monoid? If so, is it a group? Explain how it satisfies each property.

Question 2¨24 .
Consider the set B “ tF, Tu with the operation^ where

F ^ F “ F

F ^ T “ F

T ^ F “ F

T ^ T “ T.

This operation is called Boolean and.

Is pB,^q a monoid? If so, is it a group? Explain how it satisfies each property.

Question 2¨25 .
Consider the set B “ tF, Tu with the operation‘ where

F ‘ F “ F

F ‘ T “ T

T ‘ F “ T

T ‘ T “ F.

This operation is called Boolean exclusive or, or xor for short.

Is pB,‘q a monoid? If so, is it a group? Explain how it satisfies each property.
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Question 2¨26 .
Which of the sets N`, N, and Q are

(a) commutative monoids under addition?

(b) commutative monoids under multiplication?

(c) abelian groups under addition?

(d) abelian groups under multiplication?

Question 2¨27 .
Recall that if S is a set, then P pSq is the power set of S; that is, the set of all subsets of S.

(a) Suppose S “ ta, bu. Compute P pSq, and show that it is a monoid under Y (union). Is it

also a group?

(b) Let S be any set. Show that P pSq is a monoid underY (union). Is it also a group?

Question 2¨28 .

(a) Suppose S “ ta, bu. Compute P pSq, and show that it is a monoid under X (intersection).

Is it also a group?

(b) Let S be any set. Show that P pSq is a monoid underX (intersection). Is it also a group?

Definition 2¨29. Let G be any group.

1. For all x, y P G, define the commutator of x and y to be x
´1
y
´1
xy. We write rx, ys for the

commutator of x and y.

2. For all z, g P G, define the conjugation of g by z to be zgz
´1

. We write g
z

for the conju-

gation of g by z.

Question 2¨30 .

(a) Explain why rx, ys “ e iff x and y commute.

(b) Show that rx, ys
´1
“ ry, xs; that is, the inverse of rx, ys is ry, xs.

(c) Show that pgzq
´1
“ pg´1q

z
; that is, the inverse of conjugation of g by z is the conjugation

of the inverse of g by z.

(d) Fill in each blank of Figure 2.30 with the appropriate justification or statement.
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Claim: rx, ysz “ rxz, yzs for all x, y, z P G.

Proof:

1. Let _____.

2. By _____, rxz, yzs “ rzxz´1, zyz´1s.

3. By _____, rzxz´1, zyz´1s “ pzxz´1q
´1
pzyz´1q

´1
pzxz´1q pzyz´1q.

4. By Question _____,

`

zxz
´1
˘´1 `

zyz
´1
˘´1 `

zxz
´1
˘ `

zyz
´1
˘

“

“
`

zx
´1
z
´1
˘ `

zy
´1
z
´1
˘ `

zxz
´1
˘ `

zyz
´1
˘

.

5. By _____,

`

zx
´1
z
´1
˘ `

zy
´1
z
´1
˘ `

zxz
´1
˘ `

zyz
´1
˘

“
`

zx
´1
˘ `

z
´1
z
˘

y
´1

`

z
´1
z
˘

x
`

z
´1
z
˘ `

yz
´1
˘

.

6. By _____,

`

zx
´1
˘ `

z
´1
z
˘

y
´1

`

z
´1
z
˘

x
`

z
´1
z
˘ `

yz
´1
˘

“

“
`

zx
´1
˘

ey
´1
exe

`

yz
´1
˘

.

7. By _____, pzx´1q ey´1exe pyz´1q “ pzx´1q y´1x pyz´1q.

8. By _____, pzx´1q y´1x pyz´1q “ z px´1y´1xyq z´1.

9. By _____, z px´1y´1xyq z´1 “ z rx, ys z´1.

10. By _____, z rx, ys z´1 “ rx, ys
z
.

11. By _____, rxz, yzs “ rx, ys
z
.

Figure 2¨1: Material for Question 2.30(c)
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So does addition of remainders form a monoid, or even a group?

To answer this question, we first have to make precise what sort of addition we mean. We

have to fix a divisor, so let’s go ahead and use d in general, and d “ 4 for examples, just as

before.

Remainders aren’t closed under ordinary addition (Example 2¨16), but clockwork addition

is closed (Theorem 2¨17), so let’s try that. We’ll use the symbol‘d to make it clear that we’re

thinking about the result of clockwork addition, or just plain ‘ when no one is looking and

it’s clear which d we mean, which is pretty much all the time. That is, r “ a‘ bmeans that r

is the remainder from division of a` b by d.

Is clockwork addition associative? Let a, b, c P Zd. Suppose that r “ a‘ b and s “ pa‘ bq‘ c.

By definition, r ” a ` b, so by substitution, s ” r ` c. Use Theorem 2¨19 to choose p, q P Z
such that dp “ pa` bq ´ r, and dq “ pr ` cq ´ s. We need to show that s “ a ‘ pb‘ cq, or

equivalently, r` c ” a`pb` cq. The definition of congruence impels us to consider whether

d | rpa` pb` cqq ´ pr ` cqs .

This is true if and only if d | pa` b´ rq. We have already stated that dp “ pa` bq ´ r, which

by definition means d | pa` b´ rq.

Does clockwork addition have an identity element? It makes sense to guess that 0 is the identity

of clockwork addition. Let a P Zd; a` 0 “ a, a remainder, so a‘ 0 “ a and 0‘ a “ a, as well.

We have shown that Zd is a monoid under addition! It is commutative since a` b “ b` a,

so a‘ b “ b‘ a, as well. Let’s see if it is also a group.

Does clockwork addition satisfy the inverse property? Let a P Zd; we showed that 0 is the

identity, so we need to find b P Zd such that a ` b “ 0 and b ` a “ 0. We claim that d ´ a

is the inverse. To see why, let b “ d ´ a. Notice that a ` b “ 0 and b ` a “ 0, as desired.

However, it’s not enough for an inverse to exist somewhere; it must exist in the same set! We

have to check that b is an actual element of Zd.
The elements of Zd are t0, 1, 2, . . . , d´ 1u. If we can show that d´ a is one of those num-

bers, we’re done. We know b P N because b “ d´ a, and a ă d, so that’s fine. However, we do

not have b P Zd when a “ 0, because d ´ a “ d R Zd! This is a mistake, but it’s an important

mistake to point out, because it can be easy to overlook. Fortunately, we can fix this.

Most values of awork fine with the formula b “ d´ a; the only one that fails is a “ 0. It’s

easy to verify that 0 is its own inverse: 0 ` 0 “ 0, done. So, one way to bridge the gap is to

define b “ a for a “ 0, and b “ d´ a otherwise. A second, equivalent, way to bridge the gap:

define b as the remainder of d´ awhen you divide by d; we leave it to you to explain why this

resolves the matter.

Question 2¨31 .
Show that defining b as the remainder of d´awhen we divide by d always obtains the additive

inverse of a in Zd.

We have now encountered finite groups, and we will encounter more. It’s useful to think

in terms of their size, for which we use a special term.

Definition 2¨32. If a group has a finite number of elements, we say its order is that number

of elements. If a group has an infinite number of elements, we say its order is infinite.
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Question 2¨33 .
The smallest group has order 1. What properties does that only element have?

Question 2¨34 .
We did not indicate whether Zd was a commutative monoid, and thus an abelian group. Is it?

What about structures with two operations?

So far, we’ve dealt only with structures that have one operation; we considered addition

of numbers, clockwork addition, and monomial multiplication. You may be wondering how

we classify two operations that interact. For example, how might addition and multiplication

interact? You may recall the following property.

distributive if s, t, u P S, then sˆ pt ` uq “ sˆ t ` sˆ u.

A ring is a set Swhereˆ satisfies the properties of a monoid, addition satisfies the properties

of an abelian group, and the two interact via the distributive property.
2

If the multiplication

is also commutative, we call S a commutative ring. We always write a generic ring’s additive

identity as 0, and a generic ring’s multiplicative identity as 1.

What about division? A unit is an element of a ring with a multiplicative inverse. A field
is a commutative ring where you can “divide” by non-zero elements, because they all have

multiplicative inverses. The integers are not a field; after all, 2{3 R Z, in part because the

multiplicative inverse of 3 is not in Z. We fix that in the following way.

• The set of rational numbers is the set of all well-defined fractions of integers; in set-

builder notation, we’d write,

Q “
 

a{b : a P Z and b P N`
(

.

Just as the integers “enable” subtraction, the rationals “enable” division. That is, while you

can subtract naturals, you aren’t guaranteed a natural, but when you expand your horizon

to include integers, you are always guaranteed an integer. Likewise, while you can divide

integers, you aren’t guaranteed an integer, but when you expand your horizon to include

rationals, you are always guaranteed a rational. — With one exception: a number with 0

in the denominator has issues that only a nonstandard analyst can handle. This is why we

qualify our fractions as “well-defined” for the same reason that the set-builder notation puts

b P N`.
3

2
Many texts do not assume a ring has a multiplicative identity, but others do. We side with the latter for the

sake of simpler exposition and theorems.
3
Why can’t we divide by zero? Basically, it doesn’t make sense. Suppose that we could find a number c such

that 1˜ 0 “ c. The very idea of division means that if 1˜ 0 “ c, then 1 “ 0 ¨ c, but 0 ¨ c “ 0 for any integer c, so

we can’t have 1 “ 0 ¨ c. We could replace 1 by any nonzero integer a, and achieve the same result. Admittedly,

this reasoning doesn’t apply to 0˜0, but even that offends our notion of an operation! If we were to assign some

c “ 0˜0, we would not be able to decide between 0˜0 “ 1 (since 0 “ 0 ¨1), 0˜0 “ 2 (since 0 “ 0 ¨2), 0˜0 “ 3

(since 0 “ 0 ¨ 3), and so forth. Then there is the matter of the grouping model of division; dividing 4 ˜ 0 “ c

implies that there are exactly c groups of 0 in 4, but no finite c satisfies this assertion.



CHAPTER 2. ALGEBRAIC SYSTEMS AND STRUCTURES 57

Question 2¨35 .
Which of the sets N`, N, and Q are

(a) commutative rings under ordinary addition and multiplication?

(b) fields under ordinary addition and multiplication?

Question 2¨36 .
Is pB,_,^q a ring? Is it a field? (Here we are saying that_ stands in for the addition, while^

stands in for the multiplication.)

Question 2¨37 .
Is pB,‘,^q a ring? Is it a field? (Here we are saying that‘ stands in for the addition, while^

stands in for the multiplication.)

Question 2¨38 .
Let’s return to the discussion of cardinality in Question 1¨18. We had concluded with the weird

result that the cardinalities of N and Z are the same.

Speaking of weird results, show that N and Q have the same cardinality. This is a little

harder, so we’re going to cheat. First, explain why Q “obviously” has cardinality no smaller

than N’s, by showing that you can match every element of N to an element of Q, and have

infinitely many elements of Q left over. Then, show that N “obviously” has cardinality no

smaller than Q’s, because if we arrange the elements of Q according to the following table:

0{1 0{2 0{3 0{4 ¨ ¨ ¨
1{1 1{2 1{3 1{4 ¨ ¨ ¨
2{1 2{2 2{3 2{4 ¨ ¨ ¨
3{1 3{2 3{3 3{4 ¨ ¨ ¨
...

...
...

...
. . .

then you can match every element ofQ to an element ofN, and have infinitely many elements

of N left over. (Think diagonally. — No, the other diagonally.) Since neither’s cardinality is

smaller than the other’s, it seems reasonable to conclude they have equal cardinality.

Cayley tables

A useful tool for analyzing operations on small sets is an abstract multiplication table,

sometimes called the Cayley table. For instance, the Cayley tables for addition and multipli-

cation in Z4 look like this:

‘ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

b 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1
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You may notice some interesting properties: every element of Z4 appears exactly once in

each row or column of the first table, but not the second. Another strange phenomenon is

that 2b 3 “ 2b 1 even though 3 ‰ 1.

Question 2¨39 .
List the elements of Z2, and write its Cayley table. Notice how this starts to justify our notion

of a self-canceling arithmetic.

Question 2¨40 .
We observed that every element appears exactly once in each row or column of the Cayley

tables above. We can write this mathematically as, if a˙ c “ d and b˙ c “ d, then a “ b.

(a) To see that the statement might not be true in a monoid, build the Cayley table of Z6
under multiplication. Show that it satisfies the properties of a monoid, but not of a group.

Then identify elements x, y, z P Z6 such that xb z “ yb z, even though x ‰ y. Isn’t that

weird?

(b) A phenomenon related to this one is that with natural numbers, if ab “ 0, then a “ 0

or b “ 0. That’s not true in an arbitrary monoid! Identify elements a, b P Z6 such that

ab b “ 0, but a, b ‰ 0. How are these elements related to the result in (a)? Hint: You’ve

already done this problem; it’s just phrased differently. See Question 4.72.

(c) Prove that, in a group G, if a, b, c, d P G, a˙ c “ d and b˙ c “ d, then a “ b. Hint: Since it’s

true in a group, but not in a monoid, you should use a property that is special to groups,

but not monoids.

(d) Use (c) to explain why every element d of a group G appears exactly once in each row or

column of a group’s Cayley table. Hint: If it appears in two rows, what equation does that

imply?

In a ring, multiplication by zero behaves exactly as you’d expect.

Fact 2¨41. If R is a ring and a P R, then aˆ 0 “ 0 and 0ˆ a “ 0.

Why? By the identity and distributive properties, a ˆ 0 “ a ˆ p0` 0q “ a ˆ 0 ` a ˆ 0. Let

b “ aˆ 0 and condense the chain to

b “ b` b.

Add´b to both sides, and apply some properties of rings, and we have

´b` b “ ´b` pb` bq

0 “ p´b` bq ` b

0 “ 0` b

0 “ b.

By substitution, aˆ 0 “ 0.
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On the other hand, multiplication to zero is a bit funny — not so much “ha ha funny” so

much as “strange funny.”

Definition 2¨42. Let R be a ring, and a, b P R. If ab “ 0 and neither a “ 0 nor b “ 0, then we

call a and b zero divisors. A ring without zero divisors satisfies the zero product property;

that is, if ab “ 0, then a “ 0 or b “ 0. (“If the product is zero, a factor is zero.”) A ring that

satisfies the zero product rule is an integral domain.

Example 2¨43. • The integers Z are an integral domain.

As you have just seen, Zd is not always an integral domain, but sometimes it is. When?

Question 2¨44 .
Carry out enough computations in Z3, Z4, Z5, and Z6 to answer the following: For which

values of d will Zd have zero divisors, and for which values of d is Zd an integral domain?

What property do the rings with zero divisors share, as opposed to the integral domains?

Question 2¨45 .
Show that every field is an integral domain. Conversely, name an integral domain that is not

a field.

2¨3 Isomorphism

Plus ça change, plus c’est la même chose.

(The more things change, the more they stay the same.)

— French proverb

We’ve seen several important algebraic systems that share the same structure. For instance,

pN,`q, pZd,`q, and pM,ˆq are all monoids. When looking at two algebraic systems that share

a basic structure, mathematicians sometimes ask themselves, How similar are they? Is the sim-

ilarity more than superficial? Could it be that their Cayley tables are essentially identical, so

that one of the systems are, from an algebraic view, exactly the same?

You might also look at it a different way. Two algebraic systems can have an initially

different appearance, but while working with both you notice that certain behaviors are the

same. It’s easier to work with one system than the other; in particular, it’s easier to show

that a pleasant property holds for one system than for the other. If their Cayley tables are

essentially identical, then you know the “difficult” system does in fact share that pleasant

property, as well.

The technical word for this is isomorphism, and we can rephrase our question this way:

How can we decide whether two algebraic systems are isomorphic?

In general, we replace “algebraic system” with the particular structure that interests us:

How can we decide whether two monoids are isomorphic?
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How can we decide whether two groups are isomorphic?

How can we decide whether two rings are isomorphic?

How can we decide whether two fields are isomorphic?

This section considers how to do this.

Question 2¨46 .
Recall the structures Boolean or pB,_q, Boolean and pB,^q, and Boolean xor pB,‘q (Ques-

tions 2.23, 2.24, and 2.25).

All three are monoids, but inspection of the Cayley tables will show that two are more

or less the same (hence, “isomorphic” in our intuitive notion of the term), but the third is

different from the others. Which two are isomorphic? Why isn’t the third isomorphic?

Be careful on this problem — superficially, none of their Cayley tables look the same. You

have to look closely at the layout of the Cayley table before you notice the pattern.

The idea

Imagine two offices. How would you decide if the offices were equally suitable for a certain

job? You first need to know what tasks have to be completed, and what materials you need.

If the tasks require reference books, you would want a bookshelf in the office. If they require

writing, you would want a desk, perhaps a computer. If they require communication, you

might need a phone.

With such a list in hand, you can make an educated comparison between the offices. If

both offer the needed equipment, you’d consider both suitable for the job at hand. The precise

manner in which the offices satisfy these requirements doesn’t matter; if one’s desk is wood,

and the other’s is steel, that makes an aesthetic difference, but they’re functionally the same.

If one office lacked a desk, however, it wouldn’t be up to the required job.

Deciding whether two algebraic systems are isomorphic is similar. First, you decide what

structure you want to analyze. Next, you compare how the sets satisfy those structural prop-

erties. If you’re looking at finite monoids, an exhaustive comparison of their Cayley tables

might work, but the method is called “exhaustive” for a reason. Besides, we deal with infi-

nite sets like N often enough that we need a non-exhaustive way to compare their structure.

Functions turn out to be just the tool we need.

How so? Let S and T be any two sets. Recall that a function f : S Ñ T is a relation that

sends every input s P S to precisely one value in T, the output f psq. You have probably heard

the geometric interpretation of this: f passes the “vertical line test.” You might suspect at this

point that we are going to generalize the notion of function to something more general, just

as we generalized from the lattice and monomials to monoids. To the contrary, we specialize

the notion of a function in a way that tells us important information about a monoid.

SupposeM and N are monoids. If they are isomorphic, their monoid structure is identical,

so we ought to be able to build a function that maps elements with a certain behavior in M

to elements with the same behavior in N. (Table to table, phone to phone.) What does that

mean? Let a, b, c P M and x, y, z P N. If M and N have the same structure as monoids, with x

filling in for a, y filling in for b, and z filling in for c, we would expect that
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• if ab “ c, then

• xy “ z.

Question 2¨47 .
Suppose you know only two facts about an algebraic system pG,˙q: it forms a group, and G

holds exactly two elements, я (the identity) and g. You know neither the elements’ internal

structure, nor how the operation ˙ works. You know only that G is a group of two elements.

Show that, regardless of this profound ignorance, the group properties force exactly one Cay-

ley table on G. In other words, all groups of order 2 are isomorphic!
Hint: Try to build the Cayley table of G. You will encounter no ambiguity in the process,

forcing the conclusion that only one possible table exists.

Question 2¨48 .
Suppose you know only two facts about an algebraic system pG,˙q: it forms a group, and

G holds exactly three elements, я (the identity), g, and h. As before, you know neither the

elements’ internal structure, nor how the operation ˙ works. Show that, regardless of this

profound ignorance, the group properties force exactly one Cayley table on G. In other words,

all groups of order 3 are isomorphic!

Question 2¨49 .
Suppose you know only two facts about an algebraic system pG,˙q: it forms a group, and G

holds exactly four elements, я (the identity), g, h, and gh. As before, you know neither the

elements’ internal structure, nor how the operation ˙ works. Show that, regardless of this

profound ignorance, the group properties force exactly. . . two Cayley tables on G. (More than

one!) In other words, (a) not all groups of order 4 are isomorphic, and (b) there are exactly

two groups of order 4, “up to isomorphism!”

Definition 2¨50. In Question 2.49, you should have encountered exactly one ambiguity while

completing the Cayley table: what value can we assign a˙ a? The case where a
2 “ я is called

the Klein 4-group. The case where a
2 ‰ я should look like another system you’ve played

with.

The definition

Recall that our idea of isomorphism in monoids works as follows. For every a, b, c P M and

every x, y, z P N,

• if a corresponds to x, b corresponds to y, and c corresponds to z, and

• if ab “ c, then xy “ z.

In mathematics, we can say that “a corresponds to x” using function notation, f paq “ x. That

principle allows us to rewrite the equation xy “ z as

f paq f pbq “ f pcq .
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But remember, ab “ c, so substitution tells us the operation corresponds if

f paq f pbq “ f pabq . (2.2)

The identity ofM should also correspond to the identity of N, so we need to add the condition

f pяMq “ яN . (2.3)

When dealing with a group, the inverse of an element should correspond to the inverse its

corresponding element, which gives us a third condition, f px´1q “ a´1, which we rewrite as

f
`

x
´1
˘

“ f pxq
´1
. (2.4)

If we can pull off both (2.2) and (2.3) (as well as (2.4) in a group), we say that f is a ho-
momorphism, from the Greek words “homo” and “morphos”, meaning “same shape”. The

existence of a homomorphism tells us that the Cayley table of M has the same shape as a

subset of the Cayley table of N.

That’s not enough to answer the question. We don’t want to know merely whether some-

thing akin to M appears in N; we want M and N to be essentially identical. Just as we only need

one table in any office, we want the correspondence between the elements of the monoids to

be unique: in other words,

f should be one-to-one.

Finally, everything in N should correspond to something in M; if the offices are identical, we

shouldn’t find something useful in the second that doesn’t appear in the first. In terms of f ,

that means

f should be onto.

We summarize our discussion up to this point with the following definition:

Definition 2¨51. Let pS,˙q and pT, ‹q be monoids. If there exists a function f : S Ñ T such

that

• f pяSq “ яT (f preserves the identity)

and

• f pa˙ bq “ f paq ‹ f pbq for all a, b P S, (f preserves the operation)

then we call f amonoid homomorphism.

Now suppose pS,˙q and pT, ‹q are groups. If there exists a function f : SÑ T such that

• f pяSq “ яT, (f preserves the identity)

• f pa˙ bq “ f paq ‹ f pbq for all a, b P S, (f preserves the operation)

and
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• f pa´1q “ f paq´1 for all a P S, (f preserves inverses)

then we call f a group homomorphism.

Finally, suppose pR,ˆ,`q and pS,ˆ,`q are rings. If there exists a function f : RÑ S such

that

• f is a group homomorphism with respect to addition, and

• f is a monoid homomorphism with respect to multiplication,

then we call f a ring homomorphism.

If f is also a bijection, then we say M is isomorphic to N, write M – N, and call f an

isomorphism. (A bijection is a function that is both one-to-one and onto.)

We used pS,˙q and pT, ‹q in the definition to emphasize that they could stand for any two

algebraic systems, regardless of the operations involved.

An immediate goal, of course, is to show that the natural numbers under addition are

isomorphic (as monoids) to the monomials under multiplication. We’ll write X for the set

of all natural powers of x; that is, X “ t1, x, x2, . . . u. We have noticed already that monoid

multiplication works like the addition of natural numbers.

Example 2¨52. We claim that pX,ˆq is isomorphic to pN,`q. To see why, map f : XÑ N via

f pxaq “ a. First we show that f is a bijection.

To see that it is one-to-one, let t, u P X, and assume that f ptq “ f puq. By definition of X,

we can find a, b P N such that t “ x
a

and u “ x
b
. Substituting this into f ptq “ f puq, we find

that f pxaq “ f
`

x
b
˘

. The definition of f allows us to rewrite this as a “ b. However, if a “ b,

then x
a “ xb, and t “ u. We assumed that f ptq “ f puq for arbitrary t, u P X, and showed that

t “ u; that proves f is one-to-one.

To see that f is onto, let a P N. We need to find t P X such that f ptq “ a. Which t should

we choose? We want f
`

x
something

˘

“ a. We know that f
`

x
something

˘

“ something. We are

looking for a t that makes f ptq “ a, so the “natural” choice seems to be something “ a, or

t “ x
a
. That would certainly guarantee f ptq “ a, but can we actually find such an object t in

X? Since x
a P X, we can in fact make this choice! We took an arbitrary element a P N, and

showed that f maps some element of X to a; that proves f is onto.

So f is a bijection. Is it also an isomorphism? First we check that f preserves the operation.

Let
4
t, u P X. By definition of X, t “ x

a
and u “ x

b
for a, b P N. We now manipulate f ptuq

using definitions and substitutions to show that the operation is preserved:

f ptuq “ f
`

x
a
x
b
˘

“ f
`

x
a`b

˘

“ a` b

“ f px
a
q ` f

`

x
b
˘

“ f ptq ` f puq .

4
The definition uses the variables x and y, but those are just letters that stand for arbitrary elements of M.

HereM “ X and we can likewise choose any two letters we want to stand in place of x and y. It would be a very

bad idea to use xwhen talking about an arbitrary element of X, because there is an element of X called x. So we

choose t and u instead.
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The operation inX is multiplication; the operation inN is addition, so we should expect f ptq`

f puq at the end; the operations is indeed preserved.

Does f also preserve the identity? We usually write the identity of M “ X as 1, but this

just stands in for x
0
. On the other hand, the identity (under addition) of N “ N is the number

0. We use this fact to verify that f preserves the identity:

f pяMq “ f p1q “ f
`

x
0
˘

“ 0 “ яN .

(We won’t usually write яM and яN, but I’m doing it here to show explicitly how this relates to

the definition.)

We have shown that there exists a bijection f : X ÝÑ N that preserves the operation and

the identity. We conclude that X – N.

Question 2¨53 .
Earlier, you inspected the Cayley tables of pB,^q, pB,_q, and pB,‘q, and found that two were

isomorphic. Define an isomorphism f from one monoid to its isomorphic counterpart.

On the other hand, is pN,`q – pN,ˆq? You might think this easy to verify, since the sets

are the same. Let’s see what happens.

Example 2¨54. Suppose there does exist an isomorphism f : pN,`q Ñ pN,ˆq. What would

have to be true about f ? Let a P N such that f p1q “ a; after all, f has to map 1 to something!

An isomorphism must preserve the operation, so

f p2q “ f p1` 1q “ f p1q ˆ f p1q “ a
2

and

f p3q “ f p1` p1` 1qq “ f p1q ˆ f p1` 1q “ a
3
, so that

f pnq “ ¨ ¨ ¨ “ a
n

for any n P N.

So f sends every integer in pN,`q to a power of a.

Think about what this implies. For f to be a bijection, it would have to be onto, so every

element of pN,ˆq would have to be an integer power of a. This is false! After all, 2 is not an

integer power of 3, and 3 is not an integer power of 2. We have found that pN,`q fl pN,ˆq.
Question 2¨55 .
Both Z and 2Z are groups under addition.

(a) Show that f : ZÑ 2Z by f pzq “ 2z is a group isomorphism. Hence Z – 2Z.

(b) Show that Z – nZ, as groups, for every nonzero integer n.

Question 2¨56 .
Let d ě 1. Both Z and Zd are rings, though Z is a ring under ordinary addition and multi-

plication, while Zd is a ring under modular addition and multiplication. Let f : Z Ñ Zd by

f paq “ ras
d
, where ras

d
means “the remainder of a after division by d.”

(a) Show that f is a ring homomorphism.

(b) Explain why f cannot possibly be a ring isomorphism. You don’t need any symbols here;

the best explanation uses only a few words.
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Question 2¨57 .
LetM “ ttu , tauu.

(a) Show thatM is a monoid under the operationY (set union).

(b) Show that pM,Yq is isomorphic to the monoid “Boolean or”.

(c) CanM be isomorphic to the monoid “Boolean xor”?

Question 2¨58 .
Let

M “

"ˆ

1 0

0 1

˙

,

ˆ

0 1

1 0

˙*

.

(a) Show thatM is a monoid under matrix multiplication.

(b) Show thatM is isomorphic to the monoid “Boolean xor”.

(c) CanM be isomorphic to the monoid “Boolean or”?

Sometimes, less is more

As defined, a group homomorphism is a function that preserves

• the operation (f pxyq “ f pxq f pyq),

• the identity (f pяq “ я), and

• inverses (f px´1q “ f pxq
´1

).

Amazingly, we can define a group homomorphism using only one of these three!

Theorem 2¨59. Let G and H be groups, and suppose f : G Ñ H is a function that preserves the

operation; that is, f pxyq “ f pxq f pyq for all x, y P G. In this case, f automatically preserves the

identity and all inverses.

The upshot is that to show a function is a group homomorphism, you need not check all

three properties! You need check only that the operation is preserved.

Proof. We need to show that f preserves the identity and all inverses.

For the identity, let h P H. Let g P G, and h “ f pgq. By hypothesis, f preserves the

operation, so f pgяGq “ f pgq f pяGq. By definition of an identity, gяG “ g, so we can rewrite the

previous equation as f pgq “ f pgq f pяGq. By substitution, h “ h ¨ f pяGq. Since H is a group, h

has an inverse in H, so we can multiply both sides by the inverse of h, obtaining яH “ f pяGq.

In other words, f preserves the identity.
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For inverses, let g P G, and let h “ f pgq. Since G is a group, g has an inverse in G. By

hypothesis, f preserves the operation, so f pg ¨ g´1q “ f pgq ¨ f pg´1q. By substitution, f pяGq “

hf pg´1q. We just showed that f preserves the identity, so we can rewrite the equation as яH “

hf pg´1q. Since H is a group, h has an inverse in H, so we can multiply both sides by the inverse

of h, obtaining h
´1 “ f pg´1q. By substitution, f pgq

´1
“ f pg´1q. In other words, f preserves

the inverse of g. Since g was an arbitrary element of G, f must preserve all inverses.

This shortcut does not work for monoid homomorphisms!

Question 2¨60 .
What aspect of the proof suggests that this shortcut does not work for monoid homomor-

phisms?

Question 2¨61 .
Consider the monoidsM “ pN,ˆq and N “ pN,`q. Let f : MÑ N by f pxq “ 0. Explain why:

(a) f preserves the operation, but

(b) f does not preserve the identity.

Question 2¨62 .
Let M “ tя, au, and consider the operation where я is the identity and a

2 “ я. Let N “ t1, bu

and consider the operation where 1 is the identity and b
2 “ b.

(a) Show thatM and N are both monoids under this operation. Which one is not a group?

(b) Show that the map f : MÑ N defined by f pяq “ b and f paq “ b preserves the operation,

despite not preserving the identity.

(c) How does this show that there is no parallel to Theorem 2¨59 for monoids?

Direct Products

It is easy to build new algebraic systems using a Cartesian product of algebraic systems.

Let S1, S2, . . . be a sequence of groups, a sequence of monoids, or a sequence of rings. Let

T “ S1 ˆ S2 ˆ ¨ ¨ ¨ . (We proceed as if we have infinitely many S, but it works just as well if

there are finitely many, and the example below will have finitely many.) Define an operation

˙ on T as follows:

• for any t, u P T,

• we can write t “ pt1, t2, . . . q, pu1, u2, . . . q where

– t1, u1 P S1, t2, u2 P S2, . . .
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so define

t˙ u “ ps1t1, s2t2, . . . q .

We say that the operation in T is componentwise: we apply the operation of S1 to elements in

the first component; the operation of S2 to elements in the second component; and so forth.

Example 2¨63. Consider Z2 and Z3 as rings under addition and multiplication, modulo 2 or 3

as appropriate. Then

Z2 ˆ Z3 “ tp02, 03q , p02, 13q , p02, 23q , p12, 03q , p12, 13q , p12, 23qu .

(Henceforth we leave off the 2’s and 3’s, since the first component is only ever in Z2 and the

second only ever in Z3.) Given the operation defined above, sums of elements in Z2 ˆ Z3 are

p0, 2q ` p1, 1q “ p1, 0q

p1, 1q ` p1, 1q “ p0, 2q

while products of elements in Z2 ˆ Z3 are

p0, 2q ˆ p1, 1q “ p0, 2q

p1, 1q ˆ p1, 1q “ p1, 1q .

Fact 2¨64. Let S1, S2, . . . be a sequence (possibly finite) of algebraic systems, and T their cartesian

product, with componentwise operation(s) defined as above.

(A) T is a monoid under the componentwise operation if all the Si are monoids.

(B) T is a group under the componentwise operation if all the Si are groups.

(C) T is a ring under componentwise addition and multiplication if all the Si are rings under their

respective addition and multiplication.

However, T is never an integral domain, even if all the Si are integral domains, unless every Si “ t0u.

Why? We show (A) and (B), since that also covers (C). We leave the question of why T is not

an integral domain to the reader. To see why, let t, u P T.

(A) Suppose each Si is a group. By definition, t˙u “ pt1u1, t2u2, . . . q. By hypothesis, each Si

is a monoid, hence closed, so each tiui P Si, so t˙ u P T. That shows closure. For associativity,

let v P T; again, each Si is associative, so

t˙ pu˙ vq “ t˙ pu1v1, u2v2, . . . q pdef of ˙q

“ pt1 pu1v1q , t2 pu2v2q , . . . q pdef of ˙q

“ ppt1u1q v1, pt2u2q v2, . . . q peach Si assocq

“ pt1u1, t2u2, . . . q˙ v pdef of ˙q

“ pt˙ uq˙ v. pdef of ˙q
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Finally, write яi for the identity of Si, and observe that pя1, я2, . . . q P T. We claim that this is

the identity; indeed,

t˙ pя1, я2, . . . q “ pt1я1, t2я2, . . . q “ pt1, t2, . . . q “ t

and likewise if we multiply by t on the right. So pя1, я2, . . . q really does act as the identity for

T, and we abbreviate it as яT.

We have show that T is closed and associative under the componentwise operation, and

that it has an identity; hence, T is a monoid.

(B) For the group property, we need merely show that every element of T has an inverse.

Each component ti of t is an element of Si, which by hypothesis is a group, so t
´1
i
P Si. By

definition of T,
`

t
´1
1 , t

´1
2 , . . .

˘

P T. Consider its product with t:

t˙
`

t
´1
1
, t
´1
2
, . . .

˘

“
`

t1t
´1
1
, t2t

´1
2
, . . .

˘

“ pя1, я2, . . . q “ яT.

Hence
`

t
´1
1 , t

´1
2 , . . .

˘

is an inverse of t in T.

Question 2¨65 .
Construct Cayley tables for addition and multiplication in Z2ˆZ3. Indicate the zero divisors.

Question 2¨66 .
The group Z2 ˆ Z2 has four elements. We already know that, up to isomorphism, there are

only two groups: Z4 and the Klein 4-group. To which of these is Z2 ˆ Z2 isomorphic?

Question 2¨67 .
Let f : Z6 Ñ Z2ˆZ3 by the rule f paq “ pras

2
, ras

3
q. For instance, f p4q “ pr4s

2
, r4s

3
q “ p0, 1q.

(a) Compute all the images of f .

(b) How do you know f is one-to-one and onto?

(c) Show that f is a homomorphism.

Hint: You could show this exhaustively (only 36 pairs!) but need not do so. Instead, use a

previous result on products of Zn.

(d) Why is Z6 – Z2 ˆ Z3?

Question 2¨68 .
Show that even if S1, S2, . . . are all integral domains, T “ S1 ˆ S2 ˆ ¨ ¨ ¨ is not an integral

domain, unless every Si “ t0u.



Chapter 3

Common and important algebraic
systems

The previous chapter introduced you to monoids, groups, rings, and fields, emphasizing pri-

marily remainders. This chapter aims to show that these structures’ elegant properties apply

to other mathematical objects. These objects are of fundamental important in advanced al-

gebra, so it seems appropriate to introduce them here.

3¨1 Polynomials, real and complex numbers

God created the integers. All else is the work of man.

— Leopold Kronecker

Let R be any commutative ring. We say that x is indeterminate over R if x has no specific

value, but we can substitute any value of R for x. Naturally, ax “ xa. A polynomial in x over
R is any finite sum of the form

f “ a0 ` a1x` a2x
2
` ¨ ¨ ¨ ` anx

n
,

where each ai P R and an ‰ 0. We call each ai the coefficient of the corresponding x
i
, and call

an the leading coefficient.
If we’re feeling lazy, which we often are, we just say f is polynomial over R, since the

indeterminate is obvious. If we’re feeling especially lazy, which we sometimes are, we just say

f is polynomial, since the ring is clear from context.

We need not restrain ourselves to x; any symbol will do, as long as the meaning is clear.

For instance, if t is indeterminate over Z4, then 2t ` 3 is a polynomial in t over Z4. If y is

indeterminate over Q, then
2

3
x
2 ´ 1

5
x is a polynomial in y over Q.

Let f be a polynomial in x whose coefficients are elements of R. We say that f is a poly-
nomial over R, and we write R rxs for the set of all polynomials over R. We call R the ground
ring of R rxs. Addition and multiplication of polynomials over R behaves the same as addition

and multiplication of polynomials over Z; the only difference is the ground ring.

Example 3¨1. Polynomials with integer coefficients are elements of Z rxs. Polynomials with

rational coefficients are elements of Q rxs. Polynomials with coefficients modulo d ą 0 are

elements of Zd rxs.

69
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Question 3¨2 .
Suppose R is a commutative ring, with additive identity 0 and multiplicative identity 1. Show

that R rxs is also a commutative ring, with the same identities as R.

Fact 3¨3. It is also the case that if R is an integral domain, then so is R rxs.

Why? If f, g P R rxs are nonzero but fg “ 0, then the leading term of fg is zero; this leading

term is the product of the leading terms of f and g. If we write at for the leading term of f

and bu for the leading term of g (where c, d P R and t, u P X) then, by definition, pctq pduq “ 0.

This is possible only if cd “ 0. As they come from the leading terms of f and g, the leading

coefficients must be nonzero; that is, c, d ‰ 0. But c, d ‰ 0 and cd “ 0 means c and d are zero

divisors, so R cannot be an integral domain. We have shown the contrapositive of the claim,

and the contrapositive is equivalent to the claim itself.

The Division Theorem for Polynomials (p. 34) tells us that we can use monic divisors to

compute quotients and remainders in Z rxs. We can actually do this with polynomials over

any commutative ring!

On the one hand, it makes sense that a similar argument should apply for polynomials with

rational, or even real coefficients, but it might not be so clear for stranger rings which you

have yet to meet. Stranger yet, we decline to write a proof generalizing the Division Theorem

for Polynomials to these other rings. Why? Sometimes, generalizing a result like this is quite

hard, but in this case it does not require much convincing; go back and examine the proof.

Does anything in the argument depend on the coefficients’ being integers? Nothing does; the

argument would have worked for any ringR. We do need a monic divisor, and we do need a ring

of coefficients, since the proof required both subtraction and multiplication of coefficients.

This hints that there is a larger, more interesting structure we have not named yet, but we

pass over that for the time being.

Question 3¨4 .
Rewrite the proof of the Division Theorem for Polynomials, replacing any instance of Z or

“integer” with R or “ring element”. Convince yourself that, yes, this is a wonderfully general

result.

You will recall that we developed a class of rings, calledZd, by building an algebraic system

on remainders of integer division. A natural question to ask is,

Can we build a consistent algebraic system on remainders of polynomial division?

Indeed, we can! We will also find that this gives us a concrete way of building an “imaginary”

algebraic system.

Polynomial remainders

Let’s look at how remainder arithmetic modulo a polynomial might work.
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Example 3¨5. Let g “ x
2 ´ 1. Any remainder r after division by g has degree smaller than 2

(after all, deg g “ 2), so we can write

r “ ax` b,

where a and b are integers. That’s it! There are no other restrictions on r, and none on a and

b, aside from their being integers.

We have already encountered one difference with integer remainders: there can be in-

finitely many polynomial remainders! (After all, you can choose a and b arbitrarily from the

ground ring.) At least the degree of the divisor constrains them.

Will the arithmetic of polynomial remainders exhibit a “clockwork” behavior, as with in-

teger remainders? Not with addition, since

pax` bq ` pcx` dq “ pa` cq x` pb` dq ,

and no matter what the values of a, b, c, and d, that sum has degree 1. With multiplication,

however,

pax` bq pcx` dq “ acx
2
` pad` bcq x` bd

ventures into forbidden territory, with degree 2. We have to reduce this polynomial modulo

x
2 ´ 1.

Example 3¨6. Consider the remainders 2x` 3 and´5x` 12, modulo x
2 ´ 1. Their sum is

p2x` 3q ` p´5x` 12q “ ´3x` 15,

another remainder. Their product is

p2x` 3q p´5x` 12q “ ´10x
2
` 9x` 36,

which is not a remainder, but we can reduce it modulo x
2 ´ 1 to 9x` 26. In other words,

p2x` 3q p´5x` 12q ” 9x` 26.

Theorem 3¨7. Let R be a commutative ring, and R rxs a polynomial ring. Let g be a monic polynomial

of R rxs. The set of remainders modulo g also forms a ring under addition and multiplication, modulo g.

Proof. Question 3.2 tells us that R rxs is a commutative ring, and hence an abelian group under

addition. Addition of polynomials does not change the degree, so as we saw above, the prop-

erties of R rxs are preserved in the set of remainders; the sums are, in fact, identical, so the

identity of addition of remainders remains the zero polynomial, which is itself a remainder,

and the additive inverse of a remainder is also present. So the set of remainders preserves

the abelian group property of R rxs.

On the other hand, multiplication of remainders risks raising the degree, so the product of

two remainders might not itself be a remainder, as we saw above. However, our multiplication

is modulo g, and when we divide the product by g, we obtain a remainder. This guarantees clo-

sure. The multiplicative identity of polynomial multiplication is the constant polynomial 1,

which is itself a remainder. The commutative property is likewise preserved, so if the set of

remainders is a ring, it is a commutative ring. There remain two properties to check.

What of the associative property of multiplication? Let r, s, and t be remainders. We know

that prsq t “ r pstq as polynomials; since the remainder of division is unique, we must also have

prsq t ” r pstq. Distribution follows similarly.
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So far, we have observed nothing strange with these remainders, but the next example

does exhibit a very unusual behavior.

Example 3¨8. Consider the remainders x` 1 and x´ 1 modulo x
2 ´ 1. Their sum is

px` 1q ` px´ 1q “ 2x,

another remainder. No surprise. Their product is

px` 1q px´ 1q “ x
2
´ 1,

which is not a remainder, but we can reduce it modulo x
2 ´ 1 to. . . 0?!?

Zero divisors have returned!

Ordinary multiplication of two nonzero polynomials over an integral domain gives you a

nonzero polynomial (Fact 3¨3). After all, multiplication increases the degree, so you can’t get

0 as a product of nonzero polynomials.

With the modular product of remainders, those guarantees vanish! Upon reflection, this

makes sense, because x
2 ´ 1 factors into x` 1 and x´ 1 precisely — just as 6 “ 2ˆ 3. Just as

with Zd, this has consequences for solving equations; until now, you usually solved equations

under the assumption that a product of zero has a factor of zero.

Example 3¨9. When we try to find integer solutions of equations such as x
3 ´ 1 “ 0, we

typically factor first, obtaining

px´ 1q
`

x
2
` x` 1

˘

“ 0.

As integer polynomials, we know that if the product is zero, a factor must be zero, helping us to

find the solution x “ 1. We enjoy no such guarantee from remainder arithmetic.

The introduction of zero divisors doesn’t happen modulo every polynomial. With some,

we get a different phenomenon.

Real numbers

The set of real numbers is the set of all possible distances one can move along a line, with

“positive length” indicating we moved in one direction, and “negative length” indicating we

moved in the opposite direction. Its shorthand isR. There are ways to write this in set-builder

notation, but I’ll pass over that for now.

You may wonder if R “ Q. If you don’t wonder it, that’s okay; someone else has already

wondered it, and we know the answer: no.

Fact 3¨10.
?
2 is real, but not rational.

Why? We know that
?
2 is real because the Pythagorean Theorem tells us that it is the length

of the hypotenuse of an isosceles right triangle whose legs have length 1.
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1

1
?

The length of the red line is
?
2, so

?
2 is real.

However,
?
2 is not rational. To see why, let a, b P N, with b ‰ 0, and suppose

?
2 “ a{b. (We

can assume a is natural because
?
2 is positive.) Suppose further that a and b have no common

divisors; after all, if they do, we can simplify the fraction. (The well-ordering principle means

simplification can’t continue indefinitely.) Rewrite
?
2 “ a{b as b

?
2 “ a; square both sides

to obtain 2b
2 “ a

2
. Notice that a

2
is an even number; this is possible only if a is even, so

a “ 2c for some integer c. Rewrite as 2b
2 “ p2cq

2
, so 2b

2 “ 4c
2
, so b

2 “ 2c
2
. The argument

above implies that b is even. So a and b are both even, giving them a common divisor. But

this contradicts the reasonable assumption above that they have no common divisors! Our

assumption that we could write
?
2 “ a{b, where a and b are natural, is false:

?
2 is real, but

not rational.

We call lengths like
?
2 irrational numbers. You’ll meet some of these in the exercises.

Despite the unfortunate name, they are not unreasonable, and have some very important

uses. Thus, we not only have

N` Ď N Ď Z Ď Q Ď R,

we also have

N` Ĺ N Ĺ Z Ĺ Q Ĺ R.

We can describe three-dimensional real space as

R3
“ Rˆ Rˆ R “ tpa, b, cq : a, b, c P Ru ;

people use this notation a lot in multivariate calculus.

As with the rationals, we can divide real numbers, and end up with a real number. Also

with the rational, we can’t divide by zero.

Question 3¨11 .
We return to the question of cardinality again. We had shown thatN, Z, andQ have the same

cardinality. They do not have the same cardinality as R. To see why, suppose the contrary,

that we have a matching of distinct real numbers to natural numbers, so that we can list all

the real numbers in a row, a1, a2, . . . .
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Consider a real number b built by taking as its first digit after the decimal point a digit

that is not the first digit after the decimal point of a1, as its second digit after the decimal

point a digit that is not the second digit after the decimal point of a2, as its third digit after

the decimal point a digit that is not the third digit after the decimal point of a3, and so forth.

(a) How do we know that b does not appear in the list a1, a2, . . . ?

(b) You need not show that b is a real number, but it is. How does this show that N and R
must have different cardinality?

(c) Why does that mean that Z and Q likewise have different cardinality from R?

Complex numbers

The real numbers make for a lovely field, but they retain an important defect.

Fact 3¨12. There is no real solution to x
2 ` 1 “ 0; that is,

?
´1 R R.

Proof. Let a P R. By the definitions of real arithmetic, a
2

is positive. That means a
2 ` 1 is also

positive, so a
2 ` 1 ą 0 for any real number a. Thus, no real number a can serve as a solution

to x
2 ` 1 “ 0.

Historically, we introduce a new symbol, i, to stand in for the solution to x
2 ` 1 “ 0, and

say that i possesses the property that i
2 “ ´1. This is not especially appealing; small wonder

mathematicians refer to it as “the imaginary number”. Aside from our desire to introduce a

solution to this polynomial, can we identify a concrete representation of such a number? Yes!

LetC be the set of all remainders when you divide a polynomial inR rxs by x
2`1. In other

words,

C “ tax` b : a, b P Ru .

We can show without much effort that C is a field, where the arithmetic is addition and mul-

tiplication modulo x
2 ` 1.

Fact 3¨13. C is a field.

Proof. Theorem 3¨7 tells us that C is a commutative ring, so we need merely show that every

nonzero element of C has an inverse. To see this, let z P C be nonzero. By definition, we can

find real numbers a and b such that z “ ax ` b, and at least one of a and b is nonzero. That

means a
2 ` b2 ‰ 0. Let

w “ ´
a

a2 ` b2
¨ x`

b

a2 ` b2
.

Notice that w has the proper form to be an element of C. In addition,

zw “

ˆ

´
a
2

a2 ` b2

˙

¨ x
2
`

b
2

a2 ` b2
.
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Reducing this modulo x
2 ` 1, we have

zw ”

„ˆ

´
a
2

a2 ` b2

˙

¨ x
2
`

b
2

a2 ` b2



´

„ˆ

´
a
2

a2 ` b2

˙

¨ x
2
´

a
2

a2 ` b2



“
b
2 ` a2

a2 ` b2
“ 1,

so w is the multiplicative inverse of z, and C is a field.

In the example of the previous section, we encountered zero divisors via px` 1q px´ 1q ”

0. Can this happen in C? In fact, it cannot, precisely because C is a field.

Question 3¨14 .
Suppose that f and g are nonzero polynomials over a field. Why must fg ‰ 0? Hint: Ques-

tion 2.45 would be helpful.

You should notice that R Ď C, since constants are a special kind of polynomial. One

element of C has a very special property.

Fact 3¨15. C contains exactly two elements that satisfy x
2 ` 1 ” 0.

Why? Let i “ 1x`0. We claim that i satisfies the equation. Notice that i is, in fact, an element

of C, since it has the proper form. Substituting x “ 1x` 0 into x
2 ` 1 shows that

x
2
` 1 “ p1x` 0q p1x` 0q ` 1 ” 0

The other root is ´i “ ´1x ` 0. We leave it to the reader to see that no other element of C
satisfies the equation.

Question 3¨16 .
Why can no other element of C satisfy the equation x

2 ` 1 “ 0?

Let’s summarize our accomplishment. We created a new field C, which contains the real

numbers as a subfield, and possesses a well-defined arithmetic that is consistent with the

arithmetic of the real numbers: after all, multiplication of real numbers does not increase

the degree, let alone invoke modular reduction. This new field also contains two elements

that satisfy the equation given. We have constructed a number that has the properties of the

imaginary number, but by its construction is clearly concrete!

Question 3¨17 .
A real number a has a polynomial representation inC as 0x`a. Use this to explain why “mul-

tiplication of real numbers does not increase the degree, let alone invoke modular reduction.”

Although we have introduced the complex numbers using polynomial notation and con-

gruence of remainders, we can write them in the more natural form, a ` bi where a, b P R.

Question 3¨18 .
Show that there is a ring isomorphism between C as we have defined them, and C as tradi-

tionally defined. That is, show that
 

ax` b : a, b P R, x2 ` 1 ” 0
(

–
 

a` bi : a, b P R, i2 “ ´1
(

.

We rely on the traditional representation for future sections.
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Question 3¨19 .
We don’t have to build C to obtain a ring containing the roots of x

2 ` 1. Show that we can

build such a ring using remainders of Z rxs, modulo x
2 ` 1.

We were able to construct a field containing the roots of x
2 ` 1 using x

2 ` 1 itself, but

we cannot do this with x
2 ´ 1, because x

2 ´ 1 “ px´ 1q px` 1q, creating zero divisors. So

x
2 ` 1 is special, in that we can’t rewrite it as the product of two smaller polynomials over Z,

or even over R. That’s an important property; let’s give them a name. Recall that a unit is any

element of a ring with a multiplicative inverse.

Definition 3¨20. Suppose r P R is an element of a commutative ring, and r is not a unit. We

say that r factors over R if we can find s, t P R such that r “ st and neither s nor t has a

multiplicative inverse. Otherwise, r is irreducible.

Remark. If you are familiar with the notion of a “prime number”, then you are likely wonder-

ing why we call r “irreducible” rather than “prime”. The reason is that the algebraic meaning

of “prime” is different. The two notions are compatible in the integers, but not in some other

rings that you have studied, and will study later.

The definition assumes only that R is a commutative ring. That includes polynomial rings,

so we’ve taken care of x
2 ` 1 P Z rxs, and in fact of all irreducible polynomials over Z.

The requirement that neither snor t have a multiplicative inverse is important; otherwise,

some smart aleck will point out that, in the integers, 2 “ p´1q ˆ p´2q is a factorization of 2.

Don’t write off the smart aleck too quickly, though; we will see in Chapter 6 that this has

important implications for factorization.

Question 3¨21 .
Suppose that f is a polynomial with integer coefficients that factors into two polynomials of

smaller degree, g and h, so that f “ gh. Explain why we cannot use f to construct a field

containing its own roots.

However, we can still build the roots of non-irreducible polynomials; it just takes a few

steps.

Question 3¨22 .
Suppose f P Z rxs is not irreducible. How could you construct a field that contains at least one

root of f , if not all of them? Hint: If f factors, the factors have lower degree. If they factor. . .

Question 3¨23 .
Earlier, we constructed

?
2 as the length of the hypotenuse of a right triangle with legs of

length 1. We can also construct it in the same way that we constructed the imaginary number

i, using an irreducible polynomial with integer coefficients. Find such an irreducible polyno-

mial, and show which remainder behaves the same as
?
2.

Irreducible polynomials play a major role in Chapter 6 on Factorization.



CHAPTER 3. COMMON AND IMPORTANT ALGEBRAIC SYSTEMS 77

3¨2 The roots of unity

The imaginary number is a fine and wonderful recourse of the divine spirit, almost

an amphibian between being and not being.

— Gottfried Wilhelm Leibniz

Recall from Question 1.69 that a root of a polynomial f pxq is any element a of the domain

which, when substituted into f , gives us zero; that is, f paq “ 0. The example that motivated

us to define the complex numbers was the polynomial f pxq “ x
2 ` 1, which has two roots,

˘i, where i
2 “ ´1.

Any root of the polynomial f pxq “ xn ´ 1 is called a root of unity. These are very impor-

tant in the study of polynomial roots, in part because of their elegant form.

Example 3¨24. The roots of x
2 ´ 1 are called the square roots of unity; they are x “ ˘1.

The roots of x
3 ´ 1 are called the cube roots of unity. It is clear that x “ 1 is one such

root, and the polynomial factors as

px´ 1q
`

x
2
` x` 1

˘

.

The quadratic factor contains the other cube roots of unity; by the quadratic formula, they

are

x “
´1˘

?
1´ 4

2
“ ´

1

2
˘ i ¨

?
3

2
.

The roots of x
4´1 are called the fourth roots of unity. Since x

4´1 factors as px2 ´ 1q px2 ` 1q,

we already know these roots; they are x “ ˘1,˘i.

A geometric pattern

It’s often instructive to study the geometric behavior of a phenomenon, and this is no

exception, but how shall we visualize complex numbers? Write z “ a ` bi P C, and refer

to a as the real part of z, and b as the imaginary part. We’ll abbreviate this in the future

as real pzq “ a and imag pzq “ b. Let’s agree to plot z on the x-y plane using real pzq for the

x-coordinate, and imag pzq for the y-coordinate. The graphs of the square, cube, and fourth

roots of unity are as follows:

We’ve added the outline of a circle of radius 1 at the origin to illustrate a few interesting

patterns:
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• x “ 1 is always a root.

• All the roots lie on the circle.

• The roots are, in fact, equidistant around the circle: they split the circumference of 2π

into equal-sized arcs.

Question 3¨25 .
Use the pattern above to sketch where the sixth roots of unity should like on the complex

plane. Use that graph and some basic trigonometry to find their actual values as complex

numbers. Verify that the values are correct by substituting them into the polynomial x
6 ´ 1.

If you recall your trigonometry, especially the parametric representation of the unit circle as

cos
2
t ` sin

2
t “ 1, the observations above suggest the following.

Theorem 3¨26. Let n P N`. The complex number

ω “ cos

ˆ

2π

n

˙

` i sin

ˆ

2π

n

˙

is a root of f pxq “ xn ´ 1.

To prove Theorem 3¨26, we need a different property of ω. We could insert it into the

proof of Theorem 3¨26, but it’s useful enough on its own that we separate it as:

Lemma 3¨27 (Powers of ω). If ω is defined as in Theorem 3¨26, then

ω
m
“ cos

ˆ

2πm

n

˙

` i sin

ˆ

2πm

n

˙

for every m P N`.

Proof. We proceed by induction onm. For the inductive base, the definition of ω shows that ω
1

has the desired form. For the inductive hypothesis, assume thatω
m

has the desired form. In the

inductive step, we need to show that

ω
m`1

“ cos

ˆ

2π pm` 1q

n

˙

` i sin

ˆ

2π pm` 1q

n

˙

.

To see why this is true, use the inductive hypothesis to rewrite ω
m`1

as,

ω
m`1

“ ω
m
¨ ω “

ind.

hyp.

„

cos

ˆ

2πm

n

˙

` i sin

ˆ

2π

n

˙

¨

„

cos

ˆ

2π

n

˙

` i sin

ˆ

2π

n

˙

.

Distribution gives us

ω
m`1

“ cos

ˆ

2πm

n

˙

cos

ˆ

2π

n

˙

` i sin

ˆ

2π

n

˙

cos

ˆ

2πm

n

˙

` i sin

ˆ

2πm

n

˙

cos

ˆ

2π

n

˙

´ sin

ˆ

2πm

n

˙

sin

ˆ

2π

n

˙

.
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Regroup the terms as

ω
m`1

“

„

cos

ˆ

2πm

n

˙

cos

ˆ

2π

n

˙

´ sin

ˆ

2πm

n

˙

sin

ˆ

2π

n

˙

` i

„

sin

ˆ

2π

n

˙

cos

ˆ

2πm

n

˙

` sin

ˆ

2πm

n

˙

cos

ˆ

2π

n

˙

.

The trigonometric sum identities cos pα` βq “ cos α cos β ´ sin α sin β and sin pα` βq “

sin α cos β` sin β cos α, used “in reverse”, show that

ω
m`1

“ cos

ˆ

2π pm` 1q

n

˙

` i sin

ˆ

2π pm` 1q

n

˙

.

Once we have Lemma 3¨27, proving Theorem 3¨26 is spectacularly easy.

Proof of Theorem 3¨26. Substitution and the lemma give us

ω
n
´ 1 “

„

cos

ˆ

2πn

n

˙

` i sin

ˆ

2πn

n

˙

´ 1

“ cos 2π ` i sin 2π ´ 1

“ p1` i ¨ 0q ´ 1 “ 0,

so ω is indeed a root of x
n ´ 1.

A group!

Once we fix n, the nth roots of unity give us a nice group.

Theorem 3¨28. The nth roots of unity are Ωn “ t1, ω, ω
2
, . . . , ω

n´1u, where ω is defined as in The-

orem 3¨26. They form a group of order n under multiplication.

The theorem does not claim merely that Ωn is a list of some nth roots of unity; it claims that

Ωn is a list of all nth roots of unity. Our proof is going to cheat a little bit, because we don’t

quite have the machinery to prove that Ωn is an exhaustive list of the roots of unity. We will

eventually, however, and you should be able to follow the general idea now.

Basically, let f be a polynomial of degree n. Suppose we know that f has n roots, named

α1, α2, . . . , αn. The parts you have to take on faith (for now) are twofold.

• First, there is only one way to factor f into linear polynomials. This is not obvious,

and in fact it’s not always true — but it is in this case, honest! The idea is called unique

factorization.

• Second, if αi is a root of f , then x´ αi is a factor of f for each αi, so

f pxq “ px´ α1q px´ α2q ¨ ¨ ¨ px´ αnq ¨ g pxq ,

where g is yet to be determined. Each linear factor adds one to the degree of a polyno-

mial, and f has degree n, so the product of the factors of f cannot have degree higher

than n. However, we already have degree n on the right hand side of the equation, which

means g can only be a constant, and the only roots of f are α1, . . . , αn.
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(You can see this in the example above with x
4´1, but the Factor Theorem will have the details

(Question 1.69). You should have encountered that theorem in your precalculus studies, and

since it doesn’t depend on anything in this section, the reasoning is not circular.)

If you’re okay with that, then you’re okay with everything else.

Proof. For m P N`, we use the associative property of multiplication in C and the commuta-

tive property of multiplication in N`:

pω
m
q
n
´ 1 “ ω

mn
´ 1 “ ω

nm
´ 1 “ pω

n
q
m
´ 1 “ 1

m
´ 1 “ 0.

This shows that every positive power of ω is a root of unity. Most of these overlap, just as

p´1q
2
“ p´1q

4
“ p´1q

6
“ ¨ ¨ ¨ . If ω

m “ ω`
, then

cos

ˆ

2πm

n

˙

“ cos

ˆ

2π`

n

˙

and sin

ˆ

2πm

m

˙

“ sin

ˆ

2π`

n

˙

,

and we know from trigonometry that this is possible only if

2πm

n
“
2π`

n
` 2πk

2π

n
pm´ `q “ 2πk

m´ ` “ kn.

That is, m ´ ` is a multiple of n. Since Ωn lists only those powers from 0 to n ´ 1, the powers

must be distinct, so Ωn contains n distinct roots of unity. (See also Question 3¨26.) As there

can be at most n distinct roots, Ωn is a complete list of nth roots of unity.

Now we show that Ωn is a cyclic group.

(closure) Let x, y P Ωn; you will show in Question 3.29 that xy P Ωn.

Question 3¨29 .
Let n P N`, and suppose that a and b are both positive powers of ω. Show that ab P Ωn.

Proof of Theorem 3¨28, continued. (associativity) The complex numbers are associative under

multiplication; since Ωn Ď C, the elements of Ωn are also associative under

multiplication.

(identity) The multiplicative identity in C is 1. This is certainly an element of Ωn, since

1
n “ 1 for any n P N`.

(inverses) Let x P Ωn; you will show in Question 3.33 that x
´1 P Ωn.

(cyclic) Theorem 3¨26 tells us that ω P Ωn; the remaining elements are powers of ω.

Hence Ωn “ xωy.
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i

ω2

ω3

ω4

ω5 ω6

ω

1

Figure 3¨1: The seventh roots of unity, on the complex plane

Combined with the explanation we gave earlier of the complex plane, Theorem 3¨28 gives

us a wonderful symmetry for the roots of unity.

Example 3¨30. Consider the case where n “ 7. According to the theorem, the 7th roots of

unity are Ω7 “ t1, ω, ω
2
, . . . , ω

6u where

ω “ cos

ˆ

2π

7

˙

` i sin

ˆ

2π

7

˙

.

According to Lemma 3¨27,

ω
m
“ cos

ˆ

2πm

7

˙

` i sin

ˆ

2πm

7

˙

,

where m “ 0, 1, . . . , 6. By substitution, the angles we are looking at are

0,
2π

7
,
4π

7
,
6π

7
,
8π

7
,
10π

7
,
12π

7
.

See Figure 3¨30.

Although we used n “ 7 in this example, we used no special properties of that number in

the argument. That tells us that this property is true for any n: the nth roots of unity divide

the unit circle of the complex plane into n equal arcs!

Here’s an interesting question: is ω is the only element of Ωn whose powers “generate”

the other elements of the group? In fact, no. A natural follow-up: are all the elements of Ωn

generators of the group? Likewise, no. Well, which ones are? We are not yet ready to give a

precise criterion that signals which elements generate Ωn, but they do have a special name.

Definition 3¨31. We call any element of Ωn whose powers gives us all other elements of Ωn a

primitive nth root of unity.
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Question 3¨32 .
Show that Ωn is isomorphic to Zn.

Question 3¨33 .

(a) Let ω be a 14th root of unity; let α “ ω5, and β “ ω14´5 “ ω9. Show that αβ “ 1.

(b) More generally, letω be a primitive nth root of unity, Let α “ ωa, where a P N and a ă n.

Show that β “ ωn´a satisfies αβ “ 1.

(c) Explain why this shows that every element of Ωn has an inverse.

Question 3¨34 .
Suppose β is a root of x

n ´ b.

(a) Show that ωβ is also a root of x
n ´ b, where ω is any nth root of unity.

(b) Use (a) and the idea of unique factorization that we described right before the proof of

Theorem 3¨28 to explain how we can use β and Ωn to list all n roots of x
n ´ b.

Definition 3¨35. Given a field F, a vector space over F is an abelian group pV,`q with an

additional property called scalar multiplication that satisfies the following additional prop-

erties:

• Scalar multiplication maps Fˆ V to V, with pa, uq ÞÑ v abbreviated as au “ v.

• Closure: for all a P F and all v P V, av P V.

• Compatibility: for all a, b P F and all v P V, pabq v “ a pbvq.

• Scalar identity: for all v P V, 1Fv “ v.

• Scalar distribution: for all a P F and all u, v P V, a pu` vq “ au` av.

• Vectors distribution: for all a, b P F and all v P V, pa` bq v “ av` bv.

Question 3¨36 .
Show that this section’s construction of C satisfies the requirements of a vector space over

R.
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3¨3 Cyclic groups; the order of an element

“Well, in our country,” said Alice, still panting a little, “you’d generally get to some-

where else—if you run very fast for a long time, as we’ve been doing.”

“A slow sort of country!” said the Queen. “Now, here, you see, it takes all the run-

ning you can do, to keep in the same place. If you want to get somewhere else, you

must run at least twice as fast as that!”

— Lewis Carroll

This section builds on a phenomenon we observed in a group of roots of unity to describe an

important class of groups. Recall that the nth roots of unity can all be written as powers of

ω “ cos

ˆ

2π

n

˙

` i sin

ˆ

2π

n

˙

;

that is,

Ωn “
 

ω, ω
2
, . . . , ω

n
“ 1

(

.

Because of this, we spoke of ω as “generating” Ωn. As you will see, we can write many other

groups in this form. In addition, it will be of interest to look at groups generated by an ele-

ment. Since we’re dealing with repeating the operation of a group on one element, we’d best

shore up some properties of exponents first.

Exponents

In essence, we claim that the usual arithmetic holds for exponents and multiples, regard-

less of the underlying group or ring; that is:

• for any integers a, b P Z, we define g
a
g
b “ ga`b;

• if the set has an identity, then we define g
0 “ я;

• if the set has multiplicative inverses, then we define g
´a “ pg´1q

a
“ pgaq

´1
.

We have to make sure these definitions are reasonably well defined in any group or ring.

Question 3¨37 .
We’re going to start off deciding that g

0
is just shorthand for the group identity, я. If the

operation of the group is addition, we’ll usually write 0 ˆ g “ 0. Why do these notations

make sense? Hint: я “ gg´1.

Question 3¨38 .
Suppose a P N`. Why can we say g

´a “ pg´1q
a
“ pgaq

´1
? Are we sure that pg´1q

a
and pgaq

´1

are always the same? Hint: Think about the definitions. The meaning of pgaq
´1

is, “the inverse

of g
a
.” What, then, has to be true for us to be able to say that pg´1q

a
“ pgaq

´1
? Show that that

is true.

Lemma 3¨39. Let G be a group, g P G, and m, n P Z. Each of the following holds:
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(A) g
m
g
´m “ я; that is, g

´m “ pgmq
´1

.

(B) pgmq
n
“ gmn.

(C) g
m
g
n “ gm`n.

The proof of Lemma 3¨39 is not especially hard, but it does involve tedious notation. Orig-

inally, I included it here, but decided to remove it, on the grounds that (a) it distracts from

the point of this section, which is to introduce you to cyclic groups, and (b) you really ought

to be able to show it on your own (especially if your plan is to teach one day). So:

Question 3¨40 .
Suppose m P Z (not just a P N` as before). Why can we say g

´m “ pgmq
´1

? Hint: What makes

this different from before is that we’re now dealing with negative exponents. Try considering

different cases when m P N` (which we’ve already discussed, actually) and n ă 0.

Question 3¨41 .
Building on the previous question: let n P Z. Why can we say pgmq

n
“ g

mn
? Hint: As before,

you need to consider separate cases for m or n negative.

Cyclic groups and generators

Some groups enjoy the special property that every element is a power of one, special ele-

ment.

Definition 3¨42. Let G be a group. If there exists g P G such that every element x P G has

the form x “ g
n

for some n P Z, then G is a cyclic group and we write G “ xgy. We call g a

generator of G.

The idea of a cyclic group is that it has the form

 

. . . , g
´2
, g
´1
, я, g

1
, g
2
, . . .

(

.

If the group’s operation is addition, we would of course write

t. . . ,´2g,´g, 0, g, 2g, . . . u .

Example 3¨43. Let’s look atZfirst. Any n P Zhas the form n¨1, such as 2 “ 2¨1,´5 “ p´5q¨1,

and so forth. We see that Z is cyclic, and write Z “ x1y.
In addition, n has the form p´nq ¨ p´1q, soZ “ x´1y as well. Both 1 and´1 are generators

of Z.

Question 3¨44 .
Show that any group of 3 elements is cyclic.

Question 3¨45 .
Is the Klein 4-group (Question 2.49 on page 61) cyclic? What about the cyclic group of order

4?
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Question 3¨46 .
Show that Q is not cyclic as an additive group. Hint: Suppose it were; then you could find a

rational number q such that Q “ t. . . ,´2q,´q, 0, q, 2q, . . . u. Surely you can find some r P Q
that isn’t listed.

Question 3¨47 .
Let n P Z, and consider the ring Zn.

(a) Show that its additive group is cyclic.

(b) Show that if n “ 7, the subset t1, 2, . . . , 6u is a cyclic group under multiplication.

Hint: It’s not enough to show that all the elements are generated by one element, though

you do have to start there. You also have to check the properties of a group, especially

that every element has an inverse.

(c) Show that if n “ 6, the subset t1, 2, . . . , 5u is not a cyclic group under multiplication.

(d) Look at the subsets t1, 2, . . . , n´ 1u in some other finite rings Zn, where n ě 5. Try at

least two more and determine whether they are cyclic groups under multiplication.

(e) Do you notice a pattern to which values of n work and which don’t?

Question 3¨48 .
Suppose that G and H are groups, and G – H. Show that if G is cyclic, then so is H, because the

generator of G is a generator of H.

In Definition 3¨42 we referred to g as a generator of G, not as the generator. There could

in fact be more than one generator; we see this in Example 3¨43 from the fact that Z “ x1y “
x´1y. Another example is Ω3, where ω and ω

2
both generate the group.

An important question arises here. Given a group G and an element g P G, define xgy as

the set of all integer powers of g. That is,

xgy “
 

. . . , g
´2
, g
´1
, я, g, g

2
, . . .

(

.

We call this the group generated by g, and call g the generator of this group. When we’re

feeling a little lazy, which is actually pretty common, we simply say the group generated by
g. Every cyclic group has the form xgy for some g P G. Is the converse also true that xgy is a

group for any g P G? As a matter of fact, yes!

Theorem 3¨49. For every group G and for every g P G, xgy is an abelian group.

Proof. We show that xgy satisfies the properties of an abelian group. Let x, y, z P xgy. By defini-

tion of xgy, there exist a, b, c P Z such that x “ ga, y “ gb, and z “ gc. We will use Lemma 3¨39

implicitly.

• By substitution, xy “ gagb “ ga`b P xgy. So xgy is closed.
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• By substitution, x pyzq “ ga
`

g
b
g
c
˘

. These are elements of G by inclusion (that is, xgy Ď G

so x, y, z P G), so the associative property in G gives us

x pyzq “ g
a
`

g
b
g
c
˘

“
`

g
a
g
b
˘

g
c
“ pxyq z.

• By definition, я “ g0 P xgy.

• By definition, g
´a P xgy, and x ¨ g´a “ gag´a “ e. Hence x

´1 “ g´a P xgy.

• Using the fact that Z is commutative under addition,

xy “ g
a
g
b
“ g

a`b
“ g

b`a
“ g

b
g
a
“ yx.

Question 3¨50 .
Find all the generators of Ω8. Hint: In Question 3.32 you showed that Ωn – Zn, so the genera-

tors ofZ8 must correspond to the generators of Ω8. The mapping you used in the isomorphism

will tell you which ones.

The order of an element

Given an element and an operation, Theorem 3¨49 links them to a group. It makes sense,

therefore, to link an element to the order of the group that it generates.

Definition 3¨51. Let G be a group, and g P G. We say that the order of g is the order of the

group it generates; ord pgq “ |xgy|. If ord pgq “ 8, we say that g has infinite order.

We can write an element in different ways when its order is finite.

Example 3¨52. Consider Z4 “ t0, 1, 2, 3u. Since 4 ”4 0, we can write 1 as 1ˆ 4` 1, 2ˆ 4` 1,

3ˆ 4` 1, etc.

Example 3¨53. Recall Ω7 “ t1, ω, ω
2
, . . . , ω

6u. Since ω
7 “ 1, we can write ω

2
as ω

2
, ω

9
, ω

16
,

etc.

The example suggests that if the order of an element G is n P N, then we can write

xgy “
 

я, g, g
2
, . . . , g

n´1
(

.

This explains why we call xgy a cyclic group: once they reach ord pgq, the powers of g “cycle”.

To prove this in general, we have to show that for a finite cyclic group xgy with ord pgq “ n,

• n is the smallest positive power that gives us the identity; that is, g
n “ я, and

• for any two integers between 0 and n, the powers of g are different; that is, if 0 ď a ă

b ă n, then g
a ‰ gb.

Theorem 3¨54 accomplishes that, and a bit more as well.
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Theorem 3¨54. Let G be a finite group, g P G, and ord pgq “ n.

(A) я, g, g
2
, . . . , g

n´1
are all distinct.

(B) g
n “ я;

(C) n is the smallest positive integer d such that g
d “ я; and

(D) For any a, b P Z, n | pa´ bq if and only if g
a “ gb.

Proof. The meat of the theorem is (A). The remaining assertions are consequences.

(A) By way of contradiction, suppose that there exist a, b P N such that 0 ď a ă b ă n and

g
a “ gb; then я “ pgaq

´1
g
b
. By Lemma 3¨39, we can write

я “ g
´a
g
b
“ g

´a`b
“ g

b´a
.

Let d “ b ´ a. Recall that a ă b, so d “ b ´ a P N`. By the Division Theorem, for any

integermwe can find q, r P Z such thatm “ qd` r and 0 ď r ă d. Applying Lemma 3¨39

again, we have

g
m
“ g

qd`r
“
`

g
d
˘q

g
r
“ я

q
g
r
“ g

r
,

so any power of g can be written as a remainder after division by d. In other words,

xgy “
 

я, g, g
2
, . . . , g

d´1
(

.

This implies that |xgy| “ d, which contradicts the assumption that n “ ord pgq “ |xdy|.

(B) We know that ord pgq “ n, so there are n distinct elements of xgy. By part (a), the n

powers g
0
, g
1
, . . . , g

n´1
are all distinct, so

xgy “
 

g
0
, g
1
, . . . , g

n´1
(

.

This implies that g
n “ gd for some d “ 0, 1, . . . , n´ 1. Which one?

Using Lemma 3¨39, we find that g
n´d “ я. Recall that 0 ď d ă n, so 0 ă n´d ď n. By (A),

g
a ‰ я for a “ 1, 2, . . . , n´ 1, so n´ d “ n, so d “ 0. By substitution, g

n “ gd “ g0 “ я.

(C) let S is the set of all positive integers m such that g
m “ я; this is a subset of N, so it has a

smallest element. Let the smallest element be d; by (B), g
n “ я, so n P S. Hence d ď n. On

the other hand, (A) tells us that we cannot have d ă n; otherwise, g
d “ g

0 “ я. Hence,

n ď d. We already had d ď n, so the two must be equal.

(D) Let a, b P Z. Assume that n | pa´ bq. Let q P Z such that nq “ a ´ b. Substitution,

Lemma 3¨39 and some arithmetic tell us that

g
b
“ g

b
¨ я “ g

b
¨ я

q

“ g
b
¨ pg

n
q
q
“ g

b
¨ g

nq

“ g
b
¨ g

a´b
“ g

b`pa´bq
“ g

a
.
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Conversely, if we assume that g
b “ g

a
, then Lemma 3¨39 implies that g

b´a “ я. Use

the Division Theorem to choose q, r P Z such that b ´ a “ nq ` r and 0 ď r ă n. By

substitution and Lemma 3¨39,

я “ g
b´a
“ g

qn`r
“ pg

n
q
q
g
r
“ я

q
g
r
“ g

r
.

Recall that 0 ď r ă n. By (C), r cannot be positive, so r “ 0. By substitution, b´ a “ qn,

so n | pb´ aq.

We conclude that, at least when they are finite, cyclic groups are aptly named: increasing

powers of g generate new elements until the power reaches n, in which case g
n “ я and we

“cycle around.”

Question 3¨55 .
Complete the proof of Lemma 3¨39(C).

Question 3¨56 .
Fill in each blank of Figure 3.56 with the justification or statement.
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Let G be a group, and g P G. Let d, n P Z and assume ord pgq “ d.

Claim: gn “ я if and only if d | n.

Proof:

1. Assume that g
n “ я.

(a) By _____, there exist q, r P Z such that n “ qd` r and 0 ď r ă d.

(b) By _____, g
qd`r “ я.

(c) By _____, g
qd
g
r “ я.

(d) By _____,
`

g
d
˘q

g
r “ я.

(e) By _____, я
q
g
r “ я.

(f) By _____, яg
r “ я. By the identity property, g

r “ я.

(g) By _____, d is the smallest positive integer such that g
d “ я.

(h) Since _____, it cannot be that r is positive. Hence, r “ 0.

(i) By _____, n “ qd. By definition, then d | n.

2. Now we show the converse. Assume that _____.

(a) By definition of divisibility, _____.

(b) By substitution, g
n “_____.

(c) By Lemma 3¨39, the right hand side of that equation can be rewritten as _____.

(d) Recall that ord pgq “ d. By Theorem 3¨54, g
d “ я, so we can rewrite the right hand

side again as _____.

(e) A little more simplification turns the right hand side into _____, which obviously

simplifies to e.

(f) By _____, then, g
n “ я.

3. We showed first that if g
n “ я, then d|n; we then showed that _____. This proves the

claim.

Figure 3¨2: Material for Question 3.56
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3¨4 An introduction to finite rings and fields

Our minds are finite, and yet even in these circumstances of finitude we are sur-

rounded by possibilities that are infinite, and the purpose of life is to grasp as much

as we can out of that infinitude.

— Alfred North Whitehead

The rings and fields you’re most familiar with are infinite: Q, R, C. A natural question to ask

is, “Do finite rings or fields exist?”

We’ll look at rings first. You saw in Section 2¨2 that Zd is an abelian group under addition,

one of the requirements of a ring.

Theorem 3¨57. For any nonzero integer d, the set Zd is a commutative ring under modular addition

and multiplication.

Proof. Let d P Z be nonzero, and let a, b, c P Zd. We already know that Zd makes an abelian

group under modular addition, so we need merely show that modular multiplication satis-

fies the requirements of a commutative monoid. Closure is guaranteed by property (D2) of

the Division Theorem. The multiplicative identity is 1, itself a remainder and thus an ele-

ment of Zn. The associative property follows from multiplication of the integers and from

the uniqueness of remainders: since a pbcq “ pabq c as integers, the unique remainders of

a pbcq and pabq cmust also be equal, so a pbcq ” pabq c.

So Zd is a finite ring for every nonzero value of d.

As for finite fields, ah, uhm. . . well! You already met zero divisors of finite rings in Ques-

tion 2.40, so at least one of our finite rings are not good candidates for finite fields. Other

finite rings work dandily.

Example 3¨58. Recall Z7 “ t0, 1, 2, . . . , 6u. We can see that this is a field by verifying that

every nonzero element has a multiplicative inverse: 1b1 “ 1, 2b4 “ 8 ” 1, 3b5 “ 15 ” 1,

and 6b 6 “ 36 ” 1.

So Z7 is a field, but Z6 is not.

Question 3¨59 .
What difference between Z6 and Z7 makes the latter a field, while the former is not?

Don’t draw too hasty a conclusion! You might be tempted to think that the only finite field

are those of the Zd, where d has the “correct” form. In fact, there can be other fields of size d!

Example 3¨60. Consider g “ x2`1, in the ringZ3 rxs. LetF9 be the set of remainders possible

when dividing by g. Arithmetic is modulo both 3 and x
2 ` 1, so its elements are

F9 “ t0, 1, 2, x, x` 1, x` 2, 2x, 2x` 1, 2x` 2u .

This set is not the same as Z9!
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You already know from Theorem 3¨7 that F9 forms a ring. It is routine to verify that:

1
´1 “ 1 px` 1q

´1
“ x` 2

2
´1 “ 2 p2x` 1q´1 “ 2x` 2

x
´1 “ 2x

For example,

p2x` 1q p2x` 2q “ 4x
2
`��>

0
6x` 2 ” x

2
` 2 ” 1.

So all its nonzero elements have inverses.

Even though it has nine elements,F9 is a field! So we can’t just look at whether the number

of elements in a set factors. That said, it’s not completely unrelated.

Characteristics of finite rings

Definition 3¨61. Let R be a ring. The characteristic of R is the smallest positive integer n

such that

0 ” nr “ r ` r ` ¨ ¨ ¨ ` r
looooooomooooooon

n times

for every r P R. If there is no such number, we say that R has characteristic 0.

If n is the characteristic of R, we write charR “ n.

Example 3¨62. In Z7, the characteristic of 1 is 7, since 7 ˆ 1 ” 0, and any smaller multiple

of 1 is non-zero. In fact, 7ˆ r ” 0 for any nonzero element r, and no smaller value of n gives

n ˆ r ” 0. The one exception is r “ 0, in which case 1 ˆ 0 ” 0, but 1 doesn’t work for the

other elements (1 ˆ 2 ı 0), whereas 7 works for 0 (7 ˆ 0 ” 0), so the characteristic of Z7 is

indeed 7.

In Z6, the relationship 2 ˆ 3 ” 0 suggests that the characteristic could be 2 or 3, but

neither number is the characteristic of every element, since 2ˆ1 ” 2 ı 0 and 3ˆ5 ” 3 ı 0.

We have to try something larger, and in fact neither 4ˆ5 ” 0 nor 5ˆ5 ” 0; we find 6ˆ5 ” 0.

Similarly, 6ˆ 1 ” 0, so the characteristic of Z6 is 6.

Don’t jump too quickly into thinking the characteristic of a ring is simply the number of

elements! In F9, we get a different answer, because everything is modulo 3, so 3 ˆ r ” 0 for

every r P F9. Smaller numbers won’t work as 1 ˆ 1 ı 0, and 2 ˆ 1 ı 0, so the characteristic

must in fact be 3.

While the characteristic of a ring is defined in terms of every element, it actually depends

on only one element!

Theorem 3¨63. The characteristic of a ring is either zero or the smallest positive number n such that

nˆ 1 “ 0, where 1 is the multiplicative identity of R.

Proof. LetRbe a ring, and r P R. If nˆ1 ‰ 0 for any n P N`, then by definition of characteristic,

charR “ 0. Otherwise, R has positive characteristic, and there exists n P N` such that nˆ1 “
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0; use the Well-Ordering Principle to choose the smallest such n. By closure, n P R, so we can

apply the associative property to see that

nˆ r “ nˆ p1ˆ rq “ pnˆ 1q ˆ r “ 0ˆ r “ 0.

(Notice the use of Fact 2¨41 in the last step.) Thus, any n P N` satisfying n ˆ 1 “ 0 also

satisfies nˆ r “ 0. By choice of n, no smaller positivem satisfiesmˆ1 “ 0, so nˆ r “ 0 for all

r P R, and is the smallest such. The characteristic of R depends entirely on its multiplicative

identity.

It turns out that the characteristic is the key property distinguishing fields from mere rings.

Theorem 3¨64. The characteristic of a field is either zero or irreducible.

Proof. Let F be a field of characteristic n. Suppose to the contrary that n “ pq, where p and q

are integers, but neither is 1. Notice that 1 ă p, q ă n. Let S “ t0, 1, 2ˆ 1, . . . , pn´ 1q ˆ 1u.

By closure of multiplication, S Ď F. In addition, S is a set with n distinct elements; otherwise,

we would contradict Theorem 3¨63. (Keep in mind that 2ˆ 1 means 1` 1, 3ˆ 1 “ 1` 1` 1,

etc.)

Of course, 1 is the multiplicative identity, so S “ t0, 1, 2, . . . , n´ 1u. Recall that p, q ă n.

That means p, q P S; by inclusion, p, q P F. Closure of multiplication forces p ˆ q P F. By

the definition of characteristic, p ˆ q “ n ” 0, so that F has zero divisors. This contradicts

Question 2.45 and the hypothesis that F is a field!

The only questionable assumption we have made is that neither p nor q is 1, so it must be

that one of them is 1, and n is irreducible.

But what if n is irreducible?

Fact 3¨65. If n is irreducible, then Zn is a field of characteristic n.

Proof. Certainly Zn is a ring of characteristic n, since i ˆ 1 ı 0 for any i “ 1, . . . , n ´ 1. Why

must it be a field? We claim that for any nonzero r P Zn we can find s P Zn such that rs ” 1.

To see why, we need the following lemma.

Bézout’s Lemma. If d is the largest integer that divides two integers m and n, then we can find

integers x and y such that mx ` ny “ d. In fact, d is the smallest positive integer for which we can

find such an expression.

The equationmx`ny “ d is sometimes calledBézout’s Identity. The integer d of Bézout’s

Lemma is the greatest common divisor of m and n, and is abbreviated gcd pm, nq.

Proof of Bézout’s Lemma. Let S “ tmx` ny : x, y P Zu, and let L “ SXN`. By the Well-Ordering

Principle, L has a smallest element; call it `, and choose x and y such that mx ` ny “ `. By

hypothesis, d divides both m and n; say m “ ad and n “ bd. By substitution,

padq x` pbdq y “ `.

We can rewrite this as

d pax` byq “ `,
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so d | `. We know that this means d ď `.
On the other hand, choose a quotient q and remainder r such thatm “ q`` r satisfies the

Division Theorem. Rewrite this equation as

r “ m´ q` “ m´ q pmx` nyq “ m p1´ qxq ` n p´qyq .

With r “ m p1´ qxq ` n p´qyq, we see that r P S. As a remainder, r P N, so either r “ 0 or

r P S X N “ L. If r ‰ 0, the choice of ` as the smallest element of L implies ` ď r. But r is a

remainder from division by d, so r ă d, and we saw above that d ď `; it doesn’t make sense

to have ` ď r ă d ď `! The only way to avoid a contradiction is if r “ 0, so ` divides m. A

similar argument shows that ` divides n. We now have ` dividing both m and n; recall that d

is the largest integer that divides both m and n, so ` ď d.
We are now finished: the first paragraph concluded that d ď `, and the second paragraph

concluded that ` ď d. This is only possible if ` “ d, and we have shown the claim.

Question 3¨66 .
The first paragraph of the proof of Bézout’s Theorem concludes with the assertion that if d, `
are both positive integers, and d divides `, then d ď `. Why must this be true?

We return to our main question.

Proof of Fact 3¨64 (continued). Let m P Zn. By hypothesis, n is irreducible, so the greatest com-

mon divisor of m and n is 1. Well, then, Bézout’s Lemma gives us integers x, y such that

mx ` ny “ 1. Rewrite this as ny “ 1 ´ mx, and Theorem 2¨19 shows that 1 ”n mx. In

other words, x is the multiplicative inverse we sought for m.

Evaluating positions in the game

We return to the question of evaluating the value of a position in Nim and Ideal Nim. One

way to do this is to count the number of possible moves remaining. For instance, if we have

only a single row of m boxes, we would call that a row of value m. How can we model this?

Let’s start with these first two principles to keep in mind:

Principle the first: A choice’s value must satisfy 0 ď m.

Principle the second: Any choice is its own inverse, so m‘ m “ 0.

To a seasoned mathematician, the self-inverse property indicates that we’re working in a ring

of characteristic 2. We’ll aim for a field, if we can get it. Unfortunately, the basic field of

characteristic 2 is Z2, which has only two values. By themselves, 0 and 1 won’t model our

game, so we’ll have to extend our ring. Nothing stops us from extending it in a fashion similar

to the one we used to build the complex numbers, so let’s try that.

Fact 3¨67. The polynomial f “ x px´ 1q px´ a1q ¨ ¨ ¨ px´ an´2q ` 1 has no roots in the finite field

Fn “ t0, 1, a1, . . . , an´2u.

Why? We can see this by simple substitution; f pbq ” 1 for any element b of Fn.
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Fact 3¨68. Any factorization of f that uses coefficients only in Fn has no linear components.

Why? The alternative would set up a contradiction between the Division Theorem for Poly-

nomials and the previous fact: for any hypothetical linear factor of f , the definition of f would

have a remainder of 1, while the factorization would have a remainder of 0.

In other words, while f may factor, its irreducible factors are not linear.

Fact 3¨69. Defining a ring E as Fn rxsmodulo an irreducible factor of f actually gives us a field.

Why? If not, there must be some nonzero element a of E that does not have a multiplicative

inverse. SinceE is finite, we can list all products ax for x P E. The fact that ax ‰ 1means there

must be distinct elements x, y P E whose products give ax “ ay. Rewrite this as a px´ yq “ 0.

Let z “ x ´ y; with distinct x and y, we must have z ‰ 0. That means az “ 0 even though

a, z ‰ 0; we have found zero divisors.

This is a contradiction! To see why, let g be the irreducible factor of f . Both a and z are

polynomials with degree smaller than deg g. The statement “az “ 0 inE” translates to “az ” 0

in Fn rxsmodulo g,” but since 0 ” g, we have found a factorization of an irreducible polyno-

mial!

Satisfied that E is in fact a field, we can now build successively larger fields

t0, 1u Ĺ t0, 1, 2, 3u Ĺ t0, 1, 2, 3, 4, 5, 6, 7u Ĺ ¨ ¨ ¨

where 2
n

represents x
n

in the corresponding extension, 2
n ` 1 represents x

n ` 1, 2n ` 2 rep-

resents x
n ` x, etc. These are not your ordinary 2, 3, . . . because here, 1 ` 1 ı 2; after all,

1` 1 ” 0. The addition of the remainders, modulus the irreducible polynomial, corresponds

precisely to integer addition using powers of 2, also called binary notation. This allows us to

model the Nim and Ideal Nim.

It is not enough to form a winning strategy for Ideal Nim, because a winning strategy for

this game is currently unknown! However, we can still evaluate the values of many games using

the implication of symmetry that x` x ” 0.

Example 3¨70. Suppose a game of Ideal Nim has led to the following configuration:
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Suppose it is Emmy’s turn. As this is visually non-symmetric, you might conclude that the

Emmy has an advantage. Upon further inspection, you’d discover that if David has any sense

at all, then no, Emmy will in fact lose. For instance, if Emmy chooses p0, 3q, David could choose

p1, 1q, leaving a visually symmetric game; if Emmy chooses p0, 2q instead, David could choose

p2, 1q, again leaving a visually symmetric game. Either choice is a win for David! The remaining

choices for the next player are similarly parried.

Our conclusion from this is that the value of the upside-down L on the right is equivalent

to the value of the two blocks in a line on the left; both blocks have value 2.

Question 3¨71 .
Operating under the assumption that a line ofm blocks has valuem, use a technique analogous

to the one in the previous example to show that the values of the following configurations

are 1, 3, 4, 1 (again!), and 5.

3¨5 Matrices
matrix, n. 1. (Latin) the womb. 2. (mathematics) A rectangular array of numeric

or algebraic quantities subject to mathematical operations.

— from The American Heritage Dictionary of the English Language

(4th edition)

Let R be a commutative ring, and m, n P N`. An m ˆ n matrix M over R is a list of m lists

(rows) of n elements of R. We say the dimension of the matrix is m ˆ n. We call R the base
ring of M. If m “ n, we call the matrix square, and say that the dimension of the matrix is

m. The set of all mˆ nmatrices over R is R
mˆn

.

Notation 3¨72. We write the jth element of row i of the matrix A as aij. We often omit 0’s from

the matrix, not so much from laziness as from a desire to improve readability. (It really does

help to omit the 0’s when there are a lot of them.) If the dimension of A is m ˆ n, then we

write dimA “ mˆ n.

Example 3¨73. If

A “

¨

˝

1 1

1

5 1

˛

‚,

then a21 “ 0 while a32 “ 5. Notice that A is a 3 ˆ 3 matrix; or, dimA “ 3 ˆ 3. As a square

matrix, we say its dimension is 3.

Definition 3¨74. The transpose of a matrix A is the matrix B satisfying bij “ aji. In other

words, the jth element of row i of B is the ith element of row j of A. A column of a matrix is a

row of its transpose.
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Notation 3¨75. We often write A
T

for the transpose of A.

Example 3¨76. If A is the matrix of the previous example, then

A
T
“

¨

˝

1

1 5

1 1

˛

‚.

We focus mostly on square matrices, with the exception of m ˆ 1 matrices, also called

column vectors, or just plain “vectors” if we feel lazy, as we often do. The dimension of an

m ˆ 1 vector is m. We write R
m

for the set of all column vectors of dimension n with entries

from a ringR. This looks the same as the Cartesian productRˆRˆ¨ ¨ ¨¨R, because it is: a column

vector pr1 ¨ ¨ ¨ rmq
T

is merely a different representation of writing the tuple pr1, . . . , rmq.

Matrix arithmetic

The two major operations for matrices are addition and multiplication. Addition is com-

ponentwise; we add matrices by adding entries in the same row and column. Multiplication

is not componentwise.

• If A and B are mˆ nmatrices and C “ A` B, then cij “ aij ` bij for all 1 ď i ď m and all

1 ď j ď n. Notice that C is also an mˆ nmatrix.

• If A is anmˆ rmatrix, B is an rˆnmatrix, and C “ AB, then C is themˆnmatrix whose

entries satisfy

cij “

r
ÿ

k“1

aikbkj ;

that is, the jth element in row i of C is the sum of the products of corresponding elements

of row i of A and column j of B.

This definition of multiplication, while odd, satisfies certain useful properties: in particular,

relating matrix equations to systems of linear equations.

Example 3¨77. If A is the matrix of the previous example and

B “

¨

˝

1 5 ´1

1

´5 1

˛

‚,

then

AB “

¨

˝

1 ¨ 1` 0 ¨ 0` 1 ¨ 0 1 ¨ 5` 0 ¨ 1` 1 ¨ ´5 1 ¨ ´1` 0 ¨ 0` 1 ¨ 1

0 ¨ 1` 1 ¨ 0` 0 ¨ 0 0 ¨ 5` 1 ¨ 1` 0 ¨ ´5 0 ¨ ´1` 1 ¨ 0` 0 ¨ 1

0 ¨ 1` 5 ¨ 0` 1 ¨ 0 0 ¨ 5` 5 ¨ 1` 1 ¨ ´5 0 ¨ ´1` 5 ¨ 0` 1 ¨ 1

˛

‚

“

¨

˝

1

1

1

˛

‚.
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On the other hand, if x “ px y zqT and b “ p0 0 2qT, the matrix equation

Ax “ b

simplifies to
¨

˝

x z

y

5y z

˛

‚“

¨

˝

0

0

2

˛

‚,

which corresponds to the system of equations

$

’

&

’

%

x ` z “ 0

y “ 0

5y` z “ 2

.

Question 3¨78 .
Recall the definition of zero divisors from Definition 2¨42. Show that matrix multiplication

has zero divisors by finding two square matrices A and B such that A ‰ 0 and B ‰ 0, but

AB “ 0. You can start with 2ˆ 2 matrices, but try to make it a general formula, and describe

how one could build such matrix zero divisors regardless of their size. Hint: Don’t overthink

this; there is a very, very simple answer.

Question 3¨79 .
In this problem, pay careful attention to which symbols are thickened, as they represent

matrices.

Let i denote the imaginary number, so that i
2 “ ´1, and let Q8 be the set of quaternions,

defined by the matrices t˘1,˘i,˘j,˘ku where

1 “
ˆ

1 0

0 1

˙

, i “
ˆ

i 0

0 ´i

˙

,

j “
ˆ

0 1

´1 0

˙

, k “
ˆ

0 i

i 0

˙

.

(a) Show that i2 “ j2 “ k2 “ ´1.

(b) Show that ij “ k, jk “ i, and ik “ ´j.

(c) Show that ij “ ´ji, ik “ ´ki, and jk “ ´kj.

(d) Use these properties to construct the Cayley table of Q8. Hint: If you use the properties

carefully, along with what you know of linear algebra, you can fill in the remaining spaces

without performing a single matrix multiplication.

(e) Show that Q8 is a group under matrix multiplication.

(f) Explain why Q8 is not an abelian group.
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Question 3¨80 .
The following exercises refer to elements of the quaternions (Question 3.79).

(a) Determine the elements of x´1y and xjy in Q8.

(b) Verify that H “ t1,´1, i,´iu is a cyclic group. Which elements actually generate H?

(c) Show that Q8 is not cyclic.

Question 3¨81 .
In each of the following, compute the order of the element a P Q8.

(a) a “ i

(b) a “ ´1

(c) a “ 1

Question 3¨82 .
We sometimes allow matrices which proceed indefinitely in two directions. Here are two such

matrices which are mostly zero, though we highlight the zeros on the main diagonal:

D “

¨

˚

˚

˚

˚

˚

˝

0 1

0 2

0 3

0 4

. . .
. . .

˛

‹

‹

‹

‹

‹

‚

S “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0
1

2
0
1

3
0
1

4
0
1

5
0

. . .
. . .

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Let R be a ring. A polynomial in R rxs corresponds to a coefficient vector via the map

rnx
n
` ¨ ¨ ¨ r1x` r0 ÞÑ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

r0

r1
...

rn

0

0

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Choose several random polynomials p, write their coefficient vectors p, then compute Dp and

Sp for each. What are the results? How would you characterize the effect of multiplying D

and S to a “polynomial vector”?
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Definition 3¨83. The kernel of a matrix M is the set of vectors v such that Mv “ 0. In other

words, the kernel is the set of vectors whose product withM is the zero matrix.

Notation 3¨84. We write kerM for the kernel ofM.

Example 3¨85. Let R “ Z, and

M “

¨

˝

1 0 5

0 1 0

0 0 0

˛

‚.

Let

x “

¨

˝

1

2

1

˛

‚ and y “

¨

˝

´5

0

1

˛

‚.

Since

Mx “

¨

˝

6

2

0

˛

‚ and My “

¨

˝

0

0

0

˛

‚“ 0,

we see that x is not in the kernel of M, but y is. In fact, it can be shown (you will do so in a

moment) that

kerM “

$

&

%

v P R
3
: v “

¨

˝

´5c

0

c

˛

‚ Dc P F

,

.

-

.

The kernel has important and fascinating properties, which we explore later on.

Question 3¨86 .
Let R “ Z, and

M “

¨

˝

1 1

1

5 ´1

˛

‚ and N “

¨

˝

1 0 5

0 1 0

0 0 0

˛

‚.

Show that

kerM “ t0u ,

and

kerN “

$

&

%

v P R
3
: v “

¨

˝

´5c

0

c

˛

‚ Dc P R

,

.

-

.

Question 3¨87 .
What are the kernels of the matrices D and I of Question 3.82? Hint: In that problem, we asked

you to “characterize the effect” of D and S on a “polynomial vector.” If you know the effect,

you can use that to make an educated guess at what appears in the kernel, then prove it.

Properties of matrix arithmetic

We now explore some properties of arithmetic of square matrices, so as to find a structure

that describes them.
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Fact 3¨88. For a fixed dimension of square matrices, matrix addition and multiplication are closed.

Why? The hypothesis is that we have a fixed dimension of square matrices, say n ˆ n. From

the definition of the operations, you see immediately that both addition and multiplication of

matrices result in an nˆnmatrix. Thus, anyA, B P Rmˆn satisfyA`B P Rmˆn andAB P Rmˆn.

Recall A and B from Examples 3¨73 and 3¨77. If we write I3 for a 3 ˆ 3 matrix of three 1’s

on the diagonal (and zeroes elsewhere), something interesting happens:

AI3 “ I3A “ A and BI3 “ I3B “ B.

The pattern of this matrix ensures that the property remains true for any matrix, as long as

you’re working in the correct dimension. That is, I3 is an “identity” matrix. In particular, it’s

the identity ofmultiplication. Is there a second identity matrix?

Don’t confuse “the identity matrix” with a matrix filled with zeros; that is the identity ma-

trix for addition. Can there be another second matrix for multiplication? In fact, there cannot.

You will see why in a moment.

Notation 3¨89.

• We write 0 (that’s a bold zero) for any matrix whose entries are all zero.

• We write In for the nˆ nmatrix satisfying

– aii “ 1 for any i “ 1, 2, . . . , n; and

– aij “ 0 for any i ‰ j.

Theorem 3¨90. The zero matrix 0 is an identity for matrix addition. The matrix In is an identity for

multiplication of nˆ n matrices.

When reading theorems, you sometimes have to read between the lines. Here, you have

to infer that n P N` and 0 is a matrix whose dimension is appropriate to the other matrix.

We should not take it to mean anmˆ 4 matrix with zero entries is an identity for matrices of

dimensionmˆ 2, as the addition would be undefined. Similarly, you have to infer that In is an

identity for square matrices of dimension n; it wouldn’t make sense to multiply In to a 3 ˆ 5

matrix.

Question 3¨91 .
Can you find a multiplicative identity for 3ˆ 5 matrices? If so, what it is? If not, why not?

Proof of Theorem 3¨90. Let A be a square matrix of dimension m ˆ n. By definition, the jth el-

ement in row i of A ` 0 is aij ` 0 “ aij. This is true regardless of the values of i and j, so if

we choose 0 to be an m ˆ n matrix with zero entries, A ` 0 “ A. A similar argument shows

0` A “ A. Since A is arbitrary, 0 really is an additive identity.
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As for In, we point out that the jth element of row i ofAIn is (by definition of multiplication)

¨

˚

˚

˚

˚

˚

˚

˚

˝

col j

.

.

.

row i ¨ ¨ ¨ this element? ¨ ¨ ¨

.

.

.

˛

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

row i a1 ¨ ¨ ¨ aij ¨ ¨ ¨ ain

˛

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

col j

1

.
.
.

1

.
.
.

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ aij ¨ 1`
ÿ

k“1,. . . ,m

k‰j

aik ¨ 0.

Simplifying this gives us aij. This is true regardless of the values of i and j, so AIn “ A. A similar

argument shows that InA “ A. Since A is arbitrary, In really is a multiplicative identity.

Given a matrix A, an additive inverse of A is any matrix B such that A ` B “ 0. A

multiplicative inverse of A is any matrix B such that AB “ In. Additive inverses always exist,

and it is easy to construct them. Multiplicative inverses do not exist for some matrices, even

when the matrix is square. Because of this we call a matrix invertible if it has a multiplicative

matrix, and if we merely speak of the “inverse” of a matrix, we mean its multiplicative inverse.

Notation 3¨92. We write the additive inverse of a matrix A and ´A, and the multiplicative

inverse of A as A
´1

.

Example 3¨93. The matrices A and B of the previous example are inverses; that is, A “ B
´1

and B “ A´1. The non-zero matrix
ˆ

1 0

2 0

˙

is not invertible, because any matrix satisfying

ˆ

1 0

2 0

˙ˆ

a b

c d

˙

“ I2

must satisfy the system of equations

$

’

’

’

&

’

’

’

%

a “ 1

b “ 0

2a “ 0

2b “ 1

,

an impossible task.

Question 3¨94 .
A matrix A is orthogonal if its transpose is also its inverse. Let n P N` and O pnq be the set of

all orthogonal nˆ nmatrices.

(a) Show that this matrix is orthogonal, regardless of the value of α:

ˆ

cos α sin α

´ sin α cos α

˙

.

(b) Find some other orthogonal matrices. (Their entries can consist of numbers alone.)

Compute their determinant. Do you notice a pattern? See if you can prove it.
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Hint: The easiest way to show this requires some properties of determinants. Since you

may not remember them, or may not even have seen them (it could depend on the class,

on the teacher, on which universe you existed in the day they were presented. . . ) here

are the ones you need: for any matrix that has an inverse, detA “ detA
T
, det pABq “

pdetAq pdet Bq, and det In “ 1 for every n P N`.

We want one more property.

Theorem 3¨95. Matrix multiplication is associative. That is, if A, B, and C are matrices, then A pBCq “

pABq C.

Proof. Let A be anmˆ rmatrix, B an rˆ smatrix, and C an sˆ nmatrix. By definition, the `th
element in row i of AB is

pABq
i` “

r
ÿ

k“1

aikbk`.

Likewise, the jth element in row i of pABq C is

ppABq Cq
ij
“

s
ÿ

`“1

pABq
i` c`j “

s
ÿ

`“1

«˜

r
ÿ

k“1

aikbk`

¸

c`j

ff

.

Notice that c`j is multiplied to a sum; we can distribute it and obtain

ppABq Cq
ij
“

s
ÿ

`“1

r
ÿ

k“1

paikbk`q c`j. (3.1)

We turn to the other side of the equation. By definition, the jth element in row k of BC is

pBCq
kj
“

s
ÿ

`“1

bk`c`j.

Likewise, the jth element in row i of A pBCq is

pA pBCqq
ij
“

r
ÿ

k“1

˜

aik

s
ÿ

`“1

bk`c`j

¸

.

This time, aik is multiplied to a sum; we can distribute it and obtain

pA pBCqq
ij
“

r
ÿ

k“1

s
ÿ

`“1

aik

`

bk`c`j

˘

.

By the associative property of the entries,

pA pBCqq
ij
“

r
ÿ

k“1

s
ÿ

`“1

paikbk`q c`j. (3.2)
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The only difference between equations (3.1) and (3.2) is in the order of the summations:

whether we add up the k’s first or the `’s first. That is, the sums have the same terms, but

those terms appear in different orders! We assumed the entries of the matrices were com-

mutative under addition, so the order of the terms does not matter; we have

ppABq Cq
ij
“ pA pBCqq

ij
.

We chose arbitrary i and j, so this is true for all entries of the matrices. The matrices are equal,

which means pABq C “ A pBCq.

We now have enough information to classify two useful and important structures of square

matrices. First, suppose the entries come from a general ring.

Theorem 3¨96. For any commutative ring R, the set R
nˆn

of nˆnmatrices over R is a noncommutative

ring.

Proof. We have shown that matrix addition satisfies most of the properties of an abelian group;

the only one we have not shown is the commutative property of addition, which is easy to

show.

Question 3¨97 .
Why is matrix addition commutative?

Proof of Theorem 3¨96 (continued). We have also shown that matrix multiplication satisfies the

properties of a monoid; see Fact 3¨88 and Theorems 3¨90 and 3¨95. So we need merely show

that matrix multiplication distributes over addition. Let n P N` and A, B, C P Rnˆn.

rA pB` Cqs
ij
“

n
ÿ

k“1

“

aik

`

bkj ` ckj
˘‰

“

n
ÿ

k“1

`

aikbkj ` aikckj
˘

“

n
ÿ

k“1

aikbkj `

n
ÿ

k“1

aikckj

“ pABq
ij
` pACq

ij
.

This shows the elements in row i and column j are equal whenever we fix i and j between 1 and

n. All the entries of A pB` Cq and AB` AC are equal, so A pB` Cq “ AB` AC; the distributive

property holds.

Usually the multiplication does not commute.

Question 3¨98 .
Look back at Question 3.79. Find two quaternion matrices A and B such that AB ‰ BA.
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Question 3¨99 .
Suppose n ą 1 and R

nˆn
is the set of all n ˆ nmatrices whose entries are elements of R. Find

matrices A and B such that AB ‰ BA.

Hint: Since the ring R is arbitrary, it has to work even when R “ Z2, which limits your

options in a way that is surprisingly useful. So, try finding two 2ˆ 2 matrices A and B whose

entries are elements of Z2, and AB ‰ BA. Once you find them, generalize your answer to any

dimension n ě 2.

So if the entries of our matrices merely come from a ring, the set of square matrices forms

another ring, though most sets of matrices form a noncommutative ring. Nice!

Suppose we go further, using a field for our base ring. Except for the additive identity,

multiplication in a field satisfies the inverse property. Will this be true of the matrices over

that field? We’ve already seen this isn’t true: Question 3.78 shows that zero divisor matrices

exist over every ground ring R, which includes fields, and Question 2.45 tells us that fields

cannot have zero divisors. So most rings of matrices will not be fields.

Can we build a field using invertible matrices? We need closure of multiplication.

Fact 3¨100. The product of two invertible matrices is also invertible.

Question 3¨101 .
Why is Fact 3¨100 true? In other words, ifA and B are invertible matrices, why is AB invertible?

Hint: Try to construct an inverse using the inverses of A and B.

We already know that matrix multiplication has an identity, which is invertible, and is

associative. That’s all we need; the set of invertible matrices forms a group!

Definition 3¨102. Let F be a field. We call the set of invertible nˆ nmatrices with elements

in F the general linear group over F of dimension n, abbreviated GLn pFq. The operation

is multiplication. Ordinarily we work with F “ R and fixed degree n, so when the meaning

is clear and we’re feeling somewhat lazy (which we usually are), we will refer simply to the

general linear group.

Unfortunately, the set of invertible matrices still won’t form a field, for several reasons.

Question 3¨103 .
Find at least three properties of a field that GLn pFq does not satisfy.

Question 3¨104 .
Recall from Question 3.94 the orthogonal matrices O pnq.

(a) Show that if A and B are orthogonal matrices, then AB is also orthogonal.

Hint: You will need the additional matrix properties pABq
T
“ BTAT.

(b) Show that O pnq is a group under matrix multiplication.
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We now return to the question we first posed above: why can’t there be a different identity,

either for addition or multiplication?

Fact 3¨105. The identity of a monoid is unique.

Notice the claim: we don’t say merely that the identity matrix is unique, whether that be

the identity of addition or multiplication. We say that the identity of any monoid is unique.

This covers matrices, whether under addition or multiplication, and every other monoid possible.

We don’t need even the full monoid structure! Pay attention to the explanation, and see if

you can identify which properties aren’t required.

Why? Let M be a monoid, and я P M an identity. Suppose that e P M is also an identity;

perhaps я “ e, but perhaps я ‰ e; we are not sure. (Merely having a different name does not

imply a different substance.) By the fact that я is an identity, we know that яe “ e. On the

other hand, the fact that e is an identity tells us that яe “ я. By substitution, я “ e. Since our

choice of identities was arbitrary, and they turned out equal, it must be that the identity of a

monoid is unique.

Question 3¨106 .
Which property (-ies) of a monoid did we not use in the explanation above?

Question 3¨107 .
Suppose G is a group, and x P G. We know that x has an inverse; call it y P z. Can x have

another inverse, z P G? Hint: As in the explanation for Fact 3¨105, it helps to show that y “ z,

but the trick is a little different.

Question 3¨108 .
Use a fact from linear algebra to explain why GLm pRq is not cyclic.

Example 3¨109. Let

G “

$

’

’

’

’

&

’

’

’

’

%

ˆ

1 0

0 1

˙

,

ˆ

0 ´1

1 0

˙

,

ˆ

0 1

´1 0

˙

,

ˆ

´1 0

0 ´1

˙

,

/

/

/

/

.

/

/

/

/

-

Ĺ GLm pRq .

It turns out that G is a group; both the second and third matrices generate it. For example,

ˆ

0 ´1

1 0

˙2

“

ˆ

´1 0

0 ´1

˙

ˆ

0 ´1

1 0

˙3

“

ˆ

0 1

´1 0

˙

ˆ

0 ´1

1 0

˙4

“

ˆ

1 0

0 1

˙

.
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Question 3¨110 .
For the matrices in Example 3¨109, let

A “

ˆ

´1 0

0 ´1

˙

.

Express A as a power of the other non-identity matrices of the group.

Example 3¨111. Recall Example 3¨109; we can write

ˆ

1 0

0 1

˙

“

ˆ

0 ´1

1 0

˙0

“

ˆ

0 ´1

1 0

˙4

“

ˆ

0 ´1

1 0

˙8

“ ¨ ¨ ¨ .

Since multiples of 4 give the identity, let’s take any power of the matrix, and divide it by 4.

The Division Theorem allows us to write any power of the matrix as 4q` r, where 0 ď r ă 4.

Since there are only four possible remainders, and multiples of 4 give the identity, positive

powers of this matrix can generate only four possible matrices:

ˆ

0 ´1

1 0

˙4q

“

ˆ

1 0

0 1

˙

,

ˆ

0 ´1

1 0

˙4q`1

“

ˆ

1 0

0 1

˙ˆ

0 ´1

1 0

˙

“

ˆ

0 ´1

1 0

˙

,

ˆ

0 ´1

1 0

˙4q`2

“

ˆ

1 0

0 1

˙ˆ

´1 0

0 ´1

˙

“

ˆ

´1 0

0 ´1

˙

,

ˆ

0 ´1

1 0

˙4q`3

“

ˆ

1 0

0 1

˙ˆ

0 1

´1 0

˙

“

ˆ

0 1

´1 0

˙

.

We can do the same with negative powers; the Division Theorem still gives us only four

possible remainders. Let’s write

g “

ˆ

0 ´1

1 0

˙

.

Thus

xgy “
 

I2, g, g
2
, g
3
(

.

3¨6 Symmetry in polygons

What is it indeed that gives us the feeling of elegance in a solution, in a demonstra-

tion? It is the harmony of the diverse parts, their symmetry, their happy balance;

in a word it is all that introduces order, all that gives unity, that permits us to see

clearly and to comprehend at once both the ensemble and the details.

— Henri Poincaré
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Figure 3¨3: Rotation and reflection of the triangle

A geometric phenomenon with mathematical structure is called “the symmetries of a regular

polygon.” This mouthful of words requires some explanation. For the sake of simplicity, we

stick with a triangle, but the basic ideas here work with any number of sides, and we touch

on this briefly at the end of the section.

In general, the set of symmetries of a regular polygon with n sides is called Dn, so we will

be looking at D3, but you should pause from time to time and think of D4 or D5, because you’re

going to face them sooner or later, too.

Intuitive development of D3

To describe D3, start with an equilateral triangle in R2
, with its center at the origin. A

“symmetry” is a transformation of the plane that leaves the triangle in the same location,

even if its points are in different locations. For instance, if you rotate the triangle 120
˝

over

its center, the triangle ends up in the same location, even thought all the points have moved;

this is not true if you rotate by 30
˝

or 60
˝
. Likewise, if you reflect the triangle about the y-axis,

the triangle ends up in the same location, even though most of the points have moved. We’ll

call that rotation ρ, and that reflection φ. See Figure 3¨6.

“Transformations” include actions like rotation, reflection (flip), and translation (shift).

Translating the plane in some direction certainly won’t leave the triangle intact, but rotation

and reflection can.

It is helpful to observe two important properties.

Theorem 3¨112. If φ and ρ are as specified, then φρ “ ρ2φ.

For now, we consider intuitive proofs only. Detailed proofs appear later in the section. It’ll

help if you sketch the arguments.

Intuitive proof. The expression φρmeans to apply ρ first, then φ; after all, these are functions,

so pφρq pxq “ φ pρ pxqq. Rotating 120
˝

moves vertex 1 to vertex 2, vertex 2 to vertex 3, and

vertex 3 to vertex 1. Flipping through the y-axis leaves the top vertex in place; since we

performed the rotation first, the top vertex is now vertex 3, so vertices 1 and 2 are the ones

swapped. Thus, vertex 1 has moved to vertex 3, vertex 3 has moved to vertex 1, and vertex 2

is in its original location.
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On the other hand, ρ
2
φ means to apply φ first, then apply ρ twice. Again, it will help to

sketch what follows. Flipping through the y-axis swaps vertices 2 and 3, leaving vertex 1 in

the same place. Rotating twice then moves vertex 1 to the lower right position, vertex 3 to

the top position, and vertex 2 to the lower left position. This is the same arrangement of the

vertices as we had for φρ, which means that φρ “ ρ2φ.

You might notice a gap in the reasoning: we showed that each vertex of the triangle moved

to a position that previously held a vertex, but said nothing of the points in between. That

requires a little more work, which is why we provide detailed proofs later.

By the way, did you notice what Theorem 3¨112 did not claim?

Question 3¨113 .
Show that D3 is non-commutative: φρ ‰ ρφ.

Another “obvious” symmetry of the triangle is the transformation where you do nothing –

or, if you prefer, where you effectively move every point back to itself, as in a 360
˝

rotation. We’ll

call this symmetry ι. It gives us the last property we need to specify the group, D3.

Question 3¨114 .
Compute the cyclic group generated by a in D3.

(a) a “ φ

(b) a “ ρ2

(c) a “ ρφ

Theorem 3¨115. In D3, ρ
3 “ φ2 “ ι.

Intuitive proof. Rotating 120
˝

three times is the same as rotating 360
˝
, which leaves points in

the same position as if they had not rotated at all. Likewise,φmoves any point px, yq to px,´yq,

and applying φ again moves px,´yq back to px, yq, which is the same as not flipping at all.

We are now ready to specify D3.

Theorem 3¨116. The set of symmetries of a regular triangle, D3 “ tι, φ, ρ, ρ2, ρφ, ρ2φu, is a group

under composition of functions.

We can prove most of these by mere inspection of the Cayley table, will you will compute

in Question 3.117. However, we can also give geometric reasoning. As long as that isn’t too

complicated, we add a geometric argument, as well.

Proof. We prove this by showing that all the properties of a group are satisfied. We only start

the proof, leaving it you to finish in Question 3.117.

Closure: In Question 3.117, you will compute the Cayley table of D3. There, you will see that

every composition is also an element of D3.

Associative: In Section 7¨1, we show that composition of functions is associative. Symme-

tries are functions that map any point in R2
to another point in R2

, with no ambiguity about
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where the point goes. Proving the associative property once for an arbitrary function over an

arbitrary set takes care of particular functions (D3) over a particular set (R2
).

Identity: In Question 3.117, you will compute the Cayley table of D3. There, you will find

that ισ “ σι “ σ for every σ P D3.

(Alternately, let σ P D3 be any symmetry. Apply σ to the triangle. Then apply ι. Since ι

leaves everything in place, all the points are in the same place they were after we applied σ.

In other words, ισ “ σ. The proof that σι “ σ is similar.)

Inverse: In Question 3.117, you will compute the Cayley table of D3. There, you will find

that for every σ P D3, the row labeled σ contains ι in exactly one column. The element at the

top of that row is σ
´1

by definition.

(Alternately, it is clear that rotation and reflection are one-to-one-functions; after all, if

a point P is mapped to a point R by either, it doesn’t make sense that another point Q would

also be mapped to R. Since one-to-one functions have inverses, every element σ of D3 must

have an inverse function σ
´1

, which undoes whatever σ did. But is σ
´1 P D3 — that is, is σ

´1
a

symmetry? Since σmaps every point of the triangle onto the triangle, σ
´1

will undo that map:

every point of the triangle will be mapped back onto another point of the triangle, as well.

So, yes, σ
´1 P D3.)

Question 3¨117 .
The multiplication table for D3 has at least this structure:

˝ ι φ ρ ρ
2

ρφ ρ
2
φ

ι ι φ ρ ρ
2

ρφ ρ
2
φ

φ φ ρ
2
φ

ρ ρ ρφ

ρ
2

ρ
2

ρφ ρφ

ρ
2
φ ρ

2
φ

Complete the multiplication table, writing every element in the form ρ
m
φ
n
, never with φ be-

fore ρ. Do not use matrix multiplication; instead, use Theorems 3¨112 and 3¨115.

Question 3¨118 .
The set D4 of symmetries of a square is also a group, though it has 8 elements. It, too, can be

built using only a rotation and a reflection. Choose such a rotation and reflection that allow

you to list all 8 elements as products of them, in a manner similar to what we did with D3.

Identify properties of its elements that resemble the properties found for the rotation and

reflection of D3, and use them to build a Cayley table for D4

Question 3¨119 .
Find a geometric figure (not a polygon) that is preserved by at least one rotation, at least

one reflection, and at least one translation. Keep in mind that, when we say “preserved”, we

mean that the points of the figure end up on the figure itself — just as a 120
˝

rotation leaves

the triangle on itself.
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Detailed proof that D3 contains all symmetries of the triangle

To prove that D3 contains all symmetries of the triangle, we need to make some notions

more precise. First, what is a symmetry? A symmetry of any polygon is a distance-preserving

function on R2
that maps points of the polygon back onto itself. Notice the careful wording:

the points of the polygon can change places, but since they have to be mapped back onto the

polygon, the polygon itself has to remain in the same place.

Let’s look at the specifics for our triangle. What functions are symmetries of the triangle?

To answer this question, we divide it into two parts.

1. What are the distance-preserving functions that map R2
to itself, and leave the origin

undisturbed? Here, distance is measured by the usual metric,

d “

b

px2 ´ x1q
2
` py2 ´ y1q

2
.

(You might wonder why we don’t want the origin to move. Basically, if a function α

preserves both distances between points and a figure centered at the origin, then the

origin cannot move, since its distance to points on the figure would change.)

2. Not all of the functions identified by question (1) map points on the triangle back onto

the triangle; for example, a 45
˝

degree rotation does not. Which ones do?

Lemma 3¨120 answers the first question.

Lemma 3¨120. Let α : R2 Ñ R2
. If

• α does not move the origin; that is, α p0, 0q “ p0, 0q, and

• the distance between α pPq and α pRq is the same as the distance between P and R for every P, R P

R2
,

then α has one of the following two forms:

ρ “

ˆ

cos t ´ sin t

sin t cos t

˙

Dt P R

or

φ “

ˆ

cos t sin t

sin t ´ cos t

˙

Dt P R.

The two values of t may be different.

Proof. Assume that α p0, 0q “ p0, 0q and for every P, R P R2
the distance between α pPq and

α pRq is the same as the distance between P and R. We can determine α precisely merely from

how it moves two points in the plane! We’ll choose two “easy” points to manipulate.

Consider P “ p1, 0q as the first point. Let Q “ α pPq; that is, Q is P’s destination when α

moves it. Write Q “ pq1, q2q. The distance between P and the origin is 1. By hypothesis α, does

not move the origin, so the distance between Q and the origin will also be 1. In other words,

1 “
a

q
2
1 ` q

2
2,
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or

q
2

1
` q

2

2
“ 1.

The only values for Q that satisfy this equation are those points that lie on the circle whose

center is the origin. We can describe any point on this circle as

pcos t, sin tq

where t P r0, 2πq represents an angle. Hence, α pPq “ pcos t, sin tq.

Consider R “ p0, 1q as the second point. Let S “ α pRq; that is, S is R’s destination when α

moves it. Write S “ ps1, s2q. An argument similar to the one above shows that S also lies on

the circle whose center is the origin. Moreover, the distance between P and R is
?
2, so the

distance between Q and S is also
?
2. That is,

b

pcos t ´ s1q
2
` psin t ´ s2q

2
“
?
2,

or

pcos t ´ s1q
2
` psin t ´ s2q

2
“ 2. (3.3)

Recall that cos
2
t ` sin

2
t “ 1. That means we can rewrite (3.3) as

´ 2 ps1 cos t ` s2 sin tq `
`

s
2

1
` s

2

2

˘

“ 1. (3.4)

To solve this, recall that the distance from S to the origin must be the same as the distance

from R to the origin, which is 1. Hence

a

s
2
1 ` s

2
2 “ 1

s
2

1
` s

2

2
“ 1.

Substituting this into (3.4), we find that

´2 ps1 cos t ` s2 sin tq ` s
2

1
` s

2

2
“ 1

´2 ps1 cos t ` s2 sin tq ` 1 “ 1

´2 ps1 cos t ` s2 sin tq “ 0

s1 cos t “ ´s2 sin t. (3.5)

You can guess two solutions to this equation: S “ psin t,´ cos tq and S “ p´ sin t, cos tq is

another. Are there more?

Recall that s
2

1
` s2

2
“ 1, so s2 “ ˘

a

1´ s21. Likewise sin t “ ˘
?
1´ cos2 t. Substituting

into equation (3.5) and squaring (so as to remove the radicals), we find that

s1 cos t “ ´
a

1´ s21 ¨
?
1´ cos2 t

s
2

1
cos

2
t “

`

1´ s
2

1

˘ `

1´ cos
2
t
˘

s
2

1
cos

2
t “ 1´ cos

2
t ´ s

2

1
` s

2

1
cos

2
t

s
2

1
“ 1´ cos

2
t

s
2

1
“ sin

2
t

6 s1 “ ˘ sin t.
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Along with equation (3.5), this implies that s2 “ ¯ cos t. We already found theses solutions,

so we’re done.

It can be shown (see Question 3.124) that α satisfies a property called “linear transforma-

tion”; that is, for all P, Q P R2
and for all a, b P R, α paP` bQq “ aα pPq`bα pQq.. Linear algebra

tells us that we can describe any linear transformation over a finite-dimensional vector space

as a matrix. If S “ psin t,´ cos tq then

α “

ˆ

cos t sin t

sin t ´ cos t

˙

;

otherwise

α “

ˆ

cos t ´ sin t

sin t cos t

˙

.

The lemma names the first of these forms φ and the second ρ.

How do these matrices affect points in the plane?

Example 3¨121. Consider the set of points

S “ tp0, 2q , p˘2, 1q , p˘1,´2qu ;

these form the vertices of a (non-regular) pentagon in the plane. Let t “ π{4; then

ρ “

˜ ?
2

2
´
?
2

2?
2

2

?
2

2

¸

and φ “

˜ ?
2

2

?
2

2?
2

2
´
?
2

2

¸

.

If we apply ρ to every point in the plane, then the points of S move to

ρ pSq “ tρ p0, 2q , ρ p´2, 1q , ρ p2, 1q , ρ p´1,´2q , ρ p1,´2qu

“

"

`

´
?
2,
?
2
˘

,

ˆ

´
?
2´

?
2

2
,´
?
2`

?
2

2

˙

,

ˆ

?
2´

?
2

2
,
?
2`

?
2

2

˙

,

ˆ

´

?
2

2
`
?
2,´

?
2

2
´
?
2

˙

,

ˆ
?
2

2
`
?
2,

?
2

2
´
?
2

˙*

« tp´1. 4, 1. 4q , p´2. 1,´0. 7q , p0. 7, 2. 1q ,

p0. 7,´2. 1q , p2. 1,´0. 7qu .

This is a 45
˝

(π{4) counterclockwise rotation in the plane.

If we apply φ to every point in the plane, then the points of S move to

φ pSq “ tφ p0, 2q , φ p´2, 1q , φ p2, 1q , φ p´1,´2q , φ p1,´2qu
« tp1. 4,´1. 4q , p´0. 7,´2. 1q , p2. 1, 0. 7q ,

p´2. 1, 0. 7q , p´0. 7, 2. 1qu .

This is shown in Figure 3¨121 . The line of reflection for φ has slope
`

1´ cos π
4

˘

{ sin π

4
. (You

will show this in Question 3.126.)
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ρ φ

Figure 3¨4: Actions of ρ and φ on a pentagon, with t “ π{4

The second questions asks which of the matrices described by Lemma 3¨120 also preserve

the triangle.

• The first solution (ρ) corresponds to a rotation of degree t of the plane. To preserve the

triangle, we can only have t “ 0, 2π{3, 4π{3 (0
˝
, 120

˝
, 240

˝
). (See Figure 3¨6(a).) Let ι

correspond to t “ 0, the identity rotation, as that gives us

ι “

ˆ

cos 0 ´ sin 0

sin 0 cos 0

˙

“

ˆ

1 0

0 1

˙

,

which is what we would expect for the identity. Let ρ correspond to a counterclockwise

rotation of 120
˝
, or

ρ “

ˆ

cos
2π

3
´ sin 2π

3

sin
2π

3
cos

2π

3

˙

“

˜

´ 1

2
´
?
3

2?
3

2
´ 1

2

¸

.

A rotation of 240
˝

is the same as rotating 120
˝

twice. We can write that as ρ ˝ ρ or ρ
2
;

matrix multiplication gives us

ρ
2
“

˜

´ 1

2
´
?
3

2?
3

2
´ 1

2

¸˜

´ 1

2
´
?
3

2?
3

2
´ 1

2

¸

“

˜

´ 1

2

?
3

2

´
?
3

2
´ 1

2

¸

.

• The second solution (φ) corresponds to a flip along the line whose slope is

m “ p1´ cos tq { sin t.
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One way to do this would be to flip across the y-axis (see Figure 3¨6(b)). For this we

need the slope to be undefined, so the denominator needs to be zero and the numerator

needs to be non-zero. One possibility is t “ π. So

φ “

ˆ

cos π sin π

sin π ´ cos π

˙

“

ˆ

´1 0

0 1

˙

.

There are two other flips, but we can actually ignore them, because they are combina-

tions of φ and ρ. (Why? See Question 3.123.)

We can now give more detailed proofs of Theorems 3¨112 and 3¨115. We’ll prove the first here,

and you’ll prove the second in a moment.

Detailed proof of Theorem 3¨112. Compare

φρ “

ˆ

´1 0

0 1

˙

˜

´ 1

2
´
?
3

2?
3

2
´ 1

2

¸

“

˜

1

2

?
3

2?
3

2
´ 1

2

¸

and

ρ
2
φ “

˜

´ 1

2
´
?
3

2?
3

2
´ 1

2

¸˜

´ 1

2
´
?
3

2?
3

2
´ 1

2

¸

ˆ

´1 0

0 1

˙

“

˜

´ 1

2

?
3

2

´
?
3

2
´ 1

2

¸

ˆ

´1 0

0 1

˙

“

˜

1

2

?
3

2?
3

2
´ 1

2

¸

.

Question 3¨122 .
Show explicitly (by matrix multiplication) that ρ

3 “ φ2 “ ι.

Question 3¨123 .
Two other values of t allow us to define flips for the triangle. Find these values of t, and explain

why their matrices are equivalent to the matrices ρφ and ρ
2
φ.



CHAPTER 3. COMMON AND IMPORTANT ALGEBRAIC SYSTEMS 115

Question 3¨124 .
Show that any function α satisfying the requirements of Theorem 3¨120 is a linear transfor-

mation; that is, for all P, Q P R2
and for all a, b P R, α paP` bQq “ aα pPq ` bα pQq. Use the

following steps.

(a) Prove that α pPq ¨ α pQq “ P ¨ Q, where ¨ denotes the usual dot product (or inner product)

on R2
.

(b) Show that α p1, 0q ¨ α p0, 1q “ 0.

(c) Show that α ppa, 0q ` p0, bqq “ aα p1, 0q ` bα p0, 1q.

(d) Show that α paPq “ aα pPq.

(e) Show that α pP` Qq “ α pPq ` α pQq.

Question 3¨125 .
Show that the only stationary point in R2

for the general ρ is the origin. That is, if ρ pPq “ P,

then P “ p0, 0q. (By “general”, we mean any ρ, not just the one in D3.)

Question 3¨126 .
Fill in each blank of Figure 3¨6 with the appropriate justification.

Question 3¨127 .
Let

φ “

ˆ

´1 0

0 1

˙

, and Φ “
 

φ, φ
2
(

.

(a) Simplify φ
2
.

(b) Is Φ a monoid under multiplication? if so, is it commutative?

(c) Is Φ a monoid under addition? if so, is it commutative?

(d) Is Φ a group under addition? if so, is it abelian?

(e) Is Φ a group under multiplication? if so, is it abelian?

(f) Show that Φ has the form
ˆ

cos α sin α

sin α ´ cos α

˙

by identifying the value of α.

(g) Explain why a matrix φ endowed with the form described in part (f) can serve as the

“basis” for a set tφ, φ2u that satisfies or fails the structures you determined in parts (a)–(e).

Hint: You should be able to do this using induction and properties of the ‘trigonometric

functions involved.
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Claim: The only stationary points of φ lie along the line whose slope is p1´ cos tq { sin t,

where t P r0, 2πq and t ‰ 0, π. If t “ 0, only the x-axis is stationary, and for t “ π, only the

y-axis.

Proof:

1. Let P P R2
. By _____, there exist x, y P R such that P “ px, yq.

2. Assume φ leaves P stationary. By _____,
ˆ

cos t sin t

sin t ´ cos t

˙ˆ

x

y

˙

“

ˆ

x

y

˙

.

3. By linear algebra,
ˆ

_____

_____

˙

“

ˆ

x

y

˙

.

4. By the principle of linear independence, _____“ x and _____“ y.

5. For each equation, collect x on the left hand side, and y on the right, to obtain
#

x p_____q “ ´y p_____q

x p_____q “ y p_____q
.

6. If we solve the first equation for y, we find that y “_____.

(a) This, of course, requires us to assume that _____‰ 0.

(b) If that was in fact zero, then t “_____, _____ (remembering that t P r0, 2πq).

7. Put these values of t aside. If we solve the second equation for y, we find that y “_____.

(a) Again, this requires us to assume that _____‰ 0.

(b) If that was in fact zero, then t “_____. We already put this value aside, so ignore it.

8. Let’s look at what happens when t ‰_____ and _____.

(a) Multiply numerator and denominator of the right hand side of the first solution

by the denominator of the second to obtain y “_____.

(b) Multiply right hand side of the second with denominator of the first: y “_____.

(c) By _____, sin
2
t “ 1´ cos2 t. Substitution into the second solution gives the first!

(d) That is, points that lie along the line y “_____ are left stationary by φ.

9. Now consider the values of t we excluded.

(a) If t “_____, then the matrix simplifies to φ “_____.

(b) To satisfy φ pPq “ P, we must have _____“ 0, and _____ free. The points that satisfy

this are precisely the _____-axis.

(c) If t “_____, then the matrix simplifies to φ “_____.

(d) To satisfy φ pPq “ P, we must have _____“ 0, and _____ free. The points that satisfy

this are precisely the _____-axis.

Figure 3¨5: Material for Question 3.126
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Question 3¨128 .
Let

$ “

˜

´ 1

2
´
?
3

2?
3

2
´ 1

2

¸

, and P “
 

$, $2, $3
(

.

If you’ve not seen the symbol that looks like a backwards g, we call it “rho”. How does it

differ from ρ? It’s fancier. (There’s no other difference.) Likewise, the symbol that looks like

a capital P is actually a capital rho.

(a) Simplify $2 and $3.

(b) Is P a monoid under multiplication? if so, is it commutative?

(c) Is P a monoid under addition? if so, is it commutative?

(d) Is P a group under addition? if so, is it abelian?

(e) Is P a group under multiplication? if so, is it abelian?

(f) Show that P has the form
ˆ

cos α ´ sin α

sin α cos α

˙

by identifying the value of α.

(g) Explain why a matrix $ with the form described in part (f), and the condition α “ π{n,

can serve as the “basis” for a set t$, $2, . . . , $nu that satisfies or fails the structures you

determined in parts (a)–(d). Hint: First show that for any k $k has almost the same form

as $, but with a “ kπ{n. You should be able to do this using induction and properties of the

trigonometric functions involved.



Chapter 4

Subgroups and Ideals, Cosets and
Quotients

A subset of a group is not necessarily a group; for example, t2, 4u Ĺ Z, but t2, 4u doesn’t

satisfy the same group properties as Z unless we change the operation. On the other hand, if

we do change the operation, it doesn’t make sense to call t2, 4u a subgroup of Z, because the

group property depends not only on the elements, but on the operation, as well.

Some subsets of groups are groups, and one key to algebra consists in understanding the

relationship between subgroups and groups. We start this chapter by describing the prop-

erties that guarantee that a subset is a “subgroup” of a group (Section 4¨1). In a ring, we are

more interested in a special sort of subgroup called an ideal. Ideals are related to roots of poly-

nomial equations (Section 4¨2) and generalize a number of ideas you have seen, including the

bases of vector spaces (Section 4¨3). We then explore how equivalence relations and classes

related to Zd (Section 4¨5) lead to a more general relationship between subgroups and ideals,

which generalizes the idea of division and modular arithmetic via cosets (Section 4¨6). In fi-

nite groups and rings, we can count the number of cosets quite easily (Section 4¨7). Cosets

open the door to a special class of groups called quotient groups, (Sections 4¨8) which form an

important foundation of the second half of these notes.

4¨1 Subgroups

Definition 4¨1. Let G be a group and H Ď G be nonempty. If H is also a group under the same

operation as G, then H is a subgroup of G. We call H a proper subgroup if tяu Ĺ H Ĺ G.

Notation 4¨2. If H is a subgroup of G, then we write H ă G.

118



CHAPTER 4. SUBGROUPS AND IDEALS, COSETS AND QUOTIENTS 119

Question 4¨3 .
Verify the following statements by checking that the properties of a group are satisfied.

(a) Z is a subgroup of Q.

(b) Let 4Z :“ t4m : m P Zu “ t. . . ,´4, 0, 4, 8, . . . u. Then 4Z is a subgroup of Z.

(c) Let d P Z and dZ :“ tdm : m P Zu. Then dZ is a subgroup of Z.

(d) The set of multiples of the quaternion i is a subgroup of Q8.

Checking all four properties of a group is cumbersome. It would be convenient to verify

that a set is a subgroup by checking fewer properties. Which properties can we skip when

checking whether a subset is a subgroup?

Intuitively, we can skip a property if it is “inheritable.” For instance, if the operation is

commutative on a set, then it remains commutative any subset; after all, the elements of the

subset are elements of the original set.

Lemma 4¨4. Let G be a group and H Ď G. Then H satisfies the associative property of a group. In

addition, if G is abelian, then H satisfies the commutative property of an abelian group. So, we only

need to check the closure, identity, and inverse properties to ensure that G is a group.

Be careful: Lemma 4¨4 neither assumes nor concludes that H is a subgroup. The other

three properties may not be satisfied: H may not be closed; it may lack an identity; or some

element may lack an inverse. The lemma merely states that any subset automatically satisfies

two important properties of a group.

Proof. If H “ H, then the lemma is true trivially.

Otherwise, H ‰ H. Let a, b, c P H. Since H Ď G, we have a, b, c P G. Since the operation is

associative in G, a pbcq “ pabq c; that is, the operation remains associative for H. Likewise, if G

is abelian, then ab “ ba; that is, the operation also remains commutative for H.

Lemma 4¨4 has reduced the number of requirements for a subgroup from four to three.

Amazingly, we can simplify this further, to one criterion alone!

The Subgroup Theorem. Let A Ď G be nonempty. The following are equivalent:

(A) A ă G;

(B) for every a, b P A, we have a
´1
b P A.

(C) for every a, b P A, we have ab
´1 P A.

Notation 4¨5. If the operation governing Gwere addition, we would write´a`b or a´b instead

of a
´1
b or ab

´1
.

Characterization (C) of the Subgroup Theorem gives us a nice, intuitive guideline: “A

nonempty subset is a subgroup iff it closed under division (or subtraction).” We will typi-

cally go by this characterization.
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Proof. Assume (A). Let a, b P A. By the inverse property, a
´1 P A; by closure, a

´1
b P A. We

chose a and b arbitrarily, so this holds for all a, b P A.

Conversely, assume (B). By Lemma 4¨4, we need to show only that A satisfies the closure,

identity, and inverse properties. We do this slightly out of order:

identity: Let a P A. By (B), я “ a´1a P A.
1

inverse: Let a P A. We just showed A satisfies the identity property, so я P A. By (B), a
´1 “

a
´1 ¨ я P A.

closure: Let a, b P A. We just showed A satisfies the inverse property, so a
´1 P H. By (B),

ab “ pa´1q
´1
b P A.

Since H satisfies the closure, identity, and inverse properties, A ă B.

We have show that (A) is equivalent to (B). We leave the proof that (A) is equivalent to

(C)

Question 4¨6 .
Show that item (C) of the Subgroup Theorem is equivalent to item (A): that is, A ă G if and

only if A is closed under division (or subtraction).

Let’s take a look at the Subgroup Theorem in action.

Example 4¨7. Let d P Z. We claim that dZ ă Z. (Recall that dZ, defined in Example 4.3, is

the set of integer multiples of d.) Why? Let’s use the Subgroup Theorem.

Let x, y P dZ. If we can show that x´y P dZ, or in other words, x´y is an integer multiple

of d, then we will satisfy part (B) of the Subgroup Theorem. The theorem states that (B) is

equivalent to (A); that is, dZ is a group.

Since x and y are by definition integer multiples of d, we can write x “ dm and y “ dn for

some m, n P Z. Note that´y “ ´pdnq “ d p´nq. Then

x´ y “ x` p´yq “ dm` d p´nq

“ d pm` p´nqq “ d pm´ nq .

Now, m´ n P Z, so x´ y “ d pm´ nq P dZ.

We did it! We took two integer multiples of d, and showed that their difference is also an

integer multiple of d. By the Subgroup Theorem, dZ ă Z.

Example 4¨7 gives us an example of how the Subgroup Theorem verifies subgroups of

abelian groups. Two interesting examples of subgroups of a nonabelian group appear in D3.

Example 4¨8. Recall D3 from Section 3¨6. Both H “ tι, φu and K “ tι, ρ, ρ2u are subgroups of

D3. Why? Certainly H, K Ĺ G, and Theorem 3¨49 on page 85 tells us that H and K are groups,

since H “ xφy, and K “ xρy.

1
Notice that here we are replacing the b in (B) with a. This is fine, since nothing in (B) requires a and b to be

distinct.
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Let G be a group and A1, A2, . . . , Am subgroups of G. Let

B “ A1 X A2 X ¨ ¨ ¨ X Am.

Claim: B ă G.

Proof:

1. Let x, y P_____.

2. By _____, x, y P Ai for all i “ 1, . . . , m.

3. By _____, xy
´1 P Ai for all i “ 1, . . . , m.

4. By _____, xy
´1 P B.

5. By _____, B ă G.

Figure 4¨1: Material for Question 4.10

Sometimes we can build new subgroups from old ones. The following questions consider

these possibilities.

Question 4¨9 .
Will the union of two subgroups form a subgroup? Not usually. Find a group G and subgroups

H, K of G such that A “ H Y K is not a subgroup of G.

Question 4¨10 .
Will the intersection of two subgroups form a subgroup? Yes! To see why, fill each blank of

Figure 4¨1 with the appropriate justification or expression.

Question 4¨11 .
Will a subset formed by applying the operation to elements of two subgroups form a sub-

group? We consider two cases.

(a) If G is an abelian group and H, K are subgroups of G, let

H ` K “ tx` y : x P H, y P Ku .

Show that H ` K ă G.

(b) If G is a nonabelian group and H, K are subgroups of G, let

HK “ txy : x P H, y P Ku .

Find G, H, K such that HK is not a subgroup of G.
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Question 4¨12 .
Let H “ tι, φu ă D3.

(a) Find a different subgroup K of D3 with only two elements.

(b) Let HK “ txy : x P H, y P Ku. Confirm that HK ­ă D3.

The following geometric example gives a visual image of what a subgroup “looks” like.

Example 4¨13. Recall thatR is a group under addition, and let G be the direct productRˆ R.

Geometrically, this is the set of points in the x-y plane. As is usual with a direct product, we

define an addition for elements of G in the natural way: for P1 “ px1, y1q and P2 “ px2, y2q,

define

P1 ` P2 “ px1 ` x2, y1 ` y2q .

Let H be the x-axis; a set definition would be, H “ tx P G : x “ pa, 0q Da P Ru. We claim

that H ă G. Why? Use the Subgroup Theorem! Let P, Q P H. By the definition of H, we can

write P “ pp, 0q and Q “ pq, 0q where p, q P R. Then

P´ Q “ P` p´Qq “ pp, 0q ` p´q, 0q “ pp´ q, 0q .

Membership in H requires the first ordinate to be real, and the second to be zero. As P ´ Q

satisfies these requirements, P´ Q P H. The Subgroup Theorem implies that H ă G.

Let K be the line y “ 1; a set definition would be, K “ tx P G : x “ pa, 1q Da P Ru. We

claim that K ­ă G. Why not? Again, use the Subgroup Theorem! Let P, Q P K. By the definition

of K, we can write P “ pp, 1q and Q “ pq, 1q where p, q P R. Then

P´ Q “ P` p´Qq “ pp, 1q ` p´q,´1q “ pp´ q, 0q .

Membership in K requires the second ordinate to be one, but the second ordinate of P ´ Q is

zero, not one. Since P´ Q R K, the Subgroup Theorem tells us that K is not a subgroup of G.

There’s a more direct explanation as to why K is not a subgroup; it doesn’t contain the ori-

gin. In a direct product of groups, the identity is formed using the identities of the component

groups. In this case, the identity is p0, 0q, which is not in K.

Figure 4¨13 gives a visualization of H and K. You will diagram another subgroup of G in

Question 4.14.
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H

K

K4 4

K4

4

Figure 4¨2: H and K from Example 4¨13

Question 4¨14 .
Let G “ R2

, with addition defined as in Example 4¨13. Let

L “ tx P G : x “ pa, aq Da P Ru .

(a) Describe L geometrically.

(b) Show that L ă G.

(c) Suppose ` Ď G is any line. Identify the simplest criterion possible that decides whether

` ă G. Justify your answer.

(d) Show that any subgroup ` you identify in part (c), which includes our original L, is iso-

morphic to R as an additive group.

Hint: Use a isomorphism f that maps R to `, then the symmetry of isomorphism (Ques-

tion 4.74 on page 144).

Aside from the basic group properties, what other properties can a subgroup inherit from

a group? The answer is not always obvious. Cyclic groups are a good example: is every sub-

group of a cyclic group also cyclic? The answer relies on the Division Theorem.

Theorem 4¨15. Subgroups of cyclic groups are also cyclic.

Proof. Let G be a cyclic group, and H ă G. From the fact that G is cyclic, choose g P G such that

G “ xgy.

First we must find a candidate generator of H. Every element of H is an element of G, and

every element of G is a power of g, so we will work strictly in terms of powers of g. If H “ tяu,
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then H “ xяy “ xg0y, and we are done. So assume there exists x P H such that x ‰ e. By

inclusion, every element x P H is also an element of G, which is generated by g, so x “ g
n

for

some n P Z. Without loss of generality, we may assume that n P N`; after all, we just showed

that we can choose x ‰ я, so n ‰ 0, and if n R N, then closure of H implies that x
´1 “ g´n P H,

so choose x
´1

instead.

Now, if you were to take all the positive powers of g that appear in H, which would you

expect to generate H? Certainly not the larger ones! The ideal candidate for the generator

would be the smallest positive power of g in H, if it exists. Let S be the set of positive natural

numbers i such that g
i P H; in other words, S “ ti P N` : gi P Hu. The Well-Ordering Principle

means that S has a smallest element; call it d, and assign h “ gd.

We claim that H “ xhy. Let x P H; then x P G. By hypothesis, G is cyclic, so x “ ga for some

a P Z. By the Division Theorem, we know that there exist unique q, r P Z such that

• a “ qd` r, and

• 0 ď r ă d.

Let y “ gr; by Question 3.55, we can rewrite this as

y “ g
r
“ g

a´qd
“ g

a
g
´pqdq

“ x ¨
`

g
d
˘´q

“ x ¨ h
´q
.

Now, x P H by definition, and h
´q P H by closure and the existence of inverses, so by closure

y “ x ¨h´q P H as well. We chose d as the smallest positive power of g in H, and we just showed

that g
r P H. Recall that 0 ď r ă d. If 0 ă r; then g

r P H, so r P S. But r ă d, which contradicts

the choice of d as the smallest element of S. Hence r cannot be positive; instead, r “ 0 and

x “ ga “ gqd “ hq P xhy.

Since x was arbitrary in H, every element of H is in xhy; that is, H Ď xhy. Since h P H and

H is a group, closure implies that H Ě xhy, so H “ xhy. In other words, H is cyclic.

We again look to Z for an example.

Question 4¨16 .
Recall from Example 3¨43 on page 84 that Z is cyclic; in fact Z “ x1y. By Theorem 4¨15, dZ is

cyclic. In fact, dZ “ xdy. Can you find another generator of dZ?

Question 4¨17 .
Recall that Ωn, the nth roots of unity, is the cyclic group xωy.

(a) List the elements of Ω2 and Ω4, and explain why Ω2 ă Ω4.

(b) List the elements of Ω8, and explain why both Ω2 ă Ω8 and Ω4 ă Ω8.

(c) Explain why, if d | n, then Ωd ă Ωn.

Question 4¨18 .
Show that even though the Klein 4-group is not cyclic, each of its proper subgroups is cyclic

(see Definition 2¨50 on page 61 and Questions 2.49 on page 61 and 3.45 on page 84).
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Let G be any group and g P G.

Claim: 〈g〉 ă G.

Proof:

1. Let x, y P_____.

2. By definition of _____, there exist m, n P Z such that x “ gm and y “ gn.

3. By _____, y
´1 “ g´n.

4. By _____, xy
´1 “ gm`p´nq “ gm´n.

5. By _____, xy
´1 P xgy.

6. By _____, xgy ă G.

Figure 4¨3: Material for Question 4.19

Question 4¨19 .
Fill in each blank of Figure 4.19 with the appropriate justification or expression to show that

the set of powers of an element g of a group G forms a subgroup of G.

Question 4¨20 .
Explain why R cannot be cyclic. Hint: You already showed that one of its subgroups is not

cyclic. Which one, and why does this make the difference?

Question 4¨21 .
Recall that the ring of matrices Rnˆn

is a ring, and therefore a group under addition, while

the general linear group GLn pRq is a group under multiplication.

(a) Let Dn pRq “ taIn : a P Ru; that is, Dn pRq is the set of all diagonal matrices whose values

along the diagonal is constant. Show that Dn pRq ă Rnˆn
.

(b) Let D
˚
n
pRq “ taIn : a P Rz t0uu; that is, D

˚
n
pRq is the set of all non-zero diagonal matrices

whose values along the diagonal is constant. Show that D
˚
n
pRq ă GLn pRq.
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Question 4¨22 .
Recall the set of orthogonal matrices from Question 3.94.

(a) Show that O pnq ă GL pnq. We call O pnq the orthogonal group.

Let SO pnq be the set of all orthogonal n ˆ nmatrices whose determinant is 1. We call SO pnq

the special orthogonal group.

(b) Show that SO pnq ă O pnq.

Hint: The easiest way to show this requires some properties of determinants. Since you

may not remember them, or may not even have seen them (it could depend on the class,

on the teacher, on which universe you existed in the day they were presented. . . ) here

are the ones you need: for any matrix that has an inverse, detA “ detA
T
, det pABq “

pdetAq pdet Bq, and detA
´1 “ pdetAq

´1
.

In keeping with with the analogy of matrices, we say that the kernel of a group homo-

morphism is the subset of the domain that is sent to the identity of the range. That is, for a

group homomorphism f : GÑ H, we

g P ker f iff f pgq “ яH.

A ring homomorphism is a group homomorphism on the additive group of the ring, so the

kernel of a ring homomorphism is the subset of the domain that is sent to the additive identity

of the range, 0.

The kernel of a monoid is somewhat more complicated; we omit that for now.

Question 4¨23 .
This question builds on Question 4.22. Let φ : O pnq Ñ Ω2 by φ pAq “ detA.

(a) Show that φ is a homomorphism, but not an isomorphism.

(b) Explain why kerφ “ SO pnq.

4¨2 Ideals

A major reason for the study of rings and fields is to analyze polynomial roots. How do the

roots of a polynomial behave with respect to basic arithmetic on the polynomials? Start with

a ring R, an element a P R, and two univariate polynomials f and g over R.

Example 4¨24. Consider R “ Z rxs. Two polynomials with a root at a “ 3 are f pxq “ x
2 ´ 9

and g pxq “ x2´ 7x` 12. Their sum is h pxq “ 2x2´ 7x` 3, and h p3q “ 2ˆ 9´ 7ˆ 3` 3 “ 0.
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Adding f and g gave us a new polynomial, h, that also had a root at a “ 3. This is true in

general; if a is a root of two polynomials f and g, then a is also a root of both their sum and

their difference h “ f ´ g, since

h paq “ pf ´ gq paq “ f paq ´ g paq “ 0.

Closure of subtraction means the Subgroup Theorem applies, giving us the following result.

Fact 4¨25. Let R be a ring, and a P R. The set of polynomials with a root at a forms a subgroup of R rxs

under addition.

We can do better. If a is a root of f , then it is a root of any polynomial multiple of f , such as

h “ fp. After all,

h paq “ pfpq paq “ f paq p paq “ 0 ¨ p paq “ 0.

Example 4¨26. Consider R “ R rxs and f “ x2 ´ 1. The roots of f are˘1. Let p “ x4 ` x2 ` 1;

the roots of p do not include ˘1; after all, 0 ‰ 3 “ p p1q “ p p´1q. On the other hand, let

h “ fp “ x6 ´ 1; we see quickly that˘1 are indeed roots of h.

Even though p does not have a root at x “ ˘1, h does!

Let’s put this together. Let a P R and A be the set of polynomials that have a root at a. Let

f and g be any such polynomials; we saw above that their difference f ´ g is also in A; that

makes A a subgroup of R. In addition, any multiple of f is also in A, so there’s something special

about A: its element “absorbs” the products of its polynomials with others.

This property is not true within a group and its usual operation; even within the polyno-

mial ring, adding a polynomial outside a subgroup to one within the subgroup always results

in a polynomial outside the subgroup.

Question 4¨27 .
Continuing the previous example, show that adding p to f gives you a polynomial that, like p,

does not have a root at˘1.

The phenomenon of absorption is quite simple. You will see that it appears in a number

of important contexts. Here’s an example.

Question 4¨28 .
Let A be the set of all integers that are a sum of multiples of 4 and 6; that is,

A “ t4m` 6n : m, n P Zu .

(a) Show that A is in fact a subgroup of Z.

(b) Show that A absorbs multiplication by nonmembers; that is, 3a P A for all a P A.

Definition and examples

As usual, R is a ring.
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Definition 4¨29. Let A Ď R. If A

• is a subgroup of R under addition, and

• satisfies the absorption property:

@r P R @a P A ra P A and ar P A,

then A is an ideal of R, and we write A Ÿ R. An ideal A is proper if it is a proper subgroup

under addition; that is, t0u ‰ A ‰ R.

Recall that we work in commutative rings unless otherwise specified, so if ra P A then

usually ar P A is free.

Example 4¨30. Recall the subring 2Z of the ring Z. We claim that 2Z Ÿ Z. Why? Let r P Z,

and a P 2Z. By definition of 2Z, there exists q P Z such that a “ 2q. Substitution gives us

ra “ r ¨ 2q “ 2 prqq P 2Z,

so 2Z “absorbs” multiplication by Z. We know from Example 4¨7 that 2Z was a subgroup of Z
(use d “ 2), so 2Z is an ideal of Z.

We can generalize this example to arbitrary d P Z, so let’s do that. Remember that you

already know dZ is a subgroup of Z; you need merely show that dZ absorbs multiplication.

Question 4¨31 .
Show that for any d P N, dZ is an ideal of Z.

Our original example of an ideal came from roots of univariate polynomials. What about

multivariate polynomials? If a1, . . . , an P R, f P R rx1, . . . , xns, and f pa1, . . . , anq “ 0, then we

call pa1, . . . , anq a root of f .

Example 4¨32. Let f “ x
2 ` y2 ´ 4, g “ xy ´ 1, and S “ thf ` kg : h, k P R rx, ysu. As in the

univariate case, the common roots of f and g are roots of any element of S. To see this, let pα, βq be

a common root of f and g; that is, f pα, βq “ g pα, βq “ 0. Figure 4¨4 depicts the root

pα, βq “

ˆ
b

2`
?
3, 2

b

2`
?
3´

b

6` 3
?
3

˙

.

Do all the elements of S have pα, βq as a root? Let s P S; by definition, we can write s “

hf ` kg for some h, k P R rx, ys. By substitution,

s pα, βq “ phf ` kgq pα, βq

“ h pα, βq ¨ f pα, βq ` k pα, βq ¨ g pα, βq

“ h pα, βq ¨ 0` k pα, βq ¨ 0

“ 0;

that is, pα, βq is a root of s. In fact, S is an ideal. To show this, we must show that S is a subring

of R rx, ys that absorbs multiplication.
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Figure 4¨4: A common root of x
2 ` y2 ´ 4 and xy´ 1

• Is S a subgroup under addition? Let s, r P S. By definition, we can find h, k, p, q P R rx, ys
such that s “ hf ` kg and r “ pf ` qg. A little arithmetic gives us

s´ r “ phf ` kgq ´ ppf ` qgq

“ ph´ pq f ` pk´ qq g P S.

A ring is an abelian group under addition, so the Subgroup Theorem implies S is a sub-

group of C rx, ys.

• Does S absorb multiplication? Let s P S, and p P R rx, ys. As above, we can write s “

hf ` kg. A little arithmetic gives us

ps “ p phf ` kgq “ p phf q ` p pkgq

“ pphq f ` ppkq g P S.

Let

h
1
“ ph and k

1
“ pk;

then ps “ h
1
f ` k

1
g. By closure, h

1
, k
1 P R rx, ys, so by definition, ps P S, as well. By

definition, S satisfies the absorption property.

We have shown that S satisfies the subgroup and absorption properties; thus, SŸ R rx, ys.

You will show in Question 4.59 that the ideal of Example 4¨32 can be generalized to other

rings and larger numbers of variables.

Important properties of ideals

An ideal inherits the associative, commutative, and distributive properties of the ring. It

also inherits closure of multiplication, though you might not notice why at first:
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Fact 4¨33. An ideal is closed under multiplication.

Why? Let A be an ideal of a ring R. Let a, b P A. By absorption, ab P A.

An ideal might not contain the multiplicative identity. Proper ideals never contain the

multiplicative identity.

Question 4¨34 .
Let AŸ R. Show that A is proper if and only if A ‰ t0u and 1 R A.

Also, proper ideals never contain elements with multiplicative inverses.

Question 4¨35 .
Let r be any nonzero element of a ring. Show that r has a multiplicative inverse if and only if

any ideal that contains r also contains unity, and thus is not proper.

Since an ideal is really a special sort of subgroup, an analog of the Subgroup Theorem

determines whether a subset of a ring is an ideal, with only one or two criteria.

The Ideal Theorem. Let R be a ring and A Ď R with A nonempty. The following are equivalent:

(A) A is an ideal of R.

(B) A is closed under subtraction and absorption. That is,

(I1) for all a, b P A, a´ b P A; and

(I2) for all a P A and r P R, we have ar, ra P A.

Question 4¨36 .
Prove the Ideal Theorem.

Question 4¨37 .
We can take Question 4.31 further. Fill in the blanks of Figure 4¨5 to show that every ideal of

Z has the form dZ, for some d P N.

Question 4¨38 .
Suppose A is an ideal of R and B is an ideal of S. Is Aˆ B an ideal of Rˆ S?

Question 4¨39 .
Let R be a ring and A, B two ideals of R. Decide whether the following subsets of R are also

ideals, and explain your reasoning:

(a) AX B

(b) AY B

(c) A` B “ ta` b : a P A, b P Bu

(d) AB “ t
ř

n

i“1
aib : n P N, ai P A, bi P Bu
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Claim: Every ideal of Z has the form dZ, for some d P Z.

Proof:

1. Let A be an ideal of Z.

2. Let D “ AX N`.

3. By ____, we can find a smallest element of D, which we call d.

4. We claim that A “ dZ. To see why, first let b P dZ. By definition of dZ, b “____.

(a) By ____, b P A.

(b) By ____, dZ Ď A.

5. We now claim A Ď dZ. To see why, let a P____.

(a) By ____, we can find q, r P Z such that a “ qd` r and 0 ď r ă d.

(b) Rewrite the equation as r “____.

(c) By ____, qd P A.

(d) By ____, a´ qd P A.

(e) By ____, r P A.

(f) If r ą 0, then r P D, since ____.

(g) However, we cannot have r ą 0, since ____.

(h) That forces r “____.

(i) Hence d divides a, since ____.

(j) By ____, A Ď dZ.

6. We have shown A Ď dZ and dZ Ď A. Hence ____.

7. ____ means that every ideal of Z has the form dZ, for some d P Z.

Figure 4¨5: Material for Question 4.37
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Question 4¨40 .
Let A, B be two ideals of a ring R. The definition of AB appears in Question 4.39.

(a) Show that AB Ď AX B.

(b) Show that sometimesAB ‰ AXB; that is, find a ring R and idealsA, B such thatAB ‰ AXB.

Hint: A good example is related to Bézout’s Identity. Look at ideals generated by integers

with a common divisor.

4¨3 The basis of an ideal

The ideals of Questions 4.31 and 4.37 are cyclic subgroups of the additive group of Z, so it

makes sense to write

〈d〉 “ dZ,

just as we write 〈d〉 for the cyclic group generated by d. This works in general, too.

Fact 4¨41. Let R be a ring, and a P R. The set

〈a〉 “ tar : r P Ru

is an ideal of R.

(Some authors use paq, and some use aR. We will stick with 〈a〉, but you are likely to see

these other notations from time to time.)

Why? First we check that 〈a〉 is a subgroup of R under addition. Let x, y P 〈a〉; by definition,

there exist r, s P R such that x “ ar and y “ as. Substitution and the distributive property

show us that

x´ y “ ar ´ as “ a pr ´ sq P 〈a〉 .

Let r P R and b P 〈a〉. By definition, we can find x P R such that b “ ax. Then rb “ r paxq “

r pxaq “ prxq a; that is, rb is also a multiple of a. The arbitrary choice of r and b show that 〈a〉
absorbs multiplication; 〈a〉 is indeed an ideal of R.

We call these ideals principal ideals. Principal ideals of the integers have a nice property

that we will use in future examples.

Example 4¨42. Certainly 3 | 6 since 3 ¨ 2 “ 6. Look at the ideals generated by 3 and 6:

〈3〉 “ 3Z “ t. . . ,´12,´9,´6,´3, 0, 3, 6, 9, 12, . . . u
〈6〉 “ 6Z “ t. . . ,´12,´6, 0, 6, 12, . . . u .

Inspection suggests that 〈6〉 Ď 〈3〉. Is it? Let x P 〈6〉. By definition, x “ 6q for some q P Z. By

substitution, x “ p3 ¨ 2q q “ 3 p2 ¨ qq P 〈3〉. Since x was arbitrary in 〈6〉, we have 〈6〉 Ď 〈3〉.
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This property holds both in the integers and in every ring, using more or less the same

reasoning. It will prove useful in subsequent sections.

Lemma 4¨43. Let R be a ring and a, b P R. The following are equivalent:

(A) a | b;

(B) 〈b〉 Ď 〈a〉.

Question 4¨44 .
Prove Lemma 4¨43.

Ideals generated by more than one element

One way to look at xdy Ĺ Z is that xdy is the smallest ideal that contains d: any other ideal

must contain all its multiples. Extending this line of thinking, define the set 〈a1, a2, . . . , am〉
as the intersection of all the ideals of R that contain all of a1, a2, . . . , am.

Theorem 4¨45. For any choice of m P N` and a1, a2, . . . , am P R, 〈a1, a2, . . . , am〉 is an ideal.

We will not prove this directly, as it follows immediately from:

Lemma 4¨46. For every set S of ideals of a ring R,
Ş

IPS
I is also an ideal.

Proof. Let J “
Ş

IPS
I. We are protected from J ‰ H by the fact that the additive identity 0 is

an element of every ideal. Let a, b P J and r P R. Let I P S. Since J contains only those elements

that appear in every element of S, and a, b P J, we know that a, b P I. By the Ideal Theorem,

a´ b P I, and also ra P I. Since I was an arbitrary ideal in S, every element of S contains a´ b

and ra. Thus a´ b and every ra are in the intersection of these sets, which is J; in other words,

a´ b, ra P J. By the Ideal Theorem, J is an ideal.

Since 〈a1, a2, . . . , am〉 is defined as the intersection of ideals containing a1, a2, . . . , am, The-

orem 4¨46 implies that 〈a1, a2, . . . , am〉 is an ideal. This ideal is closely related to Example 4¨32,

making it important enough to identify by a special name.

Definition 4¨47. We call 〈a1, a2, . . . , am〉 the ideal generated by a1, a2, . . . , am, and ta1, a2, . . . , amu

a basis of 〈a1, a2, . . . , am〉.

Theorem 4¨48. For any commutative ring R, 〈a1, a2, . . . , am〉 is precisely the set

A “ tr1a1 ` r2a2 ` ¨ ¨ ¨ ` rmam : ri P Ru .

Proof. First, we show that A Ď 〈a1, a2, . . . , am〉. Let b P A; by definition, there exist r1, . . . , rm P

R such that b “
ř

m

i“1
riai. Let I be any ideal that contains all of a1, . . . , am. By absorption,

riai P I for each i. By closure, b “
ř

m

i“1
riai P I. Since I was an arbitrary ideal containing all

of a1, . . . , am, we infer that all the ideals containing all of a1, . . . , am contain b. Since b is an

arbitrary element of A, A is a subset of all the ideals containing all of a1, . . . , am. By definition,

A Ď 〈a1, a2, . . . , am〉.
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Now we show that A Ě 〈a1, a2, . . . , am〉. We claim that A is (a) an ideal that (b) contains all

of a1, . . . , am. If true, the definition of 〈a1, a2, . . . , am〉 does the rest, as it consists of elements

common to every ideal that contains a1, . . . , am.

(a) But why is A an ideal? Consider the absorption property. By definition of A, we can

identify for any b P A ring elements r1, . . . , rm P R such that

b “ r1a1 ` ¨ ¨ ¨ ` rmam.

Let p P R; by the distributive and associative properties,

pb “ ppr1q a1 ` ¨ ¨ ¨ ` pprmq am.

By closure, pri P R for each i “ 1, . . . , m. We have written pb in a form that satisfies the

definition of A, so ps P A. We still need subtraction, so let b, c P A, and choose pi, qi P R such

that

b “ p1a1 ` ¨ ¨ ¨ ` pmam and

c “ q1a1 ` ¨ ¨ ¨ ` qmam.

Using the associative property, the commutative property of addition, the commutative prop-

erty of multiplication, distribution, and the closure of subtraction, we see that

b´ c “ pp1a1 ` ¨ ¨ ¨ ` pmamq ´ pq1a1 ` ¨ ¨ ¨ ` qmamq

“ pp1a1 ´ q1a1q ` ¨ ¨ ¨ ` ppmam ´ qmamq

“ pp1 ´ q1q a1 ` ¨ ¨ ¨ ` ppm ´ qmq am.

By closure, pi ´ qi P R for each i “ 1, . . . , m, so b´ c has a form that satisfies the definition of

A, so b´ c P A. By the Ideal Theorem, A is an ideal.

(b) But, is ai P A for each i “ 1, 2, . . . , m? Well,

ai “ 1 ¨ ai `
ÿ

j‰i

`

0 ¨ aj
˘

P A.

Since R has unity, this expression of ai satisfies the definition of A, so ai P A.

Hence A is an ideal containing all of a1, . . . , am. By definition of 〈a1, a2, . . . , am〉, A Ě

〈a1, a2, . . . , am〉.
We have shown that A Ď 〈a1, a2, . . . , am〉 Ď A. Hence A “ 〈a1, a2, . . . , am〉 as claimed.

Remark 4¨49. The structure and properties of ideals should remind you of vector spaces from

linear algebra. In linear algebra, we analyze systems of linear equations. By manipulating a

matrix, we obtain a triangular basis of a system of linear polynomials, with which we analyze

the system’s solutions.

Example 4¨32 illustrates that ideals are an important analog for non-linear polynomial

equations. As with linear systems, a “triangular basis” of a polynomial ideal allows us to

analyze its solutions in a systematic method. We take up this task in due course. . . but not

just yet.
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Question 4¨50 .
Let’s explore how 〈a1, a2, . . . , am〉 behaves inZ. Keep in mind that the results do not necessar-

ily generalize to other rings.

(a) For the following values of a, b P Z, list a few elements of 〈a, b〉. Then verify that 〈a, b〉 “
〈c〉 for a certain c P Z.

(i) a “ 3, b “ 6

(ii) a “ 4, b “ 6

(iii) a “ 5, b “ 6

(iv) a “ 6, b “ 6

(b) Can you identify a relationship between a, b, and c in part (a)?

(c) Prove your observation in part (b).

Hint: Bézout’s Identity can be useful.

Principal ideal domains

The basis of an ideal need not be unique!

Example 4¨51. Consider the ring Z, and let I “ 〈6, 8〉. Proposition 4¨48 claims that

I “ t6m` 8n : m, n P Zu .

Choosing concrete values of m and n, we see that

6 “ 6 ¨ 1` 8 ¨ 0 P I

0 “ 6 ¨ 0` 8 ¨ 0 P I

´24 “ 6 ¨ p´4q ` 8 ¨ 0 P I

´24 “ 6 ¨ 0` 8 ¨ p´3q P I.

Notice that for some elements of I, we can provide more than one representation in terms

of 6 and 8.

While we’re at it, we claim that we can simplify I as I “ 2Z. Why? For starters, it’s pretty

easy to see that 2 “ 6 ¨ p´1q ` 8 ¨ 1, so 2 P I. Now that we have 2 P I, let x P 2Z; then x “ 2q

for some q P Z. By substitution and distribution,

x “ 2q “ r6 ¨ p´1q ` 8 ¨ 1s ¨ q “ 6 ¨ p´qq ` 8 ¨ q P I.

Since x was arbitrary, I Ě 2Z. On the other hand, let x P I. By definition, there exist m, n P Z
such that

x “ 6m` 8n “ 2 p3m` 4nq P 2Z.

Since x was arbitrary, I Ď 2Z. We already showed that I Ď 2Z, so we conclude that I “ 2Z.
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So I “ 〈6, 8〉 “ 〈2〉 “ 2Z. If we think of r1, . . . , rm as a “basis” for 〈r1, . . . , rm〉, then the

example above shows that any given ideal can have bases of different sizes.

You might wonder if every ideal can be written as 〈a〉, the same way that I “ 〈4, 6〉 “ 〈2〉.
As you will see in due course, “Not always.” However, the statement is true for ideals of Z
(as you saw above), as well as a number of other rings. Rings where every ideal is principal,

are called principal ideal rings. If the ring is an integral domain, we call it a principal ideal
domain. Alas, not all integral domains are principal ideal domains.

Example 4¨52. Let R be a ring, and R rx, ys the ring of polynomials over R. Let A “ 〈x, y〉. Can

we find f P A such that A “ 〈f 〉?
We cannot. Suppose to the contrary that we could; in that case, both x and y would be

multiples of f . This is not possible, because only 1 divides both x and y. If f “ 1, then 1 P A,

and A “ R. That means A is not principal, and R rx, ys is not a principal domain.

Theorem 4¨53. The following rings are principal ideal domains.

(A) Z is a principal ideal domain.

(B) Any field is a principal ideal domain (so Q, R, C, and finite fields Fn are principal ideal domains).

(C) Any univariate polynomial ring over a field is a principal ideal domain.

Proof. (A) You proved this when you answered Question 4.37, since 〈d〉 “ dZ.

(B) Let A be an ideal in a field. If A “ t0u, then A “ 〈0〉. Otherwise, let a be a non-zero

element ofA. As an element of a field, it has a multiplicative inverse a
´1

; by absorption, a
´1
a P

A. By Question 4.35, A is not proper. Every improper ideal is generated by the multiplicative

identity; that is, A “ 〈1〉.

Question 4¨54 .
How do we know that if A “ R, then A “ 〈1〉?

Proof of Theorem 4¨53 (continued). (C) Let F be any field, R “ F rxs, and A an ideal of R. Let

D “ tdeg f : f P Au; that is, D is the set of all degrees of polynomials in A.

Example 4¨55. Suppose that f “ 2x
3 ´ 3x, g “ 5x

7 ´ 12, and h “ 128x
2 ´ 2x ` 13 are all

elements of A. Then 3, 7, 2 P D.

Proof of Theorem 4¨53 (continued). Degrees are nonnegative integers, so D Ď N. By the Well-

Ordering Principle, there is a least element of D; call it d. By definition of D, there exists f P A

such that deg f “ d. Let c be the leading coefficient of f , and let g “ c
´1
f . By absorption,

g P A; by polynomial arithmetic, deg g “ d and the leading coefficient of g is now 1.

Let h be any element of A. Use Polynomial Division to identify q, r P R such that h “ qg` r

and r ‰ 0 or deg r ă deg g. If r “ 0, then h is a multiple of g, as claimed, and we’re done.

Otherwise, rewrite the division equation as

r “ h´ qg.
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By absorption, qg P A. By definition, h P A. By the Ideal Theorem, h ´ qg P A, so r P A itself.

If r ‰ 0, then deg r ă deg g “ d, contradicting the choice of d as the smallest element of D,

the degrees of polynomials in A. Hence r “ 0, and g divides h. We chose h arbitrarily in A,

and found that g has to divide h. That makes every element of a a multiple of g, so A “ 〈g〉.
We chose A as an arbitrary ideal of R, and found it was principal. That makes every ideal of R

principal, as claimed.

Question 4¨56 .
Show that in any field F, the only two distinct ideals are the zero ideal and F itself.

Hint: Consider Question 4.54.

Question 4¨57 .
Let R be any ring and P “ R rx, ys. Let A “ 〈x` 1, xy〉, B “ 〈x, y〉, and C “ 〈x, y` 1〉.

(a) Show that A “ P.

Hint: Use the result of Question 4.34.

(b) Show that B ‰ P and C ‰ P.

Hint: Proceed by contradiction. We need 1 P B (why?) so there must be polynomials

f, g P P such that xf ` yg “ 1. The right side is constant, so x and y must cancel on the

left. That forces f and g to have a certain form — what form is it? Following this to its

conclusion leads to a contradiction.

Question 4¨58 .
Let A and B be ideals of R. Define A ¨B “ tab : a P A, b P Bu. (This is not the same as AB, defined

in Question 4.39.)

(a) Show that A ¨ B need not be an ideal.

Hint: Two ideals of Question 4.57 do the trick.

(b) Show that if R is a commutative, principal ideal ring, then A ¨ B is an ideal.

Question 4¨59 .
LetR be any commutative ring. Recall the polynomial ring P “ R rx1, x2, . . . , xns, whose ground

ring is R. Let

xf1, . . . , fmy “ th1f1 ` ¨ ¨ ¨ ` hmfm : h1, h2, . . . , hm P Pu .

Show that the common roots of f1, f2, . . . , fm are common roots of all polynomials in this ideal.



CHAPTER 4. SUBGROUPS AND IDEALS, COSETS AND QUOTIENTS 138

Question 4¨60 .
Let A be an ideal of a ring R. Define its radical to be

?
A “

 

r P R : r
n
P A Dn P N`

(

.

(a) Suppose R “ Z. Compute
?
A for

(i) A “ 4Z
(ii) A “ 5Z
(iii) A “ 12Z

Hint: Every element of 12Z is a multiple of 12, so it will help to look at how 12 factors.

How could you simplify those factors so that some power of the simplification is a

multiple of 12?

(b) Suppose R “ Q rxs. Compute
?
A for

(i) A “ xx2 ` 1y

(ii) A “ xx2 ` 2x` 1y

(iii) A “ xx3 ` x2 ´ x´ 1y

(c) Show that
?
A is an ideal.

Hint: You need to show that if a, b P
?
A, then ab, a ` b P

?
A. The hypothesis implies

that you can find m and n such that a
m P A and b

n P A. Use m and n to build an expo-

nent e such that pa` bq
e
P A. As a further hint, a very big e is probably easier than the

smallest possible e. As a final hint, don’t forget that you already know elements of A absorb

multiplication — you only have to show that this is also true of elements of
?
A.

4¨4 Equivalence relations and classes

I remember one occasion when I tried to add a little seasoning to a review . . . The

domains of the underlying measures were not sets but elements of more general

Boolean algebras, and their range consisted not of positive numbers but of certain

abstract equivalence classes. My proposed first sentence was: “The author dis-

cusses valueless measures in pointless spaces.”

— Paul Halmos

At this point we can tie together two topics that share a relationship you likely haven’t noticed

yet. In the following section, we tie it to a third phenomenon. At the end of the chapter, these

will come together in a very beautiful relationship.

Throughout this section, d P N`. We’ve written a ”d b using a symbol ” that looks like

an equals sign, but does it behave like an equals sign? Don’t rush into an answer; just because

I use a symbol that looks like an equals sign, that doesn’t mean it is. Three important and

useful properties of an equals sign are the reflexive, symmetric, and transitive properties.
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Definition 4¨61. An equivalence relation on S is a subset R of S ˆ S that satisfies the prop-

erties

reflexive: a „ a for all a P S;

symmetric: for all a, b P S, if a „ b, then b „ a; and

transitive: for all a, b, c P S, if a „ b and b „ c, then a „ c.

Does the”d relationship of clockwork arithmetic satisfy these three properties?

Fact 4¨62. For any integer a, a ”d a .

Why? The statement a ”d a translates to, “a and a have the same remainder after division

by d.” Even if we divide different ways, the Division Theorem guarantees that remainders

are unique! So our clockwork equivalence is “reflexive”, in that any integer is equivalent to

itself.

Fact 4¨63. For any integers a and b, a ”d b implies b ”d a.

Why? The statement that “a and b have the same remainder after division by d” surely means

(thanks in part to uniqueness of remainder) that “b and a have the same remainder after

division by d,” so our clockwork equivalence is symmetric.

Is it also transitive? This is a big deal, because substitution is a powerful tool, and substitu-

tion requires the transitive property; that is,

If a ”d b and b ”d c, then is a ”d c ?

What we’re asking translates to,

• if a and b have the same remainder after division by d, and

• b and c have the same remainder after division by d, then

• do a and c have the same remainder after division by d?

Fact 4¨64. For any integers a, b, and c, a ”d b and b ”d c imply that a ”d c.

Why? Let r be the remainder of division of a by d. This remainder is unique, so a ”d bmeans

it’s the same as the remainder of division of b by d. Likewise, b ”d c tells us that r is the

remainder of division of c by d. We have a ”d c.

There are plenty of relations that aren’t equivalence relations.

Example 4¨65. Define a relation „ on Z such that a „ b if ab P N. Is this an equivalence

relation?

Reflexive? Let a P Z. By properties of arithmetic, a
2 P N. By definition, a „ a, and the

relation is reflexive.

Symmetric? Let a, b P Z. Assume that a „ b; by definition, ab P N. By the commutative

property of multiplication, ba P N also, so b „ a, and the relation is symmetric.
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Transitive? Let a, b, c P Z. Assume that a „ b and b „ c. By definition, ab P N and bc P N.

I could argue that ac P N using the trick

ac “
pabq pbcq

b2
,

and pointing out that ab, bc, and b
2

are all natural, which suggests that ac is also natural.

However, this argument contains a fatal flaw. Do you see it?

It lies in the fact that we don’t know whether b “ 0. If b ‰ 0, then the argument above

works just fine, but if b “ 0, then we encounter division by 0, which you surely know is not

allowed! (If you’re not sure why it is not allowed, fret not. We explain this in a moment.)

This apparent failure should not discourage you; in fact, it gives us the answer to our origi-

nal question. We asked if„was an equivalence relation. It is not! This illustrates an important

principle of mathematical study. Failures like this typically suggested an unexpected avenue

to answer a question. In this case, the fact that a ¨ 0 “ 0 P N for any a P Z implies that 1 „ 0

and ´1 „ 0. However, 1  ´1! The relation is not transitive, so it cannot be an equivalence

relation on this set!

In the context of an equivalence relation, related elements of a set are considered “equiv-

alent”.

Example 4¨66. Let „ be a relation on Z such that a „ b if and only if a and b have the same

remainder after division by 4. Then 7 „ 3 and 7 „ 19 but 7  6.

We will find it very useful to group elements that are equivalent under a certain relation.

Definition 4¨67. Let„ be an equivalence relation on a set A, and let a P A. The equivalence
class of a in A with respect to „ is ras “ tb P S : a „ bu, the set of all elements equivalent to

a.

Example 4¨68. Continuing our example above, 3, 19 P r7s but 6 R r7s.

Normally, we think of the division of n by d as dividing a set of n objects into q groups,

where each group contains d elements, and r elements are left over. For example, n “ 23

apples divided among d “ 6 bags gives q “ 3 apples per bag and r “ 5 apples left over.

Another way to look at division by d is that it sorts every integer into one of d sets, ac-

cording to its remainder after division. An illustration using d “ 4:

Z: . . . -2 -1 0 1 2 3 4 5 6 . . .

Ó Ó Ó Ó Ó Ó Ó Ó Ó

division by 4: . . . 2 3 0 1 2 3 0 1 2 . . .

In other words, division by 4 “divides” Z into the sets

A “ t. . . ,´4, 0, 4, 8, . . . u “ r0s

B “ t. . . ,´3, 1, 5, 9, . . . u “ r1s

C “ t. . . ,´2, 2, 6, 10, . . . u “ r2s

D “ t. . . ,´1, 3, 7, 11, . . . u “ r3s .

(4.1)

Observe that
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Z =

A

B

C

D

which means to say that

• the sets A, B, C, and D cover Z; that is,

Z “ AY BY C Y D;

and

• the sets A, B, C, and D are disjoint; that is,

AX B “ AX C “ AX D “ BX C “ BX D “ C X D “ H.

When a collection B of subsets of a set S form a disjoint cover, we call that collection a parti-
tion.

Example 4¨69. In the example above, S “ Z and the collection B “ tA, B, C, Du where A, B,

C, and D are defined as in (4.1). Since the elements of B are disjoint, and they cover Z, we

conclude that B is a partition of Z.

There is nothing special about the number “4” in this discussion; clockwork arithmetic

always induces a partition. Is this true of every equivalence relation?

Surprisingly, yes! Actually, it isn’t so surprising if you just think about the meaning of an

equivalence relation:

• the reflexive property implies that every element is in relation with itself, and

• the symmetric and transitive properties help ensure that no element can be related to

two elements that are not themselves related.

Theorem 4¨70. An equivalence relation partitions a set, and any partition of a set defines an equiva-

lence relation.

Proof. Does any partition of any set define an equivalence relation? Let S be a set, and B a partition

of S. Define a relation„ on S in the following way: x „ y if and only if x and y are in the same

element of B. That is, if X P B is the set such that x P X, then y P X as well.

We claim that „ is an equivalence relation. It is reflexive because a partition covers the

set; that is, S “
Ť

BPB, so for any x P S, we can find B P B such that x P B, which means the

statement that “x is in the same element of B as itself” (x „ x) actually makes sense. The

relation is symmetric because x „ ymeans that x and y are in the same element of B, which

is equivalent to saying that y and x are in the same element of B; after all, set membership

is not affected by which element we list first. So, if x „ y, then y „ x. Finally, the relation

is transitive because distinct elements of a partition are disjoint. Let x, y, z P S, and assume

x „ y and y „ z. Choose X, Z P B such that x P X and z P Z. The symmetric property tells us

that z „ y, and the definition of the relation implies that y P X and y P Z. The fact that they
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share a common element tells us that X and Z are not disjoint (XX Z ‰ H). By the definition

of a partition, X and Z are not distinct, or, X “ Z. That shows x and z are in the same element

of the partition, so x „ z.

Does an equivalence relation partition a set? Let S be a set, and „ an equivalence relation on

S. If S is empty, the claim is “vacuously true;”that is, nothing about S can make it false. So

assume S is non-empty. Let s P S. Notice that rss ‰ H, since the reflexive property of an

equivalence relation guarantees that s „ s, which implies that s P rss.

Let B be the set of all equivalence classes of elements of S; that is, B “ trss : s P Su. We

have already seen that every s P S appears in its own equivalence class, so B covers S. Are

distinct equivalence classes also disjoint?

Let X, Y P B and assume that assume that X X Y ‰ H; this means that we can choose

z P X X Y. By definition, X “ rxs and Y “ rys for some x, y P S. By definition of X “ rxs and

Y “ rys, we know that x „ z and y „ z. Now let w P X be arbitrary; by definition, x „ w;

by the symmetric property of an equivalence relation, w „ x and z „ y; by the transitive

property of an equivalence relation, w „ z, and by the same reasoning, w „ y. Since w was

an arbitrary element of X, every element of X is related to y; in other words, every element of

X is in rys “ Y, so X Ď Y. A similar argument shows that X Ě Y. By definition of set equality,

X “ Y.

We took two arbitrary equivalence classes of S, and showed that if they were not disjoint,

then they were not distinct. The contrapositive states that if they are distinct, then they

are disjoint. Since the elements of B are equivalence classes of S, we conclude that distinct

elements of B are disjoint. They also cover S, so as claimed, B is a partition of S induced by

the equivalence relation.

Question 4¨71 .

(a) Show that divisibility is transitive for the natural numbers; that is, if a, b, c P N, a | b, and

b | c, then a | c.

(b) However, divisibility is not an equivalence relation. Show that it is not symmetric.

(c) In fact, divisibility is a partial ordering for the natural numbers. Show why.

(d) Can a partial ordering ever be an equivalence relation? Explain.
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Question 4¨72 .

(a) Explain why 2 ¨ 3 ”6 0.

(b) Integer equations such as

px` 1q px` 2q “ 0

rely on the equivalence relation properties of equality. In this case, we can solve the

equation by rewriting it as

x` 1 “ 0 or x` 2 “ 0.

Explain how part (a) shows that we cannot do this for

px` 1q px` 2q ”6 0.

We observe, then, that integer equations really are a special kind of equivalence relation;

that is, they enjoy a property that not all equivalence relations enjoy, even when they

look similar.

Question 4¨73 .
Define a relation ’ on Q, the set of rational numbers, in the following way:

a ’ b if and only if a´ b P Z.

(a) Give some examples of rational numbers that are related. Include examples where a and

b are not themselves integers.

(b) Show that that a ’ b if they have the same sign and the same fractional part. That is, if we

write a and b in decimal form, we see exactly the same numbers on the right hand side

of the decimal point, in exactly the same order. (You may assume, without proof, that

we can write any rational number in decimal form.)

(c) Is ’ an equivalence relation?

For any a P Q, let Sa be the set of all rational numbers b such that a ’ b. We’ll call these new

sets classes.

(d) Is every a P Q an element of some class? If so, which? If not, why not?

(e) Show that if Sa ‰ Sb, then Sa X Sb “ H.

(f) Does ’ partition Q?

So far, we’ve restricted ourselves to talking about clockwork groups, but here’s the sur-

prise: these are intimately related to isomorphism. We tease you with your first hint here,

another hint in the next section, and the full glory later on.
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Question 4¨74 .
Let pM,ˆq, pN,`q, and pP,[q be monoids.

(a) Show that the identity function I pmq “ m is an isomorphism onM.

(b) Suppose that we know pM,ˆq – pN,`q. That means there is an isomorphism f : MÑ N.

One of the requirements of isomorphism is that f be a bijection. Recall from previous

classes that this means f has an inverse function, f
´1

: N Ñ M. Show that f
´1

is an

isomorphism.

Hint: You need to show that f
´1 pxyq “ f

´1 pxq f ´1 pyq for every x, y P N. You already

know f is an isomorphism, so you can find a, b P M such that f paq “ x and f pbq “ y. The

fact that f is a homomorphism will help you a lot with showing f
´1

is a homomorphism.

(c) Suppose that we know pM,ˆq – pN,`q and pN,`q – pP,[q. As above, we know there

exist isomorphisms f : M Ñ N and g : N Ñ P. Let h “ g ˝ f ; that is, h is the composition

of the functions g and f . Explain why h : MÑ P, and show that h is also an isomorphism.

(d) Explain how (a), (b), and (c) prove that isomorphism is an equivalence relation.

4¨5 Clockwork rings and ideals

In this section, we combine our work using remainders to create a consistent “clockwork

arithmetic” (Sections 2¨1, 4¨4, and 3¨4) with our observation that the multiples of an integer

form an ideal of a ring, and thus a subgroup of a group (Section 4¨2). We highlight some re-

lationships between these two phenomena, which the following sections generalize to other

situations.

Recall that we defined Zd as the set of remainders t0, 1, . . . , d´ 1u and that this forms a

ring under addition and multiplication, modulo d. This congruence relationship (modulo d) is

an equivalence relation, and we saw that this means it partitions the integers via the elements

of dZ.

Example 4¨75. In Section 4¨4 we considered the case where d “ 4. We’ll rename those equiv-

alence classes from A, B, C, and D to

4Z “ t. . . ,´4, 0, 4, 8, . . . u
1` 4Z “ t. . . ,´3, 1, 5, 9, . . . u
2` 4Z “ t. . . ,´2, 2, 6, 10, . . . u
3` 4Z “ t. . . ,´1, 3, 7, 11, . . . u .



CHAPTER 4. SUBGROUPS AND IDEALS, COSETS AND QUOTIENTS 145

We will see in a moment that we can write them differently, using any element of that equiv-

alence class:

4` 4Z “ t. . . ,´4, 0, 4, 8, . . . u
´3` 4Z “ t. . . ,´3, 1, 5, 9, . . . u
10` 4Z “ t. . . ,´2, 2, 6, 10, . . . u
7` 4Z “ t. . . ,´1, 3, 7, 11, . . . u .

However, it’s typical to use the remainder, and we call that way of writing these equivalence

classes the canonical representation for each equivalence class.

In general, if X is an equivalence class of the remainder after division by d, we write X “

x ` dZ for any x P X. This notation causes no confusion, since the equivalence class is a

partition, and forces every element of Z into a unique class. We can actually make a stronger

statement:

Fact 4¨76. Two such equivalence classes X and Y d are equal if and only if any representations X “

x` dZ and Y “ y` dZ satisfy the relationship d | px´ yq.

Why? The equivalence classes partition Z, so X “ Y if and only if x ” ymodulo d. By defini-

tion, d | px´ yq.

For instance, our example above shows that 1 ` 4Z “ ´3 ` 4Z. Here we have x “ 1 and

y “ ´3, and indeed 4 | p1´ p´3qq.

Henceforth we write Z{dZ for the set of equivalence classes of the remainders after divi-

sion by d. Another observation:

Fact 4¨77. The setZ{dZ of equivalence classes of the remainders after division by d forms a ring under

the following arithmetic:

pa` dZq ` pb` dZq “ pa` bq ` dZ and pa` dZq pb` dZq “ pabq ` dZ.

In fact, this ring is isomorphic to Zd.

Example 4¨78. Recall that Z{4Z “ t4Z, 1` 4Z, 2` 4Z, 3` 4Zu. Addition in this group will

always give us one of those four representations of the classes:

p2` 4Zq ` p1` 4Zq “ 3` 4Z;
p1` 4Zq ` p3` 4Zq “ 4` 4Z “ 4Z;
p2` 4Zq ` p3` 4Zq “ 5` 4Z “ 1` 4Z;

and so forth. Likewise, multiplication will give us one of those four representations of classes:

p0` 4Zq p2` 4Zq “ 0` 4Z;
p1` 4Zq p3` 4Zq “ 3` 4Z;
p2` 4Zq p3` 4Zq “ 6` 4Z “ 2` 4Z;

and so forth.
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Why is Fact 4¨77 true? Let f : Zd Ñ pZ{dZqmap a remainder r to the equivalence class r ` dZ.

We claim that f is one-to-one and onto, and it also preserves addition, multiplication, and

multiplicative identity. In this case, Z{dZ will be a ring, as claimed. To see why, observer that

any sum of classes corresponds to addition of two remainders, their preimages via f . The

sum of these remainders gives another remainder, which f maps to a class that corresponds

to the defined addition. This shows closure of addition; the remaining properties will follow

similarly.

So let a, b P Zd; f maps them to A “ a ` dZ and B “ b ` dZ. First we show the homo-

morphism properties of a ring. For addition, we need to show that f pa` bq is the same class

as

f paq ` f pbq “ pa` dZq ` pb` dZq “ pa` bq ` dZ.

Let r be the remainder of division of a` b by d; we have have

f pa` bq “
subst

f prq “
def of f

r ` dZ.

So we really need to show that

pa` bq ` dZ “ r ` dZ;

that is, a ` b and r lie in the same equivalence class. By the definition of our equivalence

classes, this is equivalent to saying that a ` b ”d r, but that is true by definition of r (the

remainder of a` b). Hence f pa` bq “ f paq ` f pbq. Preservation of multiplication is shown

so similarly that we pass over it. As for the multiplicative identity,

p1` dZq pa` dZq “ a` dZ “ pa` dZq p1` dZq

regardless of the choice of a, making 1 ` dZ the identity of Z{dZ, but f p1q “ 1 ` dZ, so the

identity is preserved. It remains to show that f is one-to-one and onto.

One-to-one? Let a, b P Zd, and assume f paq “ f pbq. By definition of f , this means a` dZ “
b` dZ; by Fact 4¨76, d | pa´ bq. As remainder, however, 0 ď a, b ă d, so´d ă a´ b ă d. The

only multiple of d between´d and d itself is 0, so a´ b “ 0; in other words, a “ b.

Onto? For any class a` dZ, let r be the remainder of division of a by d; then f prq “ r` dZ.

We need f prq “ a ` dZ, but this is no problem; by the Division Theorem, we can find q P Z
such that a “ qd ` r, or a ´ r “ qd, which by Fact 4¨76 means f prq “ r ` dZ “ a ` dZ, as

desired.

It is burdensome to write a` nZ whenever we want to discuss an element of Z{dZ, so we

adopt the following convention.

Notation 4¨79. Let A P Z{dZ and choose a P Z such that A “ a` dZ.

• If it is clear from context that A is an element of Z{dZ, then we simply write a instead

of a` dZ.

• If we want to emphasize that A is an element ofZ{dZ (perhaps there are a lot of integers

hanging about) then we write ras
d

instead of a` dZ.
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• If the value of d is obvious from context, we simply write ras.

To help you grow accustomed to the notation ras
d
, we use it for the rest of this chapter, even

when d is mindbogglingly obvious.

Definition 4¨80. On account of Fact 4¨77, we can designate the remainder of division of a by

d, whose value is between 0 and |d| ´ 1, inclusive, as the canonical representation of ras
d

in

Z{dZ.

Question 4¨81 .
Write out the Cayley tables for Z{2Z and Z{3Z (both addition and multiplication).

Question 4¨82 .
Write out the Cayley table for Z{5Z (both addition and multiplication). Which elements gen-

erate Z{5Z?

Question 4¨83 .
Write down the Cayley table for Z{6Z (both addition and multiplication). Which elements

generate Z{6Z?

We now present two more properties. Both properties follow immediately from the iso-

morphism between Z{dZ and Zd, so we do not provide any further proof.

Theorem 4¨84. Z{dZ is finite for every nonzero d P Z. In fact, if d ‰ 0 then Z{dZ has |d| elements

corresponding to the remainders from division by d: 0, 1, 2, . . . , d´ 1.

Question 4¨85 .
What if d “ 0? How many elements would Z{dZ have? You can’t use division here, so you

have to rely on the equivalence classes, not the isomorphism. Illustrate a few additions and

subtractions, and indicate whether you think that Z{0Z is an interesting or useful group.

Question 4¨86 .
In the future, we won’t considerZ{dZwhen d ă 0. Show that this is becauseZ{dZ “ Z{ |d|Z.

(Notice that this asks for equality, not merely isomorphism.)

Questions 2.47 on page 61 and 2.48 on page 61 tell us that there is only one group of order 2

(up to isomorphism) and only one group of order 3 (up to isomorphism). So the structure of

Z{2Z and Z{3Z was determined well before you ever looked at Question 4.81. On the other

hand, there are two possible structures for a group of order 4: the Klein 4-group, and a cyclic

group. (See Question 2.49 on page 61.) Which of these structures does Z{4Z have? Again,

isomorphism gives it away.

Theorem 4¨87. Z{dZ is cyclic for every d P Z.

This theorem has a more general version, which you will prove in the homework.

A natural and interesting followup question is, which non-zero elements do generateZ{dZ?

You need a bit more background in number theory before you can answer that question, but

you can still formulate a hypothesis.
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Question 4¨88 .
Write out a Cayley table for Z4, and compare it to the results of Questions 4.81, 4.82, and 4.83.

Formulate a conjecture as to which elements generate Zn, for arbitrary n.

Question 4¨89 .
Use Bézout’s Lemma to prove your conjecture in Question 4.88. Hint: If a P Zn generates Zn,
then ab “ 1 for some b P Z. Bézout’s Lemma should help you find b. On the other hand, if 1

is a multiple of a, then so is every other element of Zn — why?

The following important lemma gives an “easy” test for whether two integers are in the

same class of Z{dZ, and summarizes what we have done in this section.

Lemma 4¨90. Let a, b, d P Z and assume that d ‰ 0. The following are equivalent.

(A) a` dZ “ b` dZ.

(B) ras
d
“ rbs

d
.

(C) d | pa´ bq.

Proof. (A) is equivalent to (B) by definition of the notation ras
d

(see above), and (A) is equiva-

lent to (C) by Fact 4¨76.

4¨6 Partitioning groups and rings

We saw in Section 4¨4 how clockwork arithmetic uses division to partition the integers ac-

cording to their remainder. We also found that this partition has group and ring structures;

for instance, it’s pretty clear that 3` 5 ”6 2, but a few additions and subtractions show that

3 ” ´3, 5 ” 11, and 2 ” 62; the equivalence classes thus tell us that ´3 ` 11 ” 62. We also

saw in Section 3¨1 that working with division of polynomials gave us a way to model roots and

build complex numbers.

Can we do this with other groups and rings? Indeed we can, using a tool called cosets.

Students often have a hard time wrapping their minds around cosets, so we’ll start with an

introductory example that should give you an idea of how cosets “look” in a group. Then we’ll

define cosets, and finally look at some of their properties.

The idea

Two aspects of division were critical for making clockwork arithmetic an equivalence re-

lation, and thus a way to partition of Z:

• existence of a remainder, which implies that every integer belongs to at least one class,

which in turn implies that the union of the classes covers Z; and

• uniqueness of the remainder, which implies that every integer ends up in only one set, so

that the classes are disjoint.
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Using the vocabulary of groups, recall from Section 138 the sets

A “ t. . . ,´4, 0, 4, 8, . . . u “ r0s

B “ t. . . ,´3, 1, 5, 9, . . . u “ r1s

C “ t. . . ,´2, 2, 6, 10, . . . u “ r2s

D “ t. . . ,´1, 3, 7, 11, . . . u “ r3s .

Recall from Section 118 that A “ 4Z ă Z, so it is a group under addition. The other sets are

not groups; after all, they lack the additive identity.

What interests us is how the equivalence classes relate to the subgroup. All elements of B

have the form 1` a for some a P A. For example,´3 “ 1` p´4q. Likewise, all elements of C

have the form 2` a for some a P A, and all elements of D have the form 3` a for some a P A.

So if we define

1` A :“ t1` a : a P Au ,

then

1` A “ t. . . , 1` p´4q , 1` 0, 1` 4, 1` 8, . . . u

“ t. . . ,´3, 1, 5, 9, . . . u

“ B.

Likewise, we can write A “ 0` A and C “ 2` A, D “ 3` A.

Pursuing this further, you can check that

¨ ¨ ¨ “ ´3` A “ 1` A “ 5` A “ 9` A “ ¨ ¨ ¨

and so forth. Interestingly, all the sets in the previous line are the same as B! In addition,

1`A “ 5`A, and 1´5 “ ´4 P A. The same holds for C: 2`A “ 10`A, and 2´10 “ ´8 P A.

This relationship will prove important at the end of the section.

So the partition by remainders of division by four is related to the subgroup A of multiples

of 4. How can we generalize this phenomenon to other groups, even nonabelian ones?

Definition 4¨91. Let G be a group and A ă G. Let g P G. We define the left coset of A with g
as

gA “ tga : a P Au

and the right coset of A with g as

Ag “ tag : a P Au .

In general, left cosets and right cosets are not equal, partly because the operation might

not commute. If we speak of “cosets” without specifying “left” or “right”, we mean “left

cosets”.

Example 4¨92. Recall the group D3 from Section 3¨6 and the subgroup H “ xφy “ tι, φu from

Example 4¨8. In this case,

ρH “ tρ, ρφu and Hρ “ tρ, φρu .

Since φρ “ ρ2φ ‰ ρφ, we see that ρH ‰ Hρ.
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Question 4¨93 .
In Question 4.17, you showed that Ω2 ă Ω8. Compute the left and right cosets of Ω2 in Ω8.

Question 4¨94 .
Let tя, a, b, a` bu be the Klein 4-group. (See Questions 2.49 on page 61, 3.45 on page 84,

and 4.18 on page 124.) Compute the left and right cosets of xay.

Question 4¨95 .
Compute the left and right cosets of xjy in Q8.

For some subgroups, left and right cosets are always equal. This is always true in abelian

groups, as illustrated by Example 4¨97.

Question 4¨96 .
Show explicitly why left and right cosets are equal in abelian groups.

If A is an additive subgroup, we write the left and right cosets of Awith g as g`A and A`g.

Rings are abelian groups under addition, with ideals as subgroups, so if R is a ring, AŸ R, and

r P R, then we write the coset of Awith r is r` A. For now we focus on the theory of cosets in

the context of groups, as this applies equally to cosets of ideals of rings.

Example 4¨97. Consider the subgroup H “ tpa, 0q : a P Ru of R2
from Question 4.14. Let

p “ p3,´1q P R2
. The coset of H with p is

p` H “ tp3,´1q ` q : q P Hu

“ tp3,´1q ` pa, 0q : a P Ru
“ tp3` a,´1q : a P Ru .

Sketch some of the points in p ` H, and compare them to your sketch of H in Question 4.14.

How does the coset compare to the subgroup?

Generalizing this further, every coset of H has the form p ` H where p P R2
. Elements of

R2
are points, so p “ px, yq for some x, y P R. The coset of H with p is

p` H “ tpx` a, yq : a P Ru .

Sketch several more cosets. How would you describe the set of all cosets of H in R2
?

Question 4¨98 .
Recall the subgroup L of R2

from Question 4.14 on page 123.

(a) Give a geometric interpretation of the coset p3,´1q ` L.

(b) Give an algebraic expression that describes p` L, for arbitrary p P R2
.

(c) Give a geometric interpretation of the cosets of L in R2
.

(d) Use your answers to (a) and (c) give a geometric description of how cosets of L partition

R2
.
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A group does not have to be abelian for the left and right cosets to be equal. When deciding

if gA “ Ag, we are not deciding whether elements of G commute, but whether subsets of G are equal.

Returning to D3, we can find a subgroup whose left and right cosets are equal even though

the group is not abelian and the operation is not commutative.

Example 4¨99. Let K “ tι, ρ, ρ2u; certainly K ă D3, after all, K “ xρy. In this case, αK “ Kα for

all α P D3:

α αK Kα

ι K K

φ tφ, φρ, φρ2u tφ, ρφ, ρ2φu

ρ K K

ρ
2

K K

ρφ tρφ, pρφq ρ, pρφq ρ2u tρφ, φ, ρ2φu

ρ
2
φ tρ2φ, pρ2φq ρ, pρ2φq ρ2u tρ2φ, ρφ, φu

In each case, the sets φK and Kφ are equal, even though φ does not commute with ρ. (You

should verify these computations by hand.)

Question 4¨100 .
In Question 4.12 on page 122, you found another subgroup K of order 2 in D3. Does K satisfy

the property αK “ Kα for all α P D3?

When a subgroup’s left and right cosets are always equal, we call it a normal subgroup
of its group. Normal subgroups play a critical role in later sections, but we won’t worry too

much about them at the moment.

You might notice a few things. In each case, every element appears in a coset: a subgroup

A always contains the identity, so any g appears in “its own” coset gA. On the other hand, g

seems to appear only in gA, and in no other other coset! After all, φK and pρφq K differ only

superficially; when you consider their contents, you find that they are equal. This sounds

an awful lot like the partition we were aiming for. Does it hold true in general? What other

properties might cosets contain?

Properties of Cosets

We present some properties of cosets that illustrate further their similarities to division.

Theorem 4¨101. The cosets of a subgroup partition the group.

Before proving this, we pause to point out that combining Theorems 4¨101 and 4¨70 implies

another nice result.

Corollary 4¨102. Let A ă G. Define a relation„ on x, y P G by

x „ y ðñ x is in the same coset of A as y.

This relation is an equivalence relation.
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We will make repeated use of this equivalence relation.

Proof of Theorem 4¨101. Let G be a group, and A ă G. We have to show two things:

(CP1) the cosets of A cover G, and

(CP2) distinct cosets of A are disjoint.

We show (CP1) first. Let g P G. The definition of a group tells us that g “ gя. Since я P A by

definition of subgroup, g “ gя P gA. Since gwas arbitrary, every element of G is in some coset

of A. Hence the union of all the cosets is G.

For (CP2), let X and Y be arbitrary cosets of A. Assume that X and Y are distinct; that

is, X ‰ Y. We need to show that they are disjoint; that is, X X Y “ H. We will show the

contrapositive instead; that is, we will assume XX Y ‰ H, and show X “ Y. A contrapositive

is logically equivalent to the original statement, so we will have accomplished our goal.

To prove the contrapositive, assume XXY ‰ H. By definition of intersection, we can find

z P X X Y. By definition of a coset, there exist x, y P G such that X “ xA and Y “ yA; we can

write z “ xa and z “ yb for some a, b P A. By substitution, xa “ yb, so x “ pybq a´1, or

x “ y
`

ba
´1
˘

. (4.2)

We still have to show that X “ Y. We show this by showing that X Ď Y and X Ě Y. For

the former, let w P X; by definition of X, w “ xâ for some â P A. Applying our conversion

mechanism,

w “ xâ “
“

y
`

ba
´1
˘

â
‰

“ y
“`

ba
´1
˘

a
‰

P yA.

We chose w as an arbitrary element of X, so X Ď Y. The proof that X Ě Y is so similar that we

omit it. By definition of set equality, X “ Y. Inasmuch as X and Y were arbitrary, this holds

for all cosets of A: if two cosets of A are not disjoint, then they are not distinct.

Having shown (CP2) and (CP1), we have shown that the cosets of A partition G.

We conclude this section with three facts that allow us to decide when cosets are equal.

Lemma 4¨103 (Equality of cosets). Let G be a group and A ă G. All of the following hold:

(CE1) яA “ A.

(CE2) For all g P G, gA “ A if and only if g P A.

(CE3) For all g, h P G, gA “ hA if and only if g P hA.

(CE4) For all g, h P G, gA “ hA if and only if g
´1
h P A.

As usual, you should keep in mind that in additive groups (and thus in rings) the first three

conditions translate to

(CE1) 0` A “ A.

(CE2) For all g P G, g P A if and only if g` A “ A.

(CE3) For all g, h P G, g` A “ h` A if and only if g P h` A.

(CE4) For all g, h P G, g` A “ h` A if and only if g´ h P A.
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Notice also that characterization (CE4) resembles the third criterion of the Subgroup The-

orem. The resemblance is mostly superficial; in the Subgroup Theorem, a
´1
b refers to elements

of A, while (CE4) refers to elements of G that are not always in A. That said, if it is the case that

g, h P A then the Subgroup Theorem tells us that g
´1
h P A, so gA “ hA — though we already

knew that from (CE2), since gA “ A “ hA.

Proof. (CE1) is “obvious” (but you will fill in the details in Question 4.105.).

We jump to (CE3) for the moment. Let g, h P G. We know that я P A, so g “ gя P gA.

Corollary 4¨102 tells us that membership in a coset is an equivalence relation, where the cosets

are the equivalence classes. By substitution, gA “ hA if and only if g P hA.

We turn to (CE2). Let g P G. By (CE3), gA “ яA if and only if g P яA. By (CE1), яA “ A, so

by substitution, g P A if and only if gA “ A.

We finally turn to (CE4). Let g, h P G. By (CE3), gA “ hA if and only if g P hA. By definition

of a coset, g P hA if and only if g “ ha for some a P A. Applying the inverse property twice, we

rewrite this equation first as я “ g´1 phaq, then (after an associative property) as a
´1 “ g´1h.

Since a
´1 P A, we have g

´1
h P A. Every step used an equivalence, so we can connect the chain

into the one equivalence, gA “ hA if and only if g
´1
h P A.

Property (CE4) does little more than restate the partition property, with the added knowl-

edge that any elements lies in its own coset. However, it emphasizes that, when computing

cosets of a subgroup A, you can skip hA whenever h appears in gA.

Question 4¨104 .
Consider the ideal A “ 〈x2 ` 1〉 in R rxs. Why can we write every coset of A as pax` bq ` A,

where a, b P R? Hint: This is related to the isomorphism of Section 3¨1.

Question 4¨105 .
Fill in each blank of Figure 4.105 with the appropriate justification or statement.

4¨7 Lagrange’s Theorem and the order of an element of a
group

How many cosets can a subgroup have? This section answers this question, as well as some

related questions about the size of a subgroup and the order of an element. Throughout this

section, we assume |G| is finite, even if we don’t say so explicitly.

Notation 4¨106. Let G be a group, and A ă G. We write G{A for the set of all left cosets of A.

That is,

G{A “ tgA : g P Gu .

We also write AzG for the set of all right cosets of A:

AzG “ tAg : g P Gu .
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Let G be a group and H ă G.

Claim: яH “ H.

1. First we show that _____. Let x P яH.

(a) By definition of яH, x “_____.

(b) By the identity property, _____.

(c) By substitution, x P_____.

(d) We had chosen an arbitrary element of яH , so by inclusion, _____.

2. Now we show the converse, that яH Ě H. Let x P_____.

(a) By the identity property, _____.

(b) By definition of яH, _____P яH.

(c) We had chosen an arbitrary element, so by inclusion, _____.

Figure 4¨6: Material for Question 4.105

Example 4¨107. Let G “ Z and A “ 4Z. We saw in Example 4¨69 that

G{A “ Z{4Z “ tA, 1` A, 2` A, 3` Au .

We actually “waved our hands” in Example 4¨69. That means that we did not provide a very

detailed argument, so let’s show the details here. Recall that 4Z is the set of multiples of Z,

so x P A iff x is a multiple of 4. What about the remaining elements of Z?

Let x P Z; then

x` A “ tx` z : z P Au “ tx` 4n : n P Zu .

Use the Division Theorem to write

x “ 4q` r

for unique q, r P Z, where 0 ď r ă 4. Then

x` A “ tp4q` rq ` 4n : n P Zu “ tr ` 4 pq` nq : n P Zu .

By closure, q` n P Z. If we write m in place of 4 pq` nq, then m P 4Z. So

x` A “ tr ` m : m P 4Zu “ r ` 4Z.

The distinct cosets of A are thus determined by the distinct remainders from division by 4.

Since the remainders from division by 4 are 0, 1, 2, and 3, we conclude that

Z{A “ tA, 1` A, 2` A, 3` Au

as claimed above.
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Example 4¨108. Let G “ D3 and K “ tι, ρ, ρ2u as in Example 4¨99, then

G{K “ D3{ xρy “ tK, φKu .

Example 4¨109. Let H ă R2
be as in Example 4¨13 on page 122; that is,

H “
 

pa, 0q P R2
: a P R

(

.

Then

R2
{H “

 

r ` H : r P R2
(

.

It is not possible to list all the elements of G{H, but some examples would be

p1, 1q ` H, p4,´2q ` H.

Question 4¨110 .
Speaking geometrically, what do the elements of R2{H look like? This question is similar to

Question 4.98.

Keep in mind that G{A is a set whose elements are also sets. Showing equality of two

elements of G{A requires one to show that two sets are equal.

Remember our assumption that G is finite. In this case, a simple formula gives us the size

of G{A.

Lagrange’s Theorem. Let A ă G. The size of G{A is the ratio of the number of elements of G to the

number of elements of A. That is,

|G{A| “
|G|

|A|
.

While the notation of cosets is somewhat suggestive of the relationship between cosets

and division, Lagrange’s Theorem is not as obvious as the notation might imply: we can’t

“divide” the sets G and A. We are not moving the absolute value bars “inside” the fraction;

nor can we, as G{A is not a number. Rather, we are partitioning the group G by the cosets of

its subgroup A, and counting the number of sets that result.

Proof. We know from Theorem 4¨101 that the cosets of A partition G. How many such cosets

are there? |G{A|, by definition! Each coset has the same size, |A|. Suppose there are n cosets;

we can visualize the partition in this fashion:

|G| elements in the entire group
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

partition яA partition g1A partition g2A ¨ ¨ ¨ partition gnA

loooooomoooooon loooooomoooooon loooooomoooooon loooooomoooooon

|A| elements |A| elements |A| elements |A| elements

A basic principle of counting tells us that the number of elements of G is thus the product

of the number of elements in each coset and the number of cosets. That is, |G{A| ¨ |A| “ |G|.

This implies the theorem.
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The next-to-last sentence of the proof contains the statement |G{A| ¨ |A| “ |G|. Since |A|

is the order of the group A, and |G{A| is an integer, we conclude that:

Corollary 4¨111. The order of any subgroup of G divides the order of the group.

Example 4¨112. Let G be the Klein 4-group (see Questions 2.49 on page 61, 3.45 on page 84,

and 4.18 on page 124). Every subgroup of the Klein 4-group has order 1, 2, or 4. As predicted

by Corollary 4¨111, the orders of the subgroups divide the order of the group.

Likewise, the order of tι, φu divides the order of D3.

By contrast, the subset HK of D3 that you computed in Question 4.12 on page 122 has four

elements. Since 4 - 6, the contrapositive of Lagrange’s Theorem implies that HK cannot be a

subgroup of D3.

From the fact that every element g generates a cyclic subgroup xgy ă G, Lagrange’s The-

orem also implies an important consequence about the order of any element of any finite

group.

Corollary 4¨113. The order of any element of a group divides the order of a group.

Proof. You do it! See Question 4.115.

Question 4¨114 .
Recall from Question 4.17 that if d | n, then Ωd ă Ωn. How many cosets of Ωd are there in Ωn?

Question 4¨115 .
Fill in each blank of Figure 4.115 with the appropriate justification or expression.

Question 4¨116 .
Suppose that a group G has order 8, but is not cyclic. Why must g

4 “ я for all g P G?

Question 4¨117 .
Let G be a finite group, and g P G. Why is g

|G| “ я?

Question 4¨118 .
Suppose that a group has five elements. Why must it be abelian?

Question 4¨119 .
Find a criterion on the order of a group that guarantees the group is cyclic.
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Claim: The order of an element of a group divides the order of a group.

Proof:

1. Let G _____.

2. Let x _____.

3. Let H “ x_____y.

4. By _____, every integer power of x is in G.

5. By _____, H is the set of integer powers of x.

6. By _____, H ă G.

7. By _____, |H| divides |G|.

8. By _____, ord pxq divides |H|.

9. By definition, there exist m, n P_____ such that |H| “ mord pxq and |G| “ n |H|.

10. By substitution, |G| “_____.

11. _____.

(This last statement must include a justification.)

Figure 4¨7: Material for Question 4.115
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Question 4¨120 .
Let p be an irreducible number, and recall thatZp is a field, so that its non-zero elements form

a group under multiplication. For instance, in Z7, the set t1, 2, 3, 4, 5, 6u forms a group under

multiplication. Explain why, for every a P Zp,

(a) a
p´1 “ 1, and

(b) a
p “ a, and

(c) a
p´2 “ a´1.

This fact is called Fermat’s Little Theorem. We explore it in a general context later.

4¨8 Quotient Rings and Groups

Consider the polynomial ring R rxs. Looking at remainders from division by x
2 ` 1 gave us a

way to model complex numbers as

C “ tax` b : a, b P Ru ,

where 1x ` 0 stood in for the imaginary number. An isomorphism (Question 3.18) showed

that this was equivalent to the traditional model of the complex numbers, with 1x` 0 ÞÑ i.

Since then, we pointed out that every multiple of x
2 ` 1 has the imaginary number i as

a root. Multiples of x
2 ` 1 have two things in common. First, dividing such polynomials by

x
2 ` 1 gives a remainder of 0. Second, and equivalently, they are in the ideal A “ 〈x2 ` 1〉.

Question 4.104 showed us that the cosets of 〈x2 ` 1〉 correspond to remainders from division

by x
2 ` 1. As noted, those remainders formed a field isomorphic to C. In other words, the

cosets of 〈x2 ` 1〉 give us another model of the field C.

Can we do this for cosets of general groups? To make the question precise, let A ă G.

Can we find a natural generalization of the operation(s) of G that makes G{A a group? By a

“natural” generalization, we mean something like

pgAq˙ phAq “ pghqA.

Quotient rings

The first order of business it to make sure that the operation even makes sense. The tech-

nical word for this is that the operation is well-defined. What does that mean? A coset can

have different representations. An operation must be a function: for every pair of elements,

it must produce exactly one result. The relation above would not be an operation if differ-

ent representations of a coset gave us different answers. Example 4¨121 shows how it can go

wrong.
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Example 4¨121. Recall H “ xφy ă D3 from Example 4¨92. Let X “ ρH and Y “ ρ
2
H. Notice

that pρφqH “ tρφ, ιu “ ρH, so X has two representations, ρH and pρφqH.

Were the operation well-defined, XY would have the same value, regardless of the represen-

tation of X. That is not the case! When we use the the first representation,

XY “ pρHq
`

ρ
2
H
˘

“
`

ρ ˝ ρ
2
˘

H “ ρ
3
H “ ιH “ H.

When we use the second representation,

XY “ ppρφqHq
`

ρ
2
H
˘

“
`

pρφq ρ
2
˘

H “
`

ρ
`

φρ
2
˘˘

H

“ pρ pρφqqH “
`

ρ
2
φ
˘

H ‰ H.

On the other hand, sometimes the operation is well-defined.

Example 4¨122. Recall the subgroup A “ 4Z ofZ. Let B, C, D P Z{A, so B “ b`4Z, C “ c`4Z,

and D “ d` 4Z for some b, c, d P Z.

We have to make sure that we cannot have B “ D and B ` C ‰ D ` C. For example, if

B “ 1` 4Z and D “ 5` 4Z, B “ D. Does it follow that B` C “ D` C?

From Lemma 4¨103, we know that B “ D iff b´ d P A “ 4Z. That is, b´ d “ 4m for some

m P Z. Let x P B` C; then x “ pb` cq ` 4n for some n P Z. By substitution,

x “ ppd` 4mq ` cq ` 4n “ pd` cq ` 4 pm` nq P D` C.

Since x was arbitrary in B ` C , we have B ` C Ď D ` C. A similar argument shows that

B` C Ě D` C, so the two are, in fact, equal.

The operation was well-defined in the second example, but not the first. What made for

the difference? In the second example, we rewrote

ppd` 4mq ` cq ` 4n “ pd` cq ` 4 pm` nq ,

but that relies on the fact that addition commutes in an abelian group. Without that fact, we

could not have swapped c and 4m.

Right away we see that we can always do this for cosets of ideals: after all, ideals are sub-

groups of rings under addition. Indeed, we can say something more.

Fact 4¨123. Let R be a commutative ring. The cosets of an ideal A of R form a new ring, whose addition

and multiplication are natural generalizations of the addition and multiplication of R. That is, for any

r, s P R,

pr ` Aq ` ps` Aq “ pr ` sq ` A and pr ` Aq ps` Aq “ rs` A.

Why? Let AŸ R, and let X, Y, Z P R{A.

Our first task is to show that addition and multiplication are well-defined. To do this,

we need to show that the definitions of X ` Y and XY give us the same result, regardless of

the representation we choose for X and Y. To this end, suppose there exist r, s, x, y P A such that

X “ x` A “ r ` A and Y “ y` A “ s` A.
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addition? We need to show that px` yq`A “ pr ` sq`A. The lemma on Coset Equality

tells us that this is true if and only if ´px` yq ` pr ` sq P A, so we’ll aim to

show this latter expression is true. By hypothesis, x ` A “ r ` A, so by

Coset Equality,´x` r P A. Similarly,´y` s P A. By closure of addition and

properties of ring addition,

´px` yq ` pr ` sq “ p´x` rq ` p´y` sq P A.

As we explained earlier, this shows that px` yq ` A “ pr ` sq ` A; in short,

the addition is well-defined.

multiplication? We need to show that xy` A “ rs` A. The lemma on Coset Equality tells us

that this is true if and only if´pxyq ` rs P A, so we’ll aim to show this latter

expression is true. Recall from the previous paragraph that´x`r,´y`s P A.

To get from these to ´pxyq ` rs, we’ll use a fairly standard trick of adding

zero in “the right form”,

´pxyq ` rs “ ´pxyq ` ry´ ry` rs “ y p´x` rq ` r p´y` sq .

Absorption implies that y p´x` rq , r p´y` sq P A. Closure implies their sum

is also in A. By substitution, ´pxyq ` rs P A. As we explained earlier, this

shows that xy` A “ rs` A; in short, the multiplication is well-defined.

The remaining properties of addition are relatively straightforward. Choose x, y, z P R such

that X “ x` A, Y “ y` A, Z “ z` A.

associative? pX ` Yq ` Z “ rpx` Aq ` py` Aqs ` pz` Aq “ rpx` yq ` As ` pz` Aq “

rpx` yq ` zs`A. Apply the associative property of addition inR to obtain pX ` Yq`

Z “ rx` py` zqs ` A. Now reverse the simplification to obtain pX ` Yq ` Z “

px` Aq`rpy` zq ` As “ px` Aq`rpy` Aq ` pz` Aqs “ X`pY ` Zq. The ends

of this latter chain of equalities show the associative property is satisfied.

identity? We want a cosetW such that X`W “ X andW`X “ X. Letw P R such thatW “

w` A; by substitution, our first desired equation becomes px` Aq ` pw` Aq “

x ` A, or px` wq ` A “ x ` A. By coset equality, we need px` wq ´ x P A; by

simplification, w P A. From coset equality (Theorem 4¨103(CE2)) that choosing

any a P A gives us A itself, soW “ Amust be the identity.

inverse? We want an “inverse” coset of X “ x`A. The natural suspect would be p´xq`A;

that is, the coset of A with ´x. Indeed, it works great: px` Aq ` rp´xq ` As “

0 ` A “ A, and likewise rp´xq ` As ` px` Aq “ A. We just showed A is the

identity of R{A, so we have found the inverse of X.

abelian? X ` Y “ px` Aq ` py` Aq “ px` yq ` A. Apply the commutative property of

addition in R to obtain X ` Y “ py` xq ` A “ py` Aq ` px` Aq “ Y ` X. The

ends of this latter chain of equalities show the addition is abelian.
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We’ve found that R{A is an abelian group under the proposed addition, the first step towards

showing it’s a ring. We still need to show that multiplication satisfies the properties of a

monoid, along with distribution.

We leave the remaining, multiplicative properties of a ring to you, the reader.

Question 4¨124 .
Show the remaining properties of a ring for R{A: closure, associative, identity, and distribu-

tive.

“Normal” subgroups

What about the cosets of nonabelian groups? Given the example above, you might be

inclined to dismiss them, but that would be too hasty.

The key in Example 4¨122 was not thatZ is abelian, but that we could rewrite p4m` cq`4n

as c ` p4m` 4nq, then simplify 4m ` 4n to 4 pm` nq. The abelian property makes it easy to

do that, but we don’t need the group G to be abelian; we need the subgroup A to satisfy it. If

A were not abelian, we could still make it work if, after we move c left, we get some element

of A to its right, so that it can be combined with the other one. That is, we have to be able

to rewrite any ac as ca
1
, where a

1
is also in A. We need not have a “ a

1
! Let’s emphasize that,

changing c to g for an arbitrary group G:

The operation defined above is well-defined

iff

for every g P G and for every a P A

there exists a
1 P A such that ga “ a1g.

In terms of sets, for every g P G and every a P A, there exists a
1 P A such that ga “ a

1
g. Here

ga P gA is arbitrary, so gA Ď Ag. The other direction must also be true, so gA Ě Ag. In other

words,

The operation defined above is well-defined

iff gA “ Ag for all g P G.

Definition 4¨125. Let A ă G. If

gA “ Ag

for every g P G, then A is a normal subgroup of G.

Since normal subgroups partition a group into a new group, the same way ideals partition a

ring into a new ring, let’s “promote” them to having the same notation.

Notation 4¨126. We write AŸ G to indicate that A is a normal subgroup of G.

Question 4¨127 .
Show that for any group G, tяu Ÿ G and GŸ G.



CHAPTER 4. SUBGROUPS AND IDEALS, COSETS AND QUOTIENTS 162

Although we have outlined the argument above, we should show explicitly that if A is a

normal subgroup, then the operation proposed for G{A is indeed well-defined.

Lemma 4¨128. Let A ă G. Then (CO1) implies (CO2).

(CO1) AŸ G.

(CO2) Let X, Y P G{A and x, y P G such that X “ xA and Y “ yA. The operation ˙ on G{A defined by

X ˙ Y “ pxyqA

is well-defined for all x, y P G.

Proof. Let W, X, Y, Z P G{A and choose w, x, y, z P G such that W “ wA, X “ xA, Y “ yA, and

Z “ zA. To show that the operation is well-defined, we must show that if W “ X and Y “ Z,

then WY “ XZ regardless of the values of w, x, y, or z. Assume therefore that W “ X and

Y “ Z. By substitution, wA “ xA and yA “ zA. By Lemma 4¨103(CE3), w
´1
x P A and y

´1
z P A.

Since WY and XZ are sets, showing that they are equal requires us to show that each is

a subset of the other. First we show that WY Ď XZ. To do this, let t P WY “ pwyqA. By

definition of a coset, t “ pwyq a for some a P A. What we will do now is rewrite t by

• using the fact that A is normal to move some element of a left, then right, through the

representation of t; and

• using the fact thatW “ X and Y “ Z to rewrite products of the form wα as xα̂ and y 9α as

z:α, where α, α̂, 9α, :α P A.

How, precisely? By the associative property, t “ w pyaq. By definition of a coset, ya P yA. By

hypothesis, A is normal, so yA “ Ay; thus, ya P Ay. By definition of a coset, there exists α P A

such that ya “ »ay. By substitution, t “ w pαyq. By the associative property, t “ pwαq y. By

definition of a coset, wα P wA. By hypothesis, A is normal, so wA “ Aw. Thus wα P Aw. By

hypothesis, W “ X; that is, wA “ xA. Thus wα P xA, and by definition of a coset, wα “ xâ for

some â P A. By substitution, t “ pxâq y. The associative property again gives us t “ x pâyq;

since A is normal we can write ây “ y 9a for some 9a P A. Hence t “ x py 9aq. Now,

y 9a P yA “ Y “ Z “ zA,

so we can write y 9a “ z:a for some :a P A. By substitution and the definition of coset arithmetic,

t “ x pz:aq “ pxzq:a P pxzqA “ pxAq pzAq “ XZ.

Since twas arbitrary inWY, we have shown thatWY Ď XZ. A similar argument shows that

WY Ě XZ; thusWY “ XZ and the operation is well-defined.

An easy generalization of the argument of Example 4¨122 shows the following Theorem.

Theorem 4¨129. Let G be an abelian group, and H ă G. Then H Ÿ G.
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Question 4¨130 .
Prove Theorem 4¨129.

Question 4¨131 .
Explain why every subgroup of Dm pRq is normal.

Question 4¨132 .
Show that Q8 is not a normal subgroup of GLm pCq.

Question 4¨133 .
Let G be a group, and A ă G. Suppose that |G{A| “ 2; that is, the subgroup A partitions G into

precisely two left cosets. Show that:

• AŸ G; and

• G{A is abelian.

We said before that we don’t need an abelian group to have a normal subgroup. Here’s a

great example.

Example 4¨134. Let

A3 “
 

ι, ρ, ρ
2
(

ă D3.

We call A3 the alternating group on three elements. We claim that A3 Ÿ D3. Indeed,

σ σA3 A3σ

ι A3 A3

ρ A3 A3

ρ
2

A3 A3

φ φA3 “ tφ, φρ, φρ
2u “ A3φ A3φ “ φA3

ρφ tρφ, pρφq ρ, pρφq ρ2u “ φA3 φA3

ρ
2
φ tρ2φ, pρ2φq ρ, pρ2φq ρ2u “ φA3 φA3

We have left out some details, though we also computed this table in Example 4¨99, calling

the subgroup K instead of A3. Check the computation carefully, using extensively the fact

that φρ “ ρ2φ.

Quotient groups

The set of cosets of a normal subgroup is, as desired, a group.

Theorem 4¨135. Let G be a group. If AŸ G, then G{A is a group.

Proof. Assume A Ÿ G. By Lemma 4¨128, the operation is well-defined, so it remains to show

that G{A satisfies the properties of a group.
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(closure) Closure follows from the fact that multiplication of cosets is well-defined when AŸ

G, as shown in Lemma 4¨128: Let X, Y P G{A, and choose g1, g2 P G such that X “ g1A and

Y “ g2A. By definition of coset multiplication, XY “ pg1Aq pg2Aq “ pg1g2qA P G{A. Since

X, Y were arbitrary in G{A, coset multiplication is closed.

(associativity) The associative property of G{A follows from the associative property of G. Let

X, Y, Z P G{A; choose g1, g2, g3 P G such that X “ g1A, Y “ g2A, and Z “ g3A. Then

pXYq Z “ rpg1Aq pg2Aqs pg3Aq .

By definition of coset multiplication,

pXYq Z “ ppg1g2qAq pg3Aq .

By the definition of coset multiplication,

pXYq Z “ ppg1g2q g3qA.

(Note the parentheses grouping g1g2.) Now apply the associative property of G and reverse

the previous steps to obtain

pXYq Z “ pg1 pg2g3qqA

“ pg1Aq ppg2g3qAq

“ pg1Aq rpg2Aq pg3Aqs

“ X pYZq .

Since X, Y, Z were arbitrary in G{A, coset multiplication is associative.

(identity) We claim that the identity of G{A is A itself. Let X P G{A, and choose g P G such

that X “ gA. Since я P A, Lemma 4¨103 on page 152 implies that A “ яA, so

XA “ pgAq pяAq “ pgяqA “ gA “ X.

Since X was arbitrary in G{A and XA “ X, A is the identity of G{A.

(inverse) Let X P G{A. Choose g P G such that X “ gA, and let Y “ g
´1
A. We claim that

Y “ X´1. By applying substitution and the operation on cosets,

XY “ pgAq
`

g
´1
A
˘

“
`

gg
´1
˘

A “ яA “ A.

Hence X has an inverse in G{A. Since X was arbitrary in G{A, every element of G{A has an

inverse.

We have shown that G{A satisfies the properties of a group.

Definition 4¨136. Let G be a group, and A Ÿ G. Then G{A is the quotient group of G with
respect to A, also called Gmod A.

Normally we say “the quotient group” rather than “the quotient group of G with respect to

A.”
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Example 4¨137. SinceA3 is a normal subgroup of D3, D3{A3 is a group. By Lagrange’s Theorem,

it has 6{3 “ 2 elements. The Cayley table is

˝ A3 φA3

A3 A3 φA3

φA3 φA3 A3

We meet an important quotient group in Section 4¨5.

Question 4¨138 .
Prove the following generalization of Theorem 4¨87: If G is a cyclic group and AŸ G, then G{A

is cyclic.

Question 4¨139 .
Recall from Question 4.17 that if d | n, then Ωd ă Ωn.

(a) Explain how we know that, in fact, Ωd Ÿ Ωn.

(b) Does the quotient group Ω8{Ω2 have the same structure as the Klein 4-group, or as the

Cyclic group of order 4?

Question 4¨140 .
In Question 4.95, you computed the left and right cosets of xjy in Q8. Is xjy a normal subgroup

of Q8? If so, compute the Cayley table of Q8{ xjy.

Question 4¨141 .
Let H “ xiy ă Q8.

(a) Show that H Ÿ Q8 by computing all the cosets of H.

(b) Compute the Cayley table of Q8{H.

Question 4¨142 .
Recall the subgroup L of R2

from Questions 4.14 on page 123 and 4.98 on page 150.

(a) Explain how we know that LŸ R2
without checking p` L “ L` p for any p P R2

.

(b) Sketch two elements of R2{L and show their sum.

Conjugation

Another way to show a subgroup is normal involves rephrasing the idea of equality be-

tween left and right cosets. This is tied into an important operation, called conjugation.
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Definition 4¨143. Let G be a group, g P G, and H ă G. Define the conjugation of H by g as

gHg
´1
“
 

ghg
´1
: h P H

(

.

Theorem 4¨144. H Ÿ G if and only if H “ gHg´1 for all g P G.
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Let G be a group, and H ă G. Claim: H Ÿ G if and only if H “ gHg´1 for all g P G.

Proof:

1. First, we show that if H Ÿ G, then _____.

(a) Assume _____.

(b) By definition of normal, _____.

(c) Let g_____.

(d) We first show that H Ď gHg´1.

i. Let h_____.

ii. By 1b, hg P_____.

iii. By definition, there exists h
1 P H such that hg “_____.

iv. Multiply both sides on the right by g
´1

to see that h “_____.

v. By _____, h P gHg´1.

vi. Since h was arbitrary, _____.

(e) Now we show that H Ě gHg´1.

i. Let x P_____.

ii. By _____, x “ ghg´1 for some h P H.

iii. By _____, gh P Hg.

iv. By _____, there exists h
1 P H such that gh “ h1g.

v. By _____, x “ ph1gq g´1.

vi. By _____, x “ h1.

vii. By _____, x P H.

viii. Since x was arbitrary, _____.

(f) We have shown that H Ď gHg´1 and H Ě gHg´1. Thus, _____.

2. Now, we show _____: that is, if H “ gHg´1 for all g P G, then H Ÿ G.

(a) Assume _____.

(b) First, we show that gH Ď Hg.

i. Let x P_____.

ii. By _____, there exists h P H such that x “ gh.

iii. By _____, g
´1
x “ h.

iv. By _____, there exists h
1 P H such that h “ g´1h1g. (This holds for all g P G.)

v. By _____, g
´1
x “ g´1h1g.

vi. By _____, x “ g pg´1h1gq.

vii. By _____, x “ h1g.

viii. By _____, x P Hg.

ix. Since x was arbitrary, _____.

(c) The proof that _____ is similar.

(d) We have show that _____. Thus, gH “ Hg.

Figure 4¨8: Material for Question 4.145
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Question 4¨145 .
Prove Theorem 4¨144 by filling in each blank of Figure 4¨8 with the appropriate justification

or statement.
2

Example 4¨146. We posed the question of whether SOn pRq Ÿ On pRq. We claim that it is. To

see why, letM P SOn pRq and A P On pRq. By properties of determinants,

det
`

AMA
´1
˘

“ detA ¨ detM ¨ detA
´1
“ detA ¨ 1 ¨ pdetAq

´1
“ 1.

By definition, AMA
´1 P SOn pRq, regardless of the choice of A andM. Hence, A ¨SOn pRq ¨A´1 Ď

SOn pRq for all A P On pRq.
Conversely, let B “ A´1MA; an argument similar to the one above shows that B P SOn pRq,

and substitution gives us M “ ABA
´1

, so that M P A ¨ SOn pRq ¨ A´1, regardless of the choice

of A and M. Hence, A ¨ SOn pRq ¨ A´1 Ě SOn pRq, and the two are equal. By Theorem 4¨144,

SOn pRq Ÿ On pRq.

Example 4¨147. On the other hand, we can also use conjugation to show easily that O2 pRq is

not a normal subgroup of GL2 pRq. Why not? Let

A “

ˆ

1 1

0 1

˙

P GL2 pRq and M “

ˆ

0 1

1 0

˙

O2 pRq ; notice that A
´1
“

ˆ

1 ´1

0 1

˙

.

If we can show that AMA
´1 R O2 pRq, then we would know that A ¨ O2 pRq ¨ A´1 Ę O2 pRq,

showing that O2 pRq is not normal. In fact,

AMA
´1
“

ˆ

1 0

1 ´1

˙

,

and its inverse is itself, not its transpose, so in fact AMA
´1 R O2 pRq.

Question 4¨148 .
In Question 4.95, you computed the left cosets of x´1y in Q8.

(a) Show that x´1y is normal.

(b) Compute the Cayley table of Q8{ x´1y.

(c) The quotient group of Q8{ x´1y is isomorphic to a group with which you are familiar.

Which one?

Question 4¨149 .
Fill in every blank of Figure 4.149 with the appropriate justification or statement.

2
Certain texts define a normal subgroup this way; that is, a subgroup H is normal if every conjugate of H is

precisely H. They then prove that in this case, any left coset equals the corresponding right coset.
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Let G be a group. The centralizer of G is

Z pGq “ tg P G : xg “ gx @x P Gu .

Claim: Z pGq Ÿ G.

Proof:

1. First, we must show that Z pGq ă G.

(a) Let g, h, x_____.

(b) By _____, xg “ gx and xh “ hx.

(c) By _____, xh
´1 “ h´1x.

(d) By _____, h
´1 P Z pGq.

(e) By the associative property and the definition of Z pGq, pgh´1q x “_____=_____=. . .“

x pgh´1q.

(Fill in more blanks as needed.)

(f) By _____, gh
´1 P Z pGq.

(g) By _____, Z pGq ă G.

2. Now, we show that Z pGq is normal.

(a) Let x_____.

(b) First we show that xZ pGq Ď Z pGq x.

i. Let y_____.

ii. By definition of cosets, there exists g P Z pGq such that y “_____.

iii. By definition of z pGq, _____.

iv. By definition of _____, y P Z pGq x.

v. By _____, xZ pGq Ď Z pGq x.

(c) A similar argument shows that _____.

(d) By definition, _____. That is, Z pGq is normal.

Figure 4¨9: Material for Question 4.149
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Question 4¨150 .
Let G be a group, and H ă G. Define the normalizer of H as

NG pHq “ tg P G : gH “ Hgu .

Show that H Ÿ NG pHq.

Question 4¨151 .
Recall from Question 2.30 on page 53 the commutator of two elements of a group. Let rG, Gs

denote the intersection of all subgroups of G that contain rx, ys for all x, y P G.

(a) Compute rD3, D3s.

(b) Compute rQ8, Q8s.

(c) Show that rG, Gs ă G.

(d) Fill in each blank of Figure 4¨8 with the appropriate justification or statement.

Definition 4¨152. We call rG, Gs the commutator subgroup of G, and make use of it later.
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Claim: For any group G, rG, Gs is a normal subgroup of G.

Proof:

1. Let _____.

2. We will use Question 4.145 to show that rG, Gs is normal. Let g P_____.

3. First we show that rG, Gs Ď g rG, Gs g´1. Let h P rG, Gs.

(a) We need to show that h P g rG, Gs g´1. It will suffice to show that this is true if h has

the simpler form h “ rx, ys, since _____. Thus, choose x, y P G such that h “ rx, ys.

(b) By _____, h “ x´1y´1xy.

(c) By _____, h “ яx
´1

яy
´1

яxяyя.

(d) By _____, h “ pgg´1q x´1 pgg´1q y´1 pgg´1q x pgg´1q y pgg´1q.

(e) By _____, h “ g pg´1x´1gq pg´1y´1gq pg´1xgq pg´1ygq g´1.

(f) By _____, h “ g px´1q
g

´1

py´1q
g

´1
´

x
g

´1

¯´

y
g

´1

¯

g
´1

.

(g) By Question 2.30 on page 53(c), h “_____.

(h) By definition of the commutator, h “_____.

(i) By _____, h P g rG, Gs g´1.

(j) Since _____, rG, Gs Ď g rG, Gs g´1.

4. Conversely, we show that rG, Gs Ě g rG, Gs g´1. Let h P g rG, Gs g´1.

(a) We need to show that h P rG, Gs. It will suffice to show this is true if h has the

simpler form h “ g rx, ys g´1, since _____. Thus, choose x, y P G such that h “

g rx, ys g´1.

(b) By _____, h “ rx, ys
g
.

(c) By _____, h “ rxg, ygs.

(d) By _____, h P rG, Gs.

(e) Since _____, rG, Gs Ě g rG, Gs g´1.

5. We have shown that rG, Gs Ď g rG, Gs g´1 and rG, Gs Ě g rG, Gs g´1. By _____, rG, Gs “

g rG, Gs g´1.

Figure 4¨10: Material for Question 4.151
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4¨9 The Isomorphism Theorem

This section describes an important relationship between a subgroup A ă G that has a special

relationship to a homomorphism, and the image of the quotient group f pG{Aq. It builds on

an important property of the kernel of a group or ring homomorphism.

Fact 4¨153. (A) Let f : GÑ H be a homomorphism of groups. Then ker f is a normal subgroup of G.

(B) Let φ : RÑ S be a homomorphism of rings. Then kerφ is an ideal of R.

Why? (A) First we show that ker f is a subgroup of G. Let x, y P ker f ; by definition, f pxq “

яH “ f pyq. Multiply both sides by f pyq
´1

and we have f pxq f pyq
´1
“ яH. Properties of

homomorphisms show us that f pxy´1q “ яH. By definition of the kernel, xy
´1 P ker f .

We still have to show that K “ ker f is a normal subgroup of G. We do this by conjugation

(Theorem 4¨144); that is, we show that for any g P G, gKg
´1 “ K. To see why, let x P gKg´1; by

definition, x “ gkg
´1

for some k P K and f pkq “ яH. Apply properties of homomorphisms to

see that

f pxq “ f
`

gkg
´1
˘

“ f pgq f pkq f
`

g
´1
˘

“ f pgq яHf pgq
´1
“ яH.

So x P ker f “ K; it was arbitrary in gKg
´1

, so gKg
´1 Ď K. We also have to show that gKg

´1 Ě K,

so let k P K. Let x “ g
´1
kg; by an argument similar to that of the previous paragraph, x P K.

Hence

k “ яGkяG “
`

gg
´1
˘

k
`

gg
´1
˘

“ g
`

g
´1
kg
˘

g
´1
“ gxg P gKg

´1
,

as claimed. Since kwas arbitrary in K, gKg
´1 Ě K, as claimed. We have shown that each set is a

subset of the other, so gKg
´1 “ K. Since gwas arbitrary in G, Theorem 4¨144 tells us K “ ker f

is a normal subgroup of G.

(B) To show that kerφ is an ideal, we need only show that it absorbs multiplication, since

(A) has already shown that it is a subgroup for the additive group of R. To that end, let r P R

and k P kerφ. By properties of a homomorphism, φ prkq “ φ prqφ pkq “ φ prq ¨ 0 “ 0, so

rk P kerφ. Since r was arbitrary in R, kerφ absorbs multiplication by all elements of R; it is

thus an ideal.

First, an example.

Motivating example

Example 4¨154. Recall A3 “ tι, ρ, ρ
2u Ÿ D3 from Example 4¨134. We saw that D3{A3 has only

two elements, so it must be isomorphic to any group of two elements. First we show this

explicitly: Let µ : D3{A3 Ñ Z2 by

µ pXq “

#

0, X “ A3;

1, otherwise.

Is µ a homomorphism? Recall that A3 is the identity element of D3{A3, so for any X P D3{A3

µ pX ¨ A3q “ µ pXq “ µ pXq ` 0 “ µ pXq ` µ pA3q .
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This verifies the homomorphism property for all products in the Cayley table of D3{A3 except

pφA3q ¨ pφA3q, which is easy to check:

µ ppφA3q ¨ pφA3qq “ µ pA3q “ 0 “ 1` 1 “ µ pφA3q ` µ pφA3q .

Hence µ is a homomorphism. The property of isomorphism follows from the facts that

• µ pA3q ‰ µ pφA3q, so µ is one-to-one, and

• both 0 and 1 have preimages, so µ is onto.

Notice further that ker µ “ A3.

Something subtle is at work here. Let f : D3 Ñ Z2 by

f pxq “

#

0, x P A3;

1, otherwise.

Is f a homomorphism? The elements of A3 are ι, ρ, and ρ
2
; f maps these elements to zero, and

the other three elements of D3 to 1. Let x, y P D3 and consider the various cases:

Case 1. Suppose first that x, y P A3. Since A3 is a group, closure implies that xy P A3. Thus

f pxyq “ 0 “ 0` 0 “ f pxq ` f pyq .

Case 2. Next, suppose that x P A3 and y R A3. SinceA3 is a group, closure implies that xy R A3.

(Otherwise xy “ z for some z P A3, and multiplication by the inverse implies that

y “ x´1z P A3, a contradiction.) Thus

f pxyq “ 1 “ 0` 1 “ f pxq ` f pyq .

Case 3. If x R A3 and y P A3, then a similar argument shows that f pxyq “ f pxq ` f pyq.

Case 4. Finally, suppose x, y R A3. Inspection of the Cayley table of D3 (Question 3.117 on

page 109) shows that xy P A3. Hence

f pxyq “ 0 “ 1` 1 “ f pxq ` f pyq .

We have shown that f is a homomorphism from D3 to Z2. Again, ker f “ A3.

In addition, consider the function η : D3 Ñ D3{A3 by

η pxq “

#

A3, x P A3;

φA3, otherwise.

It is easy to show that this is a homomorphism; we do so presently.
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Now comes the important observation: Look at the composition function η ˝ µ whose

domain is D3 and whose range is Z2:

pµ ˝ ηq pιq “ µ pη pιqq “ µ pA3q “ 0;

pµ ˝ ηq pρq “ µ pη pρqq “ µ pA3q “ 0;

pµ ˝ ηq
`

ρ
2
˘

“ µ
`

η
`

ρ
2
˘˘

“ µ pA3q “ 0;

pµ ˝ ηq pφq “ µ pη pφqq “ µ pφA3q “ 1;

pµ ˝ ηq pρφq “ µ pη pρφqq “ µ pφA3q “ 1;

pµ ˝ ηq
`

ρ
2
φ
˘

“ µ
`

η
`

ρ
2
φ
˘˘

“ µ pφA3q “ 1.

We have

pµ ˝ ηq pxq “

#

0, x P A3;

1, otherwise,

or in other words

µ ˝ η “ f.

In words, f is the composition of a “natural” mapping between D3 and D3{A3, and the isomor-

phism fromD3{A3 toZ2. But another way of looking at this is that the isomorphism µ is related

to f and the “natural” homomorphism.

The Isomorphism Theorem

This remarkable correspondence can make it easier to study quotient groups G{A:

• find a group H that is “easy” to work with; and

• find a homomorphism f : GÑ H such that

– f pgq “ яH for all g P A, and

– f pgq ‰ яH for all g R A.

If we can do this, then H – G{A and studying G{A is equivalent to studying H.

The reverse is also true: suppose that a group G and its quotient groups are relatively easy

to study, whereas another group H is difficult. The isomorphism theorem helps us identify a

quotient group G{A that is isomorphic to H, making it easier to study.

Another advantage, which we use later in the course, is that computation in G can be

difficult or even impossible, while computation in G{A can be quite easy. This turns out to be

the case with Z when the coefficients grow too large; we will work in Zp for several values of

p, and reconstruct the correct answers.

We need to formalize this observation in a theorem, but first we have to confirm some-

thing that we claimed earlier:

Lemma 4¨155. Let G be a group and AŸ G. The function η : GÑ G{A by

η pgq “ gA

is a homomorphism.
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Question 4¨156 .
Prove Lemma 4¨155.

Question 4¨157 .
Use Question 4.23 to explain why Ω2 – O pnq {SO pnq.

Definition 4¨158. We call the homomorphism η of Lemma 4¨155 the natural homomor-
phism from G to G{A.

What’s special about A3 in the example that began this section? Of course, A3 is a normal

subgroup of D3, but something you might not have noticed is that f sent all its elements to

the identity of Z2.
We use this to formalize the observation of Example 4¨154.

Theorem 4¨159 (The IsomorphismTheorem). Let G andH be groups, f : GÑ H a homomorphism

that is onto, and ker f “ A. Then G{A – H, and the isomorphism µ : G{A Ñ H satisfies f “ µ ˝ η,

where η : GÑ G{A is the natural homomorphism.

We can illustrate Theorem 4¨159 by the following diagram:

G
f //

η   

H

G{A

µ

>>

The idea is that “the diagram commutes”, or f “ µ ˝ η.

Proof. We are given G, H, f and A. Define µ : G{AÑ H in the following way:

µ pXq “ f pgq , where X “ gA.

We claim that µ is an isomorphism from G{A to H, and moreover that f “ µ ˝ η.

Since the domain of µ consists of cosets which may have different representations, we

must show first that µ is well-defined. Suppose that X P G{A has two representations X “

gA “ g1Awhere g, g
1 P G and g ‰ g1. We need to show thatµ pgAq “ µ pg1Aq. From Lemma 4¨103(CE3),

we know that g
´1
g
1 P A, so there exists a P A such that g

´1
g
1 “ a, so g

1 “ ga. Applying the

definition of µ and the homomorphism property,

µ pg
1
Aq “ f pg

1
q “ f pgaq “ f pgq f paq .

Recall that a P A “ ker f , so f paq “ яH. Substitution gives

µ pg
1
Aq “ f pgq ¨ яH “ f pgq “ µ pgAq .

Hence µ pg1Aq “ µ pgAq and µ pXq is well-defined.



CHAPTER 4. SUBGROUPS AND IDEALS, COSETS AND QUOTIENTS 176

Is µ a homomorphism? Let X, Y P G{A; we can represent X “ gA and Y “ g
1
A for some

g, g
1 P G. We see that

µ pXYq “ µ ppgAq pg
1
Aqq (substitution)

“ µ ppgg
1
qAq (coset multiplication)

“ f pgg
1
q (definition of µ)

“ f pgq f pg
1
q (homomorphism)

“ µ pgAq µ pg
1
Aq . (definiition of µ)

Thus µ is a homomorphism.

Is µ one-to-one? Let X, Y P G{A and assume that µ pXq “ µ pYq. Represent X “ gA and

Y “ g1A for some g, g
1 P G; we see that

f
`

g
´1
g
1
˘

“ f
`

g
´1
˘

f pg
1
q (homomorphism)

“ f pgq
´1
f pg

1
q (homomorphism)

“ µ pgAq
´1
µ pg

1
Aq (definition of µ)

“ µ pXq
´1
µ pYq (substitution)

“ µ pYq
´1
µ pYq (substitution)

“ яH, (inverses)

so g
´1
g
1 P ker f . By hypothesis, ker f “ A, so g

´1
g
1 P A. Lemma 4¨103(CE3) now tells us that

gA “ g1A, so X “ Y. Thus µ is one-to-one.

Is µ onto? Let h P H; we need to find an element X P G{A such that µ pXq “ h. By hypoth-

esis, f is onto, so there exists g P G such that f pgq “ h. By definition of µ and substitution,

µ pgAq “ f pgq “ h,

so µ is onto.

We have shown that µ is an isomorphism; we still have to show that f “ µ ˝ η, but the

definition of µmakes this trivial: for any g P G,

pµ ˝ ηq pgq “ µ pη pgqq “ µ pgAq “ f pgq .

Question 4¨160 .
Recall the normal subgroup L ofR2

from Questions 4.14, 4.98, and 4.142 on pages 123, 150, and

165, respectively. In Question 4.14 on page 123 you found an explicit isomorphism L – R.

(a) Use the Isomorphism Theorem to find an isomorphism R2{L – R.

(b) Argue from this that R2{R – R.

(c) Describe geometrically how the cosets of R2{L are mapped to elements of R.
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Question 4¨161 .
Recall the normal subgroup x´1y of Q8 from Question 4.148 on page 168.

(a) Use Lagrange’s Theorem to explain why Q8{ x´1y has order 4.

(b) We know from Question 2.49 on page 61 that there are only two groups of order 4, the

Klein 4-group and the cyclic group of order 4, which we can represent by Z4. Use the

Isomorphism Theorem to determine which of these groups is isomorphic to Q8{ x´1y.

Question 4¨162 .
Recall the kernel of a homomorphism, and that group homomorphisms are also monoid ho-

momorphisms. These two definitions do not look the same, but in fact, one generalizes the

other.

(a) Show that if x P G is in the kernel of a group homomorphism f : G Ñ H if and only

px, eq P ker f when we view f as a monoid homomorphism.

(b) Show that x P G is in the kernel of a group homomorphism f : G Ñ H if and only if we

can find y, z P G such that f pyq “ f pzq and y
´1
z “ x.

Question 4¨163 .
Fill in each blank of Figure 4¨11 with the appropriate justification or statement.
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Let G and H be groups, and AŸ G.

Claim: If G{A – H, then there exists a homomorphism φ : GÑ H such that kerφ “ A.

1. Assume _____.

2. By hypothesis, there exists f _____.

3. Let η : GÑ G{A be the natural homomorphism. Define φ : GÑ H by φ pgq “_____.

4. By _____, φ is a homomorphism.

5. We claim that A Ď kerφ. To see why,

(a) By _____, the identity of G{A is A.

(b) By _____, f pAq “ яH.

(c) Let a P A. By definition of the natural homomorphism, η paq “_____.

(d) By _____, f pη paqq “ яH.

(e) By _____, φ paq “ яH.

(f) Since _____, A Ď kerφ.

6. We further claim that A Ě kerφ. To see why,

(a) Let g P GzA. By definition of the natural homomorphism, φ pgq ‰_____.

(b) By _____, f pη pgqq ‰ яH.

(c) By _____, φ pgq ‰ яH.

(d) By _____, g R kerφ.

(e) Since g was arbitrary in GzA, _____.

7. We have shown that A Ď kerφ and A Ě kerφ. By _____, A “ kerφ.

Figure 4¨11: Material for Question 4.163



Chapter 5

Applications to elementary number
theory

This text tends to focus on algebra as a study of polynomials, but algebra exhibits an impor-

tant mark of a profound subject, in that its ideas pop up in many other places. One of these is

number theory, which is closely intertwined with algebra; each can explain results and mo-

tivate new questions in the other. They also share a common spirit of exploration; it is not

uncommon to find them grouped together in departments conferences, or research agencies.

This chapter introduces several of these relationships. Section 5¨1 fills some background

with two of the most important tools in computational algebra and number theory. The first

is a fundamental definition; the second, a fundamental algorithm. Both recur throughout

the chapter, and later in the notes. Section 5¨2 moves us to our first application of group

theory, the Chinese Remainder Theorem, used thousands of years ago for the task of counting

the number of soldiers who survived a battle. We will use it to explain a neat card trick that

you can teach to grade-school children (though they may not understand why it works).

The rest of the chapter moves us toward Section 5¨6, the RSA cryptographic scheme, a

major component of internet communication and commerce. In Section 4¨5 you learned of

additive clockwork groups; in Section 5¨4 you will learn of multiplicative clockwork groups.

These allows us to describe in Section 5¨5 the theoretical foundation of RSA, Euler’s number

and Euler’s Theorem.

5¨1 The Euclidean Algorithm

Until now, we’ve focused on division with remainder, extending its notion even to cosets of

subgroups. Many problems care about divisibility; that is, division with remainder 0.

Common divisors

Recall that we say the integer a divides the integer b when we can find another integer x

such that ax “ b. Recall that a common divisor of m and n is an integer d that divides both

numbers, and that d P N is a greatest common divisor of m and n if d is a common divisor

and any other common divisor d
1
satisfies d

1 ă d.

179
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Example 5¨1. Common divisors of 36 and´210 are 1, 2, 3, and 6. The greatest common divisor

is 6.

Do greatest common divisors always exist? We already know from Bézout’s Lemma that

they do, but we can prove something a little deeper, too.

Theorem 5¨2. Let m, n P Z, not both zero. There exists a unique greatest common divisor of m, n.

Proof. Let D be the set of common divisors of m, n that are also in N`. Since 1 divides both m

and n, we know that D ‰ H. We also know that any d P D must satisfy d ď min p|m| , |n|q;

otherwise, the remainder from the Division Algorithm would be nonzero for at least one of

m, n. Hence, D is finite. Let d be the largest element of D. By definition of D, d is a common

divisor; we claim that it is also the only greatest common divisor. After all, the integers are a

linear ordering, so every other common divisor d
1
of m and n is either

• negative, so that by definition of subtraction, d´d1 P N`, or (by definition ofă) d
1 ă d;

or,

• in D, so that (by definition of d) d
1 ď d, and d ‰ d1 implies d

1 ă d.

Question 5¨3 .
Show that any common divisor of any two integers divides the integers’ greatest common

divisor.

How can we compute the greatest common divisor? Common divisors are important

enough that they appear in grade school, where you likely learned one way to compute the

greatest common divisor of two integers: list all the divisors of each, and pick the largest one

in both lists. In practice, this takes a Very Long Time
TM

, so we need a different method. One

such method was described by the ancient Greek mathematician, Euclid.

The Euclidean Algorithm

The Euclidean Algorithm. Let m, n P Z. We can compute the greatest common divisor of m, n in

the following way:

1. Let s “ m and t “ n.

2. Repeat the following steps until t “ 0:

(a) Let q be the quotient and r the remainder after dividing s by t.

(b) Assign s the current value of t.

(c) Assign t the current value of r.

The final value of s is gcd pm, nq.
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Algorithm 5.1 The Euclidean algorithm

inputs
m, n P Z

outputs
gcd pm, nq

do
Let s “ m

Let t “ n

while t ‰ 0 do
Let q, r P Z be the result of dividing s by t

Let s “ t

Let t “ r

return s

It is common to write algorithms in a form called pseudocode, and from this point we will

make increasing use of this format. Algorithm 5.1 shows the Euclidean Algorithm in pseu-

docode. If you’ve seen computer programs, you’ll notice that pseudocode is formatted much

like most computer programs, in that it specifies inputs, outputs, and indents subtasks. Unlike

computer code, pseudocode uses “ordinary” English and mathematical statements to com-

municate the necessary tasks. This provides two benefits:

• It is usually more intuitive to read and analyze pseudocode than computer code.

• Pseudocode is more easily “translated” into different computer languages.

Pseudocode appears often in texts on mathematical computation, so it’s something you need

to accustom yourself to reading and thinking about. We will use pseudocode a great deal in

the remainder of these notes.

Before proving that the Euclidean algorithm gives us a correct answer, let’s do an example.

Example 5¨4. We compute gcd p36, 210q. At the outset, let s “ 210 and t “ 36. Subsequently:

1. Dividing 210 by 36 gives q “ 5 and r “ 30. Let s “ 36 and t “ 30.

2. Dividing 36 by 30 gives q “ 1 and r “ 6. Let s “ 30 and t “ 6.

3. Dividing 30 by 6 gives q “ 5 and r “ 0. Let s “ 6 and t “ 0.

Now that t “ 0, we stop, and conclude that gcd p36, 210q “ s “ 6. This agrees with Exam-

ple 5¨1.

Question 5¨5 .
Compute the greatest common divisor of 100 and 140 by (a) listing all divisors, then identify-

ing the largest; and (b) the Euclidean Algorithm.
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Question 5¨6 .
Compute the greatest common divisor of 100 and 82 by (a) listing all divisors, then identifying

the largest; and (b) the Euclidean Algorithm.

Question 5¨7 .
Show that gcd pn, n´ 1q “ 1 for any integer n. The argument when n “ 0 might be a little

different.

To prove that the Euclidean algorithm generates a correct answer, we will number each

remainder that we compute; so, the first remainder is r1, the second, r2, and so forth. We will

then show that the remainders give us a chain of equalities,

gcd pm, nq “ gcd pm, r1q “ gcd pr1, r2q “ ¨ ¨ ¨ “ gcd prk´1, 0q ,

where ri is the remainder from division of the previous two integers in the chain, and rk´1 is

the final non-zero remainder from division.

Lemma 5¨8. Let s, t P Z. Let q and r be the quotient and remainder, respectively, of division of s by t,

as per the Division Theorem. Then gcd ps, tq “ gcd pt, rq.

Example 5¨9. We can verify Lemma 5¨8 using the numbers from Example 5¨4. We know that

gcd p210, 36q “ 6. The remainder from division of 210 by 36 is r “ 30. The lemma claims that

gcd p210, 36q “ gcd p36, 30q, and indeed gcd p36, 30q “ 6.

Question 5¨10 .
In Lemma 5¨8 we showed that gcd pm, nq “ gcd pm, rq where r is the remainder after divi-

sion of m by n. Prove the following more general statement: for all m, n, q P Z gcd pm, nq “
gcd pn, m´ qnq.

We turn to the proof.

Proof of Lemma 5¨8. Let d “ gcd ps, tq. First we show that d is a divisor of r. By definition, there

exist a, b P Z such that s “ ad and t “ bd. By hypothesis, s “ qt ` r and 0 ď r ă |t|.

Substitution gives us ad “ q pbdq ` r; rewriting the equation, we have

r “ pa´ qbq d.

By definition of divisibility, d | r.

Since d is a common divisor of s, t, and r, it is a common divisor of t and r. We claim that

d “ gcd pt, rq. Let d
1 “ gcd pt, rq; since d is also a common divisor of t and r, the definition

of greatest common divisor implies that d ď d
1
. Since d

1
is a common divisor of t and r, the

definition of divisibility again implies that there exist x, y P Z such that t “ d
1
x and r “ d

1
y.

Substituting into the equation s “ qt ` r, we have s “ q pd1xq ` d1y; rewriting the equation,

we have

s “ pqx` yq d
1
.

So d
1 | s. We already knew that d

1 | t, so d
1
is a common divisor of s and t.
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Recall that d “ gcd ps, tq; since d
1

is also a common divisor of t and r, the definition of

greatest common divisor implies that d
1 ď d. Earlier, we showed that d ď d1. Hence d ď d1 ď d,

which implies that d “ d1.

Substitution gives the desired conclusion: gcd ps, tq “ gcd pt, rq.

We can finally prove that the Euclidean algorithm gives us a correct answer. This requires

two stages, necessary for any algorithm.

1. Correctness. If the algorithm terminates, we show it has computed the correct output

(result).

2. Termination. We show the algorithm concludes its computation in finite time.

If an algorithm has finitely many instructions, how could it go continue running without end?

The Euclidean algorithm holds a clue: an instruction asks us to repeat some steps “while t ‰
0.” What if t never attains the value of zero? It’s conceivable that its values remain positive at

all times, or jump from positive to negative, skipping zero. In that case, the algorithm would

continue without end.

In computation, the repetition of tasks is called a loop. Loops save us an enormous amount

of time, but not all algorithms contain loops.

A proof of termination is needed if and only if an algorithm contains a loop.

These notes use only two kinds of loops: for loops and while loops.

• A while loop repeats every subtask as long as the expression that immediately follows

it remains true. As soon as it completes a pass through the subtasks and the expression

becomes false, the loop ends.

• A for loop works exactly like logical quantification: it applies all subtasks to each ele-

ment of the set specified immediately after the word for. The statement “for s P S”
means to apply the subtasks to each element of the set S, and “for n P N such that

n ă 10” means to apply the subtasks to each natural number less than 10. You will see

examples of for loops later.

The proof of the Euclidean algorithm will identify clearly both the Correctness and Termina-

tion stages. As it depends on the Division Theorem and the Well-Ordering Principle, you may

wish to review those.

Proof of The Euclidean Algorithm. We start with termination. The only repetition in the algo-

rithm occurs in line 8. The first time we compute line 9, we compute the quotient q and

remainder r of division of s by t. By the Division Theorem,

0 ď r ă |t| . (5.1)

Denote this value of r by r1. In the next lines we set s to t, then t to r1 “ r. Thanks to equation

(5.1), the size of tnew “ r is smaller than that of |snew| “ |told|. (We measure “size” using
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absolute value.) If t ‰ 0, then we return to line 9 and divide s by t, again obtaining a new

remainder r. Denote this value of r by r2; by the Division Theorem, r2 “ r ă t, so

0 ď r2 ă r1.

Proceeding in this fashion, we generate a strictly decreasing sequence of elements,

r1 ą r2 ą r3 ą ¨ ¨ ¨ .

By Fact 1¨51, this sequence is finite. In other words, the algorithm terminates.

We now show that the algorithm terminates with the correct answer. If line 9 of the algo-

rithm repeated a total of k times, then rk “ 0. Apply Lemma 5¨8 repeatedly to the remainders

to obtain the chain of equalities

rk´1 “ gcd p0, rk´1q “ gcd prk, rk´1q (definition of gcd, substitution)

“ gcd prk´1, rk´2q (Lemma 5¨8)

“ gcd prk´2, rk´3q (Lemma 5¨8)

...

“ gcd pr2, r1q (Lemma 5¨8)

“ gcd pr1, sq (substitution)

“ gcd pt, sq (substitution)

“ gcd pm, nq . (substitution)

The Euclidean Algorithm terminates with the correct answer.

The Euclidean Algorithm and Bezout’s Lemma

Recall Bézout’s Lemma, which tells us that for any integers m and n we can find integers

x and y such that

gcd pm, nq “ mx` ny.

You may have noticed that Bézout’s Lemma gives us no advice on how to do find this expres-

sion; it merely states that we can do it. The proof of Bézout’s Lemma isn’t very helpful, either;

it says to look at all the elements of a certain set, and choose the smallest. That set contains

infinitely many elements; how would we know when we’ve found the smallest?

The Euclidean Algorithm turns out to be just the tool for the job.

The Extended Euclidean Algorithm. Let m, n P Z. There exist a, b P Z such that am ` bn “

gcd pm, nq. Both a and b can be found by adapting the results from the Euclidean algorithm, using the

following steps:

• Isolate the remainder of the penultimate division of the Euclidean Algorithm; that is, rk´1 “

rk´3 ´ qk´1rk´2.

• The proof of the Euclidean Algorithm tells us that rk´1 “ gcd pm, nq, so in fact gcd pm, nq “

rk´3 ´ qk´1rk´2. We call this theworking equation.
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Algorithm 5.2 Extended Euclidean Algorithm

inputs
m, n P N such that m ą n

outputs
gcd pm, nq and a, b P Z such that gcd pm, nq “ am` bn

do
if n “ 0 then

Let d “ m, a “ 1, b “ 0

else
Let r0 “ m and r1 “ n

Let k “ 1

{First apply the Euclidean Algorithm}

while rk ‰ 0 do
Increment k by 1

Let qk, rk be the quotient and remainder from division of rk´2 by rk´1

{Now reverse it}

Let d “ rk´1 and p “ rk´3 ´ qk´1rk´2 (do not simplify p)

Decrement k by 2

while k ě 2 do
Substitute rk “ rk´2 ´ qkrk´1 into p

Decrement k by 1

Let a be the coefficient of r0 in p, and b be the coefficient of r1 in p

return d, a, b

• Working backwards from the previous division, until we arrive at the first,

– Isolate the remainder of this division; that is, r` “ r`´2 ´ q`r`´1.

– Find r` in the working equation, and replace it by r`´2 ´ q`r`´1.

Pseudocode appears in Algorithm 5.2.

Example 5¨11. Recall from Example 5¨4 the computation of gcd p210, 36q. The divisions gave

us a series of equations:

210 “ 5 ¨ 36` 30 (5.2)

36 “ 1 ¨ 30` 6 (5.3)

30 “ 5 ¨ 6` 0.

We concluded from the Euclidean Algorithm that gcd p210, 36q “ 6. The Extended Euclidean

Algorithm gives us a way to find a, b P Z such that 6 “ 210a`36b. Start by rewriting equation

(5.3):

36´ 1 ¨ 30 “ 6. (5.4)

This looks a little like what we want, but we need 210 instead of 30. Equation (5.2) allows us

to rewrite 30 in terms of 210 and 36:

30 “ 210´ 5 ¨ 36. (5.5)
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Substituting this result into equation (5.4), we have

36´ 1 ¨ p210´ 5 ¨ 36q “ 6 ùñ 6 ¨ 36` p´1q ¨ 210 “ 6.

We have found integers m “ 6 and n “ ´1 such that for a “ 36 and b “ 210, gcd pa, bq “ 6.

Question 5¨12 .
Compute the greatest common divisor ofm “ 4343 and n “ 4429 by the Euclidean Algorithm.

Use the Extended Euclidean Algorithm to find a, b P Z that satisfy Bezout’s identity.

The method we applied in Example (5¨11) is what we use both to prove correctness of the

algorithm, and to find a and b in general.

Proof of the Extended Euclidean Algorithm. Look back at the proof of the Euclidean algorithm to

see that it computes a chain of k quotients tqiu and remainders triu such that

m “ q1n` r1

n “ q2r1 ` r2

r1 “ q3r2 ` r3

...

rk´4 “ qk´2rk´3 ` rk´2 (5.6)

rk´3 “ qk´1rk´2 ` rk´1 (5.7)

rk´2 “ qkrk´1 ` 0

and rk “ gcd pm, nq .

Rewrite equation (5.7) as

rk´3 “ qk´1rk´2 ` gcd pm, nq .

Solving for gcd pm, nq, we have

rk´3 ´ qk´1rk´2 “ gcd pm, nq . (5.8)

Solve for rk´2 in equation (5.6) to obtain

rk´4 ´ qk´2rk´3 “ rk´2.

Substitute this into equation (5.8) to obtain

rk´3 ´ qk´1 prk´4 ´ qk´2rk´3q “ gcd pm, nq

pqk´1qk´2 ` 1q rk´3 ´ qk´1rk´4 “ gcd pm, nq .

Proceeding in this fashion, we exhaust the list of equations, concluding by rewriting the first

equation in the form am` bn “ gcd pm, nq for some integers a, b.
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Let m, n P Z, S “ tam` bn : a, b P Zu, and M “ S X N. Since M is a subset of N, the Well-

Ordering Principle implies that it has a smallest element; call it d.

Claim: d “ gcd pm, nq.
Proof:

1. We first claim that gcd pm, nq divides d.

(a) By _____, we can find a, b P Z such that d “ am` bn.

(b) By _____, gcd pm, nq divides m and n.

(c) By _____, there exist x, y P Z such that m “ x gcd pm, nq and n “ y gcd pm, nq.

(d) By susbtitution, _____.

(e) Collect the common term to obtain _____.

(f) By _____, gcd pm, nq divides d.

2. A similar argument shows that d divides gcd pm, nq.

3. By _____, d ď gcd pm, nq and gcd pm, nq ď d.

4. By _____, d “ gcd pm, nq.

Figure 5¨1: Material for Question 5.13

Question 5¨13 .
Bezout’s Identity states that for any m, n P Z, we can find a, b P Z such that am ` bn “

gcd pm, nq.

(a) Show that the existence of a, b, d P Z such that am`bn “ d does not imply d “ gcd pm, nq.

(b) However, not only does the converse of Bezout’s Identity hold, we can specify the rela-

tionship more carefully. Fill in each blank of Figure 5¨1 with the appropriate justification

or statement.

5¨2 A card trick

This section describes and explains a card trick based on an old Chinese observation.
1

Recall

from Sections 2¨1 and 4¨5 that for any positive m we can perform clockwork addition in the

groupZm. We often write rxs for the elements ofZm to emphasize that its elements are cosets.

The simple Chinese Remainder Theorem

1
I asked Dr. Ding what the Chinese call this theorem. He looked it up in one of his books, and told me that

they call it Sun Tzu’s Theorem. This is not the same as the author of The Art of War.
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The Chinese Remainder Theorem, simple version. Let m, n P Z such that gcd pm, nq “ 1.

Let α, β P Z. There exists a solution x P Z to the system of linear congruences

#

rxs “ rαs in Zm;
rxs “ rβs in Zn;

and rxs is unique in ZN where N “ mn.

Before giving a proof, let’s look at an example of how this works in practice.

Example 5¨14. Take twelve cards and ask a friend to pick one, then shuffle them. Do the

following:

• Lay the cards out in three columns (from left to right), and ask your friend to identify

which column contains the card. Remember the answer as 1, 2, or 3. (Use 1 as leftmost, 3

as rightmost.)

• Collect the cards in such a way that their order is preserved!

• Lay the cards out again in four columns (from left to right), and ask your friend to iden-

tify which column contains the card. Remember the answer as 1, 2, 3, or 4. (Again, 1 is

leftmost, 4 rightmost.)

• If α is the first number and β the second, compute γ “ 4α´ 3β. If the result is negative,

add 12.

• Starting from the first card, in the same order you laid out the cards, count to the γ’th card.

This is your friend’s card.

How does this trick work? Each time, your friend identified the column in which the mys-

tery card lay. Laying out the cards in rows of three and four corresponds to division by three

and four, so that α and β are the remainders from division by three and by four. This corre-

sponds to a system of linear congruences,

#

rxs “ rαs in Z3
rxs “ rβs in Z4

,

where x is the location of the mystery card. The simple version of the Chinese Remainder

Theorem guarantees that the value of x is unique in Z12. Since there are only twelve cards,

the solution is unique in the game: as long as the dealer can compute x, s/he can identify the

card infallibly.

“Well, and good,” you think, “but knowing only the existence of a solution seems rather

pointless. I also need to know how to compute x, so that I can pinpoint the location of the

card.” Bézout’s identity is the key to unlocking the Chinese Remainder Theorem. Before

doing so, we need an important lemma about numbers whose gcd is 1.

Lemma 5¨15. Let d, m, n P Z. If m | nd and gcd pm, nq “ 1, then m | d.
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Proof. Assume that m | nd and gcd pm, nq “ 1. By definition of divisibility, there exists q P Z
such that qm “ nd. Use the Extended Euclidean Algorithm to choose a, b P Z such that

am` bn “ gcd pm, nq “ 1. Multiplying both sides of this equation by d, we have

pam` bnq d “ 1 ¨ d

amd` b pndq “ d

adm` b pqmq “ d

pad` bqqm “ d.

Hence m | d.

Now we prove the Chinese Remainder Theorem. You should study this proof carefully,

not only to understand the theorem better, but because the proof tells you how to solve the

system.

Proof of the Chinese Remainder Theorem, simple version. Recall that the system is

#

rxs “ rαs in Zm
rxs “ rβs in Zn

.

We have to prove two things: first, that a solution x exists; second, that rxs is unique in ZN.

Existence: Because gcd pm, nq “ 1, the Extended Euclidean Algorithm tells us there exist

a, b P Z such that am ` bn “ 1. Rewriting this equation two different ways, we have bn “

1`p´aqm and am “ 1`p´bq n. In terms of cosets of subgroups ofZ, these two equations tell

us that bn P 1`mZ and am P 1` nZ. In the bracket notation, rbns
m
“ r1s

m
and rams

n
“ r1s

n
.

Remember that rαs
m
“ α r1s

m
“ α rbns

m
“ rαbns

m
and likewise rβs

n
“ rβams

n
. Apply similar

reasoning to see that rαbns
n
“ r0s

n
and rβams

m
“ r0s

m
in Zm. Hence,

#

rαbn` βams
m
“ rαs

m

rαbn` βams
n
“ rβs

n

.

If we let x “ αbn` βam, then the equations above show that x is a solution to the system.

Uniqueness: Suppose that there exist rxs , rys P ZN that both satisfy the system. Since

rxs “ rαs “ rys in Zm, rx´ ys “ r0s, and by Lemma 4¨90 on page 148, m | px´ yq. A similar

argument shows that n | px´ yq. By definition of divisibility, there exists q P Z such that

mq “ x ´ y. By substitution, n | mq. By Lemma 5¨15, n | q. By definition of divisibility, there

exists q
1 P Z such that q “ nq1. By substitution,

x´ y “ mq “ mnq
1
“ Nq

1
.

Hence N | px´ yq, and again by Lemma 4¨90 rxs
N
“ rys

N
, which means that the solution x is

unique in ZN, as desired.

Pseudocode to solve the Chinese Remainder Theorem appears as Algorithm 5.3 on the

following page.
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Algorithm 5.3 Solution to Chinese Remainder Theorem, simple version

inputs
m, n P Z such that gcd pm, nq “ 1

α, β P Z
outputs
x P Z satisfying the Chinese Remainder Theorem

do
Use the Extended Euclidean Algorithm to find a, b P Z such that am` bn “ 1

return rαbn` βams
N

Example 5¨16. The algorithm of Corollary 5.3 finally explains the method of the card trick.

We have m “ 3, n “ 4, and N “ 12. Suppose that the player indicates that his card is in

the first column when they are grouped by threes, and in the third column when they are

grouped by fours; then α “ 1 and β “ 3.

Using the Extended Euclidean Algorithm, we find that a “ ´1 and b “ 1 satisfy am`bn “

1; hence am “ ´3 and bn “ 4. We can therefore find the mystery card by computing

x “ 1 ¨ 4` 3 ¨ p´3q “ ´5.

Its canonical representation in Z12 is

rxs “ r´5` 12s “ r7s ,

which implies that the player chose the 7th card. In fact, r7s “ r1s in Z3, and r7s “ r3s in Z4,
which agrees with the information given.

Question 5¨17 .
Solve the system of linear congruences

#

rxs “ r2s in Z4
rxs “ r3s in Z9

.

Express your answer so that 0 ď x ă 36.

Question 5¨18 .
Explain why you can modify the card trick to use 24 cards by doing everything the same, with

one exception: if the γ’th card isn’t the one your friend chose, then you can add or subtract 12

to find the right one.

Question 5¨19 .
Give directions for a similar card trick on all 52 cards, where the cards are grouped first by

4’s, then by 13’s. Do you think this would be a practical card trick?

Question 5¨20 .
Is it possible to modify the card trick to work with only ten cards instead of 12? If so, how; if

not, why not?
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The Chinese Remainder Theorem can be generalized to larger systems with more than

two equations under certain circumstances.

A generalized Chinese Remainder Theorem

What if you have more than just two ways to arrange the cards? You might like to arrange

the cards into rows of 3, 4, and 5, for instance. What about other arrangements?

Chinese Remainder Theorem on Z. Let m1, m2, . . . , mn P Z and assume gcd
`

mi, mj

˘

“ 1

for all 1 ď i ă j ď n. Let α1, α2, . . . αn P Z. There exists a solution x P Z to the system of linear

congruences
$

’

’

’

’

&

’

’

’

’

%

rxs “ rα1s in Zm1 ;
rxs “ rα2s in Zm2 ;

...

rxs “ rαns in Zmn ;

and rxs is unique in ZN where N “ m1m2 ¨ ¨ ¨mn.

Before we can prove this version of the Chinese Remainder Theorem, we need to make an

observation of m1, m2, . . . , mn.

Lemma 5¨21. Let m1, m2, . . . , mn P Z such that gcd
`

mi, mj

˘

“ 1 for all 1 ď i ă j ď n. For each

i “ 1, 2, . . . , n define Ni “ N{mi where N “ m1m2 ¨ ¨ ¨mn; that is, Ni is the product of all the m’s

except mi. Then gcd pmi, Niq “ 1.

Proof. We show that gcd pm1, N1q “ 1; for i “ 2, . . . , n the proof is similar.

Use the Extended Euclidean Algorithm to choose a, b P Z such that am1 ` bm2 “ 1. Use it

again to choose c, d P Z such that cm1 ` dm3 “ 1. Then

1 “ pam1 ` bm2q pcm1 ` dm3q

“ pacm1 ` adm3 ` bcm2qm1 ` pbdq pm2m3q .

Let x “ gcd pm1, m2m3q; since x divides both m1 and m2m3, it divides each term of the right

hand side above. That right hand side equals 1, so x also divides 1. The only divisors of 1

are˘1, so x “ 1. We have shown that gcd pm1, m2m3q “ 1.

Rewrite the equation above as 1 “ a1m1` b
1
m2m3; notice that a

1
, b
1 P Z. Use the Extended

Euclidean Algorithm to choose e, f P Z such that em1 ` fm4 “ 1. Then

1 “ pa
1
m1 ` b

1
m2m3q pem1 ` fm4q

“ pa
1
em1 ` a

1
fm4 ` b

1
em2meqm1 ` pb

1
f q pm2m3m4q .

An argument similar to the one above shows that gcd pm1, m2m3m4q “ 1.

Repeating this process with each mi, we obtain gcd pm1, m2m3 ¨ ¨ ¨mnq “ 1. Since N1 “

m2m3 ¨ ¨ ¨mn, we have gcd pm1, N1q “ 1.

We can now prove the Chinese Remainder Theorem on Z.
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Proof of the Chinese Remainder Theorem on Z. Existence: Write Ni “ N{mi for i “ 1, 2, . . . , n. By

Lemma 5¨21, gcd pmi, Niq “ 1. Use the Extended Euclidean Algorithm to compute appropriate

a’s and b’s satisfying

a1m1 ` b1N1 “ 1

a2m2 ` b2N2 “ 1

...

anmn ` bnNn “ 1.

Put x “ α1b1N1 ` α2b2N2 ` ¨ ¨ ¨ ` αnbnNn. Now, b1N1 “ 1` p´a1qm1, so rb1N1s “ r1s in Zm1 , so

rα1b1N1s “ rα1s in Zm1 . Moreover, for any i “ 2, 3, . . . , n, inspection of Ni verifies that m1 | Ni,

implying that rαibiNism1 “ r0sm1 (Lemma 4¨90). Hence, in Zm1 the value of rxs simplifies as

rxs “ rα1b1N1 ` α2b2N2 ` ¨ ¨ ¨ ` αnbnNns

“ rα1s ` r0s ` ¨ ¨ ¨ ` r0s .

A similar argument shows that rxs “ rαis in Zmi for i “ 2, 3, . . . , n.

Uniqueness: As in the previous case, let rxs , rys be two solutions to the system in ZN. Then

rx´ ys “ r0s in Zmi for i “ 1, 2, . . . , n, implying that mi | px´ yq for i “ 1, 2, . . . , n. We use

the definition of divisibility:

Since m1 | px´ yq, there exists q1 P Z such that x´ y “ m1q1.

Since m2 | px´ yq, substitution implies m2 | m1q1, and Lemma 5¨15 implies that m2 | q1.

There exists q2 P Z such that q1 “ m2q2. Substitution implies that x´ y “ m1m2q2.

Since m3 | px´ yq, substitution implies m3 | m1m2q2. By Lemma 5¨21, gcd pm1m2, m3q “ 1,

and Lemma 5¨15 implies that m3 | q2. There exists q3 P Z such that q2 “ m3q3. Substitution

implies that x´ y “ m1m2m3q3.

Continuing in this fashion obtains x ´ y “ m1m2 ¨ ¨ ¨mnqn for some qn P Z. By substition,

x ´ y “ Nqn, so rx´ ys “ r0s in ZN, so rxs “ rys in Zn. That is, the solution to the system is

unique in ZN.

The algorithm to solve such systems is similar to that given for the simple version, in that

it can be obtained from the proof of existence of a solution.

Question 5¨22 .
Solve the system of linear congruences

$

’

&

’

%

rxs “ r2s in Z5
rxs “ r3s in Z6
rxs “ r4s in Z7

.
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Question 5¨23 .
Solve the system of linear congruences

$

’

&

’

%

rxs “ r33s in Z16
rxs “ r´4s in Z33
rxs “ r17s in Z504

.

This problem is a little tougher than the previous, since gcd p16, 504q ‰ 1 and gcd p33, 504q ‰

1. Since you can’t use either of the Chinese Remainder Theorems presented here, you’ll have

to generalize their approaches to get a method for this one.

Question 5¨24 .
Is it possible to modify the card trick to work with only eight cards instead of 12? If so, how;

if not, why not?

5¨3 The Fundamental Theorem of Arithmetic

In this section, we address a fundamental result of number theory with algebraic implications.

Let’s recall what Definition 3¨20 means in the context of natural numbers.

Definition 5¨25. Let n P N` and n ‰ 1. We say that n is irreducible if the only integers that

divide n are˘1 and˘n.

(We may sometimes refer to certain negative numbers as irreducible. While certain neg-

ative numbers do satisfy the property of irreducibility, there are reasons that only natural

numbers are properly called prime.)

You may be wondering why we call these integers irreducible instead of prime, the custom-

ary term in earlier classes. We’ll say more about that in a moment.

Example 5¨26. The integer 36 is not irreducible, because 36 “ 6 ˆ 6. The integer 7 is irre-

ducible, because the only integers that divide 7 are˘1 and˘7.

One useful aspect to irreducible integers is that, aside from˘1, any integer is divisible by

at least one irreducible integer.

Theorem 5¨27. Let n be any integer besides˘1. There exists at least one irreducible integer p such

that p | n.

Proof. Case 1: If n “ 0, then 2 is a divisor of n, and we are done.

Case 2: Assume that n P N` and n ‰ 1. Let a0 “ n. If a0 is not irreducible, then by

definition a0 “ a1b1 such that a1, b1 P Z and a1, b1 ‰ ˘1. Without loss of generality, we may

assume that a1, b1 P N` (otherwise both are negative and we can replace them with their

opposites). Observe further that a1 ă a0 (this is a consequence of Question 1.28 on page 13).

If a1 is irreducible, then we are done; otherwise, we can write a1 “ a2b2 where a2, b2 P N` and

a2 ă a1. Continuing in this fashion, as long as ai is not irreducible, we can find ai`1, bi`1 P N`
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such that ai “ ai`1bi`1, with ai ą ai`1 for each i. We have a strictly decreasing sequence of

elements,

a0 ą a1 ą a2 ą ¨ ¨ ¨ .

By Question 1¨51, this sequence must be finite. Let am be the final element in the sequence.

We claim that am is irreducible; after all, were it not irreducible, then we could extend the

sequence further, which we cannot. By substitution,

n “ a1b1 “ a2 pb2b1q “ ¨ ¨ ¨ “ am pbm´1 ¨ ¨ ¨ b1q .

That is, am is an irreducible integer that divides n.

Case 3: Assume that n is negative, but not´1. Letm “ ´n. Case 2 implies that there exists

an irreducible integer p such that p | m. By definition,m “ qp for some q P Z. By substitution

and properties of arithmetic, n “ ´pqpq “ p´qq p, so p | n.

Question 5¨28 .
Show that there are infinitely many irreducible numbers. Hint: Proceed by contradiction:

suppose there is a finite list of irreducible numbers, then exploit the Division Theorem to

construct a remainder whose division by each of those irreducible numbers is nonzero. The-

orem 5¨27 does the rest.

Let’s turn now to the term you might have expected for the definition given above: a prime

number. We actually associate a different notion with this term.

Definition 5¨29. Let R be a ring, and suppose p P R is not a unit. We say that p is prime if,

whenever we find a, b P R such that p | ab, then p | a or p | b. Consistent with this definition,

a natural number p is a prime number if p ‰ 1 and for any two integers a, b we have

p | ab ùñ p | a or p | b.

(We may sometimes refer to certain negative numbers as prime. While certain negative

numbers do satisfy the property of being prime, called primality, there are reasons that only

natural numbers are properly called prime.)

Example 5¨30. Let a “ 68 and b “ 25. It is easy to recognize that 10 divides ab “ 1700.

However, 10 divides neither a nor b, so 10 is not a prime number.

It is also easy to recognize that 17 divides ab “ 1700. Unlike 10, 17 divides one of a or b; in

fact, it divides a. Were we to look at every possible product ab divisible by 17, we would find

that 17 always divides one of the factors a or b. Thus, 17 is prime.

If the next-to-last sentence in the example, bothers you, good. I’ve claimed something

about every product divisible by 17, but haven’t explained why that is true. That’s cheating!

If I’m going to claim that 17 is prime, I need a better explanation than, “look at every possible

product ab.” After all, there are infinitely many products possible, and we can’t do that in

finite time. We need a finite criterion.

To this end, let’s return to the notion of an irreducible number. It’s fairly easy to tell if

an integer a is irreducible; Question 1.28 tells us to look for factors among natural numbers

smaller than |a|. If we knew that prime numbers were irreducible, then we could simply test

for irreducibility. Could it be that the definitions are distinctions without a difference?
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Theorem 5¨31. An integer is prime if and only if it is irreducible.

Proof. This proof has two parts. You will show in Question 5.32 that if an integer is prime,

then it is irreducible. Here, we show the converse.

Let n P N`z t1u and assume that n is irreducible. To show that n is prime, we must take

arbitrary a, b P Z and show that if n | ab, then n | a or n | b. Therefore, let a, b P Z and assume

that n | ab. If n | a, then we would be done, so assume that n - a. We must show that n | b.

By definition, the common factors of n and a are a subset of the factors of n. Since n is

irreducible, its factors are˘1 and˘n. By hypothesis, n - a, so˘n cannot be common factors

of n and a. Thus, the only common factors of n and a are˘1, which means that gcd pn, aq “ 1.

By Lemma 5¨15, n | b.

We assumed that if n is irreducible and divides ab, then n must divide one of a or b. By

definition, n is prime.

Question 5¨32 .
Show that any prime integer p is irreducible.

If the two definitions are equivalent, why would we give a different definition? It turns

out that the concepts are equivalent for the integers, but not for other sets; you will see this in

detail in Section 6¨2.

The following theorem is a cornerstone of Number Theory.

The Fundamental Theorem of Arithmetic. Let n P N` but n ‰ 1. We can factor n into
irreducibles; that is, we can write

n “ p
α1

1
p
α2

2
¨ ¨ ¨ p

αr

r

where p1, p2, . . . , pr are irreducible and α1, α2, . . . , αr P N. The representation is unique if we order

p1 ă p2 ă. . . ă pn.

Since prime integers are irreducible and vice versa, you can replace “irreducible” by “prime”

and obtain the expression of this theorem found more commonly in number theory text-

books.

Proof. The proof has two parts: a proof of existence and a proof of uniqueness.

Existence: We proceed by induction on positive integers.

Inductive base: If n “ 2, then n is irreducible, and we are finished.

Inductive hypothesis: Assume that the integers 2, 3, . . . , n´ 1 have a factorization into irre-

ducibles.

Inductive step: If n is irreducible, then we are finished. Otherwise, n is not irreducible. By

Lemma 5¨27, there exists an irreducible integer p1 such that p1 | n. By definition, there exists

q P N` such that n “ qp1. Since p1 ‰ 1, Question 1.58 tells us that q ă n. By the inductive

hypothesis, q has a factorization into irreducibles; say

q “ p
α1

1
p
α2

2
¨ ¨ ¨ p

αr

r
.

Thus n “ qp “ p
α1`1
1 p

α2
2 ¨ ¨ ¨ p

αr
r

; that is, n factors into irreducibles.

Uniqueness: Here we use the fact that irreducible numbers are also prime (Lemma 5¨31).

Assume that p1 ă p2 ă ¨ ¨ ¨ ă pr and we can factor n as

n “ p
α1

1
p
α2

2
¨ ¨ ¨ p

αr

r
“ p

β1

1 p
β2

2 ¨ ¨ ¨ p
βr

r
.
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Without loss of generality, we may assume that α1 ď β1. It follows that

p
α2

2
p
α3

3
¨ ¨ ¨ p

αr

r
“ p

β1´α1
1 p

β2

2 p
β3

3 ¨ ¨ ¨ p
βr

r
.

This equation implies that p
β1´α1
1 divides the expression on the left hand side of the equation.

Since p1 is irreducible, hence prime, β1 ´ α1 ‰ 0 implies that p1 divides one of p2, p3, . . . , pr.

This contradicts the irreducibility of p2, p3, . . . , pr. Hence β1 ´ α1 “ 0. A similar argument

shows that βi “ αi for all i “ 1, 2, . . . , r; hence the representation of n as a product of irre-

ducible integers is unique.

Question 5¨33 .
Fill in each blank of Figure 5¨2 with the justification.

Question 5¨34 .
Let n P N`. Modify the proof in Figure 5¨2 to show that if p is irreducible, then n

?
p is irrational.

Question 5¨35 .
Let n P N`. Modify the proof in Figure 5¨2 to show that if there exists an irreducible integer

p such that p | n but p
2 - n, then

?
n is irrational.

5¨4 Multiplicative clockwork groups

Throughout this section, n P N`z t1u, unless otherwise stated.

Clockwork multiplication

Recall that Zn is an additive group, but not multiplicative. In this section we find for each

eligible n a subset of Zn that we can turn into a multiplicative group.

Example 5¨36. Recall thatZ5 – Z{ x5y. We saw that it was a ring; that is, it is an abelian group

under addition, a monoid under multiplication, and multiplication distributes over addition.

Can we turn a subset of it into a multiplicative group? We need to identify an identity, and

inverses. Certainly r0s won’t have a multiplicative inverse, but what about Z5z tr0su? This

generates a multiplication table that satisfies the properties of an abelian (but non-additive)

group:

ˆ 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

That is a group! We’ll call it Z˚
5
.

In fact, Z˚
5
– Z4; they are both cyclic groups of four elements, and inspection shows that

Z5 “ x2y “ x3y “ x4y. In Z˚
5
, however, the nominal operation is multiplication, whereas in

Z4 the nominal operation is addition.
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Claim: If p is irreducible, then
?
p is not rational.

Proof:

1. Assume that p is irreducible.

2. By way of contradiction, assume that
?
p is rational.

3. By _____, there exist a, b P N such that
?
p “ a{b.

4. Without loss of generality, we may assume that gcd pa, bq “ 1.

(After all, we could otherwise rewrite
?
p “ pa{dq { pb{dq, where d “ gcd pa, bq.)

5. By _____, p “ a2{b2.

6. By _____, pb
2 “ a2.

7. By _____, p | a2.

8. By _____, p is prime.

9. By _____, p | a.

10. By _____, a “ pq for some q P Z.

11. By _____ and _____, pb
2 “ ppqq

2
“ p2q2.

12. By _____, b
2 “ pq2.

13. By _____, p | b2.

14. By _____, p | b.

15. This contradicts step _____. Our assumption that
?
p is rational must have been wrong.

Hence,
?
p is irrational.

Figure 5¨2: Material for Question 5.33
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You might think that this trick of dropping zero and building a multiplication table always

works, but it doesn’t.

Example 5¨37. Recall that Z4 “ Z{ x4y “ tr0s , r1s , r2s , r3su. Consider the set Z4z tr0su “
tr1s , r2s , r3su. The multiplication table for this set is not closed because

r2s ¨ r2s “ r4s “ r0s R Z4z tr0su .

We obviously can’t fix this by including zero, as well: zero has no inverse. So, we must exclude

zero; our mistake seems to have been that we included 2 Excluding 2 finally works out:

ˆ 1 3

1 1 3

3 3 1

That is a group! We’ll call it Z˚
4
.

In fact, Z˚
4
– Z2; they are both the cyclic group of two elements. In Z˚

4
, however, the

operation is multiplication, whereas in Z2, the operation is addition.

You can determine for yourself that Z2z tr0su “ tr1su and Z3z tr0su “ tr1s , r2su are also

multiplicative groups. In this case, as in Z˚
5
, we need remove only 0. For Z6, however, we

have to remove nearly all the elements! We only get a group from Z6z tr0s , r2s , r3s , r4su “
tr1s , r5su.

Why do we need to remove more elements of Zn for some values of n than others? Aside

from zero, which clearly has no inverse under the operation specified, the elements we’ve

had to remove are those whose multiplication would re-introduce zero. We’re observing zero

divisors again.

Can we find a criterion to detect this? You should have done this in Question 2.44; to be

safe, let’s flesh it out here.

Lemma 5¨38. Let x P Zn be nonzero. The following are equivalent:

(A) x is a zero divisor.

(B) x and n have a common divisor besides˘1.

Proof. That (B) implies (A): Assume that x and n share a common divisor d ‰ 0, 1. Use the

definition of divisibility to choose t, q P Zz t0u such that n “ qd and x “ td. Let y be the

remainder of dividing q by n. Substitution implies that

xy ”n xq “ ptdq q “ t pdqq “ tn ” 0.

Since d ‰ 0, 1, ´n ă q ă n, so 0 ‰ q ”n y. This shows that y is also nonzero, so x is a zero

divisor.

Question 5¨39 .
You can also prove that (B) implies (A) using Bézout’s Lemma. Try it that way.
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Proof of Lemma 5¨38, continued. That (A) implies (B): Assume that x is a zero divisor. By definition,

we can find nonzero y P Zn such that xy ”n 0. There are two points to recall here: first,

0 ď y ă n, and second, n | xy. By definition, we can find q P Z such that nq “ xy. Use

the Fundamental Theorem of Arithmetic to factor n “ p
a1
1 ¨ ¨ ¨ p

ak

k
, where the pi’s are distinct

irreducibles and the ai’s are natural. By substitution,

`

p
a1

1
¨ ¨ ¨ p

ak

k

˘

q “ xy.

Not every p
ai

i
can appear in y; otherwise, n | y, and by Question 1.58, we would have n ď y,

contradicting y ă n. Hence at least one pi divides x, so that n and x have a common divisor

that is not 1.

A multiplicative clockwork group

We can thus construct a multiplicative clockwork group using the elements of Zn that are

not zero divisors.

Definition 5¨40. Define the set Z˚
n

to be the set of elements of Zn that are not zero divisors.

In set builder notation,

Z˚
n
:“ tx P Znz t0u : @y P Znz t0u xy ‰ 0u .

We claim that Z˚
n

is a group under multiplication. Keep in mind that, while it is a subset

of Zn, it is not a subgroup, as the operations are different.

Theorem 5¨41. Z˚
n

is an abelian group under its multiplication.

Proof. We check each requirement of a group, slightly out of order. Let a, b, c P Z˚
n
.

(associative) From Question 2.20, clockwork multiplication is consistent with integer multi-

plication. Since pabq c “ a pbcq, then, pabq c ” a pbcq. Notice that this applies for

elements of Zn as well as elements of Z˚
n
.

(closed) Assume to the contrary that ab R Z˚
n
. We have defined ab to give us an element

of Zn, so the only way ab R Z˚
n

is if ab ” 0 or ab is a zero divisor. By definition of

Z˚
n
, neither a nor b is a zero divisor, so ab ı 0, which forces us to conclude that ab

is a zero divisor. Choose c P Zn such that pabq c ” 0. By the associative property,

a pbcq ” 0; that is, a is a zero divisor, contradicting the choice of a! Thus, ab cannot

be a zero divisor, either; the assumption that ab R Z˚
n

must have been wrong.

(identity) We claim that 1 is the identity. Since gcd p1, nq “ 1, we have 1 P Z˚
n

by definition.

It is then trivial that 1 ¨ a “ a “ a ¨ 1.

(inverse) We need to find an inverse of a. By definition, a and n have no common divisors

except˘1; hence gcd pa, nq “ 1. Bézout’s Lemma tells us we can find b, m P Z such

that ab` mn “ 1. We deduce that

ab´ 1 “ n p´mq

6 ab´ 1 P nZ
6 ab ” 1.
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But is b P Z˚
n
? It might not be. To start with, we could have b ě n or b ă 0. In this

case, let q and r be the quotient and remainder of division of b by n; then ar ” 1.

But what if r is a zero divisor? Recall the equation above:

ab` mn “ 1 ñ a pnq` rq ` mn “ 1 ñ ar ` pm` aqq n “ 1.

This is a form of the identity in Bézout’s Lemma not just for a, but also for r! Bézout’s

Lemma tells us that gcd pr, nq is the smallest positive number that can be written in

that form, so gcd pr, nq “ 1, so r is in fact a zero divisor by Lemma 5¨38, so a
´1 “ r P

Z˚
n

.

(commutative) Use the definition of multiplication in Z˚
n

and the commutative property of

integer multiplication to see that ab “ ba.

By removing elements that share non-trivial common divisors with n, we have managed to

eliminate those elements that do not satisfy the zero-product rule, and would break closure by

trying to re-introduce zero in the multiplication table. We have thereby created a clockwork

group for multiplication, Z˚
n
.

Example 5¨42. Consider Z˚
10

. To find its elements, collect the elements of Z10 that are not

zero divisors. Lemma 5¨38 tells us that these are the elements a such that gcd pa, nq ‰ 1. Thus

Z˚
10
“ t1, 3, 7, 9u .

Theorem 5¨41 tells us that Z˚
10

is a group. Since it has four elements, it must be isomorphic to

either the Klein 4-group, or to Z4. Which is it? In this case, it’s probably easiest to decide the

question with a glance at its multiplication table:

ˆ 1 3 7 9
1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

Notice that 3
´1 ‰ 3. In the Klein 4-group, every element is its own inverse, so Z˚

10
cannot

be isomorphic to the Klein 4-group. Instead, it must be isomorphic to Z4.

Question 5¨43 .
List the elements ofZ˚

7
using their canonical representations, and construct its multiplication

table. Use the table to identify the inverse of each element.

Question 5¨44 .
List the elements of Z˚

15
using their canonical representations, and construct its multiplica-

tion table. Use the table to identify the inverse of each element.
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5¨5 Euler’s Theorem and fast exponentiation

In Section 5¨4 we defined the group Z˚
n

for all n P N` where n ą 1. The order of this group is

more important than you might think. To begin with, number theorists are very interested

in the following function.

Definition 5¨45. Euler’s φ-function counts the number of positive natural numbers that are

both smaller than n and relatively prime to it.

We built the group Z˚
n

using these same integers, so:

Fact 5¨46. For n ą 1, φ pnq “ |Z˚
n
|.

To see why this is such a big deal, consider the algebraic ramifications, starting with a

corollary to Lagrange’s Theorem.

Euler’s Theorem for integers. For all x P Z˚
n
, x
φpnq “ 1.

Proofs of Euler’s Theorem based only on Number Theory are not very easy. They’re not

particularly difficult, either; they just aren’t easy. See for example the proof on pages 18–19

of [2]. Compare this with our algebraic proof of Euler’s Theorem: it fits in one line!

Proof. Let x P Z˚
n
. By Question 4.117, x

|Z˚
n | “ 1. By substitution, x

φpnq “ 1.

Corollary 5¨47. For all x P Z˚
n
, x
´1 “ xφpnq´1.

Proof. You do it!

Question 5¨48 .
Prove that for all x P Z˚

n
, x
φpnq´1 “ x´1.

Question 5¨49 .
Prove that for all x P N`, if x and n have no common divisors, then n |

`

x
φpnq ´ 1

˘

.

Computing φ pnq

We see that φ pnq is a pretty big deal; and that ain’t the half of it; see the next section for

a real barn burner. Of course, if we intend to use these applications, we first need an efficient

way to compute φ pnq.

Well, then, how do we compute φ pnq? For an irreducible integer p, this is easy: the only

common factors between p and any positive integer less than p are ˘1; there are p ´ 1 of

these, so φ ppq “ p´ 1.

For integers that factor, it is not so easy. Checking a few examples, no clear pattern

emerges:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|Z˚
n
| 1 2 2 4 2 6 4 6 4 10 4 12 6 8
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Computingφ pnq turns out to be hard in practice. It is a major research topic in number theory,

and its difficulty makes the RSA algorithm secure (see Section 5¨6). One approach, of course,

is to factor n and count the integers that do not share any common factors. For example,

28 “ 2
2
¨ 7,

so to compute φ p28q, we could look at all the positive integers smaller than 28 that do not

have 2 or 7 as factors. Try this on your own, though, and you’ll discover how tedious it is.

We’d like an efficient way to compute φ pnq.

Another way would be to computeφ pmq for each factorm of n, then recombine them. But,

how? Lemma 5¨50 gives us a first step.

Lemma 5¨50. Let a, b, n P N`. If n “ ab and gcd pa, bq “ 1, then φ pnq “ φ paqφ pbq.

Example 5¨51. In the table above, we have φ p15q “ 8. Notice that this satisfies

φ p15q “ φ p5ˆ 3q “ φ p5qφ p3q “ 4ˆ 2 “ 8.

Proof of Lemma 5¨50. Assume n “ ab. Recall that direct products are groups, so that Z˚
a
ˆ Z˚

b

is a group; the size of this group is |Z˚
a
| ˆ

ˇ

ˇZ˚
b

ˇ

ˇ “ φ paqφ pbq. We claim that Z˚
n
– Z˚

a
ˆ Z˚

b
. If

true, this would prove the lemma, since

φ pnq “ |Z˚
n
| “ |Z˚

a
ˆ Z˚

b
| “ |Z˚

a
| ˆ |Z˚

b
| “ φ paqφ pbq .

To show that they are indeed isomorphic, let f : Z˚
n
Ñ Z˚

a
ˆ Z˚

b
by f prxs

n
q “ prxs

a
, rxs

b
q.

First we show that f is a homomorphism: Let y, z P Z˚
n
; then

f prys
n
rzs

n
q “ f pryzs

n
q (arithm. in Z˚

n
)

“ pryzs
a
, ryzs

b
q (def. of f )

“ prys
a
rzs

a
, rys

b
rzs

b
q (arithm. in Z˚

a
,Z˚

b
)

“ prys
a
, rys

b
q przs

a
, rzs

b
q (arithm. in Z˚

a
ˆ Z˚

b
)

“ f prys
n
q f przs

n
q . (def. of f )

It remains to show that f is one-to-one and onto. It is both surprising and delightful that

the Chinese Remainder Theorem will do most of the work for us. To show that f is onto, let

prys
a
, rzs

b
q P Z˚

a
ˆ Z˚

b
. We need to find x P Z such that f prxs

n
q “ prys

a
, rzs

b
q. Consider the

system of linear congruences

rxs “ rys in Za;
rxs “ rzs in Zb.

The Chinese Remainder Theorem tells us not only that such x exists inZn, but that x is unique

in Zn.
We are not quite done; we have shown that a solution rxs exists in Zn, but what we really

need is that rxs P Z˚
n
. To see that rxs P Z˚

n
, let d be any common divisor of x and n. By way of

contradiction, assume d ‰ ˘1; by Theorem 5¨27, we can find an irreducible divisor r of d; by

Question 4.71 on page 142, r | n and r | x. Recall that n “ ab, so r | ab. Since r is irreducible,
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hence prime, r | a or r | b. Without loss of generality, we may assume that r | a. Recall that

rxs
a
“ rys

a
; Lemma 4¨90 on page 148 tells us that a | px´ yq. Let w P Z such that wa “ x ´ y.

Rewrite this equation as x ´ wa “ y. Recall that r | x and r | a; we can factor r from the

left-hand side of x´ wa “ y to see that r | y.

What have we done? We showed that if x and n have a common factor besides ˘1, then

y and a also have a common, irreducible factor r. The definition of irreducible implies that

r ‰ 1.

Do you see the contradiction? We originally chose rys P Z˚
a
. By definition, rys cannot be

a zero divisor in Za, so by Lemma 5¨38, gcd py, aq “ 1. But the definition of greatest common

divisor means that

gcd py, aq ě r ą 1 “ gcd py, aq ,

a contradiction! Our assumption that d ‰ 1 must have been false; we conclude that the only

common divisors of x and n are˘1. Hence, x P Z˚
n
.

Lemma 5¨50 gives us a more efficient way to compute φ pnq, but it’s still not that great,

since first you have to find factors a and b of n. This turns out to be quite difficult to do in

practice; to see how mathematicians made lemonade of this mathematical lemon, see the

next chapter.

Fast exponentiation

Corollary 5¨47 gives us an “easy” way to compute the inverse of any x P Z˚
n
. Even suppos-

ing we could compute φ pnq in reasonable time, it can still take a long time to compute x
φpnq

,

as it could be a very large number. We take a moment to explain how to compute canonical

forms of exponents more quickly. There are two main considerations.

Lemma 5¨52. For any n P N`, rxas “ rxs
a

in Z˚
n
.

(In other words, don’t compute x
a
, and then the remainder. Compute the remainder while

computing x
a
.)

Proof. This follows from the fact that multiplication is well-defined, and there are finitely

many products. You can prove it by induction if you want more detail than that.

Example 5¨53. In Z˚
15

we can determine easily that r420s “ r4s
20
“

`

r4s
2
˘10

“ r16s
10
“

r1s
10
“ r1s. This is a lot faster than computing 4

20 “ 1099511627776, then dividing to find the

canonical form.

Do you see what we did? The trick is to break the exponent down into “manageable”

powers. How exactly can we do that?

Fast Exponentiation. Let a P N and x P Z. We can compute x
a

in the following way:

1. Let b be the largest integer such that 2
b ď a.

2. Let q0, q1, . . . , qb be the bits of the binary representation of a.

3. Let y “ 1, z “ x and i “ 0.
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4. Repeat the following until i ą b:

(a) If qi ‰ 0, replace y with the product of y and z.

(b) Replace z with z
2
.

(c) Replace i with i` 1.

This ends with x
a “ y.

Fast Exponentiation effectively computes the binary representation of a and uses this to

square x repeatedly, multiplying the result only by those powers that matter for the repre-

sentation. Its algorithm is especially effective on computers, whose mathematics is based on

binary arithmetic. Combining it with Lemma 5¨52 gives an added bonus in Z˚
n
, which is what

we care about most.

Example 5¨54. Since 10 “ 2
3 ` 2

1
, we can compute r410s

7
following the algorithm of Fast

Exponentiation:

1. We have q3 “ 1, q2 “ 0, q1 “ 1, q0 “ 0.

2. Let y “ 1, z “ 4 and i “ 0.

3. When i “ 0:

(a) We do not change y because q0 “ 0.

(b) Put z “ 42 “ 16 “ 2. (We’re in Z˚
7
, remember.)

(c) Put i “ 1.

4. When i “ 1:

(a) Put y “ 1 ¨ 2 “ 2.

(b) Put z “ 22 “ 4.

(c) Put i “ 2.

5. When i “ 2:

(a) We do not change y because q2 “ 0.

(b) Put z “ 42 “ 16 “ 2.

(c) Put i “ 3.

6. When i “ 3:

(a) Put y “ 2 ¨ 2 “ 4.

(b) Put z “ 42 “ 2.

(c) Put i “ 4.
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We conclude that r410s
7
“ r4s

7
. Hand computation the long way, or a half-decent calculator,

will verify this.

Proof of Fast Exponentiation.

Termination: Termination is due to the fact that b is a finite number, and the algorithm

assigns to i the values 0, 1, . . . , b` 1 in succession, stopping when i ą b.

Correctness: First, the theorem claims that qb, . . . , q0 are the bits of the binary represen-

tation of x
a
, but do we actually know that the binary representation of x

a
has b ` 1 bits? By

hypothesis, b is the largest integer such that 2
b ď a; if we need one more bit, then the defini-

tion of binary representation means that 2
b`1 ď x

a
, which contradicts the choice of b. Thus,

qb, . . . , q0 are indeed the bits of the binary representation of x
a
. By definition, qi P t0, 1u for

each i “ 0, 1, . . . , b. The algorithm multiplies z “ x2
i

to y only if qi ‰ 0, so that the algorithm

computes

x
qb2

b`qb´12
b´1`¨¨¨`q12

1`q02
0

,

which is precisely the binary representation of x
a
.

Question 5¨55 .
Compute 3

28
in Z using fast exponentiation. Show each step.

Question 5¨56 .
Compute 24

28
in Z˚

7
using fast exponentiation. Show each step.

5¨6 The RSA encryption algorithm

Whenever you buy a product online, you submit private information: at the very least, a credit

card or bank account number, and usually more. There is no guarantee that this information

will pass only through servers run by disinterested persons. It is quite possible for the infor-

mation to pass through a computer run by at least one ill-intentioned hacker, and possibly

even organized crime. You probably don’t want criminals looking at your credit card num-

ber. And not just you – many organizations desire a reliable and efficient method to disguise

private information so that snoopers cannot understand it.

This problem provides a surprisingly useful application of group theory, via number the-

ory. A number of approaches exist, and a method in common use is the RSA encryption al-

gorithm.
2

First we describe the algorithms for encryption and decryption; then we explain

the ideas behind each stage, illustrating with an example; finally we prove that it succesfully

encrypts and decrypts messages.

Description and example

The RSA algorithm. Let M be a list of positive integers. Let p, q be two irreducible integers such

that:

2
RSA stands for Rivest (of MIT), Shamir (of the Weizmann Institute in Israel), and Adleman (of USC).
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• gcd pp, qq “ 1; and

• pp´ 1q pq´ 1q ą max tm : m P Mu.

Let N “ pq and e P Z˚
φpNq

. If we apply the following algorithm to M:

1. Let C be a list of positive integers found by computing the canonical representation of rmes
N

for

each m P M.

and subsequently apply the following algorithm to C:

1. Let d “ e´1 P Z˚
φpNq

.

2. Let D be a list of positive integers found by computing the canonical representation of
“

c
d
‰

N
for

each c P C.

Then D “ M.

Example 5¨57. Consider the text message

ALGEBRA RULZ.

We convert the letters to integers in the fashion that you might expect: A=1, B=2, . . . , Z=26.

We also assign 0 to the space. This allows us to encode the message as,

M “ p1, 12, 7, 5, 2, 18, 1, 0, 18, 21, 12, 26q .

Let p “ 5 and q “ 11; then N “ 55. Let e “ 3. Is e P Z˚
φpNq

? We know that

gcd p3, φ pNqq “ gcd p3, φ p5q ¨ φ p11qq “ gcd p3, 4ˆ 10q

“ gcd p3, 40q “ 1;

Definition 5¨40 and Lemma 5¨38 show that, yes, e P Z˚
φpnq

.

Encrypt by computing m
e

for each m P M:

C “
`

1
3
, 12

3
, 7
3
, 5
3
, 2
3
, 18

3
, 1
3
, 0
3
, 18

3
, 21

3
, 12

3
, 26

3
˘

“ p1, 23, 13, 15, 8, 2, 1, 0, 2, 21, 23, 31q .

A snooper who intercepts C and tries to read it as a plain message would encounter several

difficulties. First, it contains 31, a number that does not fall in the range 0 and 26. If he gave

that number the symbol _, he would see

AWMOHBA BUW_

which is not an obvious encryption of ALGEBRA RULZ.

The inverse of 3 P Z˚
φpNq

is d “ 27. (We could compute this using Corollary 5¨47, but it’s

not hard to see that 3ˆ 27 “ 81 and r81s
40
“ r1s

40
.) Decrypt by computing c

d
for each c P C:

D “
`

1
27
, 23

27
, 13

27
, 15

27
, 8
27
, 2
27
, 1
27
, 0
27
, 2
27
, 21

27
, 23

27
, 31

27
˘

“ p1, 12, 7, 5, 2, 18, 1, 0, 18, 21, 12, 26q .

Trying to read this as a plain message, we have
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ALGEBRA RULZ.

Doesn’t it?

Encrypting messages letter-by-letter is absolutely unacceptable for security. For a stronger

approach, letters should be grouped together and converted to integers. For example, the

first four letters of the secret message above are

ALGE

and we can convert this to a number using any of several methods; for example

ALGE Ñ 1ˆ 26
3
` 12ˆ 26

2
` 7ˆ 26` 5 “ 25, 785.

The integers to encrypt here are larger than 55, so we need larger values for p and q. This is

too burdensome to compute by hand, so you want a computer to help. We give an example

in the exercises.

RSA is an example of a public-key cryptosystem. That means that person A broadcasts to the

world, “Anyone who wants to send me a secret message can use the RSA algorithm with values

N “. . . and e “. . . .” So a snooper knows the method, the modulus, N, and the encryption

key, e!

If the snooper knows the method, N, and e, how can RSA be safe? To decrypt, the snooper

needs to compute d “ e´1 P Z˚
φpNq

. Corollary 5¨47 tells us that computing d is merely a matter

of computing e
φpNq´1

, which is easy if you know φ pNq. The snooper also knows that N “ pq,

where p and q are prime. So, decryption should be a simple matter of factoring N “ pq and

applying Lemma 5¨50 to obtain φ pNq “ pp´ 1q pq´ 1q. Right?

Well, yes and no. Typical implementations choose very large numbers for p and q, many

digits long, and there is no known method of factoring a large integer “quickly” — even when

you know that it factors as the product of two primes! In addition, a careful science to choosing p

and qmakes it hard to determine their values from N and e.

As it is too time-consuming to perform even easy examples by hand, a computer algebra

system becomes necessary to work with examples. The end of this section lists programs to

help you perform these computations in the Sage and Maple computer algebra systems. The

programs are:

• scramble, which accepts as input a plaintext message like “ALGEBRA RULZ” and turns

it into a list of integers;

• descramble, which accepts as input a list of integers and turns it into plaintext;

• en_de_crypt, which encrypts or decrypts a message, depending on whether you feed

it the encryption or decryption exponent.

Examples of usage:

• in Sage:

– to determine the list of integersM, type M = scramble("ALGEBRA RULZ")
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– to encryptM, type

C = en_de_crypt(M,3,55)

– to decrypt C, type

en_de_crypt(C,27,55)

• in Maple:

– to determine the list of integersM, type M := scramble("ALGEBRA RULZ");

– to encryptM, type

C := en_de_crypt(M,3,55);

– to decrypt C, type

en_de_crypt(C,27,55);

Question 5¨58 .
The phrase

r574, 1, 144, 1060, 1490, 0, 32, 1001, 574, 243, 533s

is the encryption of a message using the RSA algorithm with the numbersN “ 1535 and e “ 5.

You will decrypt this message.

(a) Factor N.

(b) Compute φ pNq.

(c) Find the appropriate decryption exponent.

(d) Decrypt the message.

Question 5¨59 .
In this exercise, we encrypt a phrase using more than one letter in a number.

(a) Rewrite the phrase GOLDEN EAGLES as a list M of three positive integers, each of which

combines four consecutive letters of the phrase.

(b) Find two prime numbers whose product is larger than the largest number you would get

from four letters.

(c) Use those two prime numbers to compute an appropriateN and e to encryptM using RSA.

(d) Find an appropriate d that will decryptM using RSA.

(e) Decrypt the message to verify that you did this correctly.
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Theory

Now, why does the RSA algorithm work?

Proof of the RSA algorithm. Let c P C. By definition of C, c “ m
e P Z˚

N
for some m P M. We need

to show that c
d “ pmeq

d
“ m.

Since res P Z˚
φpNq

, which is a group under multiplication, we know that it has an inverse

element, rds. That is, rdes “ rds res “ r1s. By Lemma 4¨90, φ pNq | p1´ deq, so we can find

b P Z such that b ¨ φ pNq “ 1´ de, or de “ 1´ bφ pNq.

We claim that rms
de
“ rms P ZN. To do this, we will show two subclaims about the behavior

of the exponentiation in Zp and Zq.
Claim 5¨1. rms

de
“ rms P Zp.

If p | m, then rms “ r0s P Zp. Without loss of generality, d, e P N`, so

rms
de
“ r0s

de
“ r0s “ rms P Zp.

Otherwise, p - m. Recall that p is irreducible, so gcd pm, pq “ 1. By Euler’s Theorem,

rms
φppq

“ r1s P Z˚
p
.

Recall that φ pNq “ φ ppqφ pqq; thus,

rms
φpNq

“ rms
φppqφpqq

“

´

rms
φppq

¯

φpqq

“ r1s .

Thus, in Z˚
p
,

rms
de
“ rms

1´bφpNq
“ rms ¨ rms

´bφpNq

“ rms

´

rms
φpNq

¯´b

“ rms ¨ r1s
´b
“ rms .

As p is irreducible, Any element of Zp is either zero or in Z˚
p
. We have considered both cases;

hence,

rms
de
“ rms P Zp.

Claim 5¨2. rms
1´bφpNq

“ rms P Zq.
The argument is similar to that of the first claim.

Since rms
de
“ rms in both Zp and Zq, properties of the quotient groups Zp and Zq tell us

that
“

m
de ´ m

‰

“ r0s in both Zp and Zq as well. In other words, both p and q divide m
de ´ m.

You will show in Question 5.3 that this implies that N divides m
de ´ m.

From the fact that N divides m
de ´ m, we have rms

ed

N
“ rms

N
. Thus, computing pmeq

d
in

ZφpNq gives us m.

Question 5¨3 .
Let m, p, q P Z and suppose that gcd pp, qq “ 1.

(a) Show that if p | m and q | m, then pq | m.

(b) Explain why this completes the proof of the RSA algorithm; that is, since p and q both

divide m
de ´ m, then so does N.
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Sage programs

The following programs can be used in Sage to help make the amount of computation

involved in the exercises less burdensome:

def scramble(s):
result = []
for each in s:

if ord(each) >= ord("A") \
and ord(each) <= ord("Z"):

result.append(ord(each)-ord("A")+1)
else:

result.append(0)
return result

def descramble(M):
result = ""
for each in M:

if each == 0:
result = result + " "

else:
result = result + chr(each+ord("A") - 1)

return result

def en_de_crypt(M,p,N):
result = []
for each in M:

result.append((each^p).mod(N))
return result
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Maple programs

The following programs can be used in Maple to help make the amount of computation

involved in the exercises less burdensome:

scramble := proc(s)
local result, each, ord;
ord := StringTools[Ord];
result := [];
for each in s do

if ord(each) >= ord("A")
and ord(each) <= ord("Z") then

result := [op(result),
ord(each) - ord("A") + 1];

else
result := [op(result), 0];

end if;
end do;
return result;

end proc:

descramble := proc(M)
local result, each, char, ord;
char := StringTools[Char];
ord := StringTools[Ord];
result := "";
for each in M do

if each = 0 then
result := cat(result, " ");

else
result := cat(result,

char(each + ord("A") - 1));
end if;

end do;
return result;

end proc:

en_de_crypt := proc(M,p,N)
local result, each;
result := [];
for each in M do

result := [op(result), (each^p) mod N];
end do;
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return result;
end proc:



Chapter 6

Factorization

This chapter builds up some basic algorithms for factoring polynomials. This is actually a

tricky subject, so we focus first on some theory before discussing the practice. We will see in

Sections 6¨1 and 6¨2 that factorization is tied to ideals. To keep things simple, we focus on a

special kind of ring where factorization is deterministic; Section 6¨3 introduces the relevant

structure.

The typical trick is to factorize modulo a prime, then reconstruct the integer factorization;

this prequires a deeper study of finite fields than the one we had in Section 3¨4, which we

address in Sections 6¨5 and 6¨6. That finally gets us to the point where Section 6¨7 can describe

algorithms for factorization over a field field and Section 6¨8 can outline how to approach

factorization in Z rxs.
Remark 6¨1. In this chapter, every “generic” ring is an integral domain, unless otherwise spec-

ified. Thus, it is commutative, has a multiplicative identity, and lacks zero divisors.

Before proceeding, it will be very useful to observe that we make heavy use of Lemma 4¨43.

Please review that.

6¨1 A wrinkle in “prime”

We said earlier that even though the properties of being “prime” and “irreducible” coincide

for integers, this is not true in a general ring. This section shows why.

Prime and irreducible: a distinction

Recall Definition 3¨20,

Suppose r P R is an element of a commutative ring, and r is not a unit. We say

that r factors over R if we can find s, t P R such that r “ st and neither s nor t is

a unit. Otherwise, r is irreducible.

Example 6¨2. Consider the ring Q rxs.

• The only units are the rational numbers, since no polynomial of degree at least one has

a multiplicative inverse that is also a polynomial.

213
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• x` q is irreducible for every q P Q.

• x2 is not irreducible, since x
2 “ x ¨ x.

• x2 ` q is irreducible for every positive q P Q.

Recall now the definition of “prime” in Definition 5¨29,

A positive integer p is prime if p ‰ 1 and for any two integers a, b we have p |

ab ùñ p | a or p | b.

Fact 5¨31 told us that

An integer is prime if and only if it is irreducible.

This coincidence is because the integers are a special sort of ring. In this section we explore

rings where the two definitions do not coincide. We start by generalizing the definition of

prime:

Definition 6¨3. Suppose p P R is not a unit. We say that p is prime if, whenever we find

a, b P R such that p | ab, then p | a or p | b.

Prime and irreducible: a difference

Unexpected things happen when you look at rings that involve i. For instance, the set of

Gaussian integers is

Z ris “ ta` bi : a, b P Zu .

Question 6¨4 .
Show that Z ris is a ring and an integral domain, but not a field.

Question 6¨5 .
Show that Z ris is isomorphic to the lattice structure of Section 1¨5. Explain why this means

we can divide with quotient and remainder in Z ris, so it makes sense to speak of divisibility,

irreducible elements, and so forth in Z ris.

The number 2 is no longer irreducible in Z ris:

2 “ p1` iq p1´ iq .

Let’s see if it will factor further. Suppose 1` i factors as pa` biq pc ` diq. Expand the product

to obtain the equation

1` i “ pac ´ bdq ` i pad` bcq .

The real and complex parts must be equal, giving us the system of equations

ac ´ bd “ 1

ad` bc “ 1.
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Let’s refine this relationship between a, b, c, d. Eliminate b by multiplying the first equation

by c and the second equation by d, then subtracting:

ac
2 ´ bcd “ c

ad
2 ` bcd “ d

*

ùñ a
`

c
2
` d

2
˘

“ c ` d ùñ a “
c ` d

c2 ` d2
.

By definition, a is an integer, so c
2`d2 must divide c`d, so either c`d “ 0 or c

2`d2 ď |c ` d|.

If c`d “ 0, then c “ ´d. Reconsider the first equation in the original system: substitution

gives ac ` bc “ 1, so c pa` bq “ 1. These are integers, so c “ ˘1 and d “ ¯1, giving us the

factorization we already had.

On the other hand, suppose c` d ‰ 0; then c
2 ` d2 ď |c ` d|. As c and d are also integers,

which are less than their squares, we have |c ` d| ď |c2 ` d2| “ c2`d2. These two inequalities

imply c ` d “ c
2 ` d2, which is possible only if c, d P t0,˘1u; any other integers give c

2 ą c

or d
2 ą d.

Consider the following cases.

• We cannot have c “ d “ 0, as that would make the original equation false: 1 ` i “

pa` biq pc ` diq “ 0.

• Suppose c “ ˘1.

– If d “ 0, then c`di “ ˘1, so 1`i “ pa` biq¨˘1. This factorization of 1`i involves

a unit, called a “trivial factorization”. Those don’t count against the definition of

a prime element. (If you doubt me, reread the definition.)

– If d “ 1, then either c ` di “ 1 ` i and a ` bi “ 1, a trivial factorization, or

c ` di “ ´1 ` i and a ` bi “ ´i. This only looks non-trivial, since ´i has a

multiplicative inverse in Z ris. (See Question 6.6.)

– If d “ ´1, then either c ` di “ ´1 ´ i “ ´p1` iq and a ` bi “ ´1, a trivial

factorization, or c ` di “ 1 ´ i and a ` bi “ i. This only looks non-trivial, since i

has a multiplicative inverse in Z ris.

Question 6¨6 .
What are the inverses of i and´i in Z ris?

Recall what we wrote after Definition 3¨20: units don’t count in factorization, because every-

thing factors with units. We don’t consider 2 “ p´1qˆp´2q to be different factorizations, be-

cause, after all,´1ˆ´1 “ 1. In the same way, we won’t consider 1`i “ i p1´ iq “ ´i p´1` iq

to be different factorizations, because after all iˆp´iq “ 1. To call to mind this point, we add

a new term to our growing vocabulary:

Definition 6¨7. Let R be a commutative ring with unity, not necessarily an integral domain,

and a, b P Rz t0u. We say that a and b are associates if a | b and b | a.

Example 6¨8. In Q rxs, 4x2 ` 6 and 6x
2 ` 9 are associates, since 4x

2 ` 6 “ 2

3
p6x2 ` 9q, and

2

3

is a unit. They are not associates in Z rxs.
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Question 6¨9 .

(a) Explain why 2 and 7 are not associates in Z.

(b) Explain why the only associate of 7 in Z is´7.

(c) Show that, in an integral domain, a and b are associates if and only if a “ bu, where u is

a unit.

(d) Explain why 2 and 4 are not associates in Z, but they are in Z6.

Remember that in this chapter, a generic ring is an integral domain, so we will typically

treat the characterization of Question 6.9 as if it were the definition of an associate.

Question 6¨10 .

(a) Show that 2{3 and 11{17 are associates in Q.

(b) Show that 2 and 5 are associates in Z7.

(c) Show that a ring R is a field if and only if every non-zero element is an associate of every

other non-zero element.

In the Gaussian integers, i is a unit, so 1 ` i and 1 ´ i “ i p1` iq are associates. The only

factorizations of 1` i involve associates, so 1` i is irreducible.

Question 6¨11 .
Show that 1´ i is also irreducible.

On the other hand, consider the ring

Z
“

i
?
5
‰

“
 

a` bi
?
5 : a, b P Z

(

.

It isn’t hard to verify that Z
“

i
?
5
‰

is also a ring, and additionally that

6 “ 2ˆ 3 “
`

1` i
?
5
˘ `

1´ i
?
5
˘

.

Question 6¨12 .
Verify that Z

“

i
?
5
‰

is a ring and an integral domain.

Question 6¨13 .
Show that 2, 3, 1` i

?
5, and 1´ i

?
5 are irreducible in Z

“

i
?
5
‰

.

This has an amazing consequence:
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Integers factor uniquely into irreducibles in Z, but not in Z
“

i
?
5
‰

!

Why is factorization unique in Z, but not in Z
“

i
?
5
‰

? If you look back at the proof of unique

factorization of integers, you’ll notice that we used the equivlance of “irreducible” and “prime”

to infer that the irreducible p1 divided q1. In the equation above,

2ˆ 3 “
`

1` i
?
5
˘ `

1´ i
?
5
˘

,

all four factors are irreducible, but clearly not prime! After all, if 2 |
`

1` i
?
5
˘

, we could find

a` bi
?
5 such that

2
`

a` bi
?
5
˘

“ 1` i
?
5,

or,

2a “ 1 and 2b “ 1,

neither of which is possible if a and b are integers, which they must be in Z
“

i
?
5
‰

. So the

property of prime ring elements must be distinguished from that of irreducible ring elements.

So irreducible elements of integral domains need not be prime. On the other hand, prime

elements of integral domains are irreducible.

Question 6¨14 .
Let R be an integral domain. Show that if p P R is prime, then it is also irreducible.

Question 6¨15 .
Show that:

• For any n P N`, the ring Zn has no irreducible or prime elements unless n is a power of

a prime.

• If n is a power of a prime p, then multiples of p that are not multiples of p
2

are both

irreducible and prime; moreover, they are associates.

Definition 6¨16. The norm of a Gaussian integer a` bi is a2 ` b2.

Question 6¨17 .
Show that:

(a) irreducible elements of Z ris are prime;

(b) if z “ xy in Z ris is a nontrivial factorization of z, then the norms of x and y are each

smaller than the norm of z;

(c) every element of Z ris factors into irreducibles; and

(d) these factorizations are unique up to units.

Hint: For (a), you will need a Bézout-like identity, and then you can imitate the proof for in-

tegers. You are helped in your quest for a Bézout-like identity by the fact that Question 6.5

gives you division of Gaussian integers. For (b), show also that the norm of z is the product

of the norm of x and the norm of y. For (c), use (b) and the Well-Ordering Principle. For (d),

imitate the proof for uniqueness of factorization of integers.
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Factors are divisors, and greatest common divisors will prove useful in our search for fac-

tors. However, we have to define this term a little differently, since not all rings have a linear

ordering.

Definition 6¨18. Let R be a ring, and a, b P R. Suppose we can find d P R such that d divides

both a and b, and for any r P R that divides both a and b, we also have r | d. We call d a greatest
common divisor of a and b.

What makes d “greatest” is that it sits at the top of a tree of divisibilities. Don’t get the

wrong idea; dmight not be alone! At the very least, its associates will sit next to it at the top

of the tree.

Example 6¨19. To see how you need to be careful with these ideas, consider Z14. Certainly

2 | 6 and 2 | 8, so 2 is a common divisor of 6 and 8. Is it the greatest such? Looking just at 6,

by congruence we know that 6 ” 20 ” 34 ” ¨ ¨ ¨ . Notice that 5 | 20, so 5 | 6. We can likewise

show 5 | 8. Is 5 a “greater” common divisor than 2? No, 5 is actually a unit: 5ˆ3 ” 1. Because

of that, we automatically get 5 | 2; for instance,

2 ” 1ˆ 2 ” p5ˆ 3q ˆ 2 “ 5ˆ p3ˆ 2q “ 5ˆ 6.

So 6 actually divides 2, as well. . . which means 6 divides 8! Likewise, 8ˆ 2 “ 16 ” 2, so 8 | 2.

Question 6¨20 .
Show that in a principal ideal domain R:

(a) 〈d〉 “ 〈a, b〉, making d a greatest common divisor of a and b;

(b) there exist r, s P R such that d “ ra` sb; and

(c) if both c and d are greatest common divisors of a and b, then c and d are associates.

6¨2 The ideals of factoring

The link between divisibility and principal ideals in Lemma 4¨43 implies that we can rewrite

Definition 6¨7 in terms of ideals. We start with the facts that (a) it’s trivial to obtain the iden-

tity from a unit, and hence obtain the entire ring; and (b) since associates differ only by a

unit, their ideals shouldn’t differ at all.

Theorem 6¨21. Let R be an integral domain, and let a, b P Rz t0u.

(A) a is a unit if and only if 〈a〉 “ R.

(B) a and b are associates if and only if 〈a〉 “ 〈b〉.

Example 6¨22. This theorem gives us an alternate route to showing that some ring elements

are units or associates (or not). In the Gaussian integers, 3 R 〈1` i〉, so 1` i is not a unit.

It likewise allows us to decide when two ideals are equal. Since ´i p1` iq “ p1´ iq, and

´i is a unit, 〈1` i〉 “ 〈1´ i〉.
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Proof of Theorem 6¨21 on the preceding page. (A) This is a straightforward chain: a is a unit if and

only if there exists b P R such that ab “ 1R, which is true if and only if 1R P 〈a〉, which is true

if and only if R “ 〈a〉 (Questions 4.34 and 4.35).

(B) Assume that a and b are associates. Let c P R be a unit such that a “ bc. By definition,

a P 〈b〉. Since any x P 〈a〉 satisfies x “ ar “ pbcq r “ b pcrq P 〈b〉, we see that 〈a〉 Ď 〈b〉. In

addition, we can rewrite a “ bc as ac
´1 “ b, so a similar argument yields 〈b〉 Ď 〈a〉.

Conversely, assume 〈a〉 “ 〈b〉. By definition, a P 〈b〉, so there exists c P R such that a “ bc.

Likewise, b P 〈a〉, so there exists d P R such that b “ ad. By substitution, a “ bc “ padq c. Use

the associative and distributive properties to rewrite this as a p1´ dcq “ 0. By hypothesis,

a ‰ 0; since we are in an integral domain, 1 ´ dc “ 0. Rewrite this as 1 “ dc; we see that c

and d are units, which implies that a and b are associates.

Remark. The proof requires R to be an integral domain in order to show (B). For a counterex-

ample, consider R “ Z6; we have 〈2〉 “ 〈4〉, but 2 ¨ 2 “ 4 and 4 ¨ 2 “ 2. Neither 2 nor 4 is a

unit, so 2 and 4 are not associates. Strange things happen with zero divisors!

Question 6¨23 .
Show that in an integral domain, factorization terminates iff every ascending sequence of

principal ideals 〈a1〉 Ď 〈a2〉 Ď ¨ ¨ ¨ is eventually stationary; that is, for some n P N`, 〈ai〉 “
〈ai`1〉 for all i ě n.

Ideals of irreducible and prime elements

What about prime or irreducible elements of a ring? We’ll preface the result with an ex-

ample that leads to two new definitions.

Start with an irreducible element; for instance, 2 P Z. Let A “ 〈2〉. What can we say about

it? No other integer divides it, so Lemma 4¨43 suggests that no other ideal can contain it —

aside from Z itself, naturally. By definition, 〈2〉 is the smallest ideal that contains 2, but it is

also the largest proper ideal that contains 2.

Definition 6¨24. Let I be an ideal in an integral domain R. If I Ĺ R and no other ideal of R

contains I, we call I amaximal ideal.

For prime elements, it might be more instructive to consider first an integer that is not

prime, 6 P Z. The fact that it is not prime means we can find two integers a and b such that

6 | ab but 6 - a and 6 - b . For instance, if a “ 3 and b “ 4, we see that 6 | p3ˆ 4q but 6 - 3 and

6 - 4. Applying Lemma 4¨43 again, we see that 〈3ˆ 4〉 Ď 〈6〉, while 〈3〉 Ę 〈6〉 and 〈4〉 Ę 〈6〉.
On the other hand, when an integer p is prime, we know that if p | ab, then p | a or p | b; in

terms of Lemma 4¨43, we would say that if 〈ab〉 Ď 〈p〉, then 〈a〉 Ď 〈p〉 or 〈b〉 Ď 〈p〉.
This is not especially remarkable, butwe can say something stronger! Recall from Ques-

tion 4.39 that if A and B are ideals, then

AB “

#

n
ÿ

i“1

aibi : n P N`, ai P A, bi P B

+



CHAPTER 6. FACTORIZATION 220

is also an ideal. A moment ago, we looked at 〈ab〉 when referring to a prime element p. What

of 〈a〉 〈b〉? This is actually a larger ideal; for instance, you could have solved Question 4.40 by

looking at

〈6〉 〈9〉 “ 〈3〉 ;

after all, 〈6〉 Ď 〈3〉 and 〈9〉 Ď 〈3〉 just by using Lemma 4¨43, which easily gives us 〈6〉 〈9〉 Ď 〈3〉,
whereas

3 “ ´1ˆ 6` 1ˆ 9 P 〈6〉 〈9〉 ,

which easily gives us 〈6〉 〈9〉 Ě 〈3〉. So 〈6〉 〈9〉 “ 〈3〉, but 〈6ˆ 9〉 “ 〈54〉, period, full stop, etc.

In fact, in the integers we can say that 〈a〉 〈b〉 “ 〈gcd pa, bq〉.
Question 6¨25 .
Why can we say that:

(a) 〈6〉 Ď 〈3〉 and 〈9〉 Ď 〈3〉 gives us 〈6〉 〈9〉 Ď 〈3〉? (perhaps not as “easily” as I claim above)

(b) In the integers, 〈a〉 〈b〉 “ 〈gcd pa, bq〉?
Hint: As with Question 4.40, think about Bézout’s Identity.

We will carry this stronger property of primes with us from Z to any integral domain.

Definition 6¨26. Let P be a proper ideal of an integral domain R. If, for any two ideals A and

B of R, we find that AB Ď P implies A Ď P or B Ď P, we call P a prime ideal.

Here’s another example.

Example 6¨27. Let R “ Z rx, ys and P “ 〈x〉. Let A, B Ÿ R such that A Ę P but AB Ď P. By

definition, any f P AB has the form f “
ř

n

i“1
gihi where each gi P A and hi P B. By inclusion,

f P P, as well, so x | f . This means x divides every term of f , as well. (That’s true for monomials,

but not for arbitrary polynomials; for instance, this would not be true of x` 1.)

Let g P AzP and h P B. By definition, x - g, so g has at least one term t such that x - t. Let

u be any term of h; by polynomial multiplication, a ctu is a term of f “ gh for some c P Z.

By definition of AB, f P AB, so, as pointed out a moment ago, x | tu. By hypothesis, x - t, so

deg xt “ 0, so

deg xu “ deg xtu´ deg xt “ deg xtu ě 1.

By definition of divisibility, x | u. Now, u was an arbitrary term of h, so x divides every term

of h, which means x | h, so h P P. We chose h arbitrarily from B, so every polynomial of B is

also in P. By definition, B Ď P.

We have shown that if A, B Ÿ R, AB Ď P, and A Ę P, then B Ď P. Hence P “ 〈x〉 is a prime

ideal.

Theorem 6¨28. Let R be an integral domain, and let a, b P Rz t0u.

(A) In a principal ideal domain, a is irreducible if and only if 〈a〉 is maximal.

(B) In a principal ideal domain, a is prime if and only if 〈a〉 is prime.
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Proof. (A) Assume that R is a principal ideal domain, and suppose first that a is irreducible.

Let B be an ideal of R such that 〈a〉 Ď B Ď R. Since R is a principal ideal domain, B “ 〈b〉 for

some b P R. Since a P B “ 〈b〉, a “ rb for some r P R. By definition of irreducible, r or b is a

unit. If r is a unit, then by definition, a and b are associates, and by part (B) of Theorem 6¨21,

〈a〉 “ 〈b〉 “ B. Otherwise, b is a unit, and by part (A) of the same Theorem, B “ 〈b〉 “ R.

Since 〈a〉 Ď B Ď R implies 〈a〉 “ B or B “ R, we can conclude that 〈a〉 is maximal.

For the converse, we show the contrapositive. Assume that a is not irreducible; then there

exist r, b P R such that a “ rb and neither r nor b is a unit. Thus a P 〈b〉 and by Lemma 4¨43

and part (B) of Theorem 6¨21, 〈a〉 Ĺ 〈b〉 Ĺ R. In other words, 〈a〉 is not maximal. By the

contrapositive, then, if 〈a〉 is maximal, then a is irreducible.

Question 6¨29 .
Show part (B) of the theorem.

The discussion above did not require that R be a principal ideal domain to show that if

〈a〉 is maximal, then a is irreducible. This remains true even when R is not a principal ideal

domain.

On the other hand, it can happen that a is irreducible when R is not a principal ideal do-

main, but 〈a〉 is not maximal. To see why, consider any ring R, and its bivariate polynomial

ring R rx, ys. Example 4¨52 on page 136 shows that this is not a principal ideal domain, even if

R is! The element x is irreducible, but 〈x〉 Ĺ 〈x, y〉 Ĺ R rx, ys, so 〈x〉 is not maximal.

In a similar way, your proof of part (B) should have shown that if 〈a〉 is prime, then a is

prime even if R is not a principal ideal domain. The converse, however, need not be true.

In any case, we have the following result.

Theorem 6¨30. Let R be an integral domain, and let p P R. If 〈p〉 is maximal, then p is irreducible,

and if 〈p〉 is prime, then p is prime.

We can take this a little further.

Theorem 6¨31. Maximal ideals are always prime, even if you are not in an integral domain.

Proof. Let R be a ring,M a maximal ideal of R, and A, B ideals of R. Suppose that AB Ď M.

By way of contradiction, suppose further that A, B Ę M. That means we can choose a P

AzM and b P BzM; do so. Note that ab P AB Ď M.

For any r P R we can write 〈r, M〉 for the smallest ideal that contains both r and the ele-

ments of M. As a and b are not elements of M, we infer M Ĺ 〈a, M〉 , 〈b, M〉. By maximality of

M, we infer 〈a, M〉 “ 〈b, M〉 “ R.

Let C be the product ideal of 〈a, M〉 and 〈b, M〉. Let x P C; by definition of a product ideal,

x “
ř

n

i“1
yizi where n P N`, yi P 〈a` M〉, and zi P 〈b` M〉 . For any term yizi of this sum,

choose t, u P M such that yi “ a` t and zi “ b` u. We have

yizi “ pa` tq pb` uq “ ab` au` bt ` tu.

We noted above that ab P M, and absorption guarantees au, bt, tu P M. So yizi P M. Closure of

ideals under addition means x P M. As x was arbitrary in C, C Ď M.
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On the other hand, recall that 〈a, M〉 , 〈b, M〉 “ R. Let r P R; by inclusion, r P 〈a, M〉; by

definition of a product ideal, r “ 1 ¨ r P 〈a, M〉 〈b, M〉 “ C. The arbitrary choice of r P R implies

that R Ď C Ď M Ĺ R, a contradiction!

The only assumption not forced by the hypotheses was the one that both A, B Ę M. We

are forced to conclude that A Ď M or B Ď M. By definition,M is a prime ideal.

Amazingly, this is true even when the ring is not an integral domain! Combined with

Theorem 6¨30, we have the following diagram for integral domains:

〈p〉 maximal +3

��

p irreducible

〈p〉 prime +3 p prime

Do the arrows also point in the other directions? We can make a start on answering that.

Question 6¨32 .
Show that if p is prime, then 〈p〉 is also prime. Hint: Suppose A, B are ideals of a ring and

AB Ď 〈p〉, but A Ę 〈p〉. Use an element of Az 〈p〉 to show that every element of B lies in 〈p〉.

How are prime and irreducible elements related?

The relationships we have discussed have many useful consequences. Ideals are a pow-

erful enough tool that we can prove quite a few properties about both elements and rings

through their ideals.

One question that comes to mind is, what is so special about Z, that irreducible elements

are prime? After all, it was not true about Z
“

i
?
5
‰

! The answer is not obvious if we think

only about the properties of the elements per se, but it becomes easier if we think about their

ideals. Your eyes should dart immediately to the different hypotheses in the theorems above:

to prove one direction, we needed only an integral domain; to prove the other, we needed a

principal ideal domain.

We have already shown thatZ is a principal ideal domain (Theorem 4¨53). Could it be that

Z
“

i
?
5
‰

is not? In the case we studied before, we had 2 ˆ 3 “
`

1` i
?
5
˘ `

1´ i
?
5
˘

. These

elements are all irreducible. InZ, joining two elements in a ring gives us an ideal generated by

one element, their gcd (see Question 4.37, where you hopefully used Bézout’s Identity); since

gcd p2, 3q “ 1, we have 〈2, 3〉 “ 〈1〉 in Z, so 〈2, 3〉 “ Z.

It’s another story entirely inZ
“

i
?
5
‰

. Consider the ideal I “
〈
2, 1` i

?
5
〉
. Both generators

are irreducible, and they are not associates, but 1 R I! Hence I ‰ Z
“

i
?
5
‰

, and we now have a

chain

2 Ĺ I Ĺ Z
“

i
?
5
‰

.

Interestingly, 2 is irreducible, but its ideal is not maximal! On the other hand, the fact that 2

and 1` i
?
5 are irreducible but not associates means no one element can generate I. SoZ

“

i
?
5
‰

is not a principal ideal domain!

Question 6¨33 .
What are the units of Z

“

i
?
5
‰

? Explain how this shows 2 and 1` i
?
5 are not associates.
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Question 6¨34 .
We wrote in the discussion above that 1 R I. How do we know this?

We have our criterion for an irreducible element to be prime! Prove it for the general case.

Question 6¨35 .
Suppose that R is a principal ideal domain, and r P R. Show that if r is irreducible, then it is

prime.

The converse is true even if we are not in a principal ideal domain; see Question 6.14.

You may be wondering why we worked with prime and irreducible elements in the context

of integral domains. It may seem intuitive that zero divisors would throw off the properties

we expect, but even if not, an ideal you already know provides a direct answer.

Example 6¨36. Consider the ring Z6. This is not an integral domain, so our definition of a

“prime” element doesn’t apply, but it is not hard to verify that 2 satisfies the requirements of

a prime element of Z6, if such a thing existed:

〈2〉 “ t0, 2, 4u ,

and if 2 - a, 2 - b then 2 - ab:

1ˆ 1, 1ˆ 3, 1ˆ 5, 3ˆ 3, 3ˆ 5, 5ˆ 5 R 〈2〉 .

Alas, 2 is not irreducible; after all, 2 “ 8 “ 2 ˆ 2 ˆ 2, so 2 factors itself, even though it isn’t a

unit!

We have now answered one question posed at the beginning of the chapter:

• If R is an integral domain, then prime elements are irreducible.

• If R is a principal ideal domain, then irreducible elements are prime.

Because we are generally interested in factoring only for integral domains, many authors

restrict the definition of prime so that it is defined only in an integral domain. In this case, a

prime element is always irreducible, although the converse might not be true, since not all

integral domains are principal ideal domains. We went beyond this in order to show, as we

did above, why it is defined in this way. Since we maintain throughout most of this chapter

the assumption that all rings are integral domains, one could shorten this to,

Fact 6¨37 (Prime and irreducible elements in integral domains.). A prime element is always

irreducible, but an irreducible element is not always prime.

To sum up what we have found:

• We saw in Example 6¨27 that in Z rx, ys, the ideal 〈x〉 is prime, but 〈x〉 Ĺ 〈x, y〉 Ĺ 〈1〉, so

a prime ideal need not be maximal, even in an integral domain.
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• Likewise, inZ rx, ys, the element x is irreducible, but 〈x〉 Ĺ 〈x, y〉 Ĺ 〈1〉, so an irreducible

element need not generate a maximal ideal, even in an integral domain.

• We saw in Z
“

i
?
5
‰

that an irreducible element need not be prime, even in an integral

domain.

• You will see below that if p is prime, then 〈p〉 is also prime.

We can, therefore, revise our diagram for integral domains as follows:

〈p〉 maximal

any ring +3

any ring

��

p irreducible
PID

ks

PID

��
〈p〉 prime

any ring +3

PID

KS

p prime
PID

ks

integral domain

KS

Question 6¨38 .
Use the theory developed in this section to describe how prime ideals and maximal ideals are

related in:

• an integral domain, and

• a principal ideal domain.

6¨3 Time to expand our domains

This section considers two ideas essential to factorization: unique factorization and divi-

sion. You might think that the ability to divide would give you a unique factorization, but

on the other hand, the distinction between prime and irreducible elements might also give

you pause. Indeed, the ability to divide and the ability to obtain a unique factorization are

not quite identical, a fact reflected in the structures of rings with these properties.

Unique factorization domains

The Fundamental Theorem of Arithmetic tells us that every integer factors uniquely into

a product of irreducible elements. This is not true in every ring; in Z
“

´
?
5
‰

, we factored

6 “ 2 ¨3 and 6 “
`

1`
?
´5

˘ `

1´
?
´5

˘

. Since 2, 3, 1`
?
´5, and 1´

?
´5 are all irreducible

in Z
?
´5, 6 factors two different ways as a product of irreducibles.

Definition 6¨39. A ring is a unique factorization domain if every nonzero, non-unit r P R

factors into irreducibles r “ p
a1
1 p

a2
2 ¨ ¨ ¨ p

am
m

, and if this factorization is unique up to order and

associates.

Another way of saying this is that if r also factors into irreducibles r “ q
b1
1 q

b2
2 ¨ ¨ ¨ q

bn
n

, then

m “ n and each p corresponds to a unique q via an associate c, according to the relationship

p “ cq, and the corresponding exponents are also the same, with ai “ bj.
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Aside from Z, what are some other unique factorization domains?

Example 6¨40. You showed in Question 6.17 that Z ris is a unique factorization domain.

Example 6¨41. Z rxs is a unique factorization domain. To see this requires two major steps.

(Existence) Let f P Z rxs. If the coefficients of f have a common factor, we can factor that out

easily; for example, 2x
2`4x “ 2 px2 ` 2xq. We know that integers have a unique factorization,

so we may assume, without loss of generality, that the terms of f have no common factor.

If f is irreducible, then we are done; it has a factorization into irreducibles. Otherwise,

we claim it factors into two polynomials of smaller degree. After all, if f factors as ag where

deg g “ deg f , then we must have deg a “ 0. That implies a P Z, so a is a common factor of f ’s

coefficients, a possibility we excluded! So if f factors, it factors as f “ gh, where deg g, deg h ă

deg f . Degrees are natural numbers, and they decrease each time we factor a polynomial

further, so Fact 1¨51 tells us this process must eventually end with polynomials that do not

factor; that is, with irreducibles. Hence f factors into irreducibles; say f “ p1 ¨ ¨ ¨ pm. Without

loss of generality, we may assume that none of the p’s are associates.

Of course, having a factorization into irreducibles doesn’t exclude the possibility of having

more than one factorization into irreducibles, so we turn our attention to. . .

(Uniqueness) Suppose we can also factor f into irreducibles as f “ q1 ¨ ¨ ¨ qn. The coefficients

of f are integers, and any integer a corresponds to a rational number a{1, so we can consider

f as an element of Q rxs. Why would we do this? By Theorem 4¨53(C) we know that Q rxs is a

principal ideal domain. You showed in Question 6.35 that irreducible elements of a principal

ideal domain are prime. Hence p1 divides qj for some j “ 1, . . . , n. Without loss of generality,

p1 | q1. Since q1 is also irreducible, p1 and q1 are associates; say p1 “ a1q1 for some unit a1.

The units of Q rxs are the nonzero elements of Q, so a1 P Qz t0u. And so forth; each pi is an

associate of a unique qj in the product. Without loss of generality, we may assume that pi is

an associate of qi. This forces m “ n.

Right now we have pi and qi as associates in Q rxs. If we can show that each ai “ ˘1, then

we will have shown that the corresponding pi and qj are associates inZ rxs as well, so thatZ rxs
is a unique factorization domain. Write a1 “ b{c where gcd pb, cq “ 1; we have p1 “ b{c ¨ q1.

Rewrite this as cp1 “ bq1. Remember that p1 and q1 are integer polynomials. What’s more, the

fact that gcd pb, cq “ 1 means we can infer b | p1 and c | q1 (see below). However, p1 and q1 are

irreducible, integer polynomials, so b and c must be integer units. The only integer units are

˘1, so p1 and q1 are associates.

The same argument can be applied to the remaining irreducible factors. Thus, the factor-

ization of f is unique up to order and associates.

This result generalizes to an important class of rings.

Theorem 6¨42. Every principal ideal domain is a unique factorization domain.

Proof. Let R be a principal ideal domain, and f P R.

(Existence) First we show that f has a factorization. Suppose f is not irreducible; then there

exist r1, r2 P R such that f “ r1r2 and f is an associate of neither. By Theorem 6¨21, 〈f 〉 Ĺ 〈r1〉
and 〈f 〉 Ĺ 〈r2〉. If r1 is not irreducible, then there exist r3, r4 P R such that r1 “ r3r4 and r1 is an

associate of neither. Again, 〈r1〉 Ĺ 〈r3〉 and 〈r1〉 Ĺ 〈r4〉. Continuing in this fashion, we obtain

an ascending chain of ideals

〈f 〉 Ĺ 〈r1〉 Ĺ 〈r3〉 Ĺ ¨ ¨ ¨ .
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We step out of this proof a moment to show that such a chain cannot continue indefinitely:

Lemma 6¨43. In any principal ideal domain R, an ascending chain of ideals A1 Ď A2 Ď A3 Ď ¨ ¨ ¨

eventually stabilizes at an ideal B.

Proof of Lemma 6¨43. Let B “ A1 Y A2 Y A3 Y ¨ ¨ ¨ . We claim B is an ideal of R. For any b P B and

r P R, we know b P Ai for some i P N`, and since Ai is an ideal of R, br P Ai; by inclusion, br P B.

On the other hand, let c P B; we know c P Aj for some j P N`. Let k “ max pi, jq; by inclusion,

b, c P Ak, which is an ideal, so b´ c P Ak, and by inclusion b´ c P B. We have shown that B is

closed under subtraction, and that it absorbs multiplication from R.

We have established that B is an ideal. By hypothesis, R is a principal ideal domain, so

B “ 〈b〉 for some b P B. By definition, b P Ai for some i P t1, 2, . . . u. Every element in B is a

multiple of b, so every element in B is also in Ai; that is, B Ď Ai. But Ai Ď B by definition of B.

The two sets are therefore equal. Likewise, Aj “ B for every j “ i ` 1, i ` 12, . . . . The chain

has become

A1 Ď A2 Ď ¨ ¨ ¨ Ď Ai´1 Ď Ai “ B “ Ai`1 “ Ai`1 “ ¨ ¨ ¨ .

As claimed, the ascending chain of ideals stabilized at B.

This property of ascending chains of ideals is similar to the Noetherian behavior we ob-

served inZ and other rings. Indeed, an ascending chain of ideals inZ corresponds to divisibil-

ity and factorization (Lemma 4¨43). The Well-Ordering Principle means that integer divisors

must eventually end with irreducible factors; thus, an ascending chain of integer ideals must

eventually end with a maximal ideal.

Question 6¨44 .
Consider the ideal 〈180〉 Ă Z. Use unique factorization to build a chain of ideals 〈180〉 “
〈a1〉 Ĺ 〈a2〉 Ĺ ¨ ¨ ¨ Ĺ 〈an〉 “ Z such that there are no ideals between 〈ai〉 and 〈ai`1〉. Identify

a1, a2, . . . clearly.

This property is sufficiently important that we give it a special name. Any ring where an

ascending chain of ideals eventually stabilizes is said to satisfy the ascending chain condi-
tion. We can also say it is a Noetherian ring.

Proof of Theorem 6¨42, continued: (Still on existence) By Theorem 6¨43, a principal ideal domain

satisfies the ascending chain condition; thus, the chain

〈f 〉 Ĺ 〈r1〉 Ĺ 〈r3〉 Ĺ ¨ ¨ ¨

must stabilize eventually. We have already explained that if ri factors, the chain continues

further, so it can stabilize only if we reach an irreducible polynomial. This holds for each

chain, regardless of whether it starts with r1, r2, r3, r4, . . . . All must terminate with irreducible

elements of the ring, which gives us f “ p1 ¨ ¨ ¨ pm where each pi is irreducible.

(Uniqueness) Now we show the factorization is unique. Suppose f also factors as f “

q1 ¨ ¨ ¨ qn where each qj is irreducible. Without loss of generality, m ď n. Recall that irre-

ducible elements are prime in a principal ideal domain (Corollary 6.35). Hence p1 divides one

of the qi; without loss of generality, p1 | q1. However, q1 is irreducible, so p1 and q1 must be
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associates; say c1p1 “ q1 for some unit c1 P R. Since we are in an integral domain, we can

cancel p1 and q1 from f “ f , obtaining

c1p2 ¨ ¨ ¨ pm “ q2 ¨ ¨ ¨ qn.

Since p2 is irreducible, hence prime, we can continue this process until we conclude with

c1c2 ¨ ¨ ¨ cm “ qm`1 ¨ ¨ ¨ qn. Now, the left hand side is a unit. By definition, irreducible elements

are not units, so the right hand side must also be a unit, but that is possible only if there are

no more irreducibles on the right hand side; that is, m “ n. Thus the factorization is unique

up to ordering and associates.

We chose an arbitrary element of an arbitrary principal ideal domain R, and showed that

it had only one factorization into irreducibles. Thus every principal ideal domain is a unique

factorization domain.

We can likewise extend a result from a previous section.

Question 6¨45 .
Show that in a unique factorization domain, irreducible elements are prime.

Corollary 6¨46. In a unique factorization domain:

• an element is irreducible iff it is prime; and

• an ideal is maximal iff it is prime.

Euclidean domains

We’d like to define a Euclidean domain as a ring with a valid division with quotient and

remainder. Once we have a precise notion of such division, we can use the Euclidean algo-
rithm to find greatest common divisors — so long as the remainder “shrinks.” But how can

we decide that the remainder “shrinks”, when not all rings have natural orderings?

What we will do is define a valuation function v from the nonzero elements of a ring to

the naturals, N, satisfying the desirable property

v prsq “ v prq v psq for all r, s P R.

Definition 6¨47. If R is an integral domain and v is a valuation function on R such that for

any a P R and any d P Rz t0u, we can find q, r P R such that a “ qd ` r and either r “ 0 or

v prq ă v pdq, then we call R a Euclidean domain.

Example 6¨48. In Z, the valuation function is the absolute value: v prq “ |r|. Observe that

v prsq “ |rs| “ |r| ¨ |s| “ v prq v psq, and for any a P Z and any d P Zz t0u we can find q, r P Z
such that a “ qd` r and r “ 0 or v prq “ |r| ă |d| “ v pdq.

Example 6¨49. We can also see this in Z ris. We defined division using the lattice; the valu-

ation function is effectively the norm. We have a “ qd ` r with r “ 0 or the norm of r less

than the norm of d.
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Question 6¨50 .
We can adapt the Euclidean algorithm (Theorem ) to any Euclidean domain by making just

one change: in step 1, replace

1. Let s “ max pm, nq and t “ min pm, nq.

by

1. If v pmq ě v pnq, let s “ m and t “ n; otherwise, let s “ n and t “ m.

Adapt the original proof of the Euclidean Algorithm to show that this one change does indeed

give us an algorithm that terminates correctly in any Euclidean domain.

Question 6¨51 .
Building on Question 6.50, explain why Bézout’s Lemma also applies in Euclidean domains: if

R is a Euclidean domain with valuation function v, r, s P R, and d is a gcd of r and s, then we

can find a, b P R such that ar` bs “ d, and v pdq ě v pd1q for any other common divisor d
1 P R

of x and y.

Question 6¨52 .
Use Bézout’s Lemma to show that if gcd pb, cq “ 1 and b | ac, then b | a. This argument should

apply in any Euclidean domain.

Polynomials in one variable also have a division. What is the valuation function when

dividing these polynomials? That is, what aspect of polynomials is guaranteed to decrease

when you divide them correctly? We use v prq “ deg r .

Question 6¨53 .
Use x

3`x`1 and x
2´1 as an example of polynomial division: find a quotient and a remainder

r with deg r ă deg px2 ´ 1q “ 2.

However, Z rxs is not a Euclidean domain if the valuation function is v prq “ deg r. After

all, if f “ 2 and g “ x, we cannot find q, r P Z rxs such that g “ qf ` r and deg r ă deg f . The

best we can do is x “ 0 ¨ 2` x, but deg x ą deg 2.

Question 6¨54 .
Use Z rxs to show that even if R is a unique factorization domain but not a principal ideal

domain, then we cannot always find r, s P R such that gcd pa, bq “ ra` sb for every a, b P R.

Over a ground field F, however, it’s another matter.

Fact 6¨55. If F is a field, then F rxs is a Euclidean domain with valuation function v pf q “ deg f for

all nonzero f P F rxs.

Why? The difference in the success of F rxs and the failure Z rxs is precisely in that fields

contain their multiplicative inverses, whereas in the example above Z was unable to provide

a multiplicative inverse for 2.
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To be precise, let f, g P F rxs. We claim that we can divide f by g using degree for the

valuation. If deg g ą deg f , let q “ 0 and r “ f , and we have f “ qg ` r with v prq ă v pgq,

as claimed. Suppose, then, that deg g ď deg f . Let a1 be the leading coefficient of f , b the

leading coefficient of g, m “ deg f , and n “ deg g. Let c1 “ a1b
´1

, ` “ m ´ n, and q1 “ c1x
`
.

Define

r1 “ f ´ q1g.

By construction, the leading term of q1g is

`

a1b
´1
˘

x
`
¨ bx

m
“ a1x

pm´nq`n
“ a1x

m
,

the same as the leading term of f . So the leading terms cancel, and deg r1 ă deg f .

If deg r1 ă deg g, then let q “ q1 and r “ r1 , and we are done. Otherwise, for i “ 1, 2, . . .

let ai`1 be the leading coefficient of ri, ci`1 “ ai`1b
´1

, `i “ deg ri ´ deg g, and qi`1 “ ci`1x
`
.

Define ri`1 “ ri ´ qi`1g, and in each case the leading terms will cancel, as above. We obtain

a sequence of polynomials f , r1, r2, . . . whose degrees constitute a decreasing sequence of

nonnegative integers. By Fact 1¨51, this sequence must eventually stabilize, but the only way

it stabilizes is if we can no longer divide by g. That happens only if the remainder eventually

is either zero or has a degree smaller than that of g.

This fact plugs a hole at which we’ve mostly hinted in the past, without explaining rig-

orously. In the past, we’ve pointed out that the Factor Theorem allows us to associate every

root α of a polynomial f with a factor x´α of f . That strongly suggests that a polynomial has at

most n roots (and exactly n roots, if you count multiplicities) but it doesn’t guarantee it; after

all, irreducibles need not be prime.

Question 6¨56 .
Let f P F rxs of degree n. Use Fact 6¨55 and the Factor Theorem to show that f has at most n

roots in F.

Fact 6¨57. If R is a Euclidean domain with valuation function v, r and s are nonzero elements of R, and

r | s, then v prq ď v psq.

Proof. Given the hypotheses, we can find q P R such that s “ qr. By substitution, v psq “

v pqrq “ v pqq v prq. These are all positive integers, so v prq ď v psq.

Theorem 6¨58. Every Euclidean domain is a principal ideal domain.

Proof. Let R be a Euclidean domain with respect to v, and let A be any non-zero ideal of R. Let

a1 P A. As long as A ‰ 〈ai〉, do the following:

• find bi P Az 〈ai〉;

• let ri be the remainder of dividing bi by ai;

– notice v priq ă v paiq;

• use the Euclidean algorithm to compute a gcd ai`1 of ai and ri;
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– notice v pai`1q ď v priq ă v paiq;

• this means 〈ai〉 Ĺ 〈ai`1〉; after all,

– as a gcd, ai`1 | ai, but

– ai - ai`1, lest ai | ai`1 imply v paiq ď v pai`1q ă v paiq;

• hence, 〈ai〉 Ĺ 〈ai`1〉 and v pai`1q ă v paiq.

By Fact 1¨51, the sequence v pa1q ą v pa2q ą ¨ ¨ ¨ cannot continue indefinitely, which means

that we cannot compute ai’s indefinitely. Let d be the final ai computed. If A ‰ 〈d〉, we could

certainly compute another ai, so it must be that A “ 〈d〉.

Corollary 6¨59. Every Euclidean domain is a unique factorization domain.

Proof. This is a consequence of Theorem 6¨42 and Theorem 6¨58.

The converse is false: Z rxs is a unique factorization domain, but we saw above that it is not

a Euclidean domain. On the other hand, its deficiencies do not extend to Q rxs, or polynomial

rings over other fields.

Corollary 6¨60. If F is a field, then F rxs is both a principal ideal domain and a unique factorization

domain.

However, the definition of a greatest common divisor that we introduced with Euclidean

domains certainly generalizes to unique factorization domains.

Theorem 6¨61. In a unique factorization domain, greatest common divisors are unique up to asso-

ciates.

Proof. LetR be a unique factorization domain, and let f, g P R. Let d,pdbe two gcds of f, g. Let d “

p
a1
1 ¨ ¨ ¨ p

am
m

be an irreducible factorization of d, andpd “ q
b1
1 ¨ ¨ ¨ q

bn
n

be an irreducible factorization

of pd. Since d and pd are both gcds, d | pd and pd | d. So p1 |
pd. By Theorem 6.45, irreducible

elements are prime in a unique factorization domain, so p1 | qi for some i “ 1, . . . , n. Without

loss of generality, p1 | q1. Since q1 is irreducible, p1 and q1 must be associates.

We can continue this argument with
d

p1
and

pd

p1
, so that d “ apd for some unit a P R. Since d

and pd are unique up to associates, greatest common divisors are unique up to associates.

Question 6¨62 .
Theorem 6¨61 says that gcd’s are unique up to associate in every unique factorization domain.

Suppose that P “ F rxs for some field F. Since P is a Euclidean domain (Question 6¨60), it is a

unique factorization domain, and gcd’s are unique up to associates (Theorem 6¨61). The fact

that the base ring is a field allows us some leeway that we do not have in an ordinary unique

factorization domain. For any two f, g P P, use the properties of a field to describe a method

to define a “canonical” gcd of f and g, and show that this canonical gcd is unique.
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Question 6¨63 .
Generalize the argument of Example 6¨41 to show that for any unique factorization domain

R, the polynomial ring R rxs is a unique factorization domain. Explain why this shows that for

any unique factorization domain R, the polynomial ring R rx1, . . . , xns is a unique factorization

domain. On the other hand, give an example that shows that if R is not a unique factorization

domain, then neither is R rxs.

6¨4 Field extensions

This section explores the relationship between polynomials, roots, and fields. Let F be any

field.

Extending a ring

Let R and S be rings, with R Ď S and s P S.

Question 6¨64 .
We define R rss as the smallest ring containing both R and s. Show that:

(a) R Ď R rss Ď S;

(b) R “ R rss if and only if s P R; and

(c) R rss “

!

ř

k

i“0
ris
i
: k P N, ri P R

)

.

We call R rss a ring extension of R. Sometimes, this is isomorphic to a polynomial ring

over R; in this case, s is transcendental over R. We won’t prove it, but it is fairly well known

that e and π are transcendental over Q, so Q res – Q rπs – Q rxs.
We are not interestined in transcendental extensions. We are interested in the case where

R rss is not isomorphic to R rxs; in that case, we call s algebraic, as it is the root of a polynomial

over R. (This may not be obvious, but we prove it in Theorem 6¨66 below.)

Example 6¨65. Let R “ R, S “ C, and s “ i “
?
´1. Then R ris is a ring extension of C.

Moreover, R ris is not isomorphic to a polynomial ring over R, since i
2` 1 “ 0, but x

2` 1 ‰ 0

in R rxs. Every element of R ris has the form a ` bi for some a, b P R, so we can view R ris as

a vector space of dimension 2 over R! The basis elements are u “ 1 and v “ i, and a ` bi “

au` bv.

We made a rather bold claim here about the isomorphism, so let’s pause to verify it before

proceeding.

Theorem 6¨66. With R, S, and s defined as above, R rss – R rxs if and only if s is not the root of a

polynomial over R rxs.
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Proof. Let φ : R rxs Ñ R rss by φ p
ř

rix
iq “

ř

ris
i
. We claim this is a homomorphism of rings:

addition is fairly obvious, and multiplication is harder only because it’s a notational disgrace:

φ

´´

ÿ

rix
i

¯´

ÿ

aix
i

¯¯

“ φ

¨

˝

ÿ

i`j“k

`

ri ` aj
˘

x
k

˛

‚“
ÿ

i`j“k

`

ri ` aj
˘

s
k
“

´

ÿ

ris
i

¯´

ÿ

ais
i

¯

.

That leaves the question of isomorphism. Suppose thatφ is an isomorphism. An isomorphism

is one-to-one, so we have φ p0q “ 0 “
ř

ris
i “ φ prix

iq only if ri “ 0 for each i. By definition, s

is not a root of a polynomial over R rxs. On the other hand, suppose s is the root of a nonzero

polynomial over R rxs; call it f pxq, and suppose f pxq “
ř

rix
i
. By definition of a root,

φ pf q “ φ

´

ÿ

rix
i

¯

“
ÿ

ris
i
“ f psq “ 0 “ φ p0q ,

which shows that φ is not one-to-one.

Let’s see if this result generalizes, at least for fields. For the rest of this section, we let F
and E be fields, with α P E. It’s helpful to look at polynomials whose leading coefficient is 1.

Extending a field to include a root

Notation 6¨67. We write F pαq for the smallest field containing both F and α.

Example 6¨68. We prove later, in the Fundamental Theorem of Algebra, thatR ris “ C, which

is a field. So, R ris “ R piq “ C. On the other hand, Q
“?
2
‰

Ĺ Q
`?
2
˘

Ĺ C.

Question 6¨69 .
Explain why Q

“?
2
‰

Ĺ Q
`?
2
˘

Ĺ C.

Theorem 6¨72 below generalizes the construction of complex numbers in Section 3¨1.

When we built the complex numbers, we worked modulo the polynomial x
2 ` 1 P R rxs.

That polynomial is irreducible over R, and by Theorem 6¨28 you now know that irreducible

ring elements generate maximal ideals. Really, then, you were building the quotient ring

R rxs { 〈x2 ` 1〉, which is modulo a maximal ideal.

Do quotient rings formed by maximal ideals always result in a field? Indeed they do.

Fact 6¨70. Let R be a ring with unity, and M a maximal ideal of R. Then R{M is a field.

Why? Let X P R{M be any nonzero coset; choose x P R such that X “ x` I. As a nonzero coset,

X ‰ M, so x R M (Lemma 4¨103). We claim that we can find Y P R{M such that XY ” 1 ` M.

Since Y has the form y`M, that means we can find y P R such that px` Mq py` Mq “ 1`M;

also by coset equality, xy ´ 1 P M. Written another way, we claim that we can find y P R and

m P M such that xy´ 1 “ m, or xy´ m “ 1.

To see why the claim is true, observe that xy P 〈x〉 , so xy ´ m P 〈x〉 ` M. This is the sum

of two ideals, which is also an ideal (Question 4.39). Let’s call it N “ 〈x〉` M. Now, x P N and

x R M implies that M Ĺ N; by hypothesis, M is maximal, giving us N “ R. As R is a ring with

unity, 1 P N. The definition of a sum of ideals tells us that 1 “ a`m for some a P 〈x〉 and some

m P M. By definition, we can find y P R such that a “ xy. Rewrite the equation 1 “ a ` m as

xy ´ 1 “ ´m, and we have xy ´ 1 P M, as desired. We finish the proof by reversing the first

paragraph: let Y “ y` M, and XY ” 1` M in R{M.
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Question 6¨71 .
The converse is also true: if R is a ring with unity, M is an ideal, and R{M is a field, then M

is a maximal ideal. Show why. Hint: You should just be able to reverse the main ideas of the

explanation above.

Theorem 6¨72. Suppose f P F rxs is irreducible.

(A) E “ F rxs { 〈f 〉 is a field.

(B) F is isomorphic to a subfield F1 of E.

(C) Letpf P E rys such that the coefficient of y
i
is ai ` 〈f 〉, where ai is the coefficient of x

i
in f . There

exists α P E such thatpf pαq “ 0.

In other words, E contains a root ofpf .

We call E an extension field of F. The isomorphism between F and F1 implies that we

can always assume that an irreducible polynomial over a field F has a root in another field

containing F. We will, in the future, think of E as a field containing F, rather than containing

a field isomorphic to F.

Proof. Denote I “ 〈f 〉.
(A) Let E “ F rxs {I. By Corollary 4¨53, F rxs is a principal ideal domain. Theorem 6¨28

states that if f is irreducible inF rxs, then I is maximal inF rxs. Fact 6¨70 states thatE “ F rxs {I
is a field.

(B) To see that F is isomorphic to

F1 “ ta` I : a P Fu Ď E,

use the function φ : F Ñ F1 by φ paq “ a ` I. You will show in Question 6.73 that φ is a ring

isomorphism.

(C) Let α “ y` I. Let a0, a1, . . . , an P F such that

f “ a0 ` a1x` ¨ ¨ ¨ ` anx
n
.

As defined in this Theorem,

pf “ pa0 ` Iq ` pa1 ` Iq y` ¨ ¨ ¨ ` pan ` Iq y
n
.

By substitution and the arithmetic of ideals,

pf pαq “ pa0 ` Iq ` pa1 ` Iq px` Iq ` ¨ ¨ ¨ ` pan ` Iq px` Iq
n

“ pa0 ` Iq ` pa1x` Iq ` ¨ ¨ ¨ ` panx
n
` Iq

“ pa0 ` a1x` ¨ ¨ ¨ ` anx
n
q ` I

“ f ` I.

By Theorem 4¨103, f`I “ I, sopf pαq “ I. Recall thatE “ F rxs {I; it follows thatpf pαq “ 0E.
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Question 6¨73 .
Show that the function φ defined in part (B) of the proof of Theorem 6¨72 is an isomorphism

between F and F1.

The result of this is that, given any irreducible polynomial over a field, we can factor it

symbolically as follows:

• let f0 “ f , E0 “ F, and i “0;

• repeat while fi ‰ 1:

– let Ei`1 “ Ei rxs {Ii;
– let αi “ x` Ii P Ei`1, where Ii “ 〈fi〉;
– by Theorem 6¨72, fi pαiq “ 0, so by the Factor Theorem, x´ αi is a factor of fi;

– let fi`1 P Ei`1 rxs such that fi “ px´ αiq fi`1;

– increment i.

Each pass through the loop generates a new root αi, and a new polynomial fi whose degree

satisfies the equation

deg fi “ deg fi`1 ´ 1.

Since we have a strictly decreasing sequence of natural numbers, the algorithm terminates

after deg f steps (Question 1¨51). We have thus described a way to factor irreducible polyno-

mials.

Corollary 6¨74 (Kronecker’s Theorem). Let f P F rxs and n “ deg f . There exists a field E such

that F Ď E, and f factors into linear polynomials over E.

Proof. We proceed by induction on deg f .

Inductive base: If deg f “ 1, then f “ ax ` b for some a, b P F with a ‰ 0. In this case, let

E “ F; then´a´1b P E is a root of f .

Inductive hypothesis: Assume that for any polynomial of degree n, there exists a fieldE such

that F Ď E, and f factors into linear polynomials in E.

Inductive step: Assume deg f “ n ` 1. By Question 6.63, F rxs is a unique factorization

domain, so let p be an irreducible factor of f . Let g P F rxs such that f “ pg. By Theorem 6¨72,

there exists a field D such that F Ĺ D and D contains a root α of p. Of course, if α is a root of

p, then it is a root of f : f pαq “ p pαq g pαq “ 0 ¨ g pαq “ 0. By the Factor Theorem, we can write

f “ px´ αq q pxq P D rxs. We now have deg q “ deg f ´ 1 “ n. By the inductive hypothesis,

there exists a field E such that D Ď E, and q factors into linear polynomials in E. But then

F Ĺ D Ď E, and f factors into linear polynomials over F.

Remember that we can write elements of R ris and Q
“?
2
‰

in the form ax ` b, where a

and b come from the underlying field. We have two free variables a and b to choose any ring

element we want as coefficients. There are infinitely many such polynomials, but with respect

to the field elements they behave a little like vectors. Is that always the case?
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Theorem 6¨75. Let f be an irreducible polynomial over the field F, and E “ F rxs { 〈f 〉. Then E is a

vector space over F of dimension d “ deg f .

Proof. Let I “ 〈f 〉. By Theorem 6¨72, we can consider F Ď E. Since f is irreducible, 〈f 〉 is

maximal, and E is a field. Any element of E has the form g` I where g P F rxs; we can use the

fact that F rxs is a Euclidean Domain to write

g “ qf ` r

where q, r P F rxs and deg r ă deg f “ d. Notice g ´ r P 〈f 〉 “ I, so coset equality assures us

that g` I “ r ` I. In other words, every element of E has the form

`

ad´1x
d´1
` ¨ ¨ ¨ ` a1x

1
` a0x

0
˘

` I

where ad´1, . . . , a1, a0 P F.

Finally, view each coset written in this form as the vector pad´1, . . . , a1, a0q over the field

F; define vector addition as the component-wise addition of the coset representatives and

scalar multiplication by b P F aspbad´1, . . . , ba1, ba0q. The vector and scalar properties of a

vector space are fairly straightforward; we leave them to you as an exercise. Once done, we

have proved that E is a vector space over F with basis

B “
 

x
0
` I, x

1
` I, . . . , x

d´1
` I

(

.

Question 6¨76 .
Show the remaining details that E is indeed a vector space over F.

Definition 6¨77. Let f , α, and E be as in Theorem 6¨72. Theorem 6¨75 tells us that deg f “

dimE. We call this number the degree of α.

It is sensible to say that deg f “ deg α since we showed in Theorem 6¨75 that deg f “

dim pF rxs { 〈f 〉q.

Example 6¨78. Let f pxq “ x4 ` 1 P Q rxs. We can construct a field D with a root α of f ; using

the proofs above,

D “ Q rxs { 〈f 〉 and α “ x` 〈f 〉 .

Notice that´α is also a root of f , so in fact, D contains two roots of f . If we repeat the proce-

dure, we obtain two more roots of f in a field E.

What if we extend a field more than once?

Theorem 6¨79. Suppose F is a field, E “ F pαq, and D “ E pβq. Then E is a vector space over F of

dimension deg α ¨ deg β, and in fact D “ F pγq for some root γ of a polynomial over F.
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Proof. By Theorem 6¨75, B1 “
 

α
0
, . . . , α

d1´1
(

and B2 “
 

β
0
, . . . , β

d2´1
(

are bases of E over

F and D over E, respectively, where d1 and d2 are the respective degrees of the irreducible

polynomials of which α and β are roots. We claim that B3 “
 

α
piq
β
pjq
: 0 ď i ă d1, 0 ď j ă d2

(

is a basis of D over F. To see this, we must show that it is both a spanning set — that is, every

element of D can be written as a linear combination of elements of B3 over F — and that its

elements are linearly independent.

To show that B3 is a spanning set, let γ P D. By definition of basis, there exist b0, . . . ,

bd2´1 P E such that

γ “ b0β
0
` ¨ ¨ ¨ ` bd2´1β

d2´1.

Likewise, for each j “ 0, . . . , d2 ´ 1 there exist a
pjq

0 , . . . , a
pjq

d1´1
P F such that

bj “ a
pjq

0 α
0
` ¨ ¨ ¨ ` a

pjq

d1´1
α
d1´1.

By substitution,

γ “

d2´1
ÿ

j“0

bjβ
j

“

d2´1
ÿ

j“0

˜

d1´1
ÿ

i“0

a
pjq

i
α
i

¸

β
j

“

d´1
ÿ

i“0

d´1
ÿ

j“0

a
pjq

i

`

α
i
β
j
˘

.

Hence, B3 is a spanning set of D over F.

To show that it is a basis, we must show that its elements are linearly independent. For

that, assume we can find c
pjq

i
P F such that

d1´1
ÿ

i“0

d2´1
ÿ

j“0

c
pjq

i

`

α
i
β
j
˘

“ 0.

We can rewrite this as an element of D over F by rearranging the sum:

d2´1
ÿ

j“0

˜

d1´1
ÿ

i“0

c
pjq

i
α
i

¸

β
j
“ 0.

Since B2 is a basis, its elements are linearly independent, so the coefficient of each β
j
must be

zero. In other words, for each j, we have

d1´1
ÿ

i“0

c
pjq

i
α
i
“ 0.

Of course, B1 is also a basis, so its elements are also linearly independent, so the coefficient of

each α
i
must be zero. In other words, for each j and each i,

c
pjq

i
“ 0.
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We took an arbitrary linear combination of elements of B3 over F, and showed that it is zero

only if each of the coefficients are zero. Thus, the elements of B3 are linearly independent.

Since the elements of B3 are a linearly independent spanning set, B3 is a basis of D over F.

If we count the number of elements of B3, we find that there are d1 ¨ d2 elements of the basis.

Hence,

dimFD “ |B3| “ d1 ¨ d2 “ deg α ¨ deg β.

We still have to show that D “ F pγq for some root γ P D of a polynomial f P F rxs. If

α P F pβq, then D “ F pβq, and we are done. Likewise if β P F pαq, then D “ F pαq. Otherwise,

we claim that γ “ α`β does the job. Why? By closure of addition, γ “ α`β P D, soD Ě F pγq
rather easily. For the reverse inclusion, we point out that if the the sequence

γ, γ
2
, γ

3
, . . .

consists entirely of elements that are linearly independent over F, then D cannot be finite

dimensional over F, as closure of multiplication means D must contain all these powers of γ.

We have just seen thatD is finite dimensional, so there must be elements c0, c1, . . . , cd1d2´1 P F
satisfying

c0 ` c1γ ` ¨ ¨ ¨ ` cd1d2´1γ
d1d2´1 “ 0.

Let f pxq “ c0`c1x`¨ ¨ ¨`cd1d2´1x
d1d2´1; we have f P F rxs and f pγq “ 0. We claim that cd1d2´1 ‰

0; if it were, then we could substitute x “ α ` y and obtain a polynomial g pyq “ f pα` yq P

rF pαqs rys “ E rys with β as a root, but of smaller degree than d2. This is a contradiction;

hence, the smallest degree possible for f is d1d2´1, which means (using what we just proved)

that

dimF pα` βq “ d1d2 “ pdimF Eq pdimEDq “ dimFD.

We have two vector spaces of identical dimension over F, one contained in the other; this is

possible if and only if the two are identical. Hence D “ F pα` βq.

Question 6¨80 .
Let F “ Q

`?
2
˘ `?

3
˘

.

(a) Find an polynomial f P Q rxs that is irreducible over Q but factors over F.

(b) What is dimQ F?

Question 6¨81 .
Factor x

3` 2 over Q using the techniques described in this section. You may use the fact that

if a “ bn, then x
n ` a “ px` bq pxn´1 ´ bxn´2 ` ¨ ¨ ¨ ` bn´1q.
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6¨5 Finite Fields I

We saw in Section 3¨4 that the characteristic of a finite ring or field tells us a great deal; for

instance, Zn is a field when n is irreducible. The finite fields that we have worked with so far

are of the form Zp , where p is irreducible.

Don’t jump to the conclusion that the size of a finite field is the same as the number of

elements! After all, in Example 3¨60 on page 90 we encountered a finite field, generated by

polynomials, that had characteristic 3 but 9 elements.

You might notice that 9 is a power of 3. This is no mere coincidence; the goal of this section

is to establish that every finite field has p
n

elements where p, n P N and p is irreducible.

Quick review

In a ring R without zero divisors, cr ‰ 0 for every c P N` and every r “ 0. Not all rings

satisfy this property; the characteristic of a ring is therefore 0 when the first property holds,

otherwise the smallest integer c satisfying c ¨ 1 “ 0, and c was the smallest positive integer

satisfying this property.

Example 6¨82. The rings Z,Q,R,C have characteristic zero.

The ringZ8 has characteristic 8. Why? Certainly 8¨r1s “ r8s “ r0s, and no smaller integer

n gives us n ¨ r1s “ r0s. In fact, the characteristic of Zn is n for any n P N`.

Let p P Z be irreducible. We know from Fact 3¨65 that Zp is a field. The same argument

we used in Example 6¨82 shows that the characteristic of Zp is p.

In the previous example, the characteristic of a finite ring turned out to be the number of

elements in the ring. This is not always the case.

Example 6¨83. Let R “ Z2 ˆ Z4 “ tpa, bq : a P Z2, b P Z4u, with addition and multiplication

defined in the natural way:

pa, bq ` pc, dq “ pa` c, b` dq

pa, bq ¨ pc, dq “ pac, bdq .

From Fact 2¨64 on page 67, R is a ring. It has eight elements,

R “ tpr0s
2
, r0s

4
q , pr0s

2
, r1s

4
q , pr0s

2
, r2s

4
q , pr0s

2
, r3s

4
q ,

pr1s
2
, r0s

4
q , pr1s

2
, r1s

4
q , pr1s

2
, r2s

4
q , pr1s

2
, r3s

4
qu .

However, the characteristic of R is not eight, but four:

• for any a P Z2, we know that 2a “ r0s
2

, so 4a “ 2 r0s
2
“ r0s

2
; and

• for any b P Z4, we know that 4b “ r0s
4
; thus

• for any pa, bq P R, we see that 4 pa, bq “ p4a, 4bq “ pr0s
2
, r0s

4
q “ 0R.

Since the characteristic of Z4 is 4, we cannot go smaller than that.
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Building finite fields

The standard method of building a finite field is different from what we will do here, but

the method used here is an interesting application of quotient rings.

Notation 6¨84. Our notation for a finite field with n elements is Fn.

Example 6¨85. You have already seen a finite field with nine elements (Example 3¨60); here

we build a finite field with sixteen elements.

To build F16, start with the polynomial ring Z2 rxs. We claim that f pxq “ x
4 ` x ` 1 does

not factor in Z2 rxs; if it did, it would have to factor as a product of either a linear and cubic

polynomial, or as a product of two quadratic polynomials. The former is impossible, since

neither 0 nor 1 is a root of f . As for the second, suppose that f “ px2 ` ax` bq px2 ` cx` dq,

where a, b, c, d P Z2. Expanding the product, we have

x
4
` x` 1 “ x

4
` pa` cq x

3
` pac ` b` dq x

2

` pad` bcq x` db.

Equal polynomials have the same coefficients for like terms, giving us a system of linear equa-

tions,

a` c “ 0

ac ` b` d “ 0

ad` bc “ 1

bd “ 1. (6.1)

Recall that b, d P Z2, so (6.1) means that b “ d “ 1; after all, the only other choice would be 0,

which would contradict bd “ 1. The system now simplifies to

a` c “ 0 (6.2)

ac ` �1` �1 “ ac “ 0

a` c “ 1 (6.3)

Equations 6.2 and 6.3 contradict! That shows f is irreducible, and Fact 3¨69 tells us that we

can build a field by taking Z2 rxsmodulo f .

How many elements does this field have? Let X P R{I; choose a representation g ` I of X

where g P R. Without loss of generality, we can assume that deg g ă 4, since if deg g ě 4 then

we can divide and use the remainder, instead. There are thus four terms in g: c3x
3
, c2x

2
, c1x

1
,

and c0x
0
. Each term’s coefficient is either r0s or r1s. This gives us 2

4 “ 16 distinct possibilities

for X, and so 16 elements of R{I,

I, 1` I,

x` I, x` 1` I,

x
2 ` I, x

2 ` 1` I,

x
2 ` x` I, x

2 ` x` 1` I,

x
3 ` I, x

3 ` 1` I,

x
3 ` x` I, x

3 ` x` 1` I,

x
3 ` x2 ` I, x

3 ` x2 ` 1` I,

x
3 ` x2 ` x` I, x

3 ` x2 ` x` 1` I.
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Question 6¨86 .
Construct a field with 27 elements, and list them all.

Recalling the link between irreducible elements and ideals, we point out that

• Z2 is a field, so

• Z2 rxs is a principal ideal domain (Theorem 4¨53(C)), so

• Z2 rxs is a unique factorization domain (Theorem 6¨42), so

• I “ xf y is a maximal ideal in R “ Z2 rxs (Theorem 6¨28(A)), and it just so happened that

• R{I turned out to be a field.

This illustrates Fact 6¨70.

You may have noticed that we obtained F9 by starting in Z3 rxs and using an irreducible

element of degree 2; we obtained F16 by starting in Z2 rxs and using an irreducible element of

degree 4; you (hopefully) obtainedF27 by starting inZ3 rxs and using a polynomial of degree 3.

In turn, each gave us 3
2
, 2

4
, and 3

3
elements; that is, p

n
elements where p is the characteristic

and n is the degree.

You might wonder if this also generalizes to arbitrary finite fields: that is,

• start with Zp rxs,

• find a polynomial of degree n that does not factor in that ring, then

• build a quotient ring such that

• the field has p
n

elements.

Yes and no. We do start with Zp, and all finite fields have p
n

elements.

Theorem 6¨87. Suppose that Fn is a finite field with n elements. Then n is a power of an irreducible

integer p, and the characteristic of Fn is p.

Proof of Theorem 6¨87: Let p be the characteristic of Fn; by Theorem 6¨75 on page 235, Fn is a

vector space over Zp. The space has finitely many elements, so it has finite dimension over

Zp. Let m “ dimFn. Let tu1, . . . ,umu be a basis of Fn over Zp; every linearly independent

element of Fn has the form a1u1` ¨ ¨ ¨` amum, where ai P Zp is arbitrary. As we have p choices

for each ai, there are p
m

possible vectors, so n “ |Fn| “ pm.

To construct Fpn for every irreducible p and every n P N`, however, we would need to find

a polynomial of degree n that is irreducible over Fp. It is not obvious that such polynomials

exist for every possible p and n. That is the subject of Section 6¨6.
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Question 6¨88 .
Does every infinite field have characteristic 0? To see why not, consider the set of all “rational

functions” over Z2,

R2 pxq “

"

f pxq

g pxq
: f, g P Z2 rxs and g ‰ 0

*

.

For instance,

0, x
2
, ,

1

x` 1
,

x` 1

x2 ` 1
P R2 pxq .

As you might expect, we consider two rational functions f{g and p{q equivalent if fq “ pg as

polynomials, so in fact

1

x` 1
“
x` 1

x2 ` 1
because x

2
` 1 “ px` 1q px` 1q .

(Don’t forget that in Z2 rxs we have 2x “ 0.)

(a) Show that the relation described above is in fact an equivalence relation.

(b) Show that the set of equivalence classes of this relation forms a field. We call this field

Z2 pxq.

(c) Explain why the characteristic of this field is 2.

(d) Explain why this means we can create an infinite field of characteristic p for any irre-

ducible integer p.

6¨6 Finite fields II

We saw in Section 6¨5 that if a field is finite, then its size is p
n

for some n P N` and some

irreducible integer p. In this section, we show the converse: for every irreducible integer p

and for every n P N`, there exists a field with p
n

elements. In this section, we show that for

any polynomial f P F rxs, where F is a field of characteristic p,

• there exists a field E containing one root of f ;

• there exists a field E where f factors into linear polynomials; and

• we can use this fact to build a finite field with p
n

elements for any irreducible integer p,

and for any n P N`.

Before we proceed to the main topic of this section, we need a concept that we borrow from

Calculus.

Definition 6¨89. Let f P F rxs, and write f “ a0`a1x`a2x
2`¨ ¨ ¨`anx

n
. The formal derivative

of f is

f
1
“ a1 ` 2a2x` ¨ ¨ ¨ ` nanx

n´1
.
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Proposition 6¨90 (The product rule). Let f P F rxs, and suppose f factors as f “ pq. Then

f
1 “ p1q` pq1.

Proof. Write p “
ř

m

i“0
aix

i
and q “

ř

n

j“0
bjx

j
. First we write f in terms of the coefficients of p

and q. By the distributive property,

f “ pq “

m
ÿ

i“0

«

aix
i

n
ÿ

j“0

bjx
j

ff

“

m
ÿ

i“0

«

n
ÿ

j“0

`

aibj

˘

x
i`j

ff

.

If we collect like terms, we can rewrite this as

f “

m`n
ÿ

k“0

»

–

¨

˝

ÿ

i`j“k

aibj

˛

‚x
k

fi

fl .

We can now examine the claim. By definition,

f
1
“

m`n
ÿ

k“1

»

–k

¨

˝

ÿ

i`j“k

aibj

˛

‚x
k´1

fi

fl .

On the other hand,

p
1
q` pq

1
“

˜

m
ÿ

i“1

iaix
i´1

¸˜

n
ÿ

j“0

bjx
j

¸

`

˜

m
ÿ

i“0

aix
i

¸˜

n
ÿ

j“1

jbjx
j´1

¸

“

m`n
ÿ

k“1

»

–

¨

˝

ÿ

i`j“k

iaibj

˛

‚x
k´1

fi

fl

`

m`n
ÿ

k“1

»

–

¨

˝

ÿ

i`j“k

jaibj

˛

‚x
k´1

fi

fl

“

m`n
ÿ

k“1

»

–

¨

˝

ÿ

i`j“k

pi` jq aibj

˛

‚x
k´1

fi

fl

“

m`n
ÿ

k“1

»

–

¨

˝

ÿ

i`j“k

kaibj

˛

‚x
k´1

fi

fl

“ f
1
.

We can now prove the main idea of this section.

The existence of finite fields
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Theorem 6¨91. For any irreducible integer p, and for any n P N`, there exists a field with p
n

elements.

Proof. First, suppose p “ 2. If n “ 1, the field Z2 proves the theorem. If n “ 2, the field

Z2{ 〈x2 ` x` 1〉 proves the theorem. We may therefore assume that p ‰ 2 or n ‰ 1, 2.

Let f “ xp
n

´ x P Zp rxs. By Kronecker’s Theorem, there exists a field D such that Zp Ď D,

and f factors into linear polynomials over D. Let E “ tα P D : f pαq “ 0u. We claim that E
has p

n
elements, and that E is a field.

To see that E has p
n

elements, it suffices to show that f has no repeated linear factors.

Recall that f “ xp
n

´ x. The definition of a formal derivative tells us that

f
1
“ p

n
x
p
n´1
´ 1.

In Zp, pn “ 0, so we can simplify f
1
as

f
1
“ 0´ 1 “ ´1.

When we assumed that f had a repeated linear factor, we concluded that x ´ a divides f
1
.

However, we see now that f
1 “ ´1, and x´a certainly does not divide´1, since deg px´ aq “

1 ą 0 “ deg p´1q. That assumption leads to a contradiction; so, f has no repeated linear

factors.

We now show that E is a field. By its very definition, E consists of elements of D; thus,

E Ď D. We know that D is a field, and thus a ring; we can therefore use the Subring Theorem

to show thatE is a ring. Once we have that, we have to find an inverse for any nonzero element

of E.

For the Subring Theorem, let a, b P E. We must show that ab and a´ b are both roots of f ;

they would then be elements ofE by definition of the latter. You will show in Question 6.93(a)

that ab is a root of f . For subtraction, we claim that

pa´ bq
p
n

“ a
p
n

´ b
p
n

.

We proceed by induction.

Inductive base: Assume n “ 1. Observe that

pa´ bq
p
“ a

p
`

p´1
ÿ

i“1

p´1q
i

ˆ

p

i

˙

a
i
b
p´i
` p´1q

p
b
p
.

By assumption, p is an irreducible integer, so its only divisors in N are itself and 1. For any

i P N`, then, the integer
ˆ

p

i

˙

“
p!

i! pp´ iq!

can be factored into the two integers

ˆ

p

i

˙

“ p ¨
pp´ 1q!

i! pp´ iq!
;



CHAPTER 6. FACTORIZATION 244

the fraction
pp´1q!

i!pp´iq!
is an integer precisely because no element of the denominator can divide

p. Using Question 6.93(b), we can rewrite pa´ bq
p

as

pa´ bq
p
“ a

p
`

p´1
ÿ

i“1

p´1q
i p!

i! pp´ iq!
a
i
b
p´i
` p´1q

p
b
p

“ a
p
` p ¨

p´1
ÿ

i“1

p´1q
i pp´ 1q!

i! pp´ iq!
a
i
b
p´i
` p´1q

p
b
p

“ a
p
` 0` p´1q

p
b
p

“ a
p
` p´1q

p
b
p
.

If p “ 2, then´1 “ 1, so either way we have a
p ´ bp, as desired.

Inductive hypothesis: Assume that pa´ bq
p
n

“ ap
n

´ bp
n

.

Inductive step: Applying the properties of exponents,

pa´ bq
p
n`1

“

”

pa´ bq
p
n
ı

p

“
`

a
p
n

´ b
p
n˘p

“ a
p
n`1

´ b
p
n`1

,

where the final step uses the base case. Thus

pa´ bq
p
n

´ pa´ bq “
`

a
p
n

´ b
p
n˘

´ pa´ bq .

Again, a and b are roots of f , so a
p
n

“ a and b
p
n

“ b, so

pa´ bq
p
n

´ pa´ bq “ pa´ bq ´ pa´ bq “ 0.

We see that a´ b is a root of f , and therefore a´ b P E.

Finally, we show that every nonzero element of E has an inverse in E. Let a P Ez t0u; by

definition, a P D. Since D is a field, there exists an inverse of a in D; call it b. By definition of

E, a is a root of f ; that is, a
p
n

´ a “ 0. Multiply both sides of this equation by b
2
, and rewrite

to obtain a
p
n´2 “ b. Using the substitutions b “ ap

n´2
and a

p
n

“ a in f pbq shows that:

f pbq “ b
p
n

´ b

“
`

a
p
n´2

˘p
n

´ a
p
n´2

“
`

a
p
n

¨ a
´2
˘p

n

´ a
p
n´2

“
`

a
p
n˘p

n `

a
p
n˘´2

´ a
p
n´2

“ a
p
n

¨ a
´2
´ a

p
n´2

“ a
p
n´2
´ a

p
n´2

“ 0.

We have shown that b is a root of f . By definition, b P E. Since b “ a´1 and awas an arbitrary

element of Ez t0u, every nonzero element of E has its inverse in E.

We have shown that
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• E has p
n

elements;

• it is a ring, since it is closed under multiplication and subtraction; and

• it is a field, since every nonzero element has a multiplicative inverse in E.

In other words, E is a field with p
n

elements.

Euler’s theorems

The existence of finite fields means affords us some nice theorems that generalize Euler’s

Theorem.

Euler’s Theorem for arbitrary finite fields. If p is irreducible and f pxq “ xp
n

´x, then f paq “

0 for all a P Zp.
The proof is an exercise:

Question 6¨92 .
Let Fn be a finite field of size n. (We now know such critters exist.)

(a) Use a corollary to Lagrange’s Theorem to explain why a
n´1 “ 1 for every nonzero a P Fn.

(b) Explain how we know n “ pk for some k P N`.

(c) Combine (a) and (b) to show Euler’s Theorem for arbitrary finite fields.

We can view this result a different way, too.

Euler’s Theorem for polynomials. Let p be an irreducible integer. For all a P Fp and for all

n P N`, a
p
n

´ a “ 0, and thus a
p
n

“ a and in Zp rxs, we have

x
p
´ x “

ź

aPZp

px´ aq .

Proof. Recall the F rxs is a unique factorization domain for any field F; Zp is a field, so x
p ´ x

has a unique factorization. By Euler’s Theorem for arbitrary finite fields, a is a root of x
p ´ x

for every a P Zp – Fp. Apply the Factor Theorem to complete the proof.

We can generalize Euler’s Theorem a little further.

Fermat’s Little Theorem on polynomials. Let k P N`. In Fpk rxs, we have

x
p
k

´ x “
ź

aPF
pk

px´ aq .

Proof. We first claim that every a P Fpk is a root of x
p
k

´ x. This is obvious when a “ 0,

so assume a lies in Fpkz t0u. By definition, the nonzero elements of Fpk form a group under

multiplication. By Corollary 4¨113 to Lagrange’s Theorem, the order of a divides
ˇ

ˇFpkz t0u
ˇ

ˇ “

p
k ´ 1, so a

p
k´1 “ 1. Multiplying both sides by a, we have a

p
k

“ a, which we can rewrite as

a
p
k

´ a “ 0. By definition, a is a root of x
p
d

´ x. The Factor Theorem implies that x ´ a is a

factor of x
p
k

´ x. If a, b P Fpk are distinct, so are x´ a, x´ b P Fpk , so there are at least p
k

such

factors. The fact that Fpk rxs is a unique factorization domain completes the proof.
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Question 6¨93 .
Let p be an irreducible integer and f pxq “ xp

n

´ x P Zp rxs. Define E “ Zp rxs { 〈f 〉.

(a) Show that pa “ 0 for all a P E.

(b) Show that if f paq “ f pbq “ 0, then f pabq “ 0.

6¨7 Polynomial factorization in finite fields

We now turn to the question of factoring polynomials in R rxs. This material comes primarily

from [3]. Keep in mind that the goal of these notes is merely to show you how the ideas studied

so far combine into this problem, so the algorithms we study won’t be cutting-edge practice,

though they’re not bad, either.

This section factors polynomials whose coefficients come from finite fields, as that is

somewhat easier than factoring polynomials whose coefficients come from the integers. We

put that off to the next section.

Factorization of f P R rxs requires the following steps.

• Squarefree factorization is the process of removing multiples of factors of f ; that is,

if g
a | f , then we want to work with

f

ga´1 , of which only g is a factor.

• Distinct degree factorization is the process of factoring a squarefree polynomial f into

polynomials g1, . . . , gm such that if gi factors as gi “ h1 ¨ ¨ ¨ hn, then deg h1 “ ¨ ¨ ¨ deg hn.

• Equal degree factorization is the process of factoring each distinct degree factor gi

into its equal degree factors h1, . . . , hn.

Example 6¨94. Suppose R “ Z2. Let

f pxq “ x
16
` x

13
` x

11
` x

10
` x

9
` x

8
` x

7
` x

5
` x

2
.

You can see that g pxq “ x
2

is a factor of f , so f is not squarefree. (It is not typically this

easy.) Squarefree factorization identifies this factor and removes it, reducing the problem to

factoring

g pxq “ x
2

and h pxq “ x
14
` x

11
` x

9
` x

8
` x

7
` x

6
` x

5
` x

3
` 1.

Distinct degree factorization factors h as

`

x
6
` x

5
` x

4
` x

3
` x

2
` x` 1

˘ `

x
8
` x

7
` x

5
` x

4
` x

3
` x` 1

˘

. (6.4)

Equal degree factorization focuses on the second two factors, giving us

“`

x
3
` x` 1

˘ `

x
3
` x

2
` 1

˘‰ “`

x
4
` x` 1

˘ `

x
4
` x

2
` 1

˘‰

. (6.5)

Notice how the second and third factors in (6.5), which come from the second factor of (6.4),

have the same degree. Likewise, the second and third factors of (6.5), which have the same

degree, come from the third factor of (6.4).
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For the rest of this section, we assume that p P N is irreducible and f P Zp rxs.

It would be nice to proceed in order, but the approach we take requires us to perform

distinct- and equal-degree factorization first.

Distinct degree factorization.

We accomplish distinct-degree factorization via Fermat’s Little Theorem on polyomials.

Example 6¨95. Suppose p “ 5. You already know from basic algebra that

x
5
´ x “ x

`

x
4
´ 1

˘

“ x
`

x
2
´ 1

˘ `

x
2
` 1

˘

“ x px´ 1q px` 1q
`

x
2
` 1

˘

.

We are working in Z5, so 1 “ ´4. Thus x ` 1 “ x ´ 4, and px´ 2q px´ 3q “ px2 ´ 5x` 6q “

px2 ` 1q. This means that we can write

x
5
´ x “ x px´ 1q px´ 2q px´ 3q px´ 4q “

ź

aPZ5

px´ aq ,

as claimed.

Generalization of Fermat’s Little Theorem for polynomials. Let k, q P N`, and a “ qk.

Then x
p
a

´ x is the product of all monic irreducible polynomials in Fpk rxs whose degree divides q.

Proof. Let f P Fpk rxs be monic and irreducible of degree n. We will show that

f |
`

x
p
a

´ x
˘

ðñ n | a.

Assume first that f divides x
p
a

´ x. By unique factorization and Fermat’s Little Theorem on

polynomials, f factors into linear polynomials x ´ c, where c P Fpa . Let α be any one of the

corresponding roots, and let E “ Fpk pαq. Using the basis B of Theorem 6¨75, we see that

|E| “
`

p
k
˘n

“ p
kn

, since it has |B| “ n basis elements, and p
k

choices for each coefficient of a

basis element.

Now, Fpa is the extension of E by the remaining roots of x
p
a

´ x, one after the other. By

reasoning similar to that for E, we see that p
a “

ˇ

ˇFpa
ˇ

ˇ “ |E|b “ p
bkn

for some b P N`.

Rewriting the extreme sides of that equation, we have p
bkn “ p

a “ p
qk

, whence bkn “ qk and

n | q.

Conversely, assume n | q. A straightforward computation verifies that

p
q
´ 1 “ pp

n
´ 1q

`

p
q´n
` p

q´2n
` ¨ ¨ ¨ ` p

n
` 1

˘

.

Let r “ pq´n ` pq´2n ` ¨ ¨ ¨ ` pn ` 1; a straightforward computation verifies that

x
p
q´1
´ 1 “

`

x
p
n´1
´ 1

˘ `

x
ppn´1qpr´1q

` x
ppn´1qpr´2q

` ¨ ¨ ¨ ` x
p
n´1
` 1

˘

.
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Algorithm 6.1 Distinct degree factorization

inputs
f P Zp rxs, squarefree and monic, of degree n ą 0

outputs
p1, . . . , pm P Zp rxs, a distinct-degree factorization of f

do
Let h0 “ x

Let f0 “ f

Let i “ 0

while fi ‰ 1 do
Increment i

Let hi be the remainder of division of h
p

i´1 by f

Let pi “ gcd phi ´ x, fi´1q

Let fi “
fi´1

pi

Let m “ i

return p1, . . . , pm

Rewrite this as

x
p
q

´ x “
`

x
p
n

´ x
˘ `

x
ppn´1qpr´1q

` x
ppn´1qpr´2q

` ¨ ¨ ¨ ` x
p
n´1
` 1

˘

. (6.6)

Construct Fpkn “ Fpk rxs { 〈f 〉, and let α be the corresponding root x` 〈f 〉 of f . Fermat’s Little

Theorem tells us α
p
n

“ α. Equation (6.6) tells us x
p
n

´ x divides x
p
q

´ x, so x ´ α is also a

root of x
p
q

´ x. Similar reasoning implies x
p
q

´ x divides x
p
a

´ x, so α is also a root of x
p
a

´ x.

Thus, px´ αq | gcd
`

f, x
p
a

´ x
˘

in Fpn . By hypothesis, f is irreducible; the only divisors it has

are 1 and f itself. But x´ α divides the gcd, implying that gcd
`

f, x
p
a

´ x
˘

“ f ; in other words,

f |
`

x
p
a

´ x
˘

, as claimed.

The Generalization of Fermat’s Little Theorem for polynomials suggests an “easy” algo-

rithm to compute the distinct degree factorization of f P Zp rxs. See algorithm 6.1.

Theorem 6¨96. Algorithm 6.1 terminates with each pi the product of the factors of f that are all of

degree i.

Proof. Note that the second and third steps of the loop are an optimization of the computation

of gcd

´

x
p
i

´ x, f

¯

; you can see this by thinking about how the Euclidean algorithm would

compute the gcd. So termination is guaranteed by the fact that eventually deg h
p

i
ą deg fi:

the generalization of Fermat’s Little Theorem for polynomials implies that at this point, all

distinct degree factors of f have been removed. Correctness is guaranteed by the fact that in

each step we are computing gcd

´

x
p
i

´ x, f

¯

.

Example 6¨97. Returning to Z5 rxs, let’s look at

f “ x px` 3q
`

x
3
` 4

˘

.

Do not assume whether this factorization is into irreducible elements. Expanded, f “ x
5 `

3x
4 ` 4x2 ` 2x. When we plug it into algorithm 6.1, the following occurs:
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• For i “ 1,

– the remainder of division of h
5

0
“ x5 by f is h1 “ 2x

4 ` x2 ` 3x;

– p1 “ x3 ` 2x2 ` 2x;

– f1 “ x2 ` x` 1.

• For i “ 2,

– the remainder of division of h
5

1
“ 2x20 ` x10 ` 3x5 by f is h2 “ x;

– p2 “ gcd p0, f1q “ f1;

– f2 “ 1.

Thus the distinct degree factorization of f is

f “
`

x
3
` 2x

2
` 2x

˘ `

x
2
` x` 1

˘

.

This demonstrates that the original factorization was not into irreducible elements, since

x px` 3q is not equal to either of the two new factors, so that x
3 ` 4 must have a linear factor

as well.

Question 6¨98 .
Compute the distinct degree factorization of f “ x

5 ` x4 ` 2x3 ` 2x2 ` 2x ` 1 in Z5 rxs. This

factorization is in irreducible elements; explain how we know this.

Question 6¨99 .
Suppose that we don’t want the factors of f , but only its roots. Explain how we can use

gcd pxp ´ x, f q to give us the maximum number of roots of f in Zp. Use the polynomial from

Example 6.98 to illustrate your argument.

Equal degree factorization

Once we have a distinct degree factorization of f P Zp rxs as f “ p1 ¨ ¨ ¨ pm, where each pi is

the product of the factors of degree i of a squarefree polynomial f , we need to factor each pi

into its irreducible factors. Here we consider the case that p is an odd prime; the case where

p “ 2 requires different methods.

Take any pi, and let its factorization into irreducible polynomials of degree i be pi “

q1 ¨ ¨ ¨ qn. Suppose we select at random some h P Zp rxs with deg h ă n. If pi and h share a

common factor, then gcd ppi, hq ‰ 1, and we have found a factor of pi. Otherwise, we will try

the following. Since each qj is irreducible and of degree i,
〈
qj

〉
is a maximal ideal in Zp rxs, so

Zp rxs {
〈
qj

〉
is a field with p

i
elements. Denote it by F.

Lemma 6¨100. Let G be the multiplicative group of nonzero elements of F; that is, G “ Fz t0u. Let

a “
p
i´1

2
, and let φ : GÑ G by φ pgq “ ga.

(A) φ is a group homomorphism of G.
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(B) Its image, φ pGq, consists of the square roots of unity.

(C) |kerφ| “ a.

Proof. From the definition of a field, G is an abelian group under multiplication.

(A) Let g, h P G. Since G is abelian,

φ pghq “ pghq
a
“ pghq pghq ¨ ¨ ¨ pghq
loooooooomoooooooon

a copies

“ pg ¨ g ¨ ¨ ¨ gq
loooomoooon

a copies

¨ ph ¨ h ¨ ¨ ¨ hq
loooomoooon

a copies

“ g
a
h
a
“ φ pgqφ phq .

(B) Let y P φ pGq; by definition, there exists g P G such that

y “ φ pgq “ g
a
.

Corollary 4¨113 to Lagrange’s Theorem, with the fact that |G| “ pi ´ 1, implies that

y
2
“ pg

a
q
2
“

ˆ

g
p
i´1

2

˙

2

“ g
p
i´1
“ 1.

We see that y is a square root of unity. We chose y P φ pGq arbitrarily, so every element of φ pGq

is a square root of unity.

(C) Observe that g P kerφ implies g
a “ 1, or g

a ´ 1 “ 0. That makes g an ath root of

unity. Since g P kerφwas chosen arbitrarily, kerφ consists of ath roots of unity. By the Factor

Theorem, each g P kerφ corresponds to a linear factor x ´ g of x
a ´ 1. There can be at most

a such factors, so there can be at most a distinct elements of kerφ; that is, |kerφ| ď a. Since

φ pGq consists of the square roots of unity, similar reasoning implies that there are at most

two elements in φ pGq. Since G has p
i ´ 1 elements, the Isomorphism Theorem tells us that

G{kerφ – φ pGq, so |G{kerφ| “ |φ pGq|. That gives us

p
i
´ 1 “ |G| “ |kerφ| |φ pGq| ď a ¨ 2 “

p
i ´ 1

�2
¨ �2 “ p

i
´ 1.

The inequality is actually an equality, forcing |kerφ| “ a.

To see how Lemma 6¨100 is useful, consider a nonzero coset in F,

rhs “ h`
〈
qj

〉
P F.

As a field, F can have no zero divisors, so h can have no common factor with qj. As qj is irre-

ducible, this gives us h R
〈
qj

〉
, so rhs ‰ 0F, so rhs P G. Raising rhs to the ath power gives us an

element of φ pGq. Part (B) of the lemma tells us that φ pGq consists of the square roots of unity

in G, so rhs
a

is a square root of 1F, either 1F or ´1F. If rhs
a
“ 1F, then rhs

a
´ 1F “ 0F. Recall

that F is a quotient ring, and rhs “ h`
〈
qj

〉
. Thus

ph
a
´ 1q `

〈
qj

〉
“ rhs

a
´ 1F “ 0F P

〈
qj

〉
.
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Algorithm 6.2 Equal-degree factorization

inputs
f P Zp rxs, where p is irreducible and odd, f is squarefree, n “ deg f , and all factors of f

are of degree d

outputs
a factor qi of f

do
Let q “ 1

while q “ 1 do
Let h P Zp rxs zZp, with deg h ă n

Let q “ gcd ph, f q

if q “ 1 then

Let h be the remainder from division of h
p
d´1

2 by f

Let q “ gcd ph´ 1, f q

return q

This is a phenomenal consequence! Equality of cosets implies that h
a ´ 1 P

〈
qj

〉
, so qj divides

h
a´ 1. This means that h

a´ 1 has at least qj in common with pi! Taking the greatest common

divisor of h
a ´ 1 and pi extracts the greatest common factor, which may be a multiple of qj.

This leads us to Algorithm 6.2. Note that there we have written f instead of pi and d instead

of i.

Algorithm 6.2 is a little different from previous algorithms, in that it requires us to se-

lect a random element. Not all choices of h have either a common factor with pi, or an im-

age φ prhsq “ 1F. To get q ‰ 1, we have to be “lucky”. If we’re extraordinarily unlucky,

Algorithm 6.2 might never terminate. But this is highly unlikely, for two reasons. First,

Lemma 6¨100(C) implies that the number of elements g P G such that φ pgq “ 1 is a. We

have to have gcd ph, piq “ 1 to be unlucky, so rhs P G. Observe that

a “
p
i ´ 1

2
“
|G|

2
,

so we have less than 50% probability of being unlucky, and the cumulative probability de-

creases with each iteration. In addition, we can (in theory) keep track of which polynomials

we have computed, ensuring that we never use an “unlucky” polynomial more than once.

Keep in mind that Algorithm 6.2 only returns one factor, and that factor might not be

irreducible! This is not a problem, since

• we can repeat the algorithm on f {g to extract another factor of f ;

• if deg q “ d, then q is irreducible; otherwise;

• d ă deg q ă n, so we can repeat the algorithm in q to extract a smaller factor.

Since the degree of f or q decreases each time we feed it as input to the algorithm, the Well-

Ordering Principle implies that we will eventually conclude with an irreducible factor.
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Example 6¨101. Recall from Example 6¨97 that

f “ x px` 3q
`

x
3
` 4

˘

P Z5 rxs

gave us the distinct degree factorization

f “
`

x
3
` 2x

2
` 2x

˘ `

x
2
` x` 1

˘

.

The second polynomial is in fact the one irreducible quadratic factor of f ; the first polynomial,

p1 “ x
3 ` 2x2 ` 2x, is the product of the irreducible linear factors of f . We use algorithm 6.2

to factor the linear factors.

• We have to pick h P Z5 rxs with deg h ă deg p1 “ 3. Let h “ x2 ` 3.

– Using the Euclidean algorithm, we find that h and f are relatively prime. (In par-

ticular, r1 “ f ´ px` 2q h “ 4x` 4, r2 “ h´ p4x` 1q r1 “ 4.)

– The remainder of division of h
5
1´1

2 by f is 3x
2 ` 4x` 4.

– Now q “ gcd pp3x2 ` 4x` 4q ´ 1, p1q “ x` 4.

– Return x` 4 as a factor of p1.

We did not know this factor from the outset! In fact, f “ x px` 3q px` 4q px2 ` x` 1q.

As with Algorithm 6.1, we need efficient algorithms to compute gcd’s and exponents in

order to perform Algorithm 6.2. Doing these as efficiently as possible is beyond the scope of

these notes, but we do in fact have relatively efficient algorithms to do both: the Euclidean

algorithm (Algorithm 5.1 on page 181) and fast exponentiation (Section 5¨5).

Question 6¨102 .
Use the distinct degree factorization of Example 6¨97 and the fact that f “ x px` 3q px3 ` 4q

to find a complete factorization of f , using only the fact that you now know three irreducible

factors f (two linear, one quadratic).

Squarefree factorization over a field of nonzero characteristic

Another approach to squarefree factorization is to combine the previous two algorithms

in such a way as to guarantee that, once we identify an irreducible factor, we remove all pow-

ers of that factor from f before proceeding to the next factor. See Algorithm 6.3.

Example 6¨103. In Question 6.104 you will try (and fail) to perform a distinct degree factor-

ization on f “ x
5 ` x3 using only Algorithm 6.1. Suppose that we use algorithm 6.3 to factor

f instead.

• Since f is monic, b “ 1.

• With i “ 1, distinct-degree factorization gives us h1 “ 4x
3
, q1 “ x

3 ` x, f1 “ x
2
.
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Algorithm 6.3 Squarefree factorization in Zp rxs
inputs
f P Zp rxs

outputs
An irreducible factorization f “ bp

α1
1 ¨ ¨ ¨ p

αm
m

do
Let b “ lc pf q

Let h0 “ x

Let f0 “ b
´1 ¨ f {After this step, f is monic}

Let i “ j “ 0

while fi ‰ 1 do
{One step of distinct degree factorization}

Increment i

Let hi be the remainder of division of h
p

i´1 by f

Let qi “ gcd phi ´ x, fi´1q

Let fi “
fi´1

qi

{Find the equal degree factors of qi}

while qi ‰ 1 do
Increment j

Find a degree-i factor pj of qi using algorithm 6.2

Let qi “
qi

pj

{Divide out all copies of pj from fi}

Let αj “ 1

while pj divides fi do
Increment αj

Let fi “
fi

pj

Let m “ j

return b, p1, . . . , pm, α1, . . . , αm
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– Suppose that the first factor that Algorithm 6.2 gives us is x. We can then divide

f1 twice by x, so αj “ 3 and we conclude the innermost loop with f1 “ 1.

– Algorithm 6.2 subsequently gives us the remaining factors x ` 2 and x ` 3, none

of which divides f1 more than once..

The algorithm thus terminates with b “ 1, p1 “ x, p2 “ x`2, p3 “ x3, α1 “ 3, and α2 “ α3 “ 1.

Question 6¨104 .
Explain why Algorithm 6.1 might not work for f “ x

5 ` x3. Then try the algorithm on f in

Z5 rxs, and explain why the result is incorrect.

6¨8 Factoring integer polynomials

We conclude, at the end of this chapter, with factorization in Z rxs. The previous section

showed how to factor a polynomial in an arbitrary finite field whose characteristic is an odd

irreducible integer. We can use this technique to factor a polynomial f P Z rxs. As in the

previous section, this method is not necessarily the most efficient, but it does illustrate tech-

niques that are used in practice.

We show this using the example

f “ x
4
` 8x

3
´ 33x

2
` 120x´ 720.

Suppose f factors as

f “ p
α1

1
¨ ¨ ¨ p

αm

m
.

Now let p P N` be odd and irreducible, and considerpf P Zp rxs such that the coefficients ofpf

are the coefficients of f mapped to their cosets in Zp. That is,

pf “ r1s
p
x
4
` r8s

p
x
3
` r´33s

p
x
2
` r120s

p
x` r´720s

p
.

By the properties of arithmetic in Zp, we know thatpf will factor as

pf “ pp
α1

1
¨ ¨ ¨pp

αm

m
,

where the coefficients of eachppi are the coefficients of pi mapped to their cosets in Zp. As we

will see, these ppi might not be irreducible for each choice of p; we might have instead

pf “ pq
β1

1 ¨ ¨ ¨pq
βn

n

where eachpqi divides someppj. Nevertheless, we will be able to recover the irreducible factors

of f even from these factors; it will simply be more complicated. There are two possible so-

lutions to this issue: using one big irreducible p, or several small irreducibles along with the

Chinese Remainder Theorem.

Squarefree factorization over a field of characteristic zero

We first pause to discuss squarefree factorization in this context. When our ground field

has characteristic 0, we can compute the formal derivative f
1
of f , then g “ gcd pf, f 1q. The

quotient
f

g
is then squarefree.
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Example 6¨105. Recall the polynomial of Example 6¨94,

f pxq “ x
16
` x

13
` x

11
` x

10
` x

9
` x

8
` x

7
` x

5
` x

2
.

Its formal derivative is

f
1
pxq “ 16x

15
` 13x

12
` 11x

10
` 10x

9
` 9x

8
` 8x

7
` 7x

6
` 5x

4
` 2x.

The Euclidean algorithm tells us g “ gcd pf, f 1q “ x, so f is not squarefree; as indicated earlier,

we can continue by factoring both g (which in this case is trivial) and h “ f{g.

This example also explains why we didn’t use the formal derivative in the previous section:

over Z2 a lot of terms in the derivative become zero! Which ones? the terms derived from

those with even powers:

f
1
pxq ” x

12
` x

10
` x

8
` x

6
` x

4
.

In this case, the gcd is x
2
, and while we can factor that out of f , we cannot reduce x

2
itself to

squarefree form, because its derivative is 2x ” 0.

Question 6¨106 .
Show that

f

g
is squarefree if f P C rxs, f 1 is the usual derivative from Calculus, and g “

gcd pf, f 1q.

One big irreducible.

One approach is to choose an odd, irreducible p P N` sufficiently large that, once we

factorpf , the coefficient ai of any pi is either the corresponding coefficient inppi or (on account

of the modulus) the largest negative integer corresponding to it. Sophisticated methods to

obtain a good p exist, but for our purposes it suffices to choose p approximately twice the size

of the maximum coefficient of f .

Example 6¨107. The maximum coefficient in the example f given above is 720. There are

several irreducible integers larger than 1440 and “close” to it. We’ll try the closest one, 1447.

Using the techniques of the previous section, we obtain the factorization in Z1447 rxs

pf “ px` 12q px` 1443q
`

x
2
` 15

˘

P Z1447 rxs .

It is “obvious” that this cannot be the correct factorization in Z rxs, because 1443 is too large.

On the other hand, properties of modular arithmetic tell us that

pf “ px` 12q px´ 4q
`

x
2
` 15

˘

P Z1447 rxs .

In fact,

f “ px` 12q px´ 4q
`

x
2
` 15

˘

P Z rxs .

This is why we chose an irreducible number that is approximately twice the largest coefficient

of f : it will recover negative factors as integers that are “too large”.

We mentioned above that we can get “false positives” in the finite field.
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Example 6¨108. Let f “ x
2 ` 1. In Z5 rxs, this factors as x

2 ` r1s
5
“ px` r2s

5
q px` r3s

5
q, but

certainly f ‰ px` 2q px` 3q in Z rxs.

Avoiding this problem requires techniques that are beyond the scope of these notes. How-

ever, it is certainly easy enough to verify whether a factor of f̂ is a factor of f using division;

once we find all the factors pqj ofpf that do not give us factors pi of f , we can try combinations

of them until they give us the correct factor. Unfortunately, this can be very time-consuming,

which is why in general one would want to avoid this problem entirely.

Several small primes.

For various reasons, we may not want to try factorization modulo one large prime; in

this case, it would be possible to factor using several small primes, then recover f using the

Chinese Remainder Theorem. Recall that the Chinese Remainder Theorem tells us that if

gcd
`

mi, mj

˘

“ 1 for each 1 ď i ă j ď n, then we can find x satisfying

$

’

’

’

’

&

’

’

’

’

%

rxs “ rα1s in Zm1 ;
rxs “ rα2s in Zm2 ;

...

rxs “ rαns in Zmn ;

and rxs is unique in ZN where N “ m1 ¨ ¨ ¨mn. If we choose m1, . . . , mn to be all irreducible,

they will certainly satisfy gcd
`

mi, mj

˘

“ 1; if we factor f in each Zmi , we can use the Chinese

Remainder Theorem to recover the coefficients of each pi from the correspondingpqj.

Example 6¨109. Returning to the polynomial given previously; we would like a unique solu-

tion in Z720 (or so). Unfortunately, the factorization 720 “ 2
4 ¨ 32 ¨ 5 is not very convenient

for factorization. We can, however, use 3 ¨ 5 ¨ 7 ¨ 11 “ 1155:

• in Z3 rxs,pf “ x3 px` 2q;

• in Z5 rxs,pf “ px` 1q px` 2q x2;

• in Z7 rxs,pf “ px` 3q px` 5q px2 ` 1q; and

• in Z11 rxs,pf “ px` 1q px` 7q px2 ` 4q.

If we examine all these factorizations, we can see that there appears to be a “false positive”

in Z3 rxs; we should have

f “ px` aq px` bq
`

x
2
` c

˘

.

The easiest of the coefficients to recover will be c, since it is unambiguous that

$

’

’

&

’

’

%

c “ r0s
3

c “ r0s
5

c “ r1s
7

c “ r4s
11
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In fact, the Chinese Remainder Theorem tells us that c “ r15s P Z1155.
Recovering a and b is more difficult, as we have to guess “correctly” which arrangement of

the coefficients in the finite fields gives us the arrangement corresponding toZ. For example,

the system
$

’

’

&

’

’

%

b “ r0s
3

b “ r1s
5

b “ r3s
7

b “ r1s
11

gives us b “ r276s
1155

, which turns out to be wrong, but the system

$

’

’

&

’

’

%

b “ r0s
3

b “ r2s
5

b “ r5s
7

b “ r1s
11

gives us b “ r12s
1155

, the correct coefficient in Z.

The drawback to this approach is that, in the worst case, we would try 2
4 “ 16 combi-

nations before we can know whether we have found the correct one. In practice, therefore,

sophisticated criteria and techniques are used to reassemble f .

Question 6¨110 .
Factor x

7`8x6`5x5`53x4´26x3`93x2´96x`18 using each of the two approaches described

here.

Question 6¨111 .
Let f pxq “ x

8 ` 5x7 ` 9x5 ` 53x4 ` 40x3 ` 72x ` 360. We want to factor f over Z by first

factoring over Zp for some “good” values of p.

(a) Suppose we try to factor f over Z3. Someone might argue that this is actually a bad idea,

because it gives false positives; that is, it allows too much factorization. Why?

Hint: Think about an “obvious” factorization of f when you write its coefficients mod-

ulo 3, and whether this “obvious” factorization also occurs over Z.

(b) Based on the answer to part (a), what would be bad values of p?

(c) If we wanted to factor f overZp for several irreducibles p, then reconstruct the factoriza-

tion overZ using the Chinese Remainder Theorem, without using for p any of the moduli

you identified in (b), and you wanted to use

(i) the smallest p possible, how many such p would you want to use, and what are they?

(ii) the fewest p possible, how many such p would you want to use, and what are they?



Chapter 7

Some important, noncommutative
groups and rings

We’ve identified a number of common structures shared by certain systems. Most of the

systems we’ve studied have enjoyed commutative operations, but we generally worked with-

out that assumption, when possible. We now consider systems that are built with a non-

commutative operation. These appear in many interesting situations.

7¨1 Functions

The systems we will consider in this chapter are organized primarily around functions. We’ve

already defined a function, but we haven’t made much use of the definition, so it can’t hurt

to remind ourselves what they are.

A function is any relation F Ĺ S ˆ T such that every s P S corresponds

to exactly one ps, tq P F. If F is a function, we write F : S Ñ T instead of

F Ď S ˆ T, and F psq “ t instead of ps, tq P F. When F psq “ t, we call t the

image of s, and s the preimage of t. Notice that we can never have F psq “ t

and F psq “ u whenever t ‰ u.

The domain of F in the definition above is S; the range of F is T in the definition above; and

the image of F, or Img pFq, is the subset of T whose elements actually have a preimage. More

precisely,

Img pFq “ tt P T : f psq “ t for some s P Su .

In this chapter, we generally assume the domain and range of a function are the same; in such

cases, we say that F is a function on S.
Two functions are equalwhen they map every element of the same domain to the same

image. That is, if f : SÑ T and g : SÑ T, then f “ g if and only if f psq “ g psq for every s P S.

Remark 7¨1. A subtle difference distinguishes our definition of a function from the one you’ve

encountered before: F psqmust be defined for every s P S. Thus, the following relations are not

functions according to our definition:

258
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• F : NÑ N by F pnq “
?
n, because

?
2 R N;

• F : RÑ R by F prq “ 1{r, because 1{0 is undefined.

We never use the word “function” unless we know it is defined for every element of its domain.

The usual convention is to use lower-case letters for function names, but try not to forget

that functions are really a special subset of a Cartesian product.

Addition and multiplication of functions

Let S and T be sets where addition or multiplication is defined, though S and T need not

be rings or groups. Let f, g : SÑ T. We “add” two functions f and g and obtain a new function

f ` g by identifying pf ` gq psq with the sum of the images of s. That is,

pf ` gq psq “ f psq ` g psq .

We “multiply” two functions f and g in a similar way. That is,

pfgq psq “ f psq ¨ g psq .

Since f and g are both defined for all s P S, the sum and product of f and g is also a function.

Example 7¨2. Let S “ Z, and let f and g be functions on S such that f psq “ s2 and f psq “ s´2.

Then f ` g : SÑ S according to the rule

pf ` gq psq “ f psq ` g psq “ s
2
` ps´ 2q ,

while fg : SÑ S according to the rule

pfgq psq “ f psq ¨ g psq “ s
2
ps´ 2q .

Fact 7¨3. If T is a ring under addition and multiplication of its elements, then the setF of all functions

mapping S to T is a ring under addition and multiplication of functions.

Notice that S need not be a ring itself.

Why is this true? We already showed closure above. We now show some of the other proper-

ties, leaving the rest as an exercise. Assume that S is a ring under addition and multiplication

of its elements.

associativity of addition? Let f, g, h P F . We need to show that f ` pg` hq “ pf ` gq ` h.

This is true if the two functions f ` pg` hq and pf ` gq ` hmap every element of S to

the same image. So, let s P S. We use the fact that S is a ring to show that the associative

property carries over to F . For the left-hand sum,

pf ` pg` hqq psq “ f psq ` pg` hq psq “ f psq ` rg psq ` h psqs .

For the right-hand sum,

ppf ` gq ` hq psq “ pf ` gq psq ` h psq “ rf psq ` g psqs ` h psq .
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We have translated from a problem about functions f , g, and h to one about f psq, g psq,

and h psq, which are elements of the ring T. Ring addition is associative, so

f psq ` rg psq ` h psqs “ rf psq ` g psqs ` h psq .

Substitution gives us

pf ` pg` hqq psq “ ppf ` gq ` hq psq .

Recall that s is an arbitrary element of S, so the above equation is true for every element

of S, showing that the functions f ` pg` hq and pf ` gq ` h are equal. Addition of

functions is associative.

additive identity? Since T is a ring, it has an additive identity, 0. We claim that the additive

identity of F is the zero function, z : S Ñ S by z psq “ 0 for all s P S. (We usually

write this function simply as 0, but for the sake of pedantry, we use more function-like

notation. Pedantry has its uses sometimes.) To show that this is indeed the additive

identity, we must show that z ` f “ f and f ` z “ f for all f P F . So, let f P F . We

must show that show that z` f , f ` z, and f map every element of S to the same image.

So, let s P S. By substitution,

pz` f q psq “ z psq ` f psq “ 0` f psq “ f psq

and

pf ` zq psq “ f psq ` z psq “ f psq ` 0 “ f psq .

Substitution gives us

pf ` zq psq “ f psq “ pz` f q psq .

Recall that s is an arbitrary element of S, so the above equation is true for every element

of S, showing that the functions f ` z, z` f , and f are equal. This shows that z really is

the additive identity of addition of functions.

Question 7¨4 .
Show that the remaining properties of a commutative ring are true; that is, addition of func-

tions is commutative; every element has an additive inverse; multiplication of functions is

associative; there is a multiplicative identity function; and multiplication of functions dis-

tributes over addition of functions. Show also that multiplication of functions is commutative

if and only if T is a commutative ring.

Question 7¨5 .
Show that F is almost never a field, even if T is a field! (To answer this question fully, you

should give a very specific criterion that determines when F is a field, and that also shows

there are “very few” F that can satisfy this requirement.)
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Functions under composition

It is not uncommon to compose functions, yet even if students do it routinely, they often

forget the term. Let S and T be sets (neither necessarily a ring) and suppose f : S Ñ T and

g : T Ñ U. The composition g ˝ f of functions f and g is a function that maps any s P S to

g pf psqq.

Example 7¨6. Suppose S “ N and f, g : S Ñ S by f psq “ s
2
, g ptq “ t ´ 2. Then g ˝ f : S Ñ S

according to the rule

pg ˝ f q psq “ g pf psqq “ g
`

s
2
˘

“ s
2
´ 2,

while f ˝ g : SÑ S according to the rule

pf ˝ gq psq “ f pg psqq “ f ps´ 2q “ ps´ 2q
2
.

Under certain conditions, composition of functions can also be an operation on functions.

The main point is that g needs to be defined on the image of f . This is easy to satisfy if the

domain and range of both functions are the same, as in the example above.

So, let S be an arbitrary set, and letF be the set of all functions on S. Which properties of

an operation does composition satisfy?

closure? Let f, g P F . Is g ˝ f P F also? Well, yes: g is defined for all t P S, so for any s P S, we

know that pg ˝ f q psq P S regardless of the value of f psq “ t. Hence, g ˝ f will be defined

for all s P S, and is a function on S, so an element of F .

associative? Let f, g, h P F . Is h ˝ pg ˝ f q “ ph ˝ gq ˝ f ? To find out, we have to make sure

that every s P S has the same destination, regardless of which path it takes. So let s P S.

The left path, h ˝ pg ˝ f q, asks us to evaluate pg ˝ f q psq first, and then evaluate h on the

result. Let u “ pg ˝ f q psq and v “ h puq. The right path, ph ˝ gq ˝ f , asks us to evaluate

f psq first, and then evaluate h ˝ g on the result. Let t “ f psq.

The question comes down to checking whether v “ ph ˝ gq ptq. By definition, ph ˝ gq psq “

h pg ptqq. What is g ptq? Recall that u “ pg ˝ f q psq “ g pf psqq “ g ptq. So, g ptq “ u, which

means h pg ptqq “ h puq “ v. We have now verified that v “ ph ˝ gq ptq, so indeed

ph ˝ pg ˝ f qq psq “ pph ˝ gq ˝ f q psq .

Recall that swas chosen arbitrarily, so h˝pg ˝ f q “ ph ˝ gq˝ f regardless of the preimage

s P S. The two functions are equal, and composition is associative.

What about the identity property? Define ι : SÑ S by ι psq “ s. As this is defined for all s P S,

ι P F .

Question 7¨7 .
Show that the function ι is also an identity for composition; that is, ι ˝ f “ f and f ˝ ι “ f for

all f P F .
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Question 7¨8 .
On the other hand, show that not all functions have inverse elements. That is, find a set S and

a function f on S such that the inverse of f , if it exists, is not a function on S. Hint: One such

function appears earlier in this section.

Question 7¨9 .
Also, show that composition of functions is not always commutative. That is, find a set S and

two functions f and g on S such that f ˝ g ‰ g ˝ f .

We have just shown the following important fact.

Fact 7¨10. The set of all functions on a set S is a monoid under the operation of composition. In general,

it is not a group.

Having said that, some sets of functions on a set S are a group; one has to choose the right

subset of F . Most of this chapter considers such special sets, but we first turn to an example

you may not have expected.

Differentiation and integration

In Calculus, you learned about differentiation and integration. In some cases, we can con-

sider them to be functions of functions! For now, we’ll make life easy and work (mostly) with

polynomials, which are functions. Let R be any ring.

Fact 7¨11. Differentiation with respect to x is a function on R rxs; that is,
d

dx
: R rxs Ñ R rxs. If R is a

field of characteristic zero, then integration with respect to x is a function on R rxs.

Why? Keeping in mind that elements of R are constant, this becomes straightforward with

the familiar rules of differentiation and integration:

d

dx
prnx

n
` ¨ ¨ ¨ ` r1x` r0q “ nrnx

n´1
` ¨ ¨ ¨ ` 2r2x` r1 P R rxs

and, if R is a field,

ż

rnx
n
` ¨ ¨ ¨ ` r1x` r0 dx “ pn` 1q

´1
rn ¨ x

n`1
` ¨ ¨ ¨ ` 2

´1
r1 ¨ x

2
` r0x P R rxs .

Either way, the result is an element ofR rxs, and the formula is deterministic, so differentiation

and integration are defined for every element of the polynomial ring, showing that they are

functions.

(Notice that we do not tack on an arbitrary constant of integration, but use zero, instead.

This is okay for our purposes.)

The upshot of this is that if you take the set of all functions of R rxs, then
d

dx
and

ş

dx are

included. Building on what we wrote above, then, expressions such as 0 `
ş

dx and ι ˝ d

dx

actually make sense.

Question 7¨12 .
Why must the field have characteristic zero for

ş

dx to be a function?
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7¨2 Permutations

Certain applications of mathematics involve the rearrangement of a list of n elements. It is

common to refer to such rearrangements as permutations.

Definition 7¨13. A list is a sequence. Let V be any finite list. A permutation is a one-to-one,

onto function whose domain and range are both V.

Throughout this section, V is a list of n elements, unless we say otherwise.

Example 7¨14. If V is a list of all the elements in a finite group or ring, an isomorphism on V

is a permutation.

The order of the elements matters in a permutation: the lists pa, d, k, rq ‰ pa, k, d, rq even

though ta, d, k, ru “ ta, k, d, ru. For the sake of convenience, we usually write V as a list of

natural numbers between 1 and |V|, but it can be any finite list.

Example 7¨15. The permutation of the list pred, green, blueq to pgreen, red, blueq is equivalent

to the permutation of the list p1, 2, 3q to p2, 1, 3q. We care only about the change in the entries’

positions, not in the values of those entries.

The importance of permutations is twofold. First, group theory is a pretty neat and useful

thing in itself, and we will see eventually that all finite groups can be modeled by groups of

permutations. Anything that can model every possible group is by that very fact important.

Besides that, permutations relate to the factorization of polynomials. The polynomial

x
4 ´ 1 can be factored over C as

px` 1q px´ 1q px` iq px´ iq ,

and

px´ 1q px` 1q px´ iq px` iq .

On account of the commutative property, it doesn’t matter what order we list the factors;

this corresponds to a permutation, and is related to another idea that we will study, called

field extensions. Field extensions can be used to solve polynomials equations, and since the

order of the extensions doesn’t really matter, permutations are important to determining the

structure of the extension that solves a polynomial.

Permutations as functions

Example 7¨16. Let S “ pa, d, k, rq. Define a permutation on the elements of S by

f pxq “

$

’

’

’

&

’

’

’

%

r, x “ a;

a, x “ d;

k, x “ k;

d, x “ r.

Notice that f is one-to-one, and f pSq “ pr, a, k, dq.
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We can represent the same permutation on V “ p1, 2, 3, 4q, a generic list of four elements.

Define a permutation on the elements of V by

π piq “

$

’

’

’

&

’

’

’

%

2, i “ 1;

4, i “ 2;

3, i “ 3;

1, i “ 4.

Here π is one-to-one, and π piq “ j is interpreted as “the jth element of the permuted list is

the ith element of the original list.” You could visualize this as

position i in original list position j in permuted list

1 Ñ 2

2 Ñ 4

3 Ñ 3

4 Ñ 1

Thus π pVq “ p4, 1, 3, 2q. If you look back at f pSq, you will see that in fact the first element of

the permuted list, f pSq, is the fourth element of the original list, S.

It should not surprise you that the identity function is a “do-nothing” permutation, just

as it was a “do-nothing” symmetry of the triangle in Section 3¨6.

Proposition 7¨17. Let V be a set of n elements. The function I : V Ñ V by I pxq “ x is a permutation

on V. In addition, for any permutation α on V, I ˝ α “ α and α ˝ I “ α.

Question 7¨18 .
Why is Proposition 7¨17 true?

As functions, the composition of two permutations is also a function. It gets a little bet-

ter. . .

Lemma 7¨19. The composition of two permutations on a list of n elements is a permutation on the

same list.

Proof. Let V be a set of n elements, and α, β permutations of V. Let γ “ α ˝ β. We claim that γ

is a permutation. To show this, we must show that γ is a one-to-one function whose domain

and range are both V. By definition, the domain and range of γ are both V; it remains to show

that γ is one-to-one. Let x, y P V and assume that γ pxq “ γ pyq; substituting the definition of

γ,

α pβ pxqq “ α pβ pyqq .

Because they are permutations, α and β are one-to-one functions. Since α is one-to-one, we

can simplify the above equation to

β pxq “ β pyq ;

and since β is one-to-one, we can simplify the above equation to

x “ y.
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We assumed that γ pxq “ γ pyq, and found that this forced x “ y. By definition, γ is a one-to-

one function. We already explained why its domain and range are both V, so γ is a permuta-

tion.

In Example 7¨16, we wrote a permutation as a piecewise function. This is burdensome; we

would like a more efficient way to denote permutations.

Notation 7¨20. The tabular notation for a permutation on a list of n elements is a 2ˆnmatrix

α “

ˆ

1 2 ¨ ¨ ¨ n

α1 α2 ¨ ¨ ¨ αn

˙

indicating that α p1q “ α1, α p2q “ α2, . . . , α pnq “ αn. Again, α piq “ j indicates that the jth

element of the permuted list is the ith element of the original list.

Example 7¨21. Recall V and π from Example 7¨16. In tabular notation,

π “

ˆ

1 2 3 4

2 4 3 1

˙

because π moves

• the element in the first position to the second;

• the element in the second position to the fourth;

• the element in the third position nowhere; and

• the element in the fourth position to the first.

Then

π p1, 2, 3, 4q “ p4, 1, 3, 2q .

Notice that the tabular notation for π looks similar to the table in Example 7¨16.

We can also use π to permute different lists, so long as the new lists have four elements:

π p3, 2, 1, 4q “ p4, 3, 1, 2q ;

π p2, 4, 3, 1q “ p1, 2, 3, 4q ;

π pa, b, c, dq “ pd, a, c, bq .

Question 7¨22 .
For the permutation

α “

ˆ

1 2 3 4 5 6

1 5 2 4 6 3

˙

,

(a) Evaluate α p1, 2, 3, 4, 5, 6q.

(b) Evaluate α p1, 5, 2, 4, 6, 3q.

(c) Evaluate α p6, 3, 5, 2, 1, 4q.



CHAPTER 7. SOME IMPORTANT, NONCOMMUTATIVE GROUPS AND RINGS 266

Groups of permutations

Permutations form groups in a very natural way.

Definition 7¨23. For n ě 2, denote by Sn the set of all permutations of a list of n elements.

Example 7¨24. For n “ 2, 3 we have

S2 “

"ˆ

1 2

1 2

˙

,

ˆ

1 2

2 1

˙*

S3 “

"ˆ

1 2 3

1 2 3

˙

,

ˆ

1 2 3

2 1 3

˙

,

ˆ

1 2 3

3 2 1

˙

,

ˆ

1 2 3

1 3 2

˙

,

ˆ

1 2 3

2 3 1

˙

,

ˆ

1 2 3

3 1 2

˙*

.

Is there some structure to Sn? By definition, a permutation is a one-to-one function.

Fact 7¨10 on page 262 tells us that the set of functions on a set is a monoid under compo-

sition of functions. The identity function is one-to-one, and the composition of one-to-one

functions is also one-to-one, so Sn has an identity and is closed under composition. In addi-

tion, Sn inherits the associative property from the larger set of functions. Already, then, we

can conclude that Sn is a monoid. However, one-to-one functions have inverses, which leads

us to ask whether Sn is also a group.

Theorem 7¨25. For all n ě 2 pSn, ˝q is a group.

Notation 7¨26. Normally we just write Sn, assuming that the operation is composition of func-

tions. It is common to refer to Sn as the symmetric group of n elements.

Proof. Let n ě 2. We have to show that Sn satisfies the properties of a group under the oper-

ation of composition of functions. Proposition 7¨17 tells us that the identity function acts as

an identity in Sn, and Lemma 7¨19 tells us that Sn is closed under composition. We showed in

Section 7¨1 that functions are associative; as a subset of functions, Sn satisfies the associative

property.

We still have to show that Sn satisfies the inverse property. Let V be a list of n elements.

Let α P Sn. By definition of a permutation, α is one-to-one; since V is finite, α is onto. Since α

is one-to-one, it has an inverse function α
´1

, which satisfies the relationship that, for every

v P V,

α
´1
pα pvqq “ v and α

`

α
´1
pvq

˘

“ v.

Since I pvq “ v for every v P V, we have shown that α
´1 ˝ α “ α ˝ α´1 “ I. The function α

´1

is also a one-to-one, onto function on V, so α
´1 P Sn! We chose α as an arbitrary permutation

of n elements, so Sn satisfies the inverse property.

As claimed, Sn satisfies all four properties of a group.

Question 7¨27 .
Compute the order of

α “

ˆ

1 2 3 4

3 1 4 2

˙

.
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A final question: how large is each Sn? In other words, “how many permutations are there

of n elements?” A counting argument called the multiplication principle shows that there are

n! “ n ¨ pn´ 1q ¨ pn´ 2q ¨ ¨ ¨ 3 ¨ 2 ¨ 1

such permutations. Why? Given any list of n elements,

• we have n positions to move the first element, including its current position;

• we have n´1 positions to move the second element, since the first element has already

taken one spot;

• we have n´ 2 positions to move the third element, since the first and second elements

have already take two spots;

• etc.

We have shown the following.

Lemma 7¨28. For each n P N`, |Sn| “ n!

Question 7¨29 .
How many elements are in S4 and S5? Try listing all the elements of S4.

A hint of things to come.

You won’t work extensively with groups of permutations just yet, but we mentioned ear-

lier that all finite groups are really groups of permutations, and it’s convenient to close here

with an example of this.

Fact 7¨30. S3 – D3 as groups.

Why? We map D3 to S3 by considering how each symmetry of the triangle permutes the three

vertices. As long as this new point of view preserves the operation, the fact that D3 and S3

have six elements shows that such a map is a bijection, and we are done.

We take as our guide the labeling of the triangle’s vertices from Section 3¨6. For any sym-
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metry σ P S3 map

f pσq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

˜

1 2 3

1 2 3

¸

, if σ “ ι;

˜

1 2 3

1 3 2

¸

, if σ “ φ;

˜

1 2 3

2 3 1

¸

, if σ “ ρ;

˜

1 2 3

3 1 2

¸

, if σ “ ρ2;

˜

1 2 3

3 2 1

¸

, if σ “ ρφ;

˜

1 2 3

2 1 3

¸

, if σ “ ρ2φ.

This map is clearly a bijection.

Question 7¨31 .
Verify that f pφ2q “ rf pφqs

2
, f pρ2q “ rf pρqs

2
, f pρ3q “ rf pρqs

3
. (This will be a big deal in a

moment.)

Explanation of Fact 7¨30, continued: We must verify that f preserves the operation. We have

thirty-six products to check, but with a little cleverness we can reduce this significantly. For

instance, regardless of the value of σ,0

f pσιq “
subst

f pσq “ f pσq ˝ I,

and the same can be shown easily for f pισq, giving us 11 products more or less for free. That

leaves twenty-five products to check. This quickly becomes a bit tedious, but remember that

D3 enjoys the property φρ “ ρ
2
φ. If this map is an isomorphism, we should expect a corre-

sponding relationship in their images. To help us out, let’s name α “ f pφq and β “ f pρq.

Indeed,

f pφq f pρq “ αβ “

ˆ

1 2 3

1 3 2

˙

˝

ˆ

1 2 3

2 3 1

˙

“

ˆ

1 2 3

3 2 1

˙

and by Question 7.31,

f
`

ρ
2
˘

f pφq “ β
2
α “

ˆ

1 2 3

3 1 2

˙

˝

ˆ

1 2 3

1 3 2

˙

“

ˆ

1 2 3

3 2 1

˙

.

This allows us to rewrite all products of S3 where f pφq appears before f pρq exactly the same

way we rewrite all products of D3 where φ appears before ρ. We can verify the remaining

twenty operations by mere substitution and application of these properties. For instance,

f
`

φρ
2
˘

“ f
`

ρ
4
φ
˘

“ f
``

ρ
3
ρ
˘

φ
˘

“ f pρφq “ βα
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while

f pφq f
`

ρ
2
˘

“ αβ
2
“ pαβq β “

`

β
2
α
˘

β “ β
2
pαβq “ β

2
`

β
2
α
˘

“ β
4
α “

`

β
3
β
˘

α “ βα,

so the two are equal, as desired.

Question 7¨32 .
Find an explicit isomorphism from S2 to Z2. (It’s not nearly as involved as Fact 7¨30.)

7¨3 Morphisms

We saw earlier that the set of all functions on a set S is a monoid under composition, even

when S is not. What of the set F of all homomorphisms on a monoid S, or the set of all

isomorphisms on S? Remember that “on S” means the domain and range are both S.

Homomorphisms

Theorem 7¨33. F is a monoid under composition.

Proof. The proof of every property is identical to that of Fact 7¨10, except for the closure and

identity properties. The challenge with the identity property is easy to dispose of, as Ques-

tion 4.74 shows the identity homomorphism I acts as an identity under composition. The

challenge with the closure property is that the operation is composition of functions; so, we

have to show that the set is closed under composition.

We begin with closure; we need to show that for any homomorphisms f and g on S, f ˝ g

is also a homomorphism on S. To that end, let f, g P F , and define h “ f ˝ g. We need to show

that h P F ; in other words, h pstq “ h psq h ptq for any s, t P S. So, let s, t P S. By substitution,

h pstq “ pf ˝ gq pstq “ f pg pstqq .

By definition, g pstq “ g psq g ptq , so we can rewrite the equation above as

h pstq “ f pg psq g ptqq .

Let x “ g psq and y “ g ptq. By definition, f pxyq “ f pxq f pyq, so we can rewrite the equation

above as

h pstq “ f pxyq “ f pxq f pyq “ rf pg psqqs rf pg ptqqs “ rpf ˝ gq psqs rpf ˝ gq ptqs “ h psq h ptq .

Recall that s and t were arbitrary in S; the ends of this equation show that h satisfies the ho-

momorphism property. Since h “ f ˝ g, we have shown that the composition of f and g, two

homomorphisms on S, is itself a homomorphism S. Since f and g were arbitrary homomor-

phisms on S, we have shown that composition of homomorphisms satisfies closure in the set

of all homomorphisms on S. That is, F is closed.

We have shown that the set of all homomorphisms on a set S satisfies the associative,

closure, and identity properties. This set forms a monoid.
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Is it also a group?

Fact 7¨34. If S is a monoid with more than one element, the set of homomorphisms on S is not a group.

Why not? Suppose S has more than one element. Define a function f on S as f psq “ я; that

is, f maps every element of S to the identity. We claim that f is a homomorphism: It clearly

preserves the identity, since f pяq “ я. As for preserving the operation: for any s, t P S we

have

f pstq “ я and f psq f ptq “ яя “ я,

so f pstq “ f psq f ptq. On the other hand, f is not one-to-one; to see why, let s, t P S be distinct

elements of S; that is, s ‰ t. By definition, f psq “ я and f ptq “ я. As f is not one-to-one,

its inverse cannot be a function, let alone a homomorphism. Thus, f
´1

is not in the set F of

homomorphisms on S. We have an element f of F with no inverse in F ; by definition, F is

not a group.

Question 7¨35 .
The only monoid with one element is the set tяu, whose only element is the identity under

whatever the operation may be. It is not a very interesting monoid, except that it sometimes

serves as an exception to what would otherwise be a rule. Is this one of those cases? Is the

set F of homomorphisms on tяu a group?

Isomorphisms

We saw that the set F of homomorphisms on a monoid of at least two elements did not

form a group, effectively because at least one homomorphism was not one-to-one. What if

we looked only at one-to-one homomorphisms? For convenience, write G for this set.

Fact 7¨36. The set of one-to-one homomorphisms is also not a group under composition of functions.

Why not? Consider the monoid of integers under addition. You found in Question 2.55(a) that

the doubling function is an isomorphism between Z and 2Z. Since 2Z Ĺ Z, the doubling

function is a homomorphism on Z.

This has big implications. The doubling function is a one-to-one homomorphism on Z,

so it is in G. If G is to be a group, the doubling function must have an inverse function in G.

What would that inverse function be? Let’s call it g; to be an element of G, gmust be defined

for every element of Z. Sometimes, this is obvious: . . . , g p´2q “ ´1, g p0q “ 0, g p2q “ 1,

g p4q “ 2, . . . . But what is g p1q? It has to be an integer, but we just saw g covers every integer

by some even integer. That means g p1q cannot exist, because no possible images are left! But

if g p1q does not exist, g is not defined on all elements of S, so g R G!

Now, g is the only possible inverse for the doubling function; since g R G, the doubling

function has no inverse inG, despite being an element ofG itself. The only possible conclusion

is that G cannot be a group.

The problem, of course, is that the doubling function is not onto. In Fact 7¨34, the problem

was that not all homomorphisms are one-to-one; in Fact 7¨36, the problem was that not all

one-to-one homomorphisms are onto. In a last-ditch attempt to obtain a group, we’ll look at
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the set of homomorphisms on S that are both one-to-one and onto. That is, we’ll look at the

set of isomorphisms.

(This may look like an act of desperation, and from a certain point of view, it is. However,

it is also how a lot of research works. You ask a question about a set, and when you find that

it doesn’t work for all elements of that set, you identify a subset for which you hope it does

work. Unless you’re completely off-base, this eventually leads to an interesting result. Along

the way, you get additional interesting results, namely, why it does not work in other subsets.)

Theorem 7¨37. The setH of isomorphisms on a monoid is a group under composition of functions.

Notice that we get a group, even though the underlying set is a monoid.

Proof. As with Theorem 7¨33, we need only worry about that which is not covered by Fact 7¨10:

closure and inverse proprerties.

For closure, we need to show that composition of isomorphisms is still an isomorphism.

Let f, g P H; that is, let f and g be any two isomorphisms on S. Let h “ f ˝ g; we need to show

that h P H; in other words, that h is an isomorphism. We have already showed that it is a

homomorphism in the proof of Theorem 7¨33, so we need only show that it is one-to-one and

onto. We show first that it is onto; let s P S. We need to find an element of S whose image

under h is s; we’ll try to use the structure of h to do this. Composition means that we can

calculate h by going through g and f :

?

f

&&
s

? h

;;
g

AA

Because f is onto, we can find t P S such that f ptq “ s; because g is onto, we can find u P S

such that g puq “ t. By definition,

h puq “ pf ˝ gq puq “ f pg puqq “ f ptq “ s,

so we have found an element of S that hmaps to s. Since s was arbitrary in S, h is onto.

To show that h is one-to-one, let s, t P S, and suppose

h psq “ h ptq .

We need to show that s “ t. By definition, h psq “ pf ˝ gq psq “ f pg psqq, and likewise h ptq “

f pg ptqq, so by substitution into our supposition we know

f pg psqq “ f pg ptqq .

To make the next steps a little easier, write y “ g psq and z “ g ptq. The equation immediately

above becomes f pyq “ f pzq. By hypothesis, f is one-to-one; by definition, y “ z. We now

have

g psq “ g ptq .
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Again, g is one-to-one; by definition,

s “ t.

Since s and t are arbitrary in S, this holds for all elements of S.

We have shown that h “ f ˝ g is one-to-one and onto; since f and g were arbitrary inH,

we see thatH is closed under composition of functions.

It remains to show the inverse property. Let f P H. By definition, f is a one-to-one

function, so it has an inverse function on S, f
´1

.

Question 7¨38 .
Show that f

´1
is a function on S, and that it is also one-to-one and onto.

Proof of Theorem 7¨37, continued: the inverse property. We need to show that f
´1

is a homomor-

phism. To that end, let s, t P S; we need to show that f
´1 pstq “ f

´1 psq f ´1 ptq. To accomplish

this, we change our perspective, and exploit the fact that f is a homomorphism. Let x, y, z P S

such that f pxq “ st, f pyq “ s, and f pzq “ t. In the Cayley table, we know the row and column

headers match up, but not the body of the table.

˙ ¨ ¨ ¨ z ¨ ¨ ¨

...

y yz

...

f

ÝÑ

ÐÝ

f´1

˙ ¨ ¨ ¨ t ¨ ¨ ¨

...

s f pxq
...

If we can show that yz “ x, the body of the table also matches up, and f
´1

is a homomorphism.

Recall that f is an isomorphism; by the homomorphism property,

f pyzq “ f pyq f pzq “ st.

However, we also know that

f pxq “ st,

so by substitution,

f pxq “ f pyzq .

Isomorphisms are one-to-one, which makes f one-to-one. By definition, x “ yz. This was

precisely our goal, as substitution gives us

f
´1
pstq “ f

´1
psq f

´1
ptq .

We have show that f
´1

, a one-to-one and onto function on S, is also a homomorphism. That

makes it an isomorphism, so f
´1 P H. We chose f arbitrarily inH, soH satisfies the inverse

property. We have shown that the setH of isomorphisms on S satisfies the four properties of

a group.

The set of isomorphisms on a monoid or group — that is, its domain and range are the

same — is important enough to merit a special name. We call it the set of automorphisms
on the monoid or group, and denote it Aut pSq.
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Question 7¨39 .
Recall from Question that f : ZÑ Zd is a homomorphism of rings, but not an isomorphism.

(a) Determine ker f . (It might help to use a specific value of n first.)

(b) Indicate how we know that Z{ ker f – Zn. (Eventually, we will show that G{ ker f – H

for any homomorphism f : G ÝÑ H that is onto.)



Chapter 8

Groups of permutations

You met permutations in Section 7¨2. The main goal of this chapter is to show that groups of

permutations are, in some sense, “all there is” to group theory, so in some sense, Section 8¨2 is

the point. Section 8¨1 develops a convenient way to denote permutations, and 8¨3 introduce

you to two special classes of groups of permutation. We conclude with a great example of an

application of symmetry groups in Section 8¨4.

8¨1 Cycle notation

Tabular notation of permutations is rather burdensome; a simpler and more compact nota-

tion is possible.

Cycles

Definition 8¨1. A cycle is a vector

α “ pα1 α2 ¨ ¨ ¨ αnq

that corresponds to the permutation where the entry in position α1 is moved to position α2;

the entry in position α2 is moved to position α3, . . . and the element in position αn is moved to

position α1. If a position is not listed in α, then the entry in that position is not moved. We call

such positions stationary. For the identity permutation where no entry is moved, we write

я “ I “ p1q .

The fact that the permutation αmoves the entry in position αn to position α1 is the reason

we call it a cycle; applying it repeatedly cycles the list of elements around, and on the nth

application the list returns to its original order.

Example 8¨2. Example 7¨21 considered the following permutation in tabular notation,

π “

ˆ

1 2 3 4

2 4 3 1

˙

.

274
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To write it as a cycle, we can start with any position of the list we like. However, the conven-

tion is to start with the smallest position affected by the permutation. Since πmoves elements

out of position 1, we start with

π “ p1 ?q .

The second entry in the cycle tells us where πmoves the element in the position indicated by

the first entry, 1. From the tabular notation, we see that πmoves the element in position 1 to

position 2, so

π “ p1 2 ?q .

The third entry of cycle notation tells us where πmoves the element in the position indicated

by the second entry. The second entry indicates position 2. From the tabular notation, we see

that π moves the element in position 2 to position 4, so

π “ p1 2 4 ?q .

The fourth entry of cycle notation tells us where πmoves the element in the position indicated

by the third entry. The third element indicates position 4. From the tabular notation, we see

that πmoves the element in position 4 to position 1, so you might feel the temptation to write

π “ p1 2 4 1 ?q ,

but that misses the entire point of cycle notation: we have now returned to the position in-

dicated by the first entry, so we close the cycle:

π “ p1 2 4q .

The cycle p1 2 4q, indicates that

• the element in position 1 of a list moves to position 2;

• the element in position 2 of a list moves to position 4;

• the element in position 4 of a list moves to position 1.

What about the element in position 3? Since it doesn’t appear in the cycle notation, it must

be stationary. This agrees with what we wrote in the piecewise and tabular notations for π.

Question 8¨3 .
Write every element of S3 in cycle notation.

Question 8¨4 .
Let α “ p1 2 3q and β “ p2 3q. In this problem, you will verify two things about α and β.

(a) Verify that they are the same as the permutations designated α and β in the proof of

Fact 7¨30 on page 267.

(b) All elements of S3 can be written as compositions of α and β; that is, every element of S3

(in cycle form) has the form α
i
β
j
where 0 ď i ă 3 and 0 ď j ă 2.
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Question 8¨5 .
For α and β as defined in Question 8.4, show that β ˝ α “ α

2 ˝ β. (Notice that α, β P Sn for all

n ą 2, so as a consequence of this exercise Sn is not abelian for n ą 2.)

Question 8¨6 .
Write the Cayley table for S3, with every element in the form α

i
β
j

where 0 ď i ă 3 and

0 ď j ă 2. Question 8.5 will make your life easier.

Question 8¨7 .
In Fact 7¨30, we showed D3 – S3 by mapping ρ and φ of D3 to elements α and β of S3. We used

tabular notation at that time. Work through the proof again, this time using cycle notation

instead of tabular notation.

Not all permutations can be written as one cycle.

Example 8¨8. Consider the permutation in tabular notation

α “

ˆ

1 2 3 4

2 1 4 3

˙

.

We can easily start the cycle with α “ p1 2q, and this captures the behavior on the elements

in the first and second positions of a list, but what about the third and fourth positions? We

cannot write p1 2 3 4q; that would imply that the element in the second position is moved to

the third, and the element in the fourth position is moved to the first.

To solve this difficulty, we develop a simple arithmetic of cycles.

Cycle arithmetic

What operation should we apply to cycles? Cycles represent permutations; permutations

are functions; functions can be composed. Hence, the appropriate operation is composition.

Example 8¨9. Consider the cycles

β “ p2 3 4q and γ “ p1 2 4q .

What is the cycle notation for

β ˝ γ “ p2 3 4q ˝ p1 2 4q?

Cycles represent permutations, and permutations are closed under composition, tellingus

β ˝ γ is also a permutation. With any luck, it will be a permutation that we can write as a

cycle. What we need to do, then, is determine how the permutation β ˝ γmoves a list of four

elements around. If that permutation can be represented as a cycle, then we’ve answered the

question.

Since an element in the first position is moved, we should be able to write

β ˝ γ “ p1 ?q .
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3 2
β

oo 1
γ

oo

β˝γ

}}

2 4oo 2oo
}}

4 3oo 3oo
}}

1 1oo 4oo
}}

Figure 8¨1: Diagram of how β˝γmodifies a list of four elements, for β “ p2 3 4q and γ “ p1 2 4q.

Where is this first element moved? Let’s apply the definition of composition: β˝γmeans, “first

apply γ; then apply β.” Figure 8¨1 show the basic idea; we refer to it throughout the example.

The first cycle entry considers the first element of the list, or the top row of Figure 8¨1; γ

moves the first element to the second position, and β then moves it to the third. It must be

that β ˝ γmoves an element from the first position to the third. We now know that

β ˝ γ “ p1 3 ?q .

The second cycle entry should tell us where β ˝ γ moves an element that starts in the third

position (not the second), illustrated by the third row of Figure 8¨1. Applying the definition

of composition again, we know that γ moves an element from the third position to. . . well,

nowhere, actually. So an element in the third position doesn’t move under γ; if we then apply

β, however, it moves to the fourth position. It must be that β ˝ γ moves an element from the

third position to the fourth. We now know that

β ˝ γ “ p1 3 4 ?q .

The third cycle entry should tell tell us where β˝γmoves and element that starts in the fourth

position, illustrated by the fourth row of Figure 8¨1. We know that γmoves an element in the

fourth position to the first position (4 is at the end of the cycle, so it moves to the beginning),

and βmoves elements in the first position. . . well, nowhere, actually. So β˝ γmoves elements

from the fourth position to the first position. This completes the cycle, so we now know that

β ˝ γ “ p1 3 4q .

Haven’t we missed something? What about an element that starts in the second position?

Since γmoves elements in the second position to the fourth, and βmoves elements from the

fourth position to the second, they undo each other, and the second position is stationary. It

is, therefore, absolutely correct that 2 does not appear in the cycle notation of β ˝ γ, and we see

this in the second row of Figure 8¨1.
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Another phenomenon occurs when each permutation moves elements that the other does

not.

Example 8¨10. Consider the two cycles

β “ p1 3q and γ “ p2 4q .

There is no way to simplify β ˝ γ into a single cycle, because β operates only on the first and

third elements of a list, and γ operates only on the second and fourth elements of a list. The

only way to write them is as the composition of two cycles,

β ˝ γ “ p1 3q ˝ p2 4q .

This motivates the following.

Definition 8¨11. Two cycles are disjoint if none of their entries is common.

Disjoint cycles enjoy an important property: their permutations commute under compo-

sition.

Lemma 8¨12. Let α, β be two disjoint cycles. Then α ˝ β “ β ˝ α.

Proof. Let n P N` be the largest entry in α or β. Let V “ p1, 2, . . . , nq. Let i P V. We consider

the following cases:

Case 1. α piq ‰ i.

Let j “ α piq. The definition of cycle notation implies that j appears immediately

after i in the cycle α. The definition of “disjoint” means that, since i and j are entries

of α, they cannot be entries of β. By definition of cycle notation, β piq “ i and β pjq “

j. Hence

pα ˝ βq piq “ α pβ piqq “ α piq “ j “ β pjq “ β pα piqq “ pβ ˝ αq piq .

Case 2. α piq “ i.

Subcase (a): β piq “ i.

We have pα ˝ βq piq “ i “ pβ ˝ αq piq.

Subcase (b): β piq ‰ i.

Let j “ β piq. The definition of cycle notation implies that j appears immediately

after i in the cycle β. The definition of “disjoint” means that, since i and j are entries

of β, they cannot be entries of α. By definition of cycle notation, α pjq “ j. Hence

pα ˝ βq piq “ α pβ piqq “ α pjq “ j “ β piq “ β pα piqq “ pβ ˝ αq piq .

In both cases, we had pα ˝ βq piq “ pβ ˝ αq piq. Since i was arbitrary, α ˝ β “ β ˝ α.
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Notation 8¨13. Since the composition of two disjoint cycles α ˝ β cannot be simplified, we nor-

mally write it without the circle; for example,

p1 2q p3 4q .

By Lemma 8¨12, we can also write this as

p3 4q p1 2q .

That said, the usual convention for cycles is to write the smallest entry of a cycle first, and to

order cycles by their first entries. We prefer

p1 4q p2 3q

to either of

p1 4q p3 2q or p2 3q p1 4q .

The convention for writing a permutation in cycle form is the following:

1. The first entry in each cycle is the cycle’s smallest.

2. Simplify the composition of non-disjoint cycles, discarding those of length 1.

3. The remaining cycles are disjoint. They commute by Lemma 8¨12; write them in order

of the cycles’ first entries.

Example 8¨14. We return to Example 8¨8, with

α “

ˆ

1 2 3 4

2 1 4 3

˙

.

To write this permutation in cycle notation, we begin again with

α “ p1 2q . . . ?

Since α also moves entries in positions 3 and 4, we need to add a second cycle. We start with

the smallest position whose entry changes position, 3:

α “ p1 2q p3 ?q .

Since αmoves the element in position 3 to position 4, we write

α “ p1 2q p3 4 ?q .

Now αmoves the element in position 4 to position 3, so we can close the second cycle:

α “ p1 2q p3 4q .

Now αmoves no more entries, so the cycle notation is complete.
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Permutations as cycles

We have come to the main result of this section.

Theorem 8¨15. Every permutation can be written as a composition of disjoint cycles.

The proof is constructive; we build the cycle notation for the permutation.

Proof. Let π P Sn. If π piq “ i for all i “ 1, . . . , n, then we can write π “ p1q. Otherwise, we can

find i1 P t1, . . . , nu such that π pi1q ‰ i1. Let i1 be the smallest such number. As Sn is finite, we

know π
k “ p1q “ I for some k P t2, . . . , nu, and then π

k pi1q “ I pi1q “ i1. Let

α
p1q
“
`

i1 π pi1q π pπ pi1qq ¨ ¨ ¨ π
k´1
pi1q

˘

.

By construction, α
p1q

correctly describes how π moves elements in positions i1, π pi1q, . . . ,

π
k´1 pi1q.

Ifπ “ αp1q, then we are done. Otherwise, we can find i2 P t1, . . . , nu z
 

i1, π pi1q , . . . , π
k´1 pi1q

(

such thatπ pi2q ‰ i2. Choose the smallest such i2, and letα
p2q “

`

i2 π pi2q π pπ pi2qq ¨ ¨ ¨ π
`´1 pi2q

˘

,

where, as before π
` pi2q “ i2.

Repeat this process until every non-stationary element of V appears in a cycle, gener-

ating α
p3q

, . . . , α
pmq

for non-stationary i3 R α
p1q
, α
p2q

, i4 R α
p1q
, α
p2q
, α
p3q

, and so on until im R

α
p1q
, . . . , α

pm´1q
. There are only finitely many numbers π can move, so this process will not

continue indefinitely, and concludes with a finite list of cycles.

The remainder of the proof consists of two claims.

Claim 1: Each cycles is disjoint from any other.

By way of contradiction, assume that two cycles α
piq

and α
pjq

are not disjoint. Without

loss of generality, assume i ă j. Let c be the first entry in α
pjq

that also appears in α
piq

; by

construction, it is not the first element of α
pjq

, so let a be the entry that precedes c in α
piq

,

and b the entry that precedes c in α
pjq

. By construction, π paq “ c “ π pbq. Permutations are

one-to-one, so a “ b, but then b appears in α
piq

, contradicting our choice of c as the first entry

of α
pjq

that appears in α
piq

. Hence, α
piq

and α
pjq

are disjoint.

Claim 2: π “ αp1qαp2q ¨ ¨ ¨ αpmq.

Let i P V. We consider two cases.

If π piq “ i, then i could not have been used to begin construction of an α. Since π is a one-

to-one function, we cannot have π pkq “ i for any k ‰ i, either. By construction, i appears in

none of the α
pjq

. By substitution, the expression
`

α
p1q
α
p2q ¨ ¨ ¨ αpmq

˘

piq simplifies to

`

α
p1q
α
p2q
¨ ¨ ¨ α

pmq
˘

piq “ α
p1q

`

α
p2q

`

¨ ¨ ¨ α
pmq
piq
˘˘

“ i “ π piq .

So far, so good.

Assume, then, that π piq ‰ i. By construction, i appears in α
pjq

for some j “ 1, 2, . . . , m. By

definition, α
pjq piq “ π piq, so both i and π piq appear in α

pjq
. By Claim 1, i and π piq do not appear

in α
pkq

whenever k ‰ j. That guarantees α
pkq piq “ i and α

pkq pπ piqq “ π piq. By substitution,
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the expression
`

α
p1q
α
p2q ¨ ¨ ¨ αpmq

˘

piq simplifies to

`

α
p1q
α
p2q
¨ ¨ ¨ α

pmq
˘

piq “ α
p1q

`

α
p2q

`

¨ ¨ ¨ α
pm´1q

`

α
pmq
piq
˘˘˘

...

“ α
p1q

`

α
p2q

`

¨ ¨ ¨ α
pj´1q

`

α
pjq
piq
˘˘˘

“ α
p1q

`

α
p2q

`

¨ ¨ ¨ α
pj´1q

pπ piqq
˘˘

...

“ π piq .

We have shown that
`

α
p1q
α
p2q
¨ ¨ ¨ α

pmq
˘

piq “ π piq .

Since i is arbitrary, π “ αp1q ˝ αp2q ˝ ¨ ¨ ¨ ˝ αpmq. That is, π is a composition of cycles. Since π was

arbitrary, every permutation is a composition of cycles.

Example 8¨16. Consider the following permutation written in tabular notation,

π “

ˆ

1 2 3 4 5 6 7 8

7 5 3 2 4 8 1 6

˙

.

The proof of Theorem 8¨15 constructs the cycles

α
p1q
“ p1 7q

α
p2q
“ p2 5 4q

α
p3q
“ p6 8q .

Notice that α
p1q

, α
p2q

, and α
p3q

are disjoint. In addition, the only element of V “ p1, 2, . . . , 8q

that does not appear in an α is 3, because π p3q “ 3. Inspection verifies that

π “ α
p1q
α
p2q
α
p3q
.

We conclude with some examples of simplifying the composition of permutations.

Example 8¨17. Let α “ p1 3q p2 4q and β “ p1 3 2 4q. Notice that α ‰ β; check this on

V “ p1, 2, 3, 4q if this isn’t clear. In addition, α and β are not disjoint.

1. We compute the cycle notation for γ “ α ˝ β. We start with the smallest entry moved

by either α or β:

γ “
`

1 ?
˘

.

The notation α ˝ β means to apply β first, then α. What does β do with the entry in

position 1? It moves it to position 3. Subsequently, αmoves the entry in position 3 back

to the entry in position 1. The next entry in the first cycle of γ should thus be 1, but

that’s also the first entry in the cycle, so we close the cycle. So far, we have

γ “ p1q . . . ?
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We aren’t finished, since α and β also move other entries around. The next smallest

entry moved by either α or β is 2, so

γ “ p1q p2 ?q .

Now β moves the entry in position 2 to the entry in position 4, and α moves the entry

in position 4 to the entry in position 2. The next entry in the second cycle of γ should

thus be 2, but that’s also the first entry in the second cycle, so we close the cycle. So far,

we have

γ “ p1q p2q . . . ?

Next, βmoves the entry in position 3, so

γ “ p1q p2q p3 ?q .

Where does βmove the entry in position 3? To the entry in position 2. Subsequently, α

moves the entry in position 2 to the entry in position 4. We now have

γ “ p1q p2q p3 4 ?q .

You can probably guess that 4, as the largest possible entry, will close the cycle, but to

be safe we’ll check: β moves the entry in position 4 to the entry in position 1, and α

moves the entry in position 1 to the entry in position 3. The next entry of the third

cycle will be 3, but this is also the first entry of the third cycle, so we close the third

cycle and

γ “ p1q p2q p3 4q .

Finally, we simplify γ by not writing cycles of length 1, so

γ “ p3 4q .

Hence

pp1 3q p2 4qq ˝ p1 3 2 4q “ p3 4q .

2. Now we compute the cycle notation for β˝α, but with less detail. Again we start with 1,

which αmoves to 3, and β then moves to 2. So we start with

β ˝ α “ p1 2 ?q .

Next, αmoves 2 to 4, and βmoves 4 to 1. This closes the first cycle:

β ˝ α “ p1 2q . . . ?

We start the next cycle with position 3: α moves it to position 1, which β moves back

to position 3. This generates a length-one cycle, so there is no need to add anything.

Likewise, the element in position 4 is also stable under β ˝ α. Hence we need write no

more cycles;

β ˝ α “ p1 2q .
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3. Let’s look also at β ˝ γ where γ “ p1 4q. We start with 1, which γmoves to 4, and then β

moves to 1. Since β ˝ γmoves 1 to itself, we don’t have to write 1 in the cycle. The next

smallest number that appears is 2: γ doesn’t move it, and βmoves 2 to 4. We start with

β ˝ γ “ p2 4 ?q .

Next, γmoves 4 to 1, and βmoves 1 to 3. This adds another element to the cycle:

β ˝ γ “ p2 4 3 ?q .

We already know that 1 won’t appear in the cycle, so you might guess that we should

not close the cycle. To be certain, we consider what β ˝ γ does to 3: γ doesn’t move it,

and βmoves 3 to 2. The cycle is now complete:

β ˝ γ “ p2 4 3q .

Question 8¨18 .
List the elements of S4 using cycle notation.

Question 8¨19 .
Identify at least one normal subgroup of S3, and at least one subgroup that is not normal.

Question 8¨20 .
Compute the cyclic subgroup of S4 generated by α “ p1 3 4 2q. Compare your answer to that

of Question 7.27.

Question 8¨21 .
Let α “ pα1 α2 ¨ ¨ ¨ αmq P Sn. (Note m ď n.) Show that we can write α

´1
as

β “ pα1 αm αm´1 ¨ ¨ ¨ α2q .

For example, if α “ p2 3 5 6q, α´1 “ p2 6 5 3q.

8¨2 Cayley’s remarkable result

The mathematician Arthur Cayley discovered a lovely fact about the permutation groups. Its

effective consequence is that the theory of finite groups is equivalent to the study of groups

of permutations.

Cayley’s Theorem. Every group of order n is isomorphic to a subgroup of Sn.

Before we prove the theorem, we use an example to illustrate the idea behind the proof.

Example 8¨22. Consider the Klein 4-group; this group has four elements, so Cayley’s Theorem

tells us that it must be isomorphic to a subgroup of S4. We build an isomorphism by looking

at the Cayley table for the Klein 4-group:
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ˆ я a b ab

я я a b ab

a a я ab b

b b ab я a

ab ab b a я

To find a permutation appropriate to each element, we first label the elements:

я ú 1,

aú 2,

bú 3,

abú 4.

Using tabular notation for permutations, we define a map f from the Klein 4-group to S4 by

f pxq “

ˆ

1 2 3 4

` px ¨ яq ` px ¨ aq ` px ¨ bq ` px ¨ abq

˙

, (8.1)

where ` pyq is the label that corresponds to y.

This notation affords us a powerful means of expression, but can be hard to read. Suppose

f maps an element x of the Klein 4-group to the permutation σ “ p1 2q p3 4q of S4 Any per-

mutation of S4 is a one-to-one function on a list of 4 elements, say p1, 2, 3, 4q. By definition,

σ p2q “ 1. Since σ “ f pxq, we can likewise write, pf pxqq p2q “ 1. This double-evaluation can

be hard to look at; it does not say “f pxq times 2,” but rather, “f pxq of 2”? To avoid confusion,

we adopt the following notation to emphasize that f pxq is a permutation, and thus a function:

f pxq “ fx.

It’s much easier to look at fx p2q and understand we want fx p2q “ σ p1q.

Let’s compute fa:

fa “

ˆ

1 2 3 4

` pa ¨ яq ` pa ¨ aq ` pa ¨ bq ` pa ¨ abq

˙

.

The first entry has the value ` pa ¨ eq “ ` paq “ 2, telling us that

fa “

ˆ

1 2 3 4

2 ` pa ¨ aq ` pa ¨ bq ` pa ¨ abq

˙

.

The next entry has the value ` pa ¨ aq “ ` pa2q “ ` pяq “ 1, telling us that

fa “

ˆ

1 2 3 4

2 1 ` pa ¨ bq ` pa ¨ abq

˙

.

The third entry has the value ` pa ¨ bq “ ` pabq “ 4, telling us that

fa “

ˆ

1 2 3 4

2 1 4 ` pa ¨ abq

˙

.
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The final entry has the value ` pa ¨ abq “ ` pa2bq “ ` pbq “ 3, telling us that

fa “

ˆ

1 2 3 4

2 1 4 3

˙

“
`

1 2
˘ `

3 4
˘

.

So applying the formula in equation (8.1) definitely gives us a permutation.

Look closely. We could have filled out the bottom row of the permutation by looking above

at the Klein 4-group’s Cayley table, locating the row for the multiples of a (the second row of

the multiplication table), and filling in the labels for the entries in that row! After all,

the row corresponding to a is precisely

the row of products a ¨ y for all elements y of the group!

Doing this or applying equation (8.1) to the other elements of the Klein 4-group tells us

fя “

ˆ

1 2 3 4

1 2 3 4

˙

“ p1q

fb “

ˆ

1 2 3 4

3 4 1 2

˙

“
`

1 3
˘ `

2 4
˘

fab “

ˆ

1 2 3 4

4 3 2 1

˙

“
`

1 4
˘ `

2 3
˘

.

The result is a subset of S4; or, in cycle notation,

W “ tfя, fa, fb, fabu

“ tp1q , p1 2q p3 4q , p1 3q p2 4q , p1 4q p2 3qu .

Verifying that W is a group, and therefore a subgroup of S4, is straightforward; you will

do so in the homework. In fact, it is a consequence of the fact that f is a homomorphism.

Strictly speaking, f is really an isomorphism. Inspection shows that f is one-to-one and onto;

the hard part is the homomorphism property. We will use a little cleverness for this. Let x, y

in the Klein 4-group.

• Recall that fx, fy, and fxy are permutations, and by definition one-to-one, onto functions

on a list of four elements.

• Notice that ` is also a one-to-one function, and it has an inverse. Just as ` pzq is the label

of z, `´1 pmq is the group element labeled by the number m. For instance, `´1 p3q “ b.

• Since fx is a permutation of a list of four elements, we can look at fx pmq as the position

where fx moves the list element in the mth position.

• By definition, fx movesm to ` pzqwhere z is the product of x and the element in themth

position. Written differently, z “ x ¨ `´1 pmq, so

fx pmq “ `
`

x`´1 pmq
˘

. (8.2)

Similar statements hold for fy and fxy.
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• Applying these facts, we observe that

`

fx ˝ fy
˘

pmq “ fx
`

fy pmq
˘

(def. of comp.)

“ fx
`

`
`

y ¨ `´1 pmq
˘˘

(def. of fy)

“ `
`

x ¨ `´1
`

`
`

y ¨ `´1 pmq
˘˘˘

(def. of fx)

“ `
`

x ¨
`

y ¨ `´1 pmq
˘˘

(`´1, ` inverses)

“ `
`

xy ¨ `´1 pmq
˘

(assoc. prop.)

“ fxy pmq . (def. of fxy)

• Since m was arbitrary in t1, 2, 3, 4u, fxy and fx ˝ fy are identical functions.

• Since fxfy “ fx ˝ fy, we have fxy “ fxfy.

• Since x, y were arbitrary in the Klein 4-group, this holds for the entire group.

We conclude that f is a homomorphism; since it is one-to-one and onto, f is an isomorphism.

You should read through Example 8¨22 carefully two or three times, and make sure you

understand it, since in the homework you will construct a similar isomorphism for a different

group, and also because we do the same thing now in the proof of Cayley’s Theorem.

Proof of Cayley’s Theorem. Let G be a finite group of n elements. Label the elements in any order

G “ tg1, g2, . . . , gnu and denote ` pgiq “ i. Define a relation

f : GÑ Sn by f pgq “

ˆ

1 2 ¨ ¨ ¨ n

` pg ¨ g1q ` pg ¨ g2q ¨ ¨ ¨ ` pg ¨ gnq

˙

.

By definition, this assigns to each g P G the permutation whose second row of the tabular

notation contains, in order, the labels for each entry in the row of the Cayley table corre-

sponding to g. By this fact, we know that f is one-to-one and onto (see also Question 2.40

on page 58). The proof that f is a homomorphism is identical to the proof for Example 8¨22:

nothing in that argument required x, y, or z to be elements of the Klein 4-group; the proof was

for a general group! Hence f is an isomorphism, and G – f pGq ă Sn.

What’s so remarkable about this result? One way of looking at it is the following: since

every finite group is isomorphic to a subgroup of a group of permutations, you can learn every-

thing you need to know about finite groups by studying the groups of permutations!

In theory, I could go back and rewrite these notes, introducing the reader first to lists, then

to permutations, then to S2, to S3, to the subgroups of S4 that correspond to the cyclic group

of order 4 and the Klein 4-group, and so forth, making no reference to these other groups,

nor to the dihedral group, nor to any other finite group that we have studied. But it is more

natural to think in terms other than permutations (geometry for Dn is helpful); and it can

be tedious to work only with permutations. While Cayley’s Theorem has its uses, it does not

suggest that we should always consider groups of permutations in place of the more natural

representations.
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Question 8¨23 .
For this problem, you may need to review the group D4 of Question 3.118. In Example 8¨22 we

foundW, a subgroup of S4 that is isomorphic to the Klein 4-group. It turns out thatW maps to

a subgroup V of D4, as well. Draw the geometric representations for each element of V, using

a square and writing labels in the appropriate places, as we did in Figure 3¨6 on page 107.

Question 8¨24 .
Apply Cayley’s Theorem to find a subgroup of S4 that is isomorphic to Z4. Write the permu-

tations in both tabular and cycle notations.

Question 8¨25 .
The subgroup of S4 that you identified in Question 8.24 maps to a subgroup of D4, as well. Draw

the geometric representations for each element of this subgroup, using a square with labeled

vertices, and arcs to show where the vertices move.

Question 8¨26 .
Since S3 has six elements, we know it is isomorphic to a subgroup of S6. In fact, it can be

isomorphic to more than one subgroup; Cayley’s Theorem tells us only that it is isomorphic

to at least one. Identify a subgroup A of S6 such that S3 – A, yet A is not the image of the

isomorphism used in the proof of Cayley’s Theorem.

8¨3 Alternating groups

The alternating groups are a special subgroup of the permutations that play an important role

in upcoming topics. We define them using a property of a permutation that does not change

regardless of how we can write it. A property like this is called invariant.

Transpositions

The particular invariant we consider depends on the shortest non-trivial cycles.

Definition 8¨27. Let n P N`. An n-cycle is a permutation that can be written as one cycle

with n entries. A transposition is a 2-cycle.

Example 8¨28. The permutation p1 2 3q P S3 is a 3-cycle. The permutation p2 3q P S3 is a

transposition. The permutation p1 3q p2 4q P S4 cannot be written as only one n-cycle for any

n P N`: it is the composition of two disjoint transpositions.

Fact 8¨29. Any transposition is its own inverse.

Why? You do it! See Question 8.30
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Question 8¨30 .
Show that:

(a) the inverse of any transposition is a transposition; and

(b) if we can write the permutation π as π “ τ1τ2 ¨ ¨ ¨ τk, where each τi is a transposition, then

π
´1 “ τkτk´1 ¨ ¨ ¨ τ1.

Any permutation can be written with many different numbers of cycles; after all, any

one-cycle is the identity:

p1 2 3q “ p1 2 3q p1q “ p1 2 3q p1q p3q “ p1 2 3q p1q p3q p1q “ ¨ ¨ ¨ .

A neat trick allows us to write every permutation as a composition of transpositions.

Example 8¨31. Verify that

• p1 2 3q “ p1 3q p1 2q;

• p1 4 8 2 3q “ p1 3q p1 2q p1 8q p1 4q; and

• p1q “ p1 2q p1 2q.

Do you see the relationship between the n-cycle and the corresponding transpositions?

Lemma 8¨32. Any permutation can be written as a composition of transpositions.

Proof. You do it! See Question 8.33.

Question 8¨33 .
Show that any permutation can be written as a product of transpositions.

Remark 8¨34. Given an expression of σ as a product of transpositions, say σ “ τ1 ¨ ¨ ¨ τn, it is

clear from Fact 8¨29 that we can write σ
´1 “ τn ¨ ¨ ¨ τ1, as an application of the associative

property yields

pτ1 ¨ ¨ ¨ τnq pτn ¨ ¨ ¨ τ1q “ pτ1 ¨ ¨ ¨ τn´1q pτnτnq pτn´1 ¨ ¨ ¨ τ1q

“ pτ1 ¨ ¨ ¨ τn´1q
`

1
˘

pτn´1 ¨ ¨ ¨ τ1q

...

“ p1q .

At this point it is worth revisiting Example 8¨31. Can we write
`

1 2 3
˘

with many

different numbers of transpositions? Yes:

p1 2 3q “ p1 3q p1 2q

“ p1 3q p1 2q p2 3q p2 3q

“ p1 3q p1 2q p1 3q p1 3q

“ ¨ ¨ ¨ .
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Nevertheless, there is a difference to writing p1 2 3q as any number of cycles: no matter how

we try, we seem able to write it only as an even number of transpositions. Similarly,

p2 3q “ p2 3q p2 3q p2 3q

“ p2 3q p1 2q p1 3q p1 3q p1 2q “ ¨ ¨ ¨ .

No matter how we try, we seem able to write it only as an odd number of transpositions.

Is this always the case?

Even and odd permutations

Theorem 8¨35. Let α P Sn.

• If α can be written as the composition of an even number of transpositions, then it cannot be

written as the composition of an odd number of transpositions.

• If α can be written as the composition of an odd number of transpositions, then it cannot be

written as the composition of an even number of transpositions.

Proof. Define the polynomials

g “
ź

1ďiăjďn

`

xi ´ xj
˘

and gα “
ź

1ďiăjďn

`

xαpiq ´ xαpjq
˘

.

The value of gα depends on the permutation α; in particular, it depends only on what α does

to each pair i and j. That makes gα invariant under the representation of α. Its value does not

depend on how we write α in terms of transpositions!

How is gα related to g? Sometimes they agree; for example, if α “
`

1 3 2
˘

then

g “ px1 ´ x2q px1 ´ x3q px2 ´ x3q

and

gα “ px3 ´ x1q px3 ´ x2q px1 ´ x2q

“ rp´1q px1 ´ x3qs rp´1q px2 ´ x3qs px1 ´ x2q

“ g.

Is it always the case that gα “ g? Not necessarily: if α “
`

1 2
˘

then g “ x1 ´ x2 and

gα “ x2 ´ x1 ‰ g. In this case , gα “ ´g.

Question 8¨36 .
We pause the proof a moment to ask you a question. Compute gα for the permutations p1 3q p2 4q

and p1 3 2 4q. Use the value of gα to determine which of the two permutations is odd, and

which is even?
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Proof of Theorem 8¨35 (continued). We cannot guarantee gα “ g, but can we write gα in terms of

g? Try the following. Lemma 8¨32 tells us α is a composition of transpositions, so let’s think

about what happens when we compute gτ for any transposition τ “
`

i j
˘

. Without loss of

generality, we may assume that i ă j. Let k be another positive integer.

• We know that xi ´ xj is a factor of g. After applying τ, xi ´ xj is no longer a factor of gτ;

rather, xj ´ xi. Observe that xj ´ xi “ ´
`

xi ´ xj
˘

.

• If i ă j ă k, then xi ´ xk and xj ´ xk are factors of g. After applying τ, xj ´ xk and xi ´ xk

are factors of gτ. While the order has changed, the factors have not.

• If k ă i ă j, then xk ´ xi and xk ´ xj are factors of g. After applying τ, xk ´ xj and xk ´ xi

are factors of gτ. Again, the order has changed, but the factors have not.

• If i ă k ă j, then xi ´ xk and xk ´ xj are factors of g. After applying τ, xj ´ xk and xk ´ xi

are factors of gτ. The factors have changed, but the changes cancel:

`

xj ´ xk
˘

pxk ´ xiq “
“

´
`

xk ´ xj
˘‰

r´ pxi ´ xkqs “ pxi ´ xkq
`

xk ´ xj
˘

.

To summarize: xi ´ xj is the only factor whose change of sign makes a difference in g and gτ.

We see that gτ “ ´g.

Excellent! We have characterized the relationship between gα and gwhenever α is a trans-

position! Return to the general case, whereα is an arbitrary permutation. From Lemma 8¨32, α

is a composition of transpositions. Choose transpositions τ1, τ2, . . . , τm such thatα “ τ1τ2 ¨ ¨ ¨ τm.

Using substitution and the observation we just made,

gα “ gτ1¨¨¨τm “ ´gτ1¨¨¨τm´1
“ p´1q

2
gτ1¨¨¨τm´2

“ ¨ ¨ ¨ “ p´1q
m
g.

In short,

gα “ p´1q
m
g. (8.3)

Recall that gα depends only on α, and not on its representation. Assume α can be written as an

even number of transpositions; say, α “ τ1 ¨ ¨ ¨ τ2m. Formula (8.3) tells us that gα “ p´1q
2m
g “

g. If we could also write α as an odd number of transpositions, say, α “ µ1 ¨ ¨ ¨ µ2m`1, then

gα “ p´1q
2k`1

g. Substitution gives us p´1q
2m
g “ p´1q

2k`1
g “

“

p´1q
2
‰k

p´gq “ ´g, a

contradiction. Hence, α cannot be written as an odd number of transpositions.

A similar argument shows that if α can be written as an odd number of transpositions,

then it cannot be written as an even number of transpositions. Since α P Sn was arbitrary, the

claim holds.

Lemma 8¨32 tells us any permutation can be written as a composition of transpositions,

and Theorem 8¨35 tells us that for any given permutation, this number is always either an

even or odd number of transpositions. The number itself is invariant, but whether it is even

or odd (its parity) is not.

Definition 8¨37. If a permutation can be written with an even number of permutations, then

we say the permutation is even. Otherwise, we say the permutation is odd.
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Example 8¨38. The permutation ρ “ p1 2 3q P S3 is even, since as we saw earlier ρ “

p1 3q p1 2q. So is the permutation ι “ p1q “ p1 2q p1 2q. The permutation φ “ p2 3q is odd.

Question 8¨39 .
Recall the polynomials g and gα defined in the proof of Theorem 8¨35. The sign function
sgn pαq indicates the relationship,

g “ sgn pαq ¨ gα.

Another way of saying this is that

sgn pαq “

#

1, α P An;

´1, α R An.

Show that for any two cycles α, β,

p´1q
sgnpαβq

“ p´1q
sgnpαq

p´1q
sgnpβq

.

Explain why sgn is a homomorphism from Sn to the group under multiplication t˘1u. What

is its kernel?

The alternating groups

The invariance of a permutation’s parity allows us to identify a new kind of group.

Definition 8¨40. Let n P N` and n ě 2. Let An “ tα P Sn : α is evenu. We call An the set of
alternating permutations.

Remark 8¨41. While this A3 is not the “A3” of Example 4¨134 on page 163, the isomorphism

between D3 and S3 maps one to the other, so they are isomorphic.

Question 8¨42 .
List the elements of A2, A3, and A4 in cycle notation.

This set is, in fact, a subgroup of the symmetric group.

Theorem 8¨43. For all n ě 2, An ă Sn.

We prove this two different ways.

First proof: directly. Let n ě 2. By Lemma 4¨4, the elements of An are associative under compo-

sition. Observe that p1q “ p1 2q p1 2q P An, so An has an identity. For any π P An, write it as an

even number of transpositions, say π “ τ1τ2 ¨ ¨ ¨ τ2k; by Question 8.30, τ
´1 “ τ2kτ2k´1 ¨ ¨ ¨ τ1 P

An, so An satisfies the inverse property. Finally, for any π, σ P An, write them as an even

number of transpositions, say π “ τ1τ2 ¨ ¨ ¨ τ2k and σ “ υ1υ2 ¨ ¨ ¨ υ2`. Their product is πσ “

pτ1 ¨ ¨ ¨ τ2kq pυ1 ¨ ¨ ¨ υ2`q, which is clearly an even number of transpositions, so An is closed under

composition of function. Since it satisfies the four properties of a group, An ă Sn.
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Second proof: using the Subgroup Theorem. Let n ě 2. Observe that p1q “ p1 2q p1 2q, so An ‰ H.

Let x, y P An. By definition, we can write x “ σ1 ¨ ¨ ¨ σ2m and y “ τ1 ¨ ¨ ¨ τ2n, where m, n P Z and

each σi or τj is a transposition. From Remark 8¨34,

y
´1
“ τ2n ¨ ¨ ¨ τ1,

so

xy
´1
“ pσ1 ¨ ¨ ¨ σ2mq pτ2n ¨ ¨ ¨ τ1q .

This is a composition of 2m ` 2n “ 2 pm` nq transpositions, which shows xy
´1 P An. By the

Subgroup Theorem, An ă Sn.

How large is An, relative to Sn?

Theorem 8¨44. For any n ě 2, there are half as many even permutations as there are permutations.

That is, |An| “ |Sn| {2.

Proof. We show that there are two cosets of An ă Sn, then apply Lagrange’s Theorem.

Let X P Sn{An. Let α P Sn such that X “ αAn. If α is an even permutation, then Lemma 4¨103

on page 152 implies that X “ An. Otherwise, α is odd. Let β be any other odd permutation.

Write out the odd number of transpositions of α
´1

, followed by the odd number of transpo-

sitions of β, to see that α
´1
β is an even permutation. Hence, α

´1
β P An, and by Lemma 4¨103,

αAn “ βAn.

We have shown that even permutations lie in one coset (An itself) while odd permutations

lie in one different coset (we can write it as p1 2qAn). From Lemma 8¨32, any permutation is

either even or odd. These two cosets of An thus partition Sn. By Lagrange’s Theorem,

|Sn|

|An|
“ |Sn{An| “ 2,

and a little algebra rewrites this equation as |An| “ |Sn| {2.

Corollary 8¨45. For any n ě 2, An Ÿ Sn.

Proof. You do it! See Question 8.46.

Question 8¨46 .
Show that for any n ě 2, An Ÿ Sn.

8¨4 The 15-puzzle

The 15-puzzle resembles a 4 ˆ 4 square, with all the squares numbered, except one. The

numbering starts in the upper left and proceeds consecutively until the lower right; the only

squares that aren’t in order are the last two, which are swapped:

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14



CHAPTER 8. GROUPS OF PERMUTATIONS 293

The only permissible moves are those where one “slides” a square left, right, above, or below

the empty square. The following moves are permissible from the starting position above:

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

or

1 2 3 4

5 6 7 8

9 10 11

13 15 14 12

.

The following moves are not:

1 2 3 4

5 6 7 8

9 10 12

13 15 14 11

or

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

.

(You may have played with a similar toy as a child.) The challenge is to find a way to rearrange

the squares so that they are in order, like so:

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

This section shows the challenge to be impossible.

How? Since the problem is one of rearranging a list of elements, it is a problem of permu-

tations. Every permissible move consists of transpositions τ “ px yq in S16 where:

• x ă y;

• one of x or y is the position of the empty square in the current list; and

• legal moves imply that either

– y “ x` 1 and 4 - x; or

– y “ x` 4.

Example 8¨47. The legal moves illustrated above correspond to the transpositions

• p15 16q, because square 14 was in position 15, and the empty space was in position 16:

notice that 16 “ 15` 1; and

• p12 16q, because square 12 was in position 12, and the empty space was in position 16:

notice that 16 “ 12` 4.

The illegal moves illustrated above correspond to the transpositions

• p11 16q, because square 11 was in position 11, and the empty space was in position 16:

notice that 16 “ 11` 5; and
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• p13 14q, because neither 13 nor 14 contains the empty square.

Likewise p12 13qwould be an illegal move in any configuration, because it crosses rows: even

though y “ 13 “ 12` 1 “ x` 1, x “ 12 “ 3ˆ 4.

How can we use this to show that it is impossible to solve 15-puzzle? We take two steps. The

first shows that if there is a solution, it must belong to a particular group.

Lemma 8¨48. Any solution to the 15-puzzle is a permutation σ P A16.

Proof. Any permissible move corresponds to a transposition τ as described above. Any solu-

tion contains the empty square in the lower right hand corner. As a consequence,

• if px yq is a move left, then the empty square must eventually return to the rightmost

row, so there must eventually be a corresponding move right, px1 y1q; and

• if px yq is a move up, the empty square must eventually return to the bottom row, so

there must eventually be a corresponding move down, px1 y1q.

Thus, moves come in pairs. The upshot is that any solution to the 15-puzzle must be a permu-

tation σ defined by an even number of transpositions. By Theorem 8¨35 and Definitions 8¨37

and 8¨40, σ P A16.

The second step is to explain why the initial configuration makes this impossible.

Theorem 8¨49. The 15-puzzle has no solution.

Proof. By way of contradiction, assume that it has a solution σ. By Lemma 8¨48, σ P A16.

BecauseA16 is a subgroup of S16, and hence a group in its own right, σ
´1 P A16. Notice σ

´1
σ “ ι,

the permutation which corresponds to the configuration of the solution.

Now σ
´1

is a permutation corresponding to the moves that change the arrangement

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

into the arrangement

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

which corresponds to p14 15q. Remember that a permutation’s parity is invariant; you will

show below that a permutation and its inverse have the same parity. We conclude that sgnσ “

sgn pσ´1q “ sgn p14 15q, contradicting Lemma 8¨48.



CHAPTER 8. GROUPS OF PERMUTATIONS 295

Question 8¨50 .
Let σ P Sn. How do we know that sgnσ “ sgn pσ´1q?

As a historical note, the 15-puzzle was developed in 1878 by an American puzzle maker,

who promised a $1,000 reward to the first person to solve it. Most probably, the puzzle maker

knew that no one would ever solve it: if we account for inflation, the reward would correspond

to $22,265 in 2008 dollars.
1

The textbook [2] contains a more general discussions of solving puzzles of this sort using

algebra.

Question 8¨51 .
Determine which of these configurations, if any, is solvable by the same rules as the 15-puzzle:

1 2 3 4

5 6 7 8

9 10 12 11

13 14 15

,

1 2 3 4

5 10 6 8

13 9 7 11

14 15 12

,

3 6 4 7

1 2 12 8

5 15 10 14

9 13 11

.

1
According to the website www.measuringworth.com/ppowerus/result.php.



Chapter 9

Solving polynomials by radicals

In this chapter, we take a few steps into Galois theory, a major impetus for the development of

algebra. The subject’s development began with the effort to generalize the quadratic formula,

ax
2
` bx` c “ 0 ùñ x “

´b˘
?
b2 ´ 4ac

2a

to higher-degree polynomials. This formula requires arithmetic operations (addition, sub-

traction, multiplication, division) and one “algebraic” operation, the radical. When an equa-

tion can be solved by these five operations, we say that it can be solved by radicals.

Renaissance mathematicians discovered formulas that extend this elegant approach to

cubic and quartic polynomials, so that in principle one can describe a “cubic formula” and

a “quartic formula,” though they are much more complicated than the quadratic. Quintic

polynomials turned out to be more difficult — because, as Ruffini argued, Abel proved, and

finally Galois elaborated, it is impossible to solve every quintic polynomial by radicals; not

every polynomial root can be described in this way!

We explore only the theory which explains this failure. Polynomials will lie over a ground

field F of characteristic zero: so, no zero divisors; if na “ 0, then n “ 0 or a “ 0. This

assumption rules out all the clockwork fields, since a P Fpk implies that pa “ 0.

9¨1 Radical extensions of a field

Section 3¨1 showed that we could use the polynomial x
2 ` 1 over R to build a new field, “C”,

over which the polynomial x
2 ` 1 has a root. This new field acts as an extension of R in the

sense that we can find a subfield of “C” that is isomorphic to R. We developed this further

in Sections 6¨2, 6¨5, and 6¨6: any irreducible polynomial generates a maximal ideal, which

we can use to build a new field that contains a root of the polynomial. (See in particular

Theorem 6¨30, Fact 6¨70, and Theorem 6¨72.

This section “extends” our results a bit.

Extending a field by a root

SinceF is a subfield of the ringF rxs, we can view it as a subfield of the fieldE “ F rxs { 〈f 〉.
At any rate, it is certainly isomorphic to a subfield of the latter field, which has a root of

296
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f , which means we are not unreasonable in stating that there exists a superfield of F that

contains a root α of f .

Definition 9¨1. Let f be an irreducible polynomial over a field F, and let α be a root of f that

is not in F. We call the field E “ F pαq an algebraic extension of F, and say that we obtain

E from F by adjoining α. If f is irreducible and d “ deg f , we say that E is an extension
of degree d (over F). If there exists m P N` such that α

m P F, then we say that E is a

radical extension of F. We will also relax our precision sometimes to say that a sequence of

field extensions is an algebraic (or radical) extension if every extension in the sequence is

algebraic (or radical).

This terminology allows us to give our main question more precision:

Is an algebraic extension always radical?

Were the answer “Yes,” then we could always solve polynomials by radicals; we would simply

construct a finite sequence of radical extensions

E1 “ Q pα1q , E2 “ Q pα1q pα2q , ¨ ¨ ¨ Ek “ Q pα1q ¨ ¨ ¨ pαkq

where each αi has the form

αi “
n

a

β for some β P Ei´1,

and every root of the polynomial would appear in Ek.

The purpose of this chapter is to show that the answer is, in fact, “No.”

Question 9¨2 .
Let α be a root of an irreducible polynomial f P F rxs, with deg f ě 2. Explain how we know

that F pαq satisfies both the properties of a field and F Ĺ F pαq Ď E, where E is any field that

contains both F and α.

You may wonder whether the degree of an algebraic extension is well-defined; after all, α

could be the root of two different irreducible polynomials of different degree. In fact, this

cannot happen.

Fact 9¨3. Let f, g P F rxs be two irreducible polynomials with a common root α R F. Then deg f “

deg g.

Why? Recall that F rxs is a Euclidean domain, and compute a gcd p of f and g. Since f is ir-

reducible and p | f , p is either a unit or an associate of f . By Question 6.51 and Fact 6¨55 we

know that Bézout’s Lemma applies, so we can find h1, h2 P F rxs such that p “ h1f ` h2g. By

substitution,

p pαq “ h1 pαq f pαq ` h2 pαq g pαq “ h1 pαq ¨ 0` h2 pαq ¨ 0 “ 0.

You will show in Question 9.4 that a polynomial cannot both have a root and be a unit, so p is

not a unit; it must be an associate of f ; say p “ af where a P F rxs is a unit. Since g is irreducible
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and p | g, by substitution af | g, so f | a´1g. Recall that F rxs is a unique factorization domain,

so the irreducible f is prime, so f | a´1 or f | g. You will show in Question that only a unit can

divide a unit, and an irreducible is by definition not a unit, so f | g. Since g is irreducible, f

must be an associate of g. You will also show in Question 9.4 that the degree of a unit is zero,

so deg f “ deg g.

Question 9¨4 .
The explanation for all three properties hinted at in the proof above is nearly identical.

(a) Let f P F rxs. Show that if f has a root α P F, then f cannot be a unit. Hint: Proceed by

contradiction. Think about the value of f and its inverse at α.

(b) Let R be a ring and a, r P R, where a is a unit. Show that if r | a then r is also a unit.

(c) Let F rxs be the ring of polynomials over the field F, and a P F rxs a unit. Show that

deg a “ 0.

Question 9¨5 .
An alternate approach to defining the degree of an extension is as follows. Let α be the root

of an irreducible polynomial f over F.

(a) Show that F pαq is a vector space over F.

(b) Show that the vector space is finite dimensional. Hint: Use f to show that only finitely

many powers of α are linearly independent.

Define deg F pαq to be the dimension of F pαq over F.

(c) Explain why the value of deg F pαq computed this way gives the identical result as the

value indicated above.

Example 9¨6. Let f “ x
5 ´ 2x

3 ´ 3x
2 ` 6. This factors over Q as px2 ´ 2q px3 ´ 3q. Both

factors are irreducible over Q. From what we wrote above, there exists a radical extension

of degree 2 of Q that contains a root of x
2 ´ 2; call the corresponding root α “

?
2, so that

instead of writing Q pαq, we can write Q
`?
2
˘

, instead.

What do elements of Q pαq “look” like? By the definition of a ring extension, we know

that elements of this field have the form a ` b
?
2 ` c

?
2
2

` ¨ ¨ ¨ . Now,
?
2 is a root of x

2 ´ 2,

which means that
?
2
2

´ 2 “ 0, which we can rewrite as
?
2
2

“ 2. Hence, we can assume that

elements of Q
“?
2
‰

really have the form a` b
?
2, since we just saw how higher powers of

?
2

reduce either to an element of Q, or to a rational multiple of
?
2 itself.

It might not be obvious that such elements have multiplicative inverses, but they do. You

can see this either by working with the isomorphic quotient field Q rxs { 〈x2 ´ 2〉, or in this

case solving a straightforward linear equation. For the nonzero element a ` b
?
2 to have an

inverse c ` d
?
2, we need

1 “
`

a` b
?
2
˘ `

c ` d
?
2
˘

“ pac ` 2bdq ` pad` bcq
?
2.
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Since 1 “ 1` 0
?
2, we know we can find an inverse if

ac ` 2bd “ 1 and ad` bc “ 0.

Since a` b
?
2 is nonzero, we can assume that a ‰ 0 or b ‰ 0. If a ‰ 0, then we can solve the

two equations to see that

c “
1´ 2bd

a
and d “ ´

bc

a
.

Notice that this solution satisfies c, d P Q, since the rationals are a field. If a “ 0, on the other

hand, those equations simplify to

2bd “ 1 and bc “ 0,

so that d “ 1{ p2bq and c “ 0. To make sure you understand that, use this principle to find

the inverses of 1´ 2
?
2 and 3

?
2.

Does x
3 ´ 3 factor over this extension field? If so, then it has at least one linear factor,

x´ β. This makes β a root of x
3´ 3, so we can resolve the question by asking, does x

3´ 3 have

a root in Q
`?
2
˘

? If so, it has the form x “ a` b
?
2, and we can rewrite the polynomial as

0 “ x
3
´ 3 “

`

a` b
?
2
˘3

´ 3

“ a
3
` 3a

2
b
?
2` 6ab

2
` 2b

3
?
2´ 3

“
`

a
3
` 6ab

2
´ 3

˘

`
`

3a
2
b` 2b

3
˘
?
2.

In other words,
?
2 “

´a3 ´ 6ab2 ` 3

3a2b` 2b3
.

Remember that a, b P Q, so addition, subtraction, and multiplication, are closed, and division

is closed so long as the divisor is nonzero. If the divisor in this expression is in fact nonzero

— that is, 3a
2
b` 2b3 ‰ 0 — then the equation above tells us that

?
2 P Q. We know that this

is false! The divisor must, therefore, be zero, which means that

b
`

3a
2
` 2b

2
˘

“ 3a
2
b` 2b

3
“ 0 ùñ b “ 0 or 3a

2
` 2b

2
“ 0.

If b “ 0, then x P Q. That is, x
3 ´ 3 has a rational root. We know that this is false! If b ‰ 0,

on the other hand, then 3a
2` 2b2 “ 0, which we can rewrite as a{b “

a

´2{3. Since a, b P Q,

we conclude that
a

´2{3 P Q. Again,we know that this is false! All the possibilities lead us

to a contradiction, so we conclude that x
3´3 does not factor over the extension fieldQ

`?
2
˘

.

As before, we can extendQ
`?
2
˘

by a root of x
3´2; call it

3
?
3. We now have the extension

fieldE “ Q
`?
2
˘ `

3
?
3
˘

. Have we found all the roots f now? For the factor x
2´2, we certainly

have, since x
2´2 “

`

x´
?
2
˘ `

x`
?
2
˘

. For the other factor, we are not quite done; we have,

x
3
´ 3 “

`

x´
3
?
3
˘ `

x
2
` x

3
?
3`

3
?
9
˘

,



CHAPTER 9. SOLVING POLYNOMIALS BY RADICALS 300

and this latter polynomial does not factor. To see why not, let’s use the quadratic equation to

find what the roots should be:

x
2
` x

3
?
3`

3
?
9 “ 0

x “
´

3
?
3˘

b

`

3
?
3
˘2

´ 4 3
?
9

2

“
´

3
?
3˘

a

´3 3
?
9

2

“
´

3
?
3˘ i

?
3

3
?
3

2

“ ´
3
?
3

ˆ

1

2
˘ i

?
3

2

˙

.

So we are still missing the cube roots of unity.

Question 9¨7 .
Find the smallest extension field of Q where f pxq “ x7´2x4´ x3`2 factors completely. Hint:

f is not irreducible overQ, so try to factor it completely overQ before working on extensions.

In the example, we construct Q
`?
2
˘

, whose degree over Q is 2, and Q
`?
2,

3
?
3
˘

, whose

degree over Q
`?
2
˘

is 3. How should we determine the degree of Q
`?
2,

3
?
3
˘

over Q? You

might think to add the degrees, but then you would lose an important relationship between

the degree of an extension and the dimension of the extension as a vector space over the base

field. Elements of Q
`?
2,

3
?
3
˘

can be written as

a` b
?
2` c

3
?
3` d

3
?
9` e

?
2

3
?
3` f

?
2

3
?
9;

each term is linearly independent of the others, so that Q
`?
2,

3
?
3
˘

is a vector space of di-

mension 6 over Q. In the same way, Q
`?
2
˘

was a vector space of dimension 2 over Q, and

Q
`?
2,

3
?
3
˘

was a vector space of dimension 3 over Q
`?
2
˘

. Given that link, it makes better

sense to define the degree of Q
`?
2,

3
?
3
˘

over Q as 6.

Definition 9¨8. Let F be a field, and

F “ E0 Ĺ E1 Ĺ E2 Ĺ ¨ ¨ ¨ Ĺ Em

a chain of algebraic extensions. Denote the degree ofEi overEi´1 as rEi : Ei´1s; we define the

degree of Em over F as

rEm : Em´1s rEm´1 : Em´2s ¨ ¨ ¨ rE2 : E1s rE1 : E0s .
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Question 9¨9 .
Show that Definition 9¨8 is well-defined; that is, if there is more than one way to fill in the

dots of the chain of algebraic extensions E0 Ĺ ¨ ¨ ¨ Ĺ Em (for instance,

Q Ĺ Q
`?
2
˘

Ĺ Q
`?
2,
?
5
˘

Ĺ Q
`?
2,
?
5,
?
7
˘

or

Q Ĺ Q
`?
5
˘

Ĺ Q
`?
5,
?
7
˘

Ĺ Q
`?
2,
?
5,
?
7
˘

,

then we do not obtain different degrees by considering different chains. Hint: Use the alter-

nate definition of the degree of an extension, given in Question 9.5.

Remark. The usual study of Galois theory considers field extensions in a more general case;

that is, not just as the roots of irreducible polynomials. Our restriction tries to keep the affair

in a very concrete setting; this allows us some latitude with the degree of an extension that

the more general case does not enjoy.

Complex roots

As a cube root of unity popped up in the example above, you would be wise to conjecture

that the roots of unity play a fundamental role here. In fact, we can obtain radical roots by

adjoining both a “principal” root, and a sensible “root of unity.”

Recall from Theorems 3¨26 and 3¨28 that 1,ω,ω
2
, . . . ,ω

n´1
are all n-th roots of unity, where

ω has the form

ω “ cos

ˆ

2π

n

˙

` i sin

ˆ

2π

n

˙

,

and from Lemma 3¨27 we see further that

ω
m
“ cos

ˆ

2πm

n

˙

` i sin

ˆ

2πm

n

˙

.

This pattern extends beyond the roots of unity.

Theorem 9¨10. If α is a root of an irreducible polynomial x
n´ a P Q rxs, then all other roots of x

n´ a

have the form α ¨ ωm, where ω is a primitive n-th root of unity and m P t1, . . . , n´ 1u.

Proof. Assume that α is a root of an irreducible polynomial x
n´ a P Q rxs. By substitution and

definition of the primitive n-th root,

pαω
m
q
n
´ a “ α

n
pω

n
q
m
´ a “ α

n
¨ 1

m
´ a.

By hypothesis, α
n ´ a “ 0, so

pαω
m
q
n
´ a “ 0.

By definition, αω
m

is a root of x
n ´ a.

Very well, but why must this form characterize all the roots of x
n ´ a? Using the Factor

Theorem, we see that x
n´ a can have no more than n roots, and we just found n such distinct

roots,

α, αω, αω
2
, . . . , αω

n´1
.
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α

αω

αω2

Figure 9¨1: The roots of x
3 ´ 3, obtained using one root and the cube roots of unity.

Example 9¨11. Returning to the question of the roots of x
3´ 3, we defined one root to be

3
?
3.

The other roots are, therefore,

3
?
3

„

cos

ˆ

2π

3

˙

` i sin

ˆ

2π

3

˙

and
3
?
3

„

cos

ˆ

4π

3

˙

` i sin

ˆ

4π

3

˙

or, after evaluating these trigonometric functions,

3
?
3

ˆ

´
1

2
` i

?
3

2

˙

and
3
?
3

ˆ

´
1

2
´ i

?
3

2

˙

.

If you look back at the result of the quadratic equation, you will find that this does indeed

describe the missing roots. Figure 9¨1 shows how the primitive cube roots of unity “scale

out” to give us the roots of x
3 ´ 3.

Thus, the extension of Q to a field containing all the roots of x
5´ 2x3´ 3x2` 6 is the field

Q
`?
2
˘ `

3
?
3
˘

pωq , where ω is any primitive cube root of unity.

(You may wonder: have we actually captured all the roots? After all, we didn’t extend

by a primitive square root of unity. This is because there is only one primitive square root of

unity, -1, and it appears in Q already.)

At this point, we encounter a problem: what if we had proceeded in a different order? In

the example given, we adjoined
?
2 first, then

3
?
3, and finally ω. Suppose we were to adjoin

them in a different order — say,
3
?
3 first, then ω, and finally

?
2? How would that work out?

As long as we adjoin all the roots, we arrive at the same field. For this reason, we write

Q pα1, . . . , αnq “ Q pα1q pα2q ¨ ¨ ¨ pαnq as a shorthand. However, Theorem 9¨10 implies that

Q
`

3
?
3
˘

by itself does not contain all the roots of x
3 ´ 3; it contains only

3
?
3. We could adjoin

the other roots, Q
`

3
?
3, ω

3
?
3, ω

2 3
?
3
˘

, but there is another, simpler way. To obtain all the roots

of x
3 ´ 3, we can first adjoin a primitive cube root of unity, then

3
?
3. Typically, we adjoin a

primitive cube root of unity first, obtaining Q pωq
`

3
?
3
˘

, or Q
`

ω,
3
?
3
˘

. This certainly gives us
3
?
3, ω

3
?
3, and ω

2 3
?
3.

You might wonder if this doesn’t give us too much. After all, ω P Q
`

ω,
3
?
3
˘

, but it isn’t

obviously an element of Q
`

3
?
3, ω

3
?
3, ω

2 3
?
3
˘

. You will show in the exercises that, in fact,
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Q
`

ω,
3
?
3
˘

“ Q
`

3
?
3, ω

3
?
3, ω

2 3
?
3
˘

, and the more general notion also holds: if we adjoin a prim-

itive n-th root of unity ω and n
?
a, we end up with exactly the field Q p n

?
a, ω n
?
a, . . . , ω

n´1 n
?
aq

— nothing more, nothing less.

Question 9¨12 .
Suppose that α

n P Q, α
i R Q for 1 ď i ă n, and ω is a primitive n-th root of unity. Show that

Q pα, ωα, . . . , ωn´1αq “ Q pω, αq.

9¨2 The symmetries of the roots of a polynomial

Let F be a field, and f P F rxs of degree 2. We can show by the Factor Theorem that f has

at most 2 roots in F. (See Exercise 6.56.) Suppose that f does have 2 roots in F; we can

then write f pxq “ px´ α1q px´ α2q. If we expand this product, we obtain f pxq “ x
2 ´

pα1 ` α2q x ` α1α2. Likewise, if f is of degree 3, it can have at most 3 roots in F; we can write

f pxq “ px´ α1q px´ α2q px´ α3q, which expands to

f pxq “ x
3
´ pα1 ` α2 ` α3q x` pα1α2 ` α1α3 ` α2α3q x´ α1α2α3.

In general, if f is of degree n and has n roots in F, we can write

f pxq “ px´ α1q px´ α2q ¨ ¨ ¨ px´ αnq ,

which expands to

f pxq “ x
n
`

˜

n
ÿ

i“1

αi

¸

x
n´1

`

˜

ÿ

iăj

αiαj

¸

x
n´2

` ¨ ¨ ¨ ` α1α2 ¨ ¨ ¨ αn.

Every coefficient is a sum of terms that are products of roots. Permuting the roots does not change

the sum.

Example 9¨13. Look at the coefficient of x in the cubic polynomial above. One of the terms

is α1α3. If we permute by p123q, α1 changes to α2 and α3 changes α1. The result is α2α1 “ α1α2,

which also appears in that coefficient. Another term is α2α3; applying the same permutation

gives us α3α1 “ α1α3.

This gives rise to a special class of polynomial.

Definition 9¨14. Let R be a ring and f P R rx1, . . . , xns. For any σ P Sn, write σf for the poly-

nomial g P R rx1, . . . , xns obtained by replacing xi by xσpiq. We say that f is a symmetric poly-
nomial if f “ σf for all σ P Sn.

Example 9¨15. Let f pxq “ x1x2´x1x3. This is not a symmetric polynomial, since for σ “ p1 3q

we obtain

σf “ x2x3 ´ x1x3 ‰ f.
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Example 9¨16. On the other hand, if f pxq “ x1x2x3 ` x2x3x4 ` x1x3x4 ` x1x2x4, every σ P S4

satisfies σf “ f . For example, if σ “ p1 4q,

σf “ x2x3x4 ` x1x2x3 ` x1x3x4 ` x1x2x4 “ f.

Here, f is symmetric.

Question 9¨17 .
The polynomial f pxq “ x4´ 7x2` 10 factors over Q as px2 ´ 2q px2 ´ 5q, and over Q

`?
2,
?
5
˘

as
`

x˘
?
2
˘ `

x˘
?
5
˘

.

(a) Compute the symmetric polynomials of the coefficients of a generic fourth-degree poly-

nomial.

(b) Substitute the roots of f into the symmetric polynomials. Show that they simplify to the

coefficients of f .

Theorem 9¨18. Let f P F rxs. The coefficient of any term of f is a symmetric polynomial of the roots

of f . In particular, if deg f “ n, then the coefficient of x
i
is the sum of all squarefree products of exactly

n´ i roots.

Proof. We proceed by induction on n “ deg f . Write α1, . . . , αn for the roots of f .

Inductive base: If n “ 2, then f pxq “ px´ α1q px´ α2q “ x
2 ´ pα1 ` α2q x ` α1α2. The

coefficient of x
2

is the sum of all products of 2´ 2 “ 0 roots; the coefficient of x is the sum of

all squarefree products of 2´1 “ 1 roots, and the coefficient of x
0

is the sum of all squarefree

products of 2´ 0 “ 2 roots.

Inductive hypothesis: Assume that the coefficients of the terms of any pn´ 1q-th degree

polynomial have the form specified.

Inductive step: Let g P F pα1q ¨ ¨ ¨ pαn´1q such that f pxq “ g pxq px´ αnq. Since deg g “ n´ 1,

the inductive hypothesis tells us that its terms are symmetric polynomials of its roots, in

precisely the form specified. With that in mind, write

g pxq “ x
n´1
` βn´2x

n´2
` ¨ ¨ ¨ ` β0

where βi is the sum of all squarefree products of pn´ 1q ´ i roots α1, . . . , αn´1. Expand the

product f pxq “ g pxq px´ αnq to see that

f pxq “
`

x
n
` βn´2x

n´1
` ¨ ¨ ¨ ` β0x

˘

`
`

αnx
n´1
` αnβn´2x

n´2
` ¨ ¨ ¨ ` αnβ0

˘

“ x
n
` pβn´2 ` αnq x

n´1
`
`

βn´3 ` αnβn´2x
n´2

˘

` ¨ ¨ ¨ ` αnβ0.

• Since βn´2 is the sum of all squarefree products of pn´ 1q ´ pn´ 2q “ 1 roots α1, . . . ,

αn´1, we indeed have βn´2 ` αn as the sum of all products of 1 root in α1, . . . , αn.

• Let i P t2, 3, . . . , n´ 1u. Since βn´i is the sum of all squarefree products of pn´ 1q ´

pn´ iq “ i´ 1 roots α1, . . . , αn´1, we see that αnβn´i is the sum of all squarefree products

of i roots α1, . . . , αn that contain precisely one αn. Since βn´i´1 is the sum of all squarefree

products of pn´ 1q ´ pn´ i´ 1q “ i roots α1, . . . , αn´1, and αnβn´i is the sum of all

squarefree products of i roots α1, . . . , αn that contain precisely one αn, we indeed have

βn´i´1 ` αnβn´i as the sum of all squarefree products of i roots in α1, . . . , αn.
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• Since β0 is the sum of all squarefree products of pn´ 1q ´ 0 “ n´ 1 roots α1, . . . , αn, we

have β0 “ α1 ¨ ¨ ¨ αn´1. By substitution, αnβ0 “ α1 ¨ ¨ ¨ αn. This is precisely the sum of all

squarefree products of n´ 0 “ n roots α1, . . . , αn.

Another way to read Theorem 9¨18 is that we can study the roots of polynomials by looking

at permutations of them. In particular, the functions defined on E “ Q pα1, . . . , αnq that

permute the roots but leave elements of Q fixed must be of paramount importance. We are

especially interested in those functions that are isomorphisms on E itself; in other words,

automorphisms on E.

Example 9¨19. Let f “ x
2 ` 1; we have f P Q rxs, but its roots are not in Q. Let i be a root

of f , and let E “ Q piq. By Exercise 9.5, E is a vector space over Q, with basis t1, iu, so every

element of E can be written as a` bi where a, b P Q.

We are interested in the automorphisms ofE that fixQ. Let φ be any such automorphism;

by definition, φ pqq “ q for any q P Q, while for any w, z P EzQ, φ pwqφ pzq “ φ pwzq.

Let z P E, and choose a, b P Q such that z “ a`bi. The properties of a ring homomorphism

imply that

φ pzq “ φ pa` biq “ φ paq ` φ pbiq “ φ paq ` φ pbqφ piq .

As stated, φ fixes Q, so φ paq “ a and φ pbq “ b. By substitution,

φ pzq “ a` bφ piq .

In other words, φ is determined completely by what it does to i.

What are the possible destinations of φ piq? First notice that φ cannot map i to a rational

number q, because φ is an automorphism, hence one-to-one, and φ fixes Q, so φ pqq “ q: we

would have φ piq “ φ pqq, but i ‰ q. The only thing we can choose for φ piq to satisfy this

requirement is some w “ c ` di P E where c, d P Q and d ‰ 0. On the other hand, the

homomorphism property means that we must have

w
2
“ φ piq

2
“ φ

`

i
2
˘

“ φ p´1q “ ´1.

(Again, φ fixes Q, and´1 P Q.) That forces w “ ˘i.

Can we use both? If w “ i, then φ is the identity map, since φ pzq “ a ` bi “ z. That

certainly works. If w “ ´i, then φ pzq “ a ´ bi, the conjugation map. You will show in the

exercises that this is indeed a ring automorphism.

Question 9¨20 .
Show that the conjugation map φ pa` biq “ a´ bi is a ring isomorphism in C.
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Question 9¨21 .
Find all the automorphisms on E that fix F.

(a) F “ Q; E “ Q
`?
2
˘

(b) F “ Q; E “ Q p2q

(c) F “ Q; E “ Q
`?
2,
?
5
˘

(d) F “ Q; E “ Q
`

i,
?
2
˘

9¨3 Galois groups

In the previous section, we observed that permuting a polynomials’ roots does not change its

coefficients, and that suggests a connection with permutations.

Isomorphisms of field extensions that permute the roots

Let’s look, therefore, at formulating functions that combine these two. Let f P Q rxs have

degree n, and let E be a field that extends Q by all the roots of f . For any permutation σ P Sn,

define a function φ : E ÝÑ E such that φ acts as the identity on elements of Q (we say

that φ fixes Q), but permutes the roots of f . We place one condition on φ: it must be an

isomorphism; after all, we want the same field structure. This imposes a condition on σ, as well.

Example 9¨22. In the previous section, we used f pxq “ x
5 ´ 2x

3 ´ 3x
2 ` 6. That gave us

E “ Q
`?
2, ω,

3
?
3
˘

, where ω is a primitive cube root of unity. The roots of f are α1 “
?
2,

α2 “ ´
?
2, α3 “

3
?
3, α4 “ ω

3
?
3, and α5 “ ω

2 3
?
3. Which permutations of the roots will we

allow?

One example to try is p1 2q; this would switch
?
2 and ´

?
2 in any element of E. Does it

extend to an isomorphism? Any expression that does not contain ˘
?
2 is left untouched, so

let’s look at expressions that contain ˘
?
2. As a simple case, consider two elements of the

elements of Q
`?
2
˘

Ĺ E. By Exercise 9.5, we can write any x, y P Q
`?
2
˘

as x “ a` b
?
2 and

y “ c ` d
?
2 for some a, b, c, d P Q. For addition, we have

φ px` yq “ φ
`

pa` cq ` pb` dq
?
2
˘

“ pa` cq ´ pb` eq
?
2

“
`

a´ b
?
2
˘

`
`

c ´ d
?
2
˘

“ φ pxq ` φ pyq .

For multiplication, we have

φ pxyq “ φ
`

pac ` 2bdq ` pad` bcq
?
2
˘

“ pac ` 2bdq ´ pad` bcq
?
2
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and

φ pxqφ pyq “
`

a´ b
?
2
˘ `

c ´ d
?
2
˘

“ pac ` 2bdq ´ pad` bcq
?
2

“ φ pxyq .

We have show that φ is a homomorphism; it should be clear that it is one-to-one and onto

from the fact that all we did was switch ˘
?
2. Thus, φ is a field isomorphism on E that fixes

Q.

On the other hand, consider the permutation p1 3q, which would exchange
?
2 and

3
?
3.

This cannot be turned into an isomorphism on E that fixes Q, since fixing Q implies

φ
`
?
2 ¨
?
2
˘

“ φ p2q “ 2,

while the homomorphism property implies

φ
`
?
2 ¨
?
2
˘

“ φ
`
?
2
˘

φ
`
?
2
˘

“
3
?
3 ¨

3
?
3 ‰ 2,

a contradiction.

This example illustrates an important property.

Theorem 9¨23. If E is a radical extension of F, and α, β P E such that α
m
, β
n P F but α

m ‰ βm, then

no isomorphism over E both fixes F and exchanges α and β.

Proof. By way of contradiction, suppose there is such an isomorphism φ. Let q P F such that

α
m “ q. By substitution and the homomorphism property,

φ pβ
m
q “ rφ pβqs

m
“ α

m
“ q “ φ pqq “ φ pα

m
q .

We chose φ to be an isomorphism, hence one-to-one. By definition of one-to-one, we infer

that α
m “ βm, which contradicts the hypothesis that α

m ‰ βm.

Question 9¨24 .
Let f P F rxs be irreducible over F, and E an extension of F. Show that if φ : E Ñ E is an

automorphism that fixes F, and α P E is a root of f , then φ pαq is also a root of f .

In short, we can obtain an isomorphism by permuting
3
?
3 with other cube roots of three

(ω
3
?
3, ω

2 3
?
3), and we can obtain an isomorphism by permuting

?
2 with other square roots

of 2 (´
?
2 only), but we cannot obtain an isomorphism by permuting

3
?
3 with

?
2. We have

shown that

Isomorphisms in the extension field that fix the base field isolate roots of the base field.

Such a fundamental relationship deserves a special name.

Definition 9¨25. Let E be an extension of F. The set of field automorphisms of E that fixes F
is the Galois set of E over F. We write Gal pE{Fq.
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Our first observation of the Galois set is that it’s actually a group.

Theorem 9¨26. The Galois set of an extension is a group.

Proof. LetE be any extension of a fieldF, and let G be its Galois set. We wish to show that G is a

group. Since G consists of automorphisms, which are functions, which satisfy the associative

property, the elements of G satisfy the associative property. The identity automorphism ι over

E fixes elements of E, so it likewise fixes elements of F, so ι P G.

To show that G is closed, let φ, ψ P G. Let a P F; by definition, φ paq “ a and ψ paq “ a,

so pφ ˝ ψq paq “ φ pψ paqq “ a. We know from before that the composition of one-to-one,

onto functions is one-to-one and onto, and the composition of homomorphisms is a homo-

morphism. Thus, φ ˝ ψ P G.

It remains to show that G contains the inverses of its elements. Let φ P G. Since φ is

an automorphism, it has an inverse, ψ, which is also a field automorphism. Let a P F; by

definition, φ paq “ a, so ψ paq “ φ
´1 paq “ a. Hence, ψ fixes F, so that by definition, ψ P G.

Since φ was an arbitrary element of G, every element of G has an inverse in G itself.

We have shown that G satisfies the definition of a group. By definition, Gal pE{Fq “ G is a

group.

Our second observation is that the Galois group of a radical extension has a wonderfully

simple form.

Theorem 9¨27. Let p P N` be irreducible, and F a field that contains a primitive p-th root of unity.

If α
p P F, then Gal pF pαq {Fq – Zp.

One reason we first adjoin a primitive p-th root of unity is the discussion at the end of

Section 9¨1, where we saw that in order to obtain all the roots of x
p ´ a we must adjoin not

only p
?
a, but a primitive p-th root of unity, as well. We will talk about the Galois group of an

extension by a primitive p-th root of unity in Exercise 9.30. (See also Exercise 9.12.)

Proof. Assume α
p P F. For convenience, write E “ F pαq and q “ α

p
. Let G “ Gal pE{Fq. By

Theorem 9¨23, anyφ P G satisfiesφ pαq “ β only if β is another pth root of α
p
. By Theorem 9¨10,

β “ ω
m
α where ω is a primitive p-th root of unity and m lies between 0 and p ´ 1, inclusive.

Thus, any φ P G has p choices for where to map.

Can we have that many, though? In other words, do all such choices lead to an isomor-

phism that fixes F? We claim that they do. To see why, let 0 ď i ă p ´ 1 and define, for

any m P N`, φ

´

ř

m

j“0
bjα

j

¯

“
ř

m

j“0
bj pω

i
αq
j
. It is clear that φ fixes F, since any a P F can

be written as a ` 0 ¨ α, and by definition φ pa` 0 ¨ αq “ a ` 0 pωiαq “ α. To see why φ is a

homomorphism, observe that for any a, b, c, d P F, we have

φ

˜˜

p´1
ÿ

j“0

bjα
j

¸˜

p´1
ÿ

k“0

ckα
k

¸¸

“ φ

¨

˝

2p´2
ÿ

j“0

»

–

ÿ

k``“j

pbkc`q

fi

fl α
j

˛

‚

“

2p´2
ÿ

j“0

»

–

ÿ

k``“j

pbkc`q

fi

fl

`

ω
i
α
˘

j
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and

φ

˜

p´1
ÿ

j“0

bjα
j

¸

φ

˜

p´1
ÿ

k“0

ckα
k

¸

“

«

p´1
ÿ

j“0

bj

`

ω
i
α
˘

j

ff«

p´1
ÿ

k“0

ck

`

ω
i
α
˘

k

ff

“

p´1
ÿ

j“0

p´1
ÿ

k“0

bjck

`

ω
i
α
˘

j`k

“

2p´2
ÿ

j“0

»

–

ÿ

k``“j

pbkc`q

fi

fl

`

ω
i
α
˘

j

.

(The j and k in the last line are not the same as the j and k in the one before it.)

Is φ one-to-one? The definition of φ guarantees that φ paxq “ aφ pxq for any a P F and any

x P E, so a problem can arise only if φ pωjαq “ φ
`

ω
k
α
˘

for some 0 ď j, k ă p. Recall that F
contains a primitive pth root of unityω, soφ pωjαq “ φ pωq

j
φ pαq “ ωj pωiαq “ ωijα. Likewise,

φ
`

ω
k
α
˘

“ ωikα. By substitution,ω
ij
α “ ωikα; multiply both sides byω

´i
α
´1

to obtainω
j “ ωk.

In other words, φ remains one-to-one.

Is φ onto? As before, we need merely ensure that for any k “ 0, . . . , p ´ 1 we can find

j P t0, . . . , p´ 1u such thatφ pωjαq “ ωkα. To that end, let k P t0, . . . , p´ 1u. By substitution,

φ
`

ω
k´i
α
˘

“ ωiωk´iα “ ωkα. Since k was arbitrary, φ is onto.

Since i was arbitrary, we conclude that, for any choice of i “ 0, . . . , p ´ 1, the choice of

φ pωαq “ ωiα is an isomorphism, and so there are at least p isomorphisms in G.

We had already found that there are at most p isomorphisms in G; we have now found that

there are at least that many. Together, this means |G| “ p. Recall that p is irreducible; up to

isomorphism, there is only one group of order p, Zp (see below). Hence, Gal pE{Fq – Zp.

Question 9¨28 .
Let p be irreducible. Explain why Zp is the only group of order p, up to isomorphism. (Hint:

Use a corollary to Langrange’s Theorem to determine the group’s structure. It then becomes

straightforward to describe an isomorphism from any group of order p to Zp.)

Question 9¨29 .
Show that when p is irreducible, every non-identity element of Ωp is a primitive root of unity.

Question 9¨30 .
Suppose that ω is a primitive p-th root of unity, where p ą 2 and p is irreducible. Show that

if ω R F, then Gal pF pωq {Fq – Zp´1.

Solving polynomials by radicals

We want to know whether we can solve a polynomial over Q by radicals; that is, if for any

f P Q rxswe can construct a radical extensionE “ Q pα1, . . . , αnq containing all the roots of f .

We can certainly construct some extension field E containing all the roots of f using quotient
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groups, and our study of permutations of the roots had led us to develop the notion of the

Galois group of an extension field, Gal pE{Qq. We now have to put everything together.

We concluded the last section with the observation that the Galois group of a radical

extension by one root of irreducible degree is isomorphic to Zp. Let’s look at the example

f “ px2 ´ 2q px3 ´ 3q. Putting ω as a primitive cube root of unity as before, we extend Q in

parts, called a tower of fields or a tower of extensions, obtaining

Q Ĺ Q
`
?
2
˘

Ĺ Q
`
?
2, ω

˘

Ĺ Q
`
?
2, ω,

3
?
3
˘

“ E.

If we write F0 “ Q, F1 “ Q
`?
2
˘

, F2 “ Q
`?
2, ω

˘

, and F3 “ E, what can we say about

Gal pF3{Fiq for i “ 0, 1, 2, 3?

We shall adopt the convention that we add a primitive p-th root of unity before adding

p
?
a, unless a primitive root of unity is already in the field. We also remind the reader that we

consider only algebraic extensions, as that is the focus of our inquiry; that is, if F Ď K Ď E,

then K is an algebraic extension of F, and E is an algebraic extension of K.

Theorem 9¨31. If F Ĺ F pαq Ĺ E is a tower of extensions of F, where F pαq is a radical extension of

degree p, p is irreducible, and

• α is a primitive p-th root of unity, or

• F contains a primitive p-th root of unity,

then

• Gal pE{F pαqq Ÿ Gal pE{Fq, and

• the corresponding quotient group is abelian.

Proof of Theorem 9¨31. The basic idea is to use the Isomorphism Theorem for Groups (Theo-

rem 4¨159 on page 175). For a homomorphism f from G onto H, with A “ ker f , we have the

following diagram.

G
f //

η   

H

G{A

–

>>

(Fact 4¨153 guarantees that ker f is a normal subgroup ofG.) Suppose we setH “ Gal pF pαq {Fq.
Depending on whether α is a primitive p-th root of unity or F contains a primitive p-th root

of unity, H “ Gal pF pαq {Fq is isomorphic either to Zp (Theorem 9¨27) or Zp´1 (Question 9.30).

If we can find a way to set G “ Gal pE{Fq and map G onto H in such a way that ker f “

Gal pE{F pαqq, we would first have

Gal pE{F pαqq “ ker f Ÿ G “ Gal pE{Fq ,

and by the Isomorphism Theorem

Gal pE{Fq {Gal pE{F pαqq – Gal pF pαq {Fq “ H,
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so that, since H is abelian, the quotient group is abelian, as desired.

To this end, define f : Gal pE{Fq Ñ Gal pF pαq {Fq by restriction to F pαq, which means that

f assigns each σ P Gal pE{Fq to τ P Gal pF pαq {Fq so long as τ pxq “ σ pxq for every x P F pαq.
Is fwell-defined? Assume that f can map σ to either τ or pτ. By definition, τ pxq “ σ pxq “

pτ pxq for every x P F pαq. However, the domain of τ andpτ is precisely F pαq, so τ “ pτ. Hence, f

is indeed well-defined.

Is f a homomorphism? Let σ,pσ P Gal pE{Fq, τ “ f pσq, pτ “ f ppσq, and µ “ f pσpσq. To show

that f is a homomorphism, we have to show that pτpτq pxq “ µ pxq for each x P F pαq. So, let

x P F pαq. By definition, pτ pxq “ pσ pxq, so substitution gives us pτpτq pxq “ τ ppτ pxqq “ τ ppσ pxqq.

Since pσ is an automorphism, pσ pxq P F pαq, so by definition, τ ppσ pxqq “ σ ppσ pxqq. On the other

hand, the definition of µ tells us that µ pxq “ pσpσq pxq “ σ ppσ pxqq. We just saw that this was

the same as pτpτq pxq, and x was arbitrary in F pαq; thus, f pσq f ppσq “ τpτ “ µ “ f pσpσq, and we

are indeed dealing with a homomorphism.

Is f onto? Let τ P Gal pF pαq {Fq, and define

σ pxq “

#

τ pxq , x P F pαq ;
x, otherwise.

You will show in Question 9.33 that σ P Gal pE{Fq, and it is clear from the definition of σ that

f pσq “ τ. Thus, f is indeed onto.

So, what is ker f ? By definition, σ P ker f if and only if f pσq is the identity homomorphism

ι of Gal pF pαq {Fq. An identity homomorphism maps every element to itself; in this case,

ι pxq “ x for all x P F pαq. Thus, σ P ker f if and only if σ pxq “ x for all x P F pαq. This

implies that σ is an automorphism of E that fixes not only F, but F pαq, as well! In other

words, σ P Gal pE{F pαqq! Since σ was arbitrary, ker f “ Gal pE{F pαqq.
We have shown that f is a function from Gal pE{Fq onto Gal pF pαq {Fq whose kernel is

Gal pE{F pαqq. As explained in the first paragraph of the proof, this completes the theorem.

We rely on the following corollary in subsequent sections.

Corollary 9¨32. LetF Ĺ F pα1q Ĺ F pα1, α2q Ĺ ¨ ¨ ¨F pα1, . . . , αnq be a tower of radical extensions of

irreducible degree, where we always add a primitive p-th root of unity before any other p-th root. There

exist subgroups G1, . . . , Gn of Gal pF pα1, . . . , αnq {Fq such that

tяu “ G0 Ÿ G1

G1 Ÿ G2

...

Gn´1 Ÿ Gn “ Gal pF pα1, . . . , αnq {Fq

and the corresponding quotient groups are abelian.

Proof. Apply repeatedly the preceding theorem with E “ F pα1, . . . , αnq, αtheorem “ αk, and
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Ftheorem “ F pα1, . . . , αk´1q to build the abelian quotient groups

Gal pF pα1, . . . , αnq {Fq {Gal pF pα1, . . . , αnq {F pα1qq
Gal pF pα1, . . . , αnq {F pα1qq {Gal pF pα1, . . . , αnq {F pα1, α2qq

...

Gal pF pα1, . . . , αnq {F pα1, . . . , αn´1qq {Gal pF pα1, . . . , αnq {F pα1, . . . αnqq .

From these groups, the following assignments satisfy the claim:

G0 “ Gal pF pα1, . . . , αnq {F pα1, . . . , αnqq
G1 “ Gal pF pα1, . . . , αnq {F pα1, . . . , αn´1qq

...

Gn´1 “ Gal pF pα1, . . . , αnq {F pα1qq .

Question 9¨33 .
Suppose E Ľ K Ľ F is a tower of fields. Let τ P Gal pK{Fq. Define σ : EÑ E by

#

σ pxq “ τ pxq , x P K;
σ pxq “ x, otherwise.

Show that σ P Gal pE{Fq.

9¨4 “Solvable” groups

We found in the previous section that the Galois groups corresponding to each step of a tower

of radical extensions form abelian quotient groups. We study this property in some detail in

this section, and start by generalizing the property to arbitrary groups.

Definition 9¨34. If a group G contains subgroups G0, G1, . . . , Gn such that

• G0 “ tяu;

• Gn “ G;

• Gi´1 Ÿ Gi; and

• Gi{Gi´1 is abelian,

then G is a solvable group. The chain of subgroups G0, . . . , Gn is called a normal series.

Example 9¨35. Any finite abelian group G is solvable: let G0 “ tяu and G1 “ G. Subgroups of

an abelian group are always normal, so G0ŸG1. In addition, X, Y P G1{G0 implies that X “ x tяu

and Y “ y tяu for some x, y P G1 “ G. Since G is abelian,

XY “ pxyq tяu “ pyxq tяu “ YX.
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Example 9¨36. The group D3 is solvable. To see this, let n “ 2 and G1 “ xρy:

• By Exercise 4.127 on page 161, tιu Ÿ G1. To see that G1{ tιu is abelian, note that for any

X, Y P G1{ tιu, we can write X “ x tιu and Y “ y tιu for some x, y P G1. By definition

of G1, we can write x “ ρ
a

and y “ ρ
b

for some a, b P Z. We can then fall back on the

commutative property of addition in Z to show that

XY “ pxyq tιu “ ρ
a`b
tιu

“ ρ
b`a
tιu “ pyxq tιu “ YX.

• By Exercise 4.133 and the fact that |G1| “ 3 and |G2| “ 6, we know that G1 Ÿ G2. The

same exercise tells us that G2{G1 is abelian.

Question 9¨37 .
Explain why Ωn is solvable for any n P N`.

Question 9¨38 .
Show that Q8 is solvable.

A rather surprising property of solvable groups is that their subgroups and quotient groups

are also solvable. Showing that quotient groups are solvable is a little easier, so we start with

that first.

Theorem 9¨39. Every quotient group of a solvable group is solvable.

Proof. Let G be a solvable group and A Ÿ G. We need to show that G{A is solvable. Since G is

solvable, choose a normal series G0, . . . , Gn. For each i “ 0, . . . , n, put

Ai “ tgA : g P Giu .

We claim that the chain A0, A1, . . . , An likewise satisfies the definition of a solvable group.

First, we show that Ai´1 Ÿ Ai for each i “ 1, . . . , n. First we must show that Ai´1 ă Ai. It is

a subset because any X P Ai´1 has the form xA where x P Gi´1 Ď Gi, so x P Gi and thus xA P Ai.

To show that it is a subgroup, let X, Y P Ai´1, and x, y P Gi´1 such that X “ xA and Y “ yA.

By substitution and coset arithmetic, XY
´1 “ pxAq pyAq

´1
“ pxy´1qA. Recall that Gi´1 is a

subgroup of Gi; by the Subgroup Theorem, xy
´1 P Gi´1, so XY

´1 “ pxy´1qA P Ai´1

Now we show that Ai´1 is a normal subgroup. Let X P Ai; by definition, X “ xA for some

x P Gi. We have to show that XAi´1 “ Ai´1X. Let Y P Ai´1; by definition, Y “ yA for some

y P Gi´1. Recall that Gi´1 Ÿ Gi, so there exists py P Gi´1 such that xy “ pyx. Let pY “ pyA; since

py P Gi´1, pY P Ai´1. Using substitution and the definition of coset arithmetic, we have

XY “ pxyqA “ ppyxqA “ pYX P Ai´1X.

Since Y was arbitrary in Ai´1, XAi´1 Ď Ai´1X. A similar argument shows that XAi´1 Ě Ai´1X,

so the two are equal. Since X is an arbitrary coset of Ai´1 in Ai, we conclude that Ai´1 Ÿ Ai.
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Second, we show that Ai{Ai´1 is abelian. Let X, Y P Ai{Ai´1. By definition, we can write

X “ SAi´1 and Y “ TAi´1 for some S, T P Ai. Again by definition, there exist s, t P Gi such that

S “ sA and T “ tA. We know that

XY “ YX ô pSAi´1q pTAi´1q “ pTAi´1q pSAi´1q

ô pSTqAi´1 “ pTSqAi´1

ô pSTq
´1
pTSq P Ai´1

ô T
´1
S
´1
TS P Ai´1.

By substitution and coset arithmetic,

T
´1
S
´1
TS “

`

t
´1
A
˘ `

s
´1
A
˘

ptAq psAq “
`

t
´1
s
´1
ts
˘

A.

Recall that Gi´1 Ÿ Gi and Gi{Gi´1 is abelian, so

ptGi´1q psGi´1q “ psGi´1q ptGi´1q ô ptsq Gi´1 “ pstq Gi´1 ô t
´1
s
´1
ts P Gi´1.

By substitution,

T
´1
S
´1
TS P Ai´1.

Following the above chain of equivalences back to their beginning, we have XY “ YX. Since

X and Y were arbitrary in the quotient group Ai{Ai´1, we conclude that it is abelian.

We have constructed a normal series in G{A; it follows that G{A is solvable.

Question 9¨40 .
In Question 9.38 you showed that Q8 is solvable. From Theorem 9¨39 you know the quotient

group Q8{ x´1y is also solvable. List a normal series.

The following result is also true:

Theorem 9¨41. Every subgroup of a solvable group is solvable.

To prove Theorem 9¨41, we need the definition of the commutator from Questions 2.30 on

page 53 and 4.151 on page 170, and a few properties of commutator subgroups. If you skipped

those before, you should go back and do them now, to familiarize yourself with the idea.

Definition 9¨42. Let G be a group. The commutator subgroup G1 of G is the intersection of

all subgroups of G that contain rx, ys for all x, y P G.

Notice that G
1 ă G by Question 4.10.

Notation 9¨43. We wrote G
1
as rG, Gs in Question 4.151.

Question 9¨44 .
Compute G

1
for Q8. Then compute pG1q

1
(we call this G

p2q
further below) and

`

pG1q
1
˘1

. Keep

going until you can go no further; how do you know you can go no further?

Lemma 9¨45. For any group G, G
1 Ÿ G. In addition, G{G1 is abelian.
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Proof. You showed that G
1 Ÿ G in Question 4.151. To show that G{G1 is abelian, let X, Y P G{G1.

Write X “ xG1 and Y “ yG1 for appropriate x, y P G. By definition, XY “ pxyq G1. Let g
1 P G1; by

definition, g
1
is in every group that contains all the commutators of G. Closure ensures that

the product of g
1
with another element of G

1
is also in G

1
; certainly the commutator rx, ys is in

G
1
, so rx, ys g1 P G1. Write z “ rx, ys g1. Substitution and properties of groups allows to infer

rx, ys g
1
“ z ùñ

`

x
´1
y
´1
xy
˘

g
1
“ z ùñ pxyq g

1
“ pyxq z.

Thus, pxyq g1 P pyxq G1. Since g
1
was arbitrary, pxyq G1 Ď pyxq G1. Similar reasoning shows that

pxyq G1 Ě pyxq G1, which gives us equality. Substitution gives us

XY “ pxyq G
1
“ pyxq G

1
“ YX.

We conclude that G{G1 is abelian.

Lemma 9¨46. If H Ď G, then H
1 Ď G1.

Proof. You do it! See Question 9.47.

Question 9¨47 .
Show that if H Ď G, then H

1 Ď G1.

Notation 9¨48. Define G
p0q “ G and G

piq “
`

G
pi´1q

˘1
; that is, G

piq
is the commutator subgroup of

G
pi´1q

.

Lemma 9¨49. A group is solvable if and only if G
pnq “ tяu for some n P N.

Proof. (ðù) Suppose that G
pnq “ tяu for some n P N. By Lemma 9¨45, the subgroups form a

normal series; that is,

tяu “ G
pnq
Ÿ G

pn´1q
Ÿ ¨ ¨ ¨ Ÿ G

p0q
“ G

and G
pn´iq{Gpn´pi´1qq is abelian for each i “ 0, . . . , n ´ 1. As this is a normal series, we have

shown that G is solvable.

(ùñ) Suppose that G is solvable. Let G0, . . . , Gn be a normal series for G. We claim that

G
pn´iq Ď Gi. If this claim were true, then G

pn´0q Ď G0 “ tяu, and we would be done. We

proceed by induction on n´ i P N.

Inductive base: If n ´ i “ 0, then G
pn´iq “ G “ Gn. Also, i “ n, so G

pn´iq “ Gn “ Gi, as

claimed.

Inductive hypothesis: Assume that the assertion holds for n´ i.

Inductive step: By definition, G
pn´i`1q “

`

G
pn´iq

˘1
. By the inductive hypothesis, G

pn´iq Ď Gi;

by Lemma 9¨46,
`

G
pn´iq

˘1
Ď G1

i
. Hence

G
pn´i`1q

Ď G
1
i
. (9.1)

We now show that G
1
i
Ď Gi´1. Recall from the properties of a normal series that Gi{Gi´1 is

abelian; for any x, y P Gi, we have

pxyq Gi´1 “ pxGi´1q pyGi´1q

“ pyGi´1q pxGi´1q “ pyxq Gi´1.



CHAPTER 9. SOLVING POLYNOMIALS BY RADICALS 316

By equality of cosets, pyxq
´1
pxyq P Gi´1 (Lemma 4¨103 on page 152); in other words, rx, ys “

x
´1
y
´1
xy P Gi´1. Since x and y were arbitrary in Gi, we have G

1
i
Ď Gi´1. Along with (9.1), this

implies that G
pn´pi´1qq “ Gpn´i`1q Ď Gi´1.

We have shown the claim; thus, G
pnq “ tяu for some n P N.

We can now prove Theorem 9¨41.

Proof of Theorem 9¨41. LetH ă G. AssumeG is solvable; by Lemma 9¨49, G
pnq “ tяu. By Lemma 9¨46,

H
piq Ď G

piq
for all n P N, so H

pnq Ď tяu. By the definition of a group, H
pnq Ě tяu, so the two are

equal. By the same lemma, H is solvable.

Question 9¨50 .
In the textbook God Created the Integers. . . the theoretical physicist Stephen Hawking collects

reprints of some of the greatest mathematical results in history, adding some commentary.

For an excerpt from Evariste Galois’ Memoirs, Hawking sums up the main result this way.

To be brief, Galois demonstrated that the general polynomial of degree n could be

solved by radicals if and only if every subgroup N of the group of permutations Sn

is a normal subgroup. Then he demonstrated that every subgroup of Sn is normal

for all n ď 4 but not for any n ą 5. —p. 105

Unfortunately, Hawking’s explanation is completely wrong, and this exercise leads you to-

wards an explanation as to why.
1

Recall from Fact 7¨30 on page 267 that S3 is isomorphic to

D3; you can work with whichever group is more comfortable for you.

(a) Find all six subgroups of S3.

(b) It is known that the general polynomial of degree 3 can be solved by radicals. According

to the quote above, what must be true about all the subgroups of S3?

(c) Why is Hawking’s explanation of Galois’ result “obviously” wrong?

Question 9¨51 .
Show that S4 is solvable, and explain why this means any degree-four polynomial can be

solved by radicals.

9¨5 The Theorem of Abel and Ruffini

In this section, we use the characterization of solution by radicals in Theorem 9¨31 and Defi-

nition 9¨34 to show that some polynomials cannot be solved by radicals. The basic idea is that

1
Perhaps Hawking was trying to simplify what Galois actually showed, and went too far. (I’ve done much

worse, on occasion.) You will see the actual result in the next section.
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S5 is not a solvable group, and we can find a degree-5 polynomial whose Galois group is S5.

Before we dive into that, though, we need an important fact about the order of a group.

A “reverse-Lagrange” Theorem

Lagrange’s Theorem tells us that the order of any element g of a group Gmust divide the

order of a group; that is, ord pgq | |G|. You might wonder whether the reverse is true; that is,

if m is an integer that divides |G|, can we always find g P G such that ord pgq “ m? The easy

answer is, “Of course not;” after all, we could find g P G such that ord pgq “ |G|, and every

group would be cyclic. Nevertheless, some interesting properties do hold, and one of them is

critical to the result we want.

Cauchy’s Theorem. Let p P N` be irreducible, and let G be a group. If p | |G|, then we can find

g P G such that ord pgq “ p.

The property is not true in general, as you can show:

Question 9¨52 .
Find a finite group G where m “ |G|, m is not irreducible, and no g P G has ord pgq “ m.

We start with the case where G is abelian, as this is a special case of the more general

problem.

Lemma 9¨53. Cauchy’s Theorem is true if G is abelian.

Proof. Suppose that G is an abelian group, p P N` is irreducible, and p | |G|. We proceed by

induction on |G|.

Inductive base: If |G| “ 1, then no irreducible number divides |G|, and the theorem is “vac-

uously” true.

Inductive hypothesis: Let n P N`, and suppose that any abelian group whose size is n ă |G|,

and where p | n, contain at least one element whose order is p.

Inductive step: Let g P Gz tяu. If p | ord pgq, then let d “ ord pgq {p, and the group

@

g
d
D

“

!

g
d
,
`

g
d
˘2

, . . . ,
`

g
d
˘p´1

,
`

g
d
˘p

“ g
ordpgq

“ я

)

will have order p. Otherwise, p - ord pgq. Let Q “ G{ xgy; the size of Q is, by definition, the

number of cosets of xgy, which is |G| {ord pgq. Since p | |G| but p - xgy, an application of

Lagrange’s Theorem shows that p | |Q|. By hypothesis, G is abelian, so all its subgroups are

normal; specifically, xgy is normal. Thus, Q is also a group; since g ‰ я, the size of Q is less

than the size of G, so the inductive hypothesis applies; Q contains an element of order p; call

this element X. Let x P G such that X “ x xgy. Let m “ ord pxq in G. By definition, x
m “ я, so

X
m
“ x

m
xgy “ я xgy “ xgy .

Hence X
m

is the identity in Q. The order of X is p, so by Exercise 3.56, p | m. Choose d P N`
such that pd “ m, and then x

d
will have order p, just as g

d
had order p above.

We now prove the general case.
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Proof of Cauchy’s Theorem. As with the abelian case, we proceed by induction, with the induc-

tive base using the same reasoning. We proceed directly to the inductive step.

If G is abelian, then Lemma 9¨53 gives us the result, so assume that G is not abelian. Let

Z pGq denote the center of G,

Z pGq “ tg P G : xg “ gx @x P Gu .

You will show in Question 9.54 that Z pGq is a subgroup of G. Notice that Z pGq is abelian by

definition, so if p | |Z pGq|, then Lemma 9¨53 gives us an element of order p, and we are done.

Assume, therefore, that p - |Z pGq|. For each x P G, define Cx “ tg P G : gx “ xgu. We

call Cx the centralizer of x; you will show in Exercise 9.55 that this is a subgroup of G. Since

p - |Z pGq|, Z pGq ‰ G, so we can find x P GzZ pGq that does not commute with every element of

G, and |Cx| ă |G|. If p | |Cx|, the inductive hypothesis applies.

Assume, therefore, that p does not divide the size of any centralizer. Consider G{Cx; since

p | |G| but p - |Cx|, Lagrange’s Theorem tells us that p | |G{Cx|. At this point, we meet up with

our old friend conjugation (Definitions 2¨29 and 4¨143); let x
G

be the set of all conjugations of

x by some g P G; that is,

x
G
“
 

gxg
´1
: g P G

(

.

We claim that the set of all these x
G

partition G. They certainly cover G, since x “ exe
´1 P xG,

so x P xG always. To see that distinct subsets are disjoint, let x, y P G, and suppose y P xG. By

definition, there exists g P G such that y “ gxg´1. We can rewrite this expression as x “ g´1yg,

so x P yG, as well. Moreover, let z P xG; by definition, we can find h P G such that

z “ hxh
´1
“ h

`

g
´1
yg
˘

h
´1
“
`

hg
´1
˘

y
`

gh
´1
˘

“
`

hg
´1
˘

y
`

hg
´1
˘´1

,

so z P yG. Since z was arbitrary in x
G
, x

G Ď y
G
. A similar argument shows that x

G Ě y
G
, so

the two must be equal. We have shown that if two subsets are not disjoint, then they are not

distinct; thus, if they are distinct, then they are also disjoint. As claimed, the x
G

partition G.

Use this partition to defineP Ď G such thatYxPPx
G “ G, and for any distinct x, y P P , x

G ‰ yG,

so x
G X yG “ H. From the partition we can see that

ř

xPP |x
G| “ |G|.

We also claim that each x
G

satisfies |xG| “ |G{Cx|. Why? Let x P G; by definition, for any

y P xG, we can find g P G such that gxg
´1 “ y. Let φ : x

G Ñ G{Cx by φ pyq “ gCx. We claim

that φ is a one-to-one, onto function. We first check that it is a function, since it is possible

that more than one g P G gives us gxg
´1 “ y. So, let g, h P G such that gxg

´1 “ y “ hxh
´1

.

Rewrite this as ph´1gq x pg´1hq “ x, or ph´1gq x ph´1gq
´1
“ x, so h

´1
g P Cx. The Lemma on

coset equality then gives us hCx “ gCx, as needed; φ is, indeed, a function. Is it one-to-one?

Suppose φ pyq “ φ pzq; let g P G such that φ pyq “ φ pzq “ gCx. By definition of φ, gxg
´1 “ y

and gxg
´1 “ z; substitution shows us that y “ z. So, φ is, indeed, one-to-one. Is it onto? For

any gCx P G{Cx, simply let y “ gxg
´1

, and by definition, both y P xG and φ pyq “ gCx. So, φ

is, indeed, onto. We have found a one-to-one, onto function from x
G

to G{Cx; this implies that

the two have the same size.

We can finally show what we set out to show. We have constructed P Ď G such that
ř

xPP |x
G| “ |G|. For any x P Z pGq, we have

x
G
“
 

gxg
´1
: g P G

(

“
 

gg
´1
x : g P G

(

“ txu .
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In other words, each element of Z pGq has its own set in the partition. That means we can

rewrite the sum as

|G| “ |Z pGq| `
ÿ

xPPzZpGq

ˇ

ˇx
G
ˇ

ˇ .

We have also seen that |xG| “ |G{Cx| for all x P G, so by substitution,

|G| “ |Z pGq| `
ÿ

xPPzZpGq

|G{Cx| . (9.2)

(This important fact is called the class equation.) Rewrite this as

|G| ´
ÿ

xPPzZpGq

|G{Cx| “ |Z pGq| . (9.3)

Recall that if p - |Cx| for each x P PzZ pGq, then p | |G{Cx| for the same x. We have assumed

that p does not divide the size of any centralizer, so p must divide the size of every G{Cx. By

hypothesis, p | |G|, so p divides the left hand side of 9.3. It must divide the right hand side, as

well, which means p | |Z pGq|, a contradiction.

The only assumptions we made that were not required by the hypothesis were that p -
|Z pGq| and p - |Cx| for any x. One of these assumptions must be false, but if so, the fact that

their size is smaller than that of Gmeans that the induction hypothesis holds, and we can find

g P G such that ord pgq “ p.

Question 9¨54 .
Show that the center Z pGq of a group G is a subgroup of G.

Question 9¨55 .
Show that the centralizer Cx of an element x in a group G is a subgroup of G.

Question 9¨56 .
Is either Z pGq or Cx pGq guaranteed to be a normal subgroup? Either show why they are, or

provide a counterexample.

Question 9¨57 .
Compute the class equation for D3.

Question 9¨58 .
Compute the class equation for Q8.

We cannot solve the quintic by radicals

To show that some polynomials cannot be solved by radicals, we begin with a general-

ization of the fact that the purely radical roots of a polynomial can only be mapped to other

roots of the same radical; that is, we can map
4
?
3 ÝÑ ´

4
?
3, but not to

?
2.
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Lemma 9¨59. If α and β are roots of an irreducible polynomial f P F rxs, then there exists a unique

isomorphism σ : F pαq Ñ F pβq with σ pαq “ β and that fixes F.

Proof. Let m “ deg f . Let σ : F pαq Ñ F pβq by σ

´

ř

m´1

j“0
ajα

j

¯

“
ř

m´1

j“0
ajβ

j
. It is clear from the

definition that σ is one-to-one and onto, but is σ a homomorphism? For the sum, this is easy:

σ

˜

m´1
ÿ

j“0

ajα
j
`

m´1
ÿ

j“0

bjα
j

¸

“ σ

˜

m´1
ÿ

j“0

`

aj ` bj
˘

α
j

¸

“

m´1
ÿ

j“0

`

aj ` bj
˘

β
j

“

m´1
ÿ

j“0

ajβ
j
`

m´1
ÿ

j“0

bjβ
j

“ σ

˜

m´1
ÿ

j“0

ajα
j

¸

` σ

˜

m´1
ÿ

j“0

bjα
j

¸

.

For the product, it is only a little harder:

σ

˜

m´1
ÿ

j“0

ajα
j
¨

m´1
ÿ

j“0

bjα
j

¸

“ σ

¨

˝

2m´2
ÿ

j“0

»

–

ÿ

k``“j

pakb`q

fi

fl α
j

˛

‚“

2m´2
ÿ

j“0

¨

˝

ÿ

k``“j

akb`

˛

‚β
j
,

while

σ

˜

m´1
ÿ

j“0

ajα
j

¸

¨ σ

˜

m´1
ÿ

j“0

bjα
j

¸

“

m´1
ÿ

j“0

ajβ
j
¨

m´1
ÿ

j“0

bjβ
j
“

2m´2
ÿ

j“0

¨

˝

ÿ

k``“j

akb`

˛

‚β
j
,

where the j’s in the last equality do not have the same meaning in the left and right expres-

sions.

To show that σ is unique, consider how the isomorphism can map roots. Let τ : F pαq Ñ
F pβq be any isomorphism that fixesF. By Question 9.24, τ pαqmust be a root of f . Since τmust

fixF, this completely defines τ as a homomorphism, and in addition, it shows that τ “ σ, since

there is no room for distinction.

Lemma 9¨60. A5 is not solvable.

Proof. In a moment we will argue that any normal subgroup that is not tяu actually contains

all the three-cycles, which generate A5. That leaves only tяu and A5 as normal subgroups, so

the only way to generate a tower of radical extensions would be using tяu Ĺ A5. However,

A5{tяu – A5, which is not abelian! So if the only normal subgroups of A5 are tяu and A5 itself,

A5 cannot be solvable.

We turn our attention to the claim. Let H be a non-trivial normal subgroup of A5. We first

claim that H contains at least one three-cycle. To see why, let σ P Hz tp1qu. Since H is normal,

τστ
´1 P H for any τ P A5. Consider the possible simplifications.
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• You will show in Question that if H contains a two-cycle or a four-cycle, then it also

contains a three-cycle. The argument is very similar to the next two.

• If σ “ pa bq pc dq, let τ “ pa bq pc eq. Notice that τ “ τ´1. The conjugation tells us that

rpa bq pc eqs rpa bq pc dqs rpa bq pc eqs “ pa bq pd eq P H.

The closure of H implies that it must also contain pa bq pc dq pa bq pd eq “ pc d eq.

• If σ “ pa b c d eq, let τ “ pa b cq. Notice that τ
´1 “ pa c bq. The conjugation tells us

that

pa b cq pa b c d eq pa c bq “ pa d e b cq P H.

The closure of H implies that it must also contain pa b c d eq
2
pa d e b cq “ pb e dq.

Either way, H contains a three-cycle.

Now we claim that H contains all the three-cycles. Suppose H contains pa b cq. By conju-

gation, it also contains

• pb c dq pa b cq pb d cq “ pa c dq,

• pb c eq pa b cq pb e cq “ pa c eq,

• pb d cq pa b cq pb c dq “ pa d bq,

• pb dq pc eq pa b cq pb dq pc eq “ pa d eq,

• pb e cq pa b cq pb c eq “ pa e bq,

• pa c dq pa b cq pa d cq “ pb d cq,

• pa dq pc eq pa b cq pa dq pc eq “ pb e dq,

• pa c eq pa b cq pa e cq “ pb e cq, and

• pa dq pb eq pa b cq pa dq pb eq “ pc d eq.

Since H is closed, it also contains the inverses of these elements, so H contains at least twenty

three-cycles. A counting argument tells us that there are in fact 5!{3! “ 20 three-cycles, so H

contains all the three-cycles.

We leave it to the reader to show that A5 is generated by all the three-cycles; see Ques-

tion 9.61.

Question 9¨61 .
Show that if a subgroup H of A5 contains all the three-cycles, then in fact H “ A5.
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Question 9¨62 .
We can also show that A5 is not solvable by considering its commutators. As usual, let A

1
5

denote the commutator subgroup of A5.

(a) Show that pa b cq P A1
5

for any distinct a, b, c P t1, 2, 3, 4, 5u.

(b) Show that pa bq pc dq P A1
5

for any distinct a, b, c, d P t1, 2, 3, 4, 5u.

(c) Show that pa b c d eq P A1
5

for any distinct a, b, c, d, e P t1, 2, 3, 4, 5u.

(d) Explain why this shows that A
1
5
“ A5.

(e) Explain why this shows that A5 is not solvable.

Corollary 9¨63. S5 is not solvable.

Proof. If S5 were solvable, then Theorem 9¨41 would imply that A5 is solvable. We just saw that

A5 is not solvable, so S5 cannot be solvable, either.

We turn our attention to finding a polynomial whose Galois group is S5.

Lemma 9¨64 (Eisenstein’s Criterion). Let f “ amx
m` ¨ ¨ ¨` a1x` a0 P Z rxs, and p an irreducible

integer. If

• p | ai for each i “ 0, . . . , m´ 1,

• p - am, and

• p2 - a0,

then f is irreducible, even when viewed in Q rxs.

Proof. Suppose f factors inZ rxs as f “ gh. It will also factor when considered as a polynomial

of Zp rxs, with the same gh. Assume that p divides every coefficient of f except the leading

coefficient, so f “ amx
m

as a polynomial in Zp rxs, so g “ bx
β

and h “ cx
γ
. Observe that p

divides the constant terms of g and h, which means that p
2 | a0. This contradicts the third

criterion, so if f factors in Z rxs, then we cannot satisfy all three criteria.

To complete the proof, we need to show that if f factors in Q rxs, then it also factors in

Z rxs. Suppose f “ gh is a factorization of f in Q rxs. Rewrite this factorization as f “ dpgph,

where d P N` is the least common denominator of the coefficients of, g and h, obtaining an

integer factorization of an integer polynomial. Rewrite the factorization again as f “ d
1
g
1
h
1
,

where d
1

is the product of d and the greatest common divisors of the coefficients of pg and

of ph. Notice that d
1
must be an integer, as d cannot divide g

1
or h

1
. We have thus obtained a

factorization of f into integer polynomials.

Question 9¨65 .
Use the product rule of Calculus to show that x “ a is a repeated root of a polynomial f if and

only f
1 paq “ 0.
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Theorem 9¨66. There exists a quintic polynomial over Q that is not solvable by radicals.

Proof. Let f pxq “ x5 ´ 4x` 2. Using Eisenstein’s Criterion and the irreducible integer p “ 2,

we see that f is irreducible over Q. Extend Q to a field E that contains all the roots of f .

Since we are working over the real numbers, we resort briefly to calculus. The maxima

and minima of f pxq “ x
5 ´ 4x` 2 occur when 0 “ f

1 pxq “ 5x
4 ´ 4; these are x “ ˘ 4

a

4{5. If

we substitute these values of x into f , we find that

f

˜

´
4

c

4

5

¸

« ´1` 4` 2 ą 0 and f

˜

4

c

4

5

¸

« 1´ 4` 2 ă 0.

Since neither critical point is also a root, there are no repeated roots (see Question 9.65), so f

makes exactly two turns on the real plane, so it can have exactly three roots α1, α2, α3 P RzQ.

Once we extend Q with those roots, f factors as

f pxq “ px´ α1q px´ α2q px´ α3q
`

x
2
` ax` b

˘

,

where a, b P R. Since f has no more real roots, the quadratic polynomial has complex roots;

call them β1 and β2. We know from the quadratic formula that if β1 “ c` di, then β2 “ c´ di.

Now consider the automorphisms of the final extension field E.

• One automorphism is defined homomorphically by φ piq “ ´i; this corresponds to an

exchange of the complex roots, or, a transposition in S5. Of course, it’s not enough to

claim it’s an automorphism that fixes Q; we must actually show this. It is clear that φ

fixes not onlyQ, but non-complex elements ofE, as well, as mapping˘iÑ ¯i does not

affect them in the slightest. You showed in Question 9.20 that φ is a ring isomorphism

in C; the same argument applies to E, as well.

• We claim that when Gal pE{Qq is viewed as a subgroup of S5, there must also be a 5-

cycle. To see why, consider how we can extend the identity isomorphism ι : Q Ñ Q
to an automorphism on Q pαq, where α is any one of the roots of f . The elements of

F “ Q rxs { 〈f 〉 can be written using the basis t1, x` I, . . . , x4 ` Iu, and Q pαq – F, so

when we view E as an extension of Q pαq, each element that we adjoin can be seen as

having a coefficient in F, which has dimension 5. Using similar reasoning, elements

of E can be seen as an extension of Q with a basis containing 5m elements, for some

m P N`. By Lemma 9¨59, there are 5m unique isomorphisms extending ι to E, one for

each element of the basis of E. Hence, |Gal pE{Fq| “ 5m. What matters here is that

the size of the group is divisible by 5; we can now apply Cauchy’s Theorem to show that

Gal pE{Fq has an element of order 5; in other words, a 5-cycle.

Once we have a two-cycle and a five-cycle in Gal pE{Qq, we can show that Gal pE{Qq – S5

(Question 9.67). We know from Corollary 9¨63 that S5 is not solvable. Apply the contrapositive

of Theorem 9¨31 to see that f cannot be solved by radicals.

Question 9¨67 .
Suppose a subgroup H of S5 has a two-cycle and a five-cycle. Show that H “ S5.
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9¨6 The Fundamental Theorem of Algebra

Carl Friedrich Gauß proved the Fundamental Theorem of Algebra in his doctoral thesis.

The Fundamental Theorem of Algebra. Every f P C rxs has a root in C.

Although it deals with an algebraic topic (the roots of univariate polynomial equations),

proving it requires at least a few non-trivial results from analysis, and it can be proved without

any algebraic ideas at all. This has led some to joke that the theorem is neither fundamental

nor algebraic.

We will describe an algebraic proof of the Fundamental Theorem, based on ideas from

Galois theory; this argument is basically found in Chapter 7 of [1]. Of course, Galois would

not have made the argument we produce below. Since we need some analytical ideas first, we

turn to them, without dwelling on why they are true — you can consult a text on calculus or

analysis.

Background from Calculus

Every first-semester calculus student encounters the following fact.

The Intermediate Value Theorem. Let f be a continuous function on ra, bs. For every y-value

between f paq and f pbq, we can find c P pa, bq such that f pcq “ y.

Intuitively speaking, continuity means that f has no holes or asymptotes, so of course it

would pass through y. However, this is not so easy to prove; the precise definition of continu-

ity is that you can evaluate the limit at every point by substitution (limxÑa f pxq “ f paq), so it

takes a little more work than you would imagine at first glance. This is a class in algebra, not

analysis, so we move on.

Theorem 9¨68. Polynomials over C are continuous.

This one is not quite so intuitive, unless you have worked extensively with polynomials

whose coefficients are complex. It is not difficult, but again, it is analytical in nature, so we

move on.

Corollary 9¨69. Let f P R rxs. If deg f is odd, then f has a root in R.

This one is worth considering briefly; again, we rely on ideas from calculus.

Proof. Let n “ deg f , and consider

lim
xÑ8

f pxq

xn
“ lim

xÑ8

anx
n ` an´1x

n´1 ` ¨ ¨ ¨ ` a1x` a0

xn
“ lim

xÑ8

´

an `
an´1

x
` ¨ ¨ ¨ `

a1

xn´1
`
a0

xn

¯

“ an.

Let ε ą 0. By definition, there exists N P R such that for all x ą N,

ˇ

ˇ

ˇ
an ´

f pxq

x

ˇ

ˇ

ˇ
ă ε. Thus, for

all these x, we have

´ε ă an ´
f pxq

x
ă ε ùñ x pan ` εq ą f pxq ą x pan ´ εq .

In other words, for all x ą N, f pxq has the same sign as an. A similar argument shows that we

can findM P R such that for all x ă M, f pxq has the same sign as´an. By definition of degree,

an ‰ 0, so f has at least one positive value, and at least one negative value. Apply continuity

and the Intermediate Value Theorem to see that f has a root between these two points.
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Some more algebra

Now for two algebraic ideas. The first is separability, which has to do with how a polynomial

factors in its extension field. The second is the first of the famous Sylow Theorems.

Definition 9¨70. Suppose E “ F pαq is an extension field. Let f be an irreducible polyno-

mial over F such that α is a root of f . We say that α is separable over F if f factors in E as

px´ αq g pxq, and g pαq ‰ 0.

Theorem 9¨71. Extensions of C are separable.

Proof. This is a consequence of Calculus. If f “ px´ aq
m
¨ g, then f

1 “ m px´ aq
m´1

g `

px´ aq
m
g
1
. The derivative of a complex polynomial is also a complex polynomial, and the

Euclidean algorithm gives us a gcd which has p “ px´ aq
m´1

as a factor. If f is irreducible,

the gcd of f and f
1
must be a constant, so m “ 1.

(The proof above can fail in a field of nonzero characteristic, but in this chapter we have

assumed that this is not the case.)

Theorem 9¨72. Let E be an algebraic extension of C. The degree of E over C is |Gal pE{Cq|.

Proof. We proceed by induction on rE : Cs (the degree of E over C).

Inductive base: If rE : Cs “ 1, then E “ C, so the only element of Gal pE{Cq is the identity.

Hence rE : Cs “ |Gal pE{Cq|.
Inductive hypothesis: Let n P N`, and assume that if rE : Cs ď n, then Gal pE{Cq “ n.
Inductive step: Let f P C rxs such that E is the algebraic extension by the roots of f , and

rE : Cs “ n`1. Let q be an irreducible factor of f , and choose g such that f “ qg; if deg q “ 1,

then the root of q is already in C. Hence, we may assume without loss of generality that

deg q ą 1. Let α be any root of q, and φ P Gal pE{Cq. In Question 9.24 you showed that φ pαq is

another root of q. By Theorem 9¨71, extensions of C are separable, so the choice of mappings

for φ is determined entirely by q. Hence, |Gal pC pαq {Cq| “ deg q “ rC pαq : Cs. Apply the

inductive hypothesis to rE : C pαqs to obtain

rE : Cs “ rE : C pαqs rC pαq : Cs “ |Gal pE{C pαqq| ¨ |Gal pC pαq {Cq| .

At this point we define a homomorphism that maps elements of Gal pE{Cq to elements of

Gal pC pαq {Cq by restriction, similar to the proof of Theorem 9¨31. (The difference here is

that we are not working with radical extensions, so we cannot guarantee Gal pC pαq {Cq is

abelian.) As before, the kernel will be Gal pE{C pαqq. The kernel is a normal subgroup, so

Lagrange’s Theorem tells us

|Gal pE{C pαqq| ¨ |Gal pC pαq {Cq| “ |Gal pE{Cq| ,

which completes the proof.

We now turn to the First Sylow Theorem, which generalizes Cauchy’s Theorem that if an

irreducible p divides |G|, then G contains an element of order p.

First Sylow Theorem. Let G be a group, and p P N` be irreducible. If |G| “ pmq where p - q, then

G has a subgroup of size p
i
for each i P t1, . . . , mu.
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Proof. We proceed by induction on the size of G. The inductive basis follows from Cauchy’s

Theorem, so for the inductive hypothesis, assume that for any group H of order smaller than

|G|, such that |H| “ p
m
r and p - r, we can find a subgroup A of size p

m
. We need to show that

we can also find a subgroup of size p
m`1

.

Recall the class equation (9.3),

|G| ´
ÿ

xPPzZpGq

|G{Cx| “ |Z pGq| .

We consider two cases.

Case 1: If p divides |Z pGq|, then Cauchy’s Theorem tells us that Z pGq has a normal subgroup

A of size p. Elements of Z pGq commute with all elements of G, so A is a normal subgroup of G.

Hence, G{A is a quotient group. By Lagrange’s Theorem,

|G{A| “
|G|

|A|
“
p
m
q

p
“ p

m´1
q,

and since m ą 1, p divides |G{A|. By hypothesis, G{A has a subgroup of size p
m´1

. Call it B.

Recall the natural homomorphism µ : G Ñ G{A by µ pgq “ gA. This homomorphism is

onto G{A, so let

H “ tg P G : µ pgq P Bu .

We claim that H ă G; to see why, let x, y P H. A property of homomorphisms is that µ py´1q “

µ pyq
´1
P B, so now closure and properties of homomorphisms guarantee that µ pxy´1q “

µ pxq µ pyq
´1
P B.

We claim that |H| “ p
m

. Why? An argument similar to that of the Isomorphism Theorem

shows that B – H{ ker µ, so |B| “ |H| { |ker µ|, and |ker µ| “ |A|, so |H| “ |A| |B| “ p¨pm´1 “ pm,

as desired.

Case 2: Suppose p - |Z pGq|. We claim that p - |G{Cx| for some x P G. To see why, assume by

way of contradiction that it divides all of them. By hypothesis, p divides |G|; p then divides

the left-hand side of the class equation above, so p must divide the right hand side, |Z pGq|, a

contradiction.

The centralizer of an element is a subgroup ofG. By Lagrange’s Theorem, |G{Cx| “ |G| { |Cx|.

Rewrite this as |G{Cx| |Cx| “ |G|. By hypothesis, p
m

divides the right hand side, but p - |G{Cx|,
so the definition of a prime number forces p

m | |Cx|.

On the other hand, x R Z pGq, so Cx ‰ G, so |Cx| ă |G|. The inductive hypothesis applies,

and we can find a subgroup A of Cx of size p
m

. A subgroup of Cx is also a subgroup of G, so A is

a desired subgroup of G whose order is p
m

.

Proof of the Fundamental Theorem

Let f P C rxs. Let E be the field that contains all the roots of f . We claim that E “ C.

By unique factorization and the Factor Theorem, f can have only finitely many roots, so

E is a finite extension of C, itself a finite extension of R. Hence, E is also a finite extension of

R. We claim that E is an odd-degree extension of R; if not, we would be able to find an odd-

degree polynomial f P R rxs that is irreducible. By the corollary to the Intermediate Value

Theorem, however, odd-degree polynomials over R must have a root in R, a contradiction.
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Hence, E must be an even extension of R. If it is a degree-2 extension, then the quadratic

formula suggests that C Ě E Ě C, so C “ E. The remaining possibilities fall into two cases:

rE : Rs “ 2m (a pure power of 2) or rE : Rs “ 2mq for some odd q.

We consider the second possibility first. Suppose the degree of E over R is 2
m
q, where

m, q P N` and 2 - q. Let G “ Gal pE{Rq be its Galois group; notice that |G| “ 2
m
q. By the

First Sylow Theorem, G has a subgroup H of size 2
m

. By Lagrange’s Theorem, |G{H| “ q. This

corresponds to an intermediate field pE such that

• the degree of E over pE is 2
m

, and

• the degree of pE over R is q.

Since 2 - q, pE is an odd-degree extension of R, and we already dealt with that. Hence q “ 1,

and the only possibility that remains is|G| “ 2m, a pure power of 2.

Of course, C “ R
“?
´1

‰

is an intermediate field between E and R. Its degree over R is

2, so the degree of E over C is 2
m´1

. Let f be an irreducible polynomial of degree m ´ 1 over

C. We claim that m “ 1; to see why, assume the contrary, and proceed by induction on m. If

m “ 2, then the quadratic formula shows us that the roots of f “ ax2 ` bx` c are

x “
´b˘

?
b2 ´ 4ac

2a
.

We claim that the square roots of complex numbers are also complex. To see why, consider

z “ a`bi, where a, b P R. Let α “ arctan pb{aq and r “ a2`b2. You will show in Question 9.73

that z “ r pcos α` i sin αq. Let

w “
?
r

´

cos
α

2
` i sin

α

2

¯

;

notice that

w
2
“
`?
r
˘

2
”´

cos
2
α

2
´ sin

2
α

2

¯

` 2i sin
α

2
cos

α

2

ı

.

Apply the double-angle formulas to get

w
2
“ r

”

cos

´

2 ¨
α

2

¯

` i sin

´

2 ¨
α

2

¯ı

“ r pcos α` i sin αq “ z.

Since z was arbitrary in C, we see that square roots of complex numbers are also complex.

Assume, therefore, that for some n P N`, if the degree of an extension field over C is 2
n
,

then the extension field is C. Let F be an extension of C of degree 2
n`1

. As before, we can

construct an extension field pF of C of degree 2
n
, so that the degree of F over pF is 2. By the

inductive hypothesis, pF “ C. Hence the degree of F over C is 2, which the inductive base

tells us means F “ C.

By induction, then, E “ C.

Question 9¨73 .
Let z P C, and choose a, b P R such that z “ a`bi. Let α “ arctan pb{aq and r “ a2`b2. Show

that z “ r pcos α` i sin αq.



Chapter 10

Roots of polynomial systems

This chapter is about the roots of systems of polynomial equations, such as

"

x
2 ` y3 “ 4

xy “ 1
.

Rather than investigate the computation of roots, we consider the analysis of roots we have not

enumerated explicitly, and the tools used to compute that analysis. In particular, we want to

know when the roots to a multivariate system of polynomial equations exists. Techniques

described here allow us to answer the following questions:

1. Does the system have any solutions in C?

2. If so,

(a) Are there infinitely many, or finitely many?

i. If finitely many, exactly how many?

ii. If infinitely many, what is the “dimension” of the solution set?

(b) Are any of the solutions in R?

We refer to these as five natural questions about the roots of a polynomial system. We start off

reviewing them for linear systems, but you should already have seen that in linear algebra,

so we emphasize “review.” We then analyze how the nature of a non-linear, multivariate

monomial hampers this strategy with non-linear, multivariate polynomials, before concluding

with a foray into Hilbert’s Nullstellensatz and Gröbner bases, fundamental results and tools

of commutative algebra and algebraic geometry.

It shouldn’t surprise you that polynomial systems appear in many contexts. A chemist

once emailed me about a problem he was studying that involved microarrays. Microarrays

measure gene expression, and he was trying to model them using this system of equations:

axy´ b1x´ cy` d1 “ 0

axy´ b2x´ cy` d2 “ 0 (10.1)

axy´ b2x´ b1y` d3 “ 0

328
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where a, b1, b2, c, d1, d2, d3 P N are known constants and x, y P R were unknown. The chemist

wanted to find values for x and y that made all the equations true.

This already is an interesting, well-studied problem, but the chemist’s fancy software

didn’t always solve the system. He didn’t understand whether it was because there was some-

thing wrong with his numbers, or with the system itself. All he knew is that for some values

of the coefficients, the system gave him a solution, but for other values the system found no

solution. The reason turned out to be the software’s reliance on numerical techniques to look

for a solution, which can fail even when a solution exists.

Techniques described in this chapter showed that no real solution existed; all solutions

were complex. The software’s numerical techniques wasn’t designed to discover such solu-

tions, and this is why it failed.

10¨1 Gaussian elimination

A generic system of m linear equations in n variables looks like

a11x1 ` a12x2 ` ¨ ¨ ¨ ` a1nxn “ b1

a21x1 ` a22x2 ` ¨ ¨ ¨ ` a2nxn “ b2

...
...

am1x1 ` am2x2 ` ¨ ¨ ¨ ` amnxn “ bm

where the aij and bi are elements of a fieldF. Although it is typically taught withF “ R, linear

algebra can be done over any field F, such as a finite field!

Example 10¨1. A linear system with m “ 3, n “ 5, and coefficients in Z13 is

5x1 ` x2 ` 7x5 “ 7

x3 ` 11x4 ` 2x5 “ 1

3x1 ` 7x2 ` 8x3 “ 2.

An equivalent system, with the same solutions, is

5x1 ` x2 ` 7x5 ` 6 “ 0

x3 ` 11x4 ` 2x5 ` 12 “ 0

3x1 ` 7x2 ` 8x3 ` 11 “ 0.

Our standard formwill typically describe a system as a list or sequence of the left-hand sides

of the second form above,
$

&

%

5x1 ` x2 ` 7x5 ` 6,

x3 ` 11x4 ` 2x5 ` 12,

3x1 ` 7x2 ` 8x3 ` 11

,

.

-

.

Gaussian eliminationobtains a “triangular system” equivalent to the original. By “equiv-

alent”, we mean that pa1, . . . , anq P Fn is a solution to the triangular system if and only if it

is a solution to the original system as well. Algorithm 10.1 describes one way to apply the

method.
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Algorithm 10.1 Gaussian elimination

1: inputs
2: F “ pf1, f2, . . . , fmq, a list of linear polynomials in n variables, with coefficients from a

field F.

3: outputs
4: G “ pg1, g2, . . . , gmq, a list of linear polynomials in n variables, in triangular form, whose

roots are precisely the roots of F.

5: do
6: Let G :“ F

7: for i “ 1, 2, . . . , m´ 1 do
8: Rearrange gi, gi`1, . . . , gm so that for each k ă `, g` “ 0, or lv pgkq ě lv pg`q

9: if gi ‰ 0 then
10: Denote the coefficient of lv pgiq by a

11: for j “ i` 1, i` 2, . . . m do
12: if lv

`

gj

˘

“ lv pgiq then
13: Denote the coefficient of lv

`

gj

˘

by b

14: Replace gj with agj ´ bgi

15: return G

Definition 10¨2. Let G “ pg1, g2, . . . , gmq be a list of linear polynomials in n variables. For

each i “ 1, 2, . . . , m designate the leading variable of gi, as the smallest-indexed variable of

non-zero coefficient. Write lv pgiq for this variable.

Remark. The leading variable of the zero polynomial, lv p0q, is undefined.

The ordering for leading variables guarantees x1 ą x2 ą. . . ą xn, something like a dictio-

nary. We refer to it as the lexicographic term ordering. In the same way, we order x ą y ą z;

if other variables appear, we state the ordering explicitly.

Example 10¨3. Using the example from 10¨1,

lv p5x1 ` x2 ` 7x5 ` 6q “ x1,

lv px3 ` 11x4 ` 2x5 ` 12q “ x3.

Definition 10¨4. A list of linear polynomials F is in triangular form if for each i ă j,

• fi “ 0 implies fj “ 0, while

• fi, fj ‰ 0 implies lv pfiq ą lv
`

fj

˘

.

Example 10¨5. Using the example from 10¨1,the list

F “ p 5x1 ` x2 ` 7x5 ` 6, x3 ` 11x4 ` 2x5 ` 12, 3x1 ` 7x2 ` 8x3 ` 11 q

is not in triangular form, since lv pf1q “ lv pf3q “ x1, whereas we want lv pf1q ą lv pf3q.

The list

G “ p x1 ` 6, 0, x2 ` 3x4 q
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is also not in triangular form, because g2 is zero while g3 ‰ 0.

However, the list

H “ p x1 ` 6, x2 ` 3x4, 0 q

is in triangular form, because h3 “ 0 and lv ph1q ą lv ph2q.

Theorem 10¨6. Algorithm 10.1 terminates correctly.

Proof. All the loops of the algorithm are explicitly finite, so the algorithm terminates. To show

that it terminates correctly, we must show both that G is triangular and that its roots are the

roots of F.

That G is triangular: We first claim that the ith iteration of the outer loop terminates with

G in i-subtriangular form; by this we mean that

• the list pg1, . . . , giq is in triangular form; and

• for each j “ 1, . . . , i if gj ‰ 0 then the coefficient of lv
`

gj

˘

in gi`1, . . . , gm is 0.

For example, a system in 2-subtriangular form looks like this, where a “*” indicates a non-zero

coefficient of a variable:

˚ ˚ ˚ ˚ ˚

˚ ˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

˚ ˚ ˚

Proving this first subclaim is straightforward; after all, line 8 ensures that all the zero poly-

nomials occur at the end of the list, and lv pgiq ě lv
`

gi`j

˘

for any j ě 1, while lines 13 and 14

ensure that if gi ‰ 0 then lv pgiq ą lv
`

gi`j

˘

for any j ě 1.

Having established that subclaim, we now observe that G is in triangular form if and only

if G is in i-subtriangular form for all i “ 1, 2, . . . , m. Again, this is straightforward, and estab-

lishes that G is in triangular form after at most m iterations.

Showing that G is equivalent to F is only a little harder. The combinations of F that produce

G are all linear; that is, for each j “ 1, . . . , m there exist ci,j P F such that

gj “ c1,jf1 ` c2,jf2 ` ¨ ¨ ¨ ` cm,jfm.

Hence if pα1, . . . , αnq P Fn is a common root of F, it is also a common root ofG. For the converse,

observe from the algorithm that there exists some i such that fi “ g1; then there exists some

j P t1, . . . , mu z tiu and some a, b P F such that fj “ ag1´bg2; and so forth. Hence the elements

of F are also a linear combination of the elements of G, and a similar argument shows that the

common roots of G are common roots of F.

Remark 10¨7. There are other ways to define both triangular form and Gaussian elimination.

The approach we have taken assists us in the development of later ideas.

Example 10¨8. We illustrate Gaussian elimination for the system of equations described in

Example 10¨1.
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• We start with the input,

F “ p 5x1 ` x2 ` 7x5 ` 6, x3 ` 11x4 ` 2x5 ` 12, 3x1 ` 7x2 ` 8x3 ` 11 q .

• Line 6 tells us to set G “ F, so now

G “ p 5x1 ` x2 ` 7x5 ` 6, x3 ` 11x4 ` 2x5 ` 12, 3x1 ` 7x2 ` 8x3 ` 11 q .

• We enter the outer loop on i:

– In the first iteration, i “ 1.

– We rearrange G, obtaining

G “ p 5x1 ` x2 ` 7x5 ` 6, 3x1 ` 7x2 ` 8x3 ` 11, x3 ` 11x4 ` 2x5 ` 12 q .

– Since gi ‰ 0, Line 10 tells us to denote a as the coefficient of lv pgiq, so a “ 5.

– We now enter the inner loop on j:

∗ In the first iteration, j “ 2.

∗ As lv
`

gj

˘

“ lv pgiq, Line 13 tells us to denote b as the coefficient of lv
`

gj

˘

, so

b “ 3.

∗ Replace gj with

agj ´ bgi “ 5 p3x1 ` 7x2 ` 8x3 ` 11q

´ 3 p5x1 ` x2 ` 7x5 ` 6q

“ 32x2 ` 40x3 ´ 21x5 ` 37.

Recall that the field is Z13, so we can rewrite this as

6x2 ` x3 ` 5x5 ` 11.

We now have

G “ p 5x1 ` x2 ` 7x5 ` 8, 6x2 ` x3 ` 5x5 ` 11, x3 ` 11x4 ` 2x5 ` 12 q .

– We continue with the inner loop on j:

∗ In the second iteration, j “ 3.

∗ Since lv
`

gj

˘

‰ lv pgiq, we proceed no further.

– Now j “ 3 “ m, and the inner loop is finished.

• We continue with the outer loop on i:

– In the second iteration, i “ 2.

– We do not rearrange G, as it is already in the form indicated. (In fact, it is in trian-

gular form already, but the algorithm does not “know” this yet.)
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– Since gi ‰ 0, Line 10 tells us to denote a as the coefficient of lv pgiq; since lv pgiq “

x2, a “ 6.

– We now enter the inner loop on j:

∗ In the first iteration, j “ 2.

∗ Since lv
`

gj

˘

‰ lv pgiq, we do not proceed with this iteration.

– Now j “ 3 “ m, and the inner loop is finished.

• Now i “ 2 “ m´ 1, and the outer loop is finished.

• We return G, which is in triangular form!

Once we have the triangular form of a linear system, it is easy to answer the five natural

questions.

Theorem 10¨9. Let G “ pg1, g2, . . . , gmq is a list of nonzero linear polynomials in n variables over a

field F. If G is in triangular form, then each of the following holds.

(A) G has common solutions if and only if none of the gi is a nonzero constant.

(B) G has finitely many common solutions if and only if F has nonzero characteristic, G has common

solutions, and m “ n. In this case, there is exactly one solution.

(C) G has common solutions of dimension d ą 1 if and only ifF has characteristic zero, G has common

solutions, and d “ n´ m.

A proof of Theorem 10¨9 can be found in any textbook on linear algebra, although probably

not in one place.

Example 10¨10. Continuing with the system that we have used in this section, we found that

a triangular form of

F “ p 5x1 ` x2 ` 7x5 ` 6, x3 ` 11x4 ` 2x5 ` 12, 3x1 ` 7x2 ` 8x3 ` 11 q

is

G “ p 5x1 ` x2 ` 7x5 ` 6, 6x2 ` x3 ` 5x5 ` 11, x3 ` 11x4 ` 2x5 ` 12 q .

Theorem 10¨9 implies that

(A) G has a solution, because none of the gi is a constant.

(B) G has finitely many solutions, because the characteristic (13) is nonzero.

(C) If the characteristic were zero, it would have infinitely many solutions of dimension d “

n ´ m “ 2, as the number of polynomials (m “ 3) is not the same as the number of

variables (n “ 5). (A field of characteristic zero always has infinitely many elements.)
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Lexicographic order allows us to parametrize the solution set easily. Let s, t P Z13 be arbitrary,

and let x4 “ s and x5 “ t. Back-substituting in S, we have:

• From g3 “ 0, x3 “ 2s` 11t ` 1.

• From g2 “ 0,

6x2 “ 12x3 ` 8t ` 12. (10.2)

The Euclidean algorithm helps us derive the multiplicative inverse of 6 in Z13; we get

11. Multiplying both sides of (10.2) by 11, we have

x2 “ 2x3 ` 10t ` 9.

Recall that we found x3 “ 2s` 11t ` 1, so

x2 “ 2 p2s` 11t ` 1q ` 10t ` 9 “ 4s` 6t ` 11.

• From g1 “ 0,

5x1 “ 12x2 ` 6x5 ` 7.

Repeating the process that we carried out in the previous step, we find that

x1 “ 7s` 7.

We can verify this solution by substituting it into the original system:

f1 : 5 p7s` 7q ` p4s` 6t ` 11q ` 7t ` 6

“ 39s` 13t ` 52

“ 0

f2 : p2s` 11t ` 1q ` 11s` 2t ` 12

“ 0

f3 : 3 p7s` 7q ` 7 p4s` 6t ` 11q ` 8 p2s` 11t ` 1q ` 11

“ p8s` 8q ` p2s` 3t ` 12q ` p3s` 10t ` 8q ` 11

“ 0.

Before proceeding to the next section, study the proof of Theorem 10¨6 carefully. Think

about how we might relate these ideas to non-linear polynomials.

Question 10¨11 .
A homogeneous linear system is one where none of the polynomials has a constant term: that is,

bi “ 0 for i “ 1, . . . , m. Explain why homogeneous systems always have at least one solution.

Question 10¨12 .
Find the triangular form of the following linear systems, and use it to find the common solu-

tions of the corresponding system of equations (if any).

(a) f1 “ 3x` 2y´ z´ 1, f2 “ 8x` 3y´ 2z, and f3 “ 2x` z´ 3; over the field Z7.

(b) f1 “ 5a` b´ c ` 1, f2 “ 3a` 2b´ 1, f3 “ 2a´ b´ c ` 1; over the same field.

(c) The same system as (a), over the field Q.
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Question 10¨13 .
In linear algebra you also used matrices to solve linear systems, by rewriting them in echelon

(or triangular) form. Do the same with system (a) of the Question 10.12.

Question 10¨14 .
Does Algorithm 10.1 also terminate correctly if the coefficients of F are not from a field, but

from an integral domain? If so, and if m “ n, can we then solve the resulting triangular

system G for the roots of F as easily as if the coefficients were from a field? Why or why not?

10¨2 Monomial orderings

As in the linear case, we would like to find a triangular form for non-linear polynomial sys-

tems. We expect that we shall have to cancel monomials. Consider the example we mentioned

at the beginning of the chapter,
"

x
2 ` y3 “ 4

xy “ 1
.

This translates to F “ px2 ` y3 ´ 4, xy´ 1q. We will need to cancel the leading monomials of

multiples of these polynomials. (We explain why later.) But, which monomial is the “leading”

monomial of f1 “ x
2 ` y3 ´ 4?

• If the leading monomial is x
2
, then the smallest multiples that cancel leading terms

1

give us

y
`

x
2
` y

3
´ 4

˘

´ x pxy´ 1q “ y
4
´ 4y` x.

• If the leading monomial is y
3
, then the smallest multiples that cancel leading terms give

us

x
`

x
2
` y

3
´ 4

˘

´ y pxy´ 1q “ xy
3
´ 4x` y.

These different results lead to different bases!

Before proceeding, we must ask ourselves how to identify the “most important” monomial

in this more general setting. With linear polynomials, it was relatively easy; we picked the

variable with the smallest index. You could rearrange the variables if you wanted (choose y

as the leading variable, rather than x) and you’d still end up with the same basis. That doesn’t

work in the polynomial case; there are different options for ordering terms, and we consider

them now.

Remark. We assume variables to be both prime and irreducible, so that every term of X has

a unique factorization into variables. For instance, xy - z and x
2
y
3 ‰ yz

2
. When you do want

these relations to be true, build an ideal containing xyq´ z and x
2
y
3 ´ yz2.

The lexicographic ordering

Our first ordering generalizes the lexicographic ordering described in Definition 1¨29 on

page 13.

1
We explain the whys and wherefores of “smallest multiples that cancel leading terms” in the next section.
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Definition 10¨15. Let t, u P X. The lexicographic ordering orders t ą u if

• deg x1
t ą deg x1

u, or

• deg x1
t “ deg x1

u and deg x2
t ą deg x2

u, or

• . . .

• deg xi
t “ deg xi

u for i “ 1, 2, . . . , n´ 1 and deg xn
t ą deg xn

u.

Another way of saying this is that t ą u iff there exists i such that

• deg xj
t “ deg xj

u for all j “ 1, 2, . . . , i´ 1, and

• deg xi
t ą deg xi

u.

The leading monomial of a non-zero polynomial p is any monomial t such that t ą u for all

other terms u of p. The leading monomial of 0 is left undefined.

Notation 10¨16. We denote the leading monomial of a polynomial p as lm ppq.

Example 10¨17. Using the lexicographic ordering over x, y,

lm
`

x
2
` y

3
´ 4

˘

“ x
2

lm pxy´ 1q “ xy

lm
`

y
4
´ 4y` x

˘

“ x.

Recall that X is the set of all monomials in the variables x1, . . . , xn.

Fact 10¨18. The lexicographic ordering on X

(A) is a linear ordering;

(B) is compatible with divisibility: for any t, u P X, if t | u, then t ď u;

(C) is compatible with multiplication: for any t, u, v P X, if t ă u, then for any monomial v over

X, tv ă uv;

(D) orders 1 ď t for any t P X; and

(E) is a well ordering.

Proof. For (A), suppose that t ‰ u. Then there exists i such that deg xi
t ‰ deg xi

u. Pick the

smallest i for which this is true. We now have deg xj
t “ deg xj

u for j “ 1, 2, . . . , i ´ 1. If

deg xi
t ă deg xi

u, then t ă u; otherwise, deg xi
t ą deg xi

u, so t ą u.

For (B), t | u iff deg xi
t ď deg xi

u for all i “ 1, 2, . . . , m. Hence t ď u.
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For (C), assume that t ă u. Let i be such that deg xj
t “ deg xj

u for all j “ 1, 2, . . . , i´ 1 and

deg xi
t ă deg xi

u. For any @j “ 1, 2, . . . , i´ 1, we have

deg xj
ptvq “ deg xj

t ` deg xj
v

“ deg xj
u` deg xj

v

“ deg xj
uv

and

deg xi
ptvq “ deg xi

t ` deg xi
v

ă deg xi
u` deg xi

v “ deg xi
uv.

Hence tv ă uv.

(D) is a special case of (B).

For (E), letM Ď X. We proceed by induction on the number of variables n.

For the inductive base, if n “ 1 then the monomials are ordered according to the exponent

on x1, which is a natural number. Let E be the set of all exponents of the monomials inM; then

E Ď N. By the Well-Ordering Principle, E has a least element; call it e. By definition of E, e is

the exponent of some monomial m of M. Since e ď α for any other exponent x
α P M, m is a

least element ofM.

For the inductive hypothesis, assume that for all i ă n, the set of monomials in i variables is

well-ordered.

For the inductive step, let N be the set of all monomials in n´ 1 variables such that for each

t P N, there exists m P M such that m “ t ¨ xe
n

for some e P N. By the inductive hypothesis, N

has a least element; call it t. Let

P “ tt ¨ x
e

n
: t ¨ x

e

n
P M De P Nu .

All the elements of P are equal in the first n´ 1 variables: their exponents are the exponents

of t. Let E be the set of all exponents of xn for any monomial u P P. As before, E Ď N. Hence

E has a least element; call it e. By definition of E, there exists u P P such that u “ t ¨ xe
n
; since

e ď α for all α P E, u is a least element of P.

Finally, let v P M. Since t is minimal in N, either there exists i such that

deg xj
u “ deg xj

t “ deg xj
v @j “ 1, . . . , i´ 1

and

deg xi
u “ deg xi

t ă deg xi
v,

or

deg xj
u “ deg xj

t “ deg xj
v @j “ 1, 2, . . . , n´ 1

In the first case, u ă v by definition. In the second case, e is minimal in E, and

deg xn
u “ e ď deg xn

v,

in which case u ď v. Hence u is a least element ofM.

Since M is arbitrary in X, every subset of X has a least element. Hence X is well-ordered

by the lexicographic order.
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Monomial diagrams

Monomial diagrams, essentially lattices, can only represent phenomena surrounding

monomials in a bivariate polynomial ring F rx, ys. We can however infer properties that hold

true with an arbitrary number of variables, as well.

Definition 10¨19. Let t P X. Its exponent vector pα1, . . . , αnq P Nn
satisfies αi “ deg xi

t.

Let t P F rx, ys be a monomial, and pα, βq its exponent vector. That is,

t “ x
α
y
β
.

If we consider pα, βq as a point in the x-y plane, the set of all monomials in two variables forms

a lattice:

1 2 3 4

1

2

3

4

If t | u, then the point corresponding to u lies above and/or to the right of the point corre-

sponding to t, but never below or to the left of it. The points corresponding to monomials

divisible by xy
2

lie within the shaded region of the following diagram:

1 2 3 4

1

2

3

4

These diagrams come in handy when visualizing certain features of an ideal. For instance, we

can sketch vectors on a monomial diagram that show the ordering of the monomials.

Example 10¨20. In the lex ordering, the smallest monomial is 1. The next smallest is always y.

Lex ordering ensures x ą y, y
2
, y
3
, . . . , so the next monomial after y is y

2
, followed by y

3
, etc.

Once we have marked every pure power of y, the next monomial is x. Lex ordering ensures

x
2 ą xy, xy

2
, xy

3
, . . . , so the next monomial after x is xy, followed by xy

2
, etc. The following

diagram illustrates this with each arrow pointing from one term to the next-smaller, or else

to the “top” of a column of infinitely many monomials smaller than it:

1 2 3 4

1

2

3

4

This diagram illustrates an important and useful fact.
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Fact 10¨21. Unless t “ xa
n
, the lexicographic order places infinitely many monomials smaller than t.

That’s bad news in a computational sense, as it makes it impossible to guarantee from a

leading monomial how many monomials a polynomial has: even if lm pf q “ x, f could have 1,

10, 100, 1000, or even more monomials. No one likes to work with polynomials that large, not

even computers!

The graded reverse lexicographic ordering

Let’s try ordering the monomials in a way that allows us to cap the size of a polynomial. For

instance, given a monomial t, we might like to guarantee that all monomials have the same

degree or smaller.

Definition 10¨22. For a monomial t, the total degree of t is the sum of the exponents, denoted

tdeg ptq. For two monomials t, u, a total-degree ordering orders t ă u whenever tdeg ptq ă

tdeg puq.

Example 10¨23. The total degrees of x
3
y
2

and xy
5

are 5 and 6, respectively, so x
3
y
2 ă xy5. How-

ever, we cannot order x
3
y
2

and x
2
y
3

by total degree alone, because tdeg px3y2q “ tdeg px2y3q

but x
3
y
2 ‰ x2y3.

Ties in the total degree force us to refine this approach. One way is the following.

Definition 10¨24. For monomials t, u thegraded reverse lexicographic ordering, orgrevlex,

orders t ă u whenever

• tdeg ptq ă tdeg puq, or

• tdeg ptq “ tdeg puq and there exists i P t1, . . . , nu such that for all j “ i` 1, . . . , n

– deg xj
t “ deg xj

u, and

– deg xi
t ą deg xi

u.

To break a total-degree tie, grevlex reverses the lexicographic ordering in a double way: it

searches backwards for the smallest degree, and designates the winner as the larger monomial.

Example 10¨25. Under grevlex, x
3
y
2 ą x2y3 because the total degrees are both 5 and y

2 ă y3.

Question 10¨26 .
Define πďi as the map fromX to itself that “projects” a monomial in n variables to a monomial

in i variables. For example,

πď3

`

x
5

1
x
4

2
x4x

2

5

˘

“ x
5

1
x
4

2
.

Think of πďi as “chopping” variables xi`1, xi`2, . . . , xn off the monomial. More formally, if

0 ă i ď n, then

πďi : Xrms Ñ Xris by πďi px
a1

1
¨ ¨ ¨ x

an

n
q “ x

a1

1
¨ ¨ ¨ x

ai

i
.

Show that the definition of the grevlex ordering is equivalent to the following:

Definition 10¨27 (Alternate definition of grevlex). We say that t ă u if there exists i such

that tdeg pπďk ptqq “ tdeg pπďk puqq for k “ 1, 2, . . . , i´ 1 but tdeg pπďi ptqq ă tdeg pπďi puqq.
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Fact 10¨28. The graded reverse lexicographic ordering

(A) is a linear ordering;

(B) is compatible with divisibility;

(C) is compatible with multiplication;

(D) orders 1 ď t for any t P X; and

(E) is a well ordering.

Proof. Let t, u P X.

Linear ordering? Assume t ‰ u; by definition, there exists i P N` such that deg xi
t ‰ deg xi

u.

Choose the largest such i, so that deg xj
t “ deg xj

u for all j “ i ` 1, . . . , n. Then t ă u if

deg xi
t ă deg xi

u; otherwise u ă t.

Compatible with divisibility? Assume t | u. If t “ u, then we’re done. Otherwise, t ‰ u.

We can’t have tdeg ptq ą tdeg puq, as that would contradict the hypothesis that t | u! Hence

tdeg ptq ď tdeg puq. If tdeg ptq ă tdeg puq, then t ă u, and we’re done. Otherwise, t ‰ u

implies there exists i P t1, . . . , nu such that deg xi
t ‰ deg xi

u. Choose the largest such i, so that

deg xj
t “ deg xj

u for j “ i` 1, . . . , n. By definition, t ă u.

Question 10¨29 .
Why is it that if t | u, then tdeg ptq ď tdeg puq? Show the details that I’ve glossed over in the

paragraph above.

Proof of Theorem 10¨28 (continued). Compatible with multiplication? Assume t ă u, and let v P X.

By definition, tdeg ptq ă tdeg puq or there exists i P t1, 2, . . . , nu such that deg xi
t ą deg xi

u

and deg xj
t “ deg xj

u for all j “ i` 1, . . . , n. In the first case,

tdeg ptvq “ tdeg ptq ` tdeg pvq

ă tdeg puq ` tdeg pvq “ tdeg puvq .

In the second case,

deg xi
tv “ deg xi

t ` deg xi
v ą deg xi

u` deg xi
v “ deg xi

uv

while for j “ i` 1, . . . , n

deg xj
tv “ deg xj

t ` deg xj
v “ deg xj

u` deg xj
v “ deg xj

uv.

In either case, tv ă uv as needed.

Question 10¨30 .
In the first case above, why is tdeg ptvq “ tdeg ptq ` tdeg pvq? We skipped over that detail.
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Proof of Theorem 10¨28 (continued). (D) is again a special case of (B), but we can also argue from

the fact that tdeg p1q “ 0 while tdeg ptq ą 0 for any non-constant monomial t P X.

We defer the proof of (E) until Fact 10¨35.

Example 10¨31. Let’s diagram the grevlex ordering. Again, the smallest monomial is 1, fol-

lowed by y. Here’s where things change; in the grevlex order, the monomial after y is x, not

y
2
; after all, tdeg pxq ă tdeg py2q. Following x is y

2
, then xy, then x

2
, in that order, rounding

out the degree-two monomials. We then have the degree-three monomials y
2
, xy

2
, x

2
y, and

x
3
, again in that order. This leads to the following monomial diagram:

1 2 3 4

1

2

3

4

Fact 10¨32. Let t P X. In the grevlex order, there are finitely many monomials smaller than t.

Question 10¨33 .
Explain why Fact 10¨32 is true.

Admissible orderings

Propositions 10¨18 and 10¨28 show that lex and grevlex share some common properties

that are both convenient to the multiplication of monomials, and consistent with monomials

in only one variable. We can distill these properties and identify the ones from which the

others flow.

Definition 10¨34. An admissible ordering ă on X is a linear ordering which is compatible

with divisibility and multiplication.

By definition, properties (A), (B), and (C) of Proposition 10¨18 hold for an admissible or-

dering. What of the others?

Fact 10¨35. The following properties of an admissible ordering all hold.

(A) 1 ď t for all t P X.

(B) The setX of all monomials in n variables is well-ordered by any admissible ordering. That is, every

subset M of X has a least element.

Proof. Letă be any admissible ordering. For (A), you do it!

Question 10¨36 .
Show that for any admissible ordering and any t P X, 1 ď t.
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Proof of Fact 10¨35 (continued). For (B), let M Ď X and let A be the smallest absorbing subset of

X that contains M. (Recall from Section 4¨2 that the absorption property means that for any

t P X and any u P A, tu P A also.)

We claim that A has finitely many monomials that are not divisible by another element

of A. Why? Hark back to Ideal Nim. Let F (the Forbidden Frontier) be defined as the set of

monomials not in A, F “ XzA. If A had an infinite set S of monomials not divisible by other

elements of A, then two player of Ideal Nim could play a game defined by F where they chose

elements of S, playing for ever. Dickson’s Lemma tells us this cannot happen!

So A has a finite set of monomials not divisible by other elements of A; call this set T.

Since A is the smallest absorbing subset of X that contains M, T Ď M; otherwise, we’d have a

monomial t P TzM that we could remove from T, and the resulting absorbing subset would

still contain M. A linear ordering can always sort finitely many elements, so the admissible

ordering allows us to identify a smallest element of T; call it t. Let u P M; by definition, u P A,

so we can find v P T such that v divides u. Since t ď v, we use compatibility with divisibility

to see that t ď v ď u. We chose u as an arbitrary element ofM, so t is minimal inM. We chose

M as an arbitrary subset of X, so X is well-ordered byă.

Question 10¨37 .
The graded lexicographic order, which we will denote by gralex, orders t ă u if

• tdeg ptq ă tdeg puq, or

• tdeg ptq “ tdeg puq and the lexicographic ordering would place t ă u.

(a) Order x
2
y, xy

2
, and z

5
by gralex.

(b) Show that gralex is an admissible order.

(d) Sketch a monomial diagram that shows how gralex orders X.

We conclude this section by showing two properties of admissible orderings that we need

for polynomial arithmetic.

Fact 10¨38. Let f, g P F rx1, x2, . . . , xns. Each of the following holds:

(A) lm pfgq “ lm pf q ¨ lm pgq

(B) lm pf ˘ gq ď max plm pf q , lm pgqq

Proof. For convenience, write t “ lm pf q and u “ lm pgq.

(A) Any monomial of fg can be written as the product of two monomials vw, where v is

a monomial of f and w is a monomial of g. If v ‰ lm pf q, then the definition of a leading

monomial implies that v ă t. Proposition 10¨18 implies that

vw ď tw,
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Figure 10¨1: Plots of x
2 ` y3 “ 4 and xy “ 1

with equality only if v “ t. The same reasoning implies that

vw ď tw ď tu,

with equality only if w “ u. Hence

lm pfgq “ tu “ lm pf q lm pgq .

(B) Any monomial of f ˘g is a monomial of f or of g. Hence lm pf ˘ gq is a monomial of f or

of g. The maximum of these is max plm pf q , lm pgqq. Hence lm pf ˘ gq ď max plm pf q , lm pgqq.

We typically use Fact (10¨38) without explicitly referencing it, since familiarity with poly-

nomial arithmetic typically allows one to recognize it through experience.

10¨3 A triangular form for polynomial systems

Throughout this section, assume an admissible ordering of monomials.

Consider the following system of equations:

x
2
` y

3
“ 4

xy “ 1.

A picture can help us analyze the roots; Figure 10¨1 shows the curves that correspond to these

equations. Common solutions occur at the curves’ intersections. We see three intersections

in the real plane: two in the first quadrant, one in the fourth.

Unfortunately, the graph does not show whether complex solutions exist. (In fact, there

are two.) In any case, plotting graphs for three variables is difficult; plotting more than three,

effectively impossible. While it’s relatively easy to solve the system above, it isn’t “triangular”

system in the sense that the last equation is only in one variable. So we can’t solve for one

variable immediately and then go backwards. We can solve for y in terms of x, but not for an

exact value of y.
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Question 10¨39 .
Manipulate the given equations until one of them is in terms of one variable alone y. Use a

computer algebra system to try to find an exact value of y.

A matrix point of view

Another way of seeing that the system isn’t triangular is to consider a matrix whose rows

are degree-one multiples of f1 “ x
2`y3´4 and f2 “ xy´1, and whose columns are coefficients

of monomials. If we order the monomials according to lex, we have the following matrix:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x
3
x
2
y x

2
xy
3
xy
2
xy x y

4
y
3

y 1

1 ´1 xf2
1 ´1 yf2

1 ´1 f2

1 1 ´4 xf1

1 1 ´4 yf1
1 1 ´4 f1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Look at the rows labeled by yf1 and xf2; the leading terms’ coefficients appear in the same

column (x
2
y). Triangularize those rows to get a new polynomial:

f3 “ y
`

x
2
` y

3
´ 4

˘

´ x pxy´ 1q “ x` y
4
´ 4y. (10.3)

We have transformed the matrix into a new form:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x
3
x
2
y x

2
xy
3
xy
2
xy x y

4
y
3

y 1

1 1 ´4 yf1 ´ xf2
1 ´1 yf2

1 ´1 f2

1 1 ´4 xf1

1 1 ´4 yf1
1 1 ´4 f1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The leading monomials no longer cancel — in this matrix! With degree-one multiples of f3,

however, we find ourselves in another pickle:

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x
2
xy
4

xy x y
5
y
4

y
3

y
2

y 1

1 1 ´4 xf3
1 1 ´4 yf3
1 1 ´4 f3

1 ´1 y
3
f2

1 ´1 f2
1 1 ´4 f1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.
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(You will see why we included y
4
f2 in a moment.) This matrix has two cancellations. Their

triangularization gives us

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x
2
xy
4
xy x y

5
y
4

y
3
y
2

y 1

´1 4 1 ´4 f1 ´ xf3
´1 4 ´1 f2 ´ yf3

1 1 ´4 f3

1 ´1 y3f2
1 ´1 f2

1 1 ´4 f1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

which through cancellation in column xy
4

reduces to

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x
2
xy
4
xy x y

5
y
4
y
3
y
2

y 1

4 ´4 f1 ´ xf3 ` y4f2
´1 4 ´1 f2 ´ yf3

1 1 ´4 f3

1 ´1 y
4
f2

1 ´1 f2
1 1 ´4 f1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and through cancellation in column xy to

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

x
2
xy
4
xy x y

5
y
4
y
3
y
2

y 1

0 f1 ´ xf3 ` y4f2 ` 4f2
´1 4 ´1 f2 ´ yf3

1 1 ´4 f3

1 ´1 y
4
f2

1 ´1 f2

1 1 ´4 f1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

This gives us two new polynomials,

f4 “ ´y
5
` 4y

2
´ 1

f5 “ 0,

but the latter is irrelevant. However, it is apparent that cancellation will continue, since the

leading monomials of yf4, xf4, and x
2
f4 cancel with the leading monomials of multiples of f2, f3,

and f1, respectively. For that matter, the leading monomials of x
2
f2 and xyf1 also cancel, as do

others.

Will this ever end?

An ideal point of view

Recall that all elements of a polynomial ideal share the generators’ roots. The operations

we perform by subtracting multiples of rows of the matrix above produce elements of the

ideal, so they share those roots. Under the lex ordering, every non-constant monomial is

new (x, y
5
, y
4
, y
2
, y); none appears in the original polynomials (x

2
, y
3
, xy)! Contrast this to the

linear case; cancelling leading variables always gives a monomial that appears in one or both

of the originals! This difference is largely due to the facts that
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• we cancel variables using scalar multiplication; but

• we cancel monomials using monomial multiplication.

Thus, standard Gaussian elimination won’t work here, inasmuch as we need to reconsider

what “triangular form” means in this case.

The primary issue to resolve is the one we observed immediately after computing the

subtraction polynomial of equation (10.3): we built a polynomial f3 whose leading term xwas

not divisible by the leading term of either f1 or f2. We built f3 as

f3 “ yf1 ´ xf2;

by the Ideal Theorem, ideals absorb multiplication and are closed under subtraction, so

f3 P
@

x
2
` y

3
´ 4, xy´ 1

D

.

While f3 is in the ideal, we wouldn’t have guessed that from its leading monomial , which is

not divisible by the leading monomials of the ideal’s basis. We’d like a basis for the ideal that

does not suffer from this problem.

Definition 10¨40. Let G be a basis of an ideal I. We call it a Gröbner basis of I if for every

p P I, we can find g P G such that lm pgq | lm ppq.

It isn’t obvious at the moment that a finite basis of this kind exists, let alone how we could

decide whether a basis has that form. On the other hand, we can certainly conclude that

`

x
2
` y

3
´ 4, xy´ 1

˘

is not a Gröbner basis, because f3 “ x` y
4 ´ 4y violates the definition of a Gröbner basis, and

f3 P 〈x2 ` y3 ´ 4, xy´ 1〉.

Buchberger’s algorithm

How did we find f3, f4, and f5? The matrices directed our attention to subtraction poly-

nomials, using the smallest multiples whose leading monomials cancel. Let t, u P X. Write

t “ x
α1
1 x

α2
2 ¨ ¨ ¨ x

αn
n

and u “ x
β1

1 x
β2

2 ¨ ¨ ¨ x
βn
n . Any common multiple of t and umust have the form

v “ x
γ1

1 x
γ2

2 ¨ ¨ ¨ x
γn

n

where γi ě αi and γi ě βi for each i “ 1, 2, . . . , n. We can thus identify a least common
multiple

lcm pt, uq “ x
γ1

1 x
γ2

2 ¨ ¨ ¨ x
γn

n

where γi “ max pαi, βiq for each i “ 1, 2, . . . , n. It really is the least because no common mul-

tiple can have a smaller degree in any of the variables, and so it is smallest by the definition

of the lexicographic ordering.

Lemma 10¨41. Let f, g P F rx1, x2, . . . , xns, with lm pf q “ t and lm pgq “ u. The smallest multiples

of f and g whose leading terms cancel have lcm pt, uq as their leading terms.
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Proof. Since lcm pt, uq is defined to have exponents no smaller than those of t andu, it is straight-

forward to find monomials v and w such that tv “ uw “ lcm pt, uq. Hence, lm pvf q “

lm pwgq “ lcm pt, uq; we need merely multiply vf and wg by appropriate field elements to

get cancellation. For instance, if c “ lc pf q and d “ lc pgq, then c
´1
vf ´ d´1wg does the job.

It remains to show that the smallest multiples that cancel have leading term lcm pt, uq. Let

vf andwg be any multiples such that c
´1
vf´d´1wg cancels the leading terms. For each variable

x P tx1, . . . , xnu,

deg x plm pvf qq “ deg xv` deg xt and deg x plm pwgqq “ deg xw` deg xu;

cancellation implies lm pvf q “ lm pwgq, so deg x plm pvf qq “ deg x plm pwgqq, giving us

deg xv` deg xt “ deg xw` deg xu.

Suppose deg xt ă deg xu; the degree of a monomial is nonnegative, so

deg xv “ deg xw` pdeg xu´ deg xtq ě deg xu´ deg xt.

By substitution,

deg xv` deg xt ě pdeg xu´ deg xtq ` deg xt “ deg xu “ deg xlcm pt, uq .

Similarly, if deg xt ą deg xu, we would find

deg xw` deg xu ě deg xt “ deg xlcm pt, uq .

Recall that x was arbitrary in tx1, . . . , xnu, so in fact deg xv ` deg xt ě deg xlcm pt, uq for each

variable x, guaranteeing that

lcm pt, uq divides vt,

and similarly lcm pt, uq divides wu. As an admissible ordering is compatible with divisibility,

lcm pt, uq ď vt, wu.

This shows that any multiples of f, gwhose leading terms cancel have leading terms no smaller

than lcm pt, uq, as claimed.

Definition 10¨42. Let f, g be two polynomials, and v, w P X such that lm pvf q “ lm pwgq “

lcm plm pf q , lm pgqq. Choose c, d such that cvf ´ dwg cancels the leading terms. We call cvf ´

dwg an S-polynomial of f and g, and write spol pf, gq “ cvf ´ dwg.

(The S stands for “subtraction.”) Some S-polynomials occur after a row of the matrix

has already had its first cancellation, as in the computation of f4 and f5 above. We want to

distinguish those from the first cancellation, so we reserve the term S-polynomial for the

initial cancellation in a row, and refer to subsequent cancellations as top-reductions.
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Question 10¨43 .
Let f “ x5 ` 2x4 ` 2x2y` 3y3 ´ 4x` 2 and g “ y6 ´ 4y4 ` 3y3 ´ 2y2 ` y. We use the grevlex

order in this example.

(a) Show that spol pf, gq reduces to zero.

(b) Pay attention to the quotients you used when reducing f and g to zero. What do you notice

about them?

(c) Notice that lm pf q “ x5 and lm pgq “ y6 have no common divisors aside from 1. Suppose

that f and g are any two polynomials whose leading monomials have no common divisors.

Show that spol pf, gq reduces to zero.

We now have the machinery we need to identify and compute a Gröbner basis.

Buchberger’s Characterization and Buchberger’s Algorithm. Let F “ tf1, f2, . . . , fmu Ĺ

F rx1, x2, . . . , xns, and I “ 〈f1, f2, . . . , fm〉 the ideal generated by F.

(A) (Buchberger’s Characterization) F is a Gröbner basis of I if and only if all the S-polynomials of F

reduce to zero.

(B) (Buchberger’s Algorithm) If F is not a Gröbner basis of I, we can compute a Gröbner basis G, by

setting G “ F initially, then constructing and top-reducing S-polynomials, adding to G the reduced

forms of those that do not reduce to zero, until all the S-polynomials of G reduce to zero. This process

takes finitely many S-polynomials.

Example 10¨44. Recall

F “
`

x
2
` y

3
´ 4, xy´ 1

˘

.

We already know it is not a Gröbner basis, as its one S-polynomial is

S “ spol pf1, f2q

“ y
`

x
2
` y

3
´ 4

˘

´ x pxy´ 1q

“ x` y
4
´ 4y,

and if we adopt the lex order, lm pSq “ x, which neither leading term of F divides.

Buchberger’s Algorithm tells us to compute and top-reduce S-polynomials, adding the

reduced forms to G. We start with G “ tf1, f2u and add f3, f4, as computed earlier. At this point,

something interesting happens; most of the remaining S-polynomials top-reduce to zero. We

already saw that spol pf1, f3q reduced to zero; while we do not show it, spol pf1, f4q also reduces

to zero, as does spol pf3, f4q. One reason we skip them is that we can actually detect this without

computing those S-polynomials; see Question 10.43. As for spol pf2, f4q, we get

spol pf2, f4q “ y
4
pxy´ 1q ` x

`

´y
5
` 4y

2
´ 1

˘

“ 4xy
2
´ x´ y

4
.
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We first reduce this via f2:

spol pf2, f4q ` 4yf2 “ ´x´ y
4
` 4y,

then via f3:

spol pf2, f4q ` 4yf2 ` f3 “ 0.

We have reached the point where all of G’s S-polynomials top-reduce to zero. Buchberger’s

characterization states that we have a Gröbner basis, so Buchberger’s Algorithm can termi-

nate safely.

Question 10¨45 .
Show that

G “
`

xy´ 1, x` y
3
´ 4y, y

4
´ 4y

2
` 1

˘

is a Gröbner basis with respect to the lexicographic ordering.

Question 10¨46 .
Show that G of Question 10.45 is not a Gröbner basis with respect to the grevlex ordering. The

Gröbner basis property depends on the choice of term ordering!

Question 10¨47 .
Show that for any non-constant polynomial f , F “ pf, f ` 1q is not a Gröbner basis.

Question 10¨48 .
Show that every list of monomials is a Gröbner basis.

It remains to prove Buchberger’s Characterization and Buchberger’s Algorithm. We need

the following lemma, which allows us to replace polynomials that are “too large” with smaller

polynomials.

Lemma 10¨49. Let p, f1, f2, . . . , fm P F rx1, x2, . . . , xns. Let F “ pf1, f2, . . . , fmq. If p top-reduces to

zero with respect to F, then there exist q1, q2, . . . , qm P F rx1, x2, . . . , xns such that each of the following

holds:

(A) p “ q1f1 ` q2f2 ` ¨ ¨ ¨ ` qmfm; and

(B) for each k “ 1, 2, . . . , m, qk “ 0 or lm pqkq lm pgkq ď lm ppq.

Question 10¨50 .
Let

p “ 4x
4
´ 3x

3
´ 3x

2
y
4
` 4x

2
y
2
´ 16x

2
` 3xy

3
´ 3xy

2
` 12x

and F “ px2 ` y2 ´ 4, xy´ 1q.

(a) Show that p reduces to zero with respect to F.

(b) Show that there exist q1, q2 P F rx, ys such that p “ q1f1 ` q2f2.

(c) Generalize the argument of (b) to prove Lemma 10¨49.
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By rewriting polynomials that are “too large” as smaller polynomials, Lemma 10¨49 leads

us to the desired form.

Proof of Buchberger’s Characterization and Buchberger’s Algorithm. Assume first that F is a Gröbner

basis, and let f, g P F. Then

spol pf, gq P xf, gy Ď xf1, f2, . . . , fmy .

The definition of a Gröbner basis implies that there exists k1 P t1, 2, . . . , mu such that fk1 top-

reduces spol pf, gq to a new polynomial, say r1. If r1 is not zero, then by definition we can find

k2 P t1, 2, . . . , mu such that fk2 top-reduces r1 to a new polynomial, say r2. Repeating this

iteratively, we obtain a chain of polynomials r1, r2, . . . such that r` top-reduces to r``1 for each

` P N. From Proposition 10¨38, we see that

lm pr1q ą lm pr2q ą ¨ ¨ ¨ .

Recall that the monomials are well-ordered under an admissible ordering, so any set of mono-

mials has a least element, including the set R “ tlm pr1q , lm pr2q , . . . u. The chain of top-

reductions cannot continue indefinitely. It cannot conclude with a non-zero polynomial rlast,

since:

• top-reduction keeps each r` in the ideal:

– multiplication by the absorption property, and

– subtraction by the subring property; hence

• by definition of a Gröbner basis, a non-zero rlast must be top-reducible by some element

of G.

It must be that rlast “ 0 so spol
`

fi, fj

˘

top-reduces to zero.

Now assume every S-polynomial top-reduces to zero modulo F. We want to show any ele-

ment of I is top-reducible by an element of F. So let p P I; by definition, there exist polynomials

h1, . . . , hm P F rx1, x2, . . . , xns such that

p “ h1f1 ` ¨ ¨ ¨ ` hmfm.

For each i, write ti “ lm pfiq and ui “ lm phiq. Let T “ maxi“1,2,. . . ,m puitiq. We call T themaximal
term of the representation h1, h2, . . . , hm. If lm ppq “ T, we are done, since

lm ppq “ T “ uktk “ lm phkq lm pfkq Dk P t1, 2, . . . , mu

and we can top-reduce p by fk. Otherwise, there must be some cancellation among the leading

monomials of each polynomial in the sum on the right hand side. That is,

T “ lm ph`1 f`1q “ lm ph`2 f`2q “ ¨ ¨ ¨ “ lm ph`s f`sq
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for some `1, `2, . . . , `s P t1, 2, . . . , mu. From Lemma 10¨41, we know that these leading terms

are multiples of lcm pt`1 , t`2q, etc. That means we can rewrite the cancellations as multiples of

S-polynomials,

lc ph`1q lm ph`1q f`1 ` ¨ ¨ ¨ ` lc ph`sq lm ph`sq f`s “

“
ÿ

1ďaăbďs

ca,bua,bspol
`

f`a , f`b

˘

where for each a, b we have ca,b P F and ua,b PM. Let

S “
ÿ

1ďaăbďs

ca,bua,bspol
`

f`a , f`b

˘

.

Observe that

rlm ph`1q f`1 ` lm ph`2q f`2 ` ¨ ¨ ¨ ` lm ph`sq f`ss ´ S “ 0. (10.4)

By hypothesis, each S-polynomial of S top-reduces to zero. This fact, Lemma 10¨49, and Fact 10¨38

imply that for each a, b we can find q
pa,bq

λ
P F rx1, x2, . . . , xns such that

spol
`

f`a , f`b

˘

“ q
pa,bq

1 f1 ` ¨ ¨ ¨ ` q
pa,bq
m
fm

and for each λ “ 1, 2, . . . , m we have q
pa,bq

λ
“ 0 or

lm

´

q
pa,bq

λ

¯

lm pfλq ď lm
`

spol
`

f`a , f`b

˘˘

ă lcm
`

lm pf`aq , lm
`

f`b

˘˘

. (10.5)

Let Q1, Q2, . . . , Qm P F rx1, x2, . . . , xns such that

Qk “

#

ř

1ďaăbďs
ca,bua,bq

pa,bq

k
, k P t`1, . . . , `su ;

0, otherwise.

By substitution,

S “ Q1f1 ` Q2f2 ` ¨ ¨ ¨ ` Qmfm.

In other words,

S´ pQ1f1 ` Q2f2 ` ¨ ¨ ¨ ` Qmfmq “ 0.

By equation (10.5) and Proposition 10¨38, for each k “ 1, 2, . . . , m we have Qk “ 0 or

lm pQkq lm pfkq ď max
1ďaăbďs

!”

ua,blm

´

q
pa,bq

k

¯ı

lm pfkq

)

“ max
1ďaăbďs

!

ua,b

”

lm

´

q
pa,bq

k

¯

lm pfkq

ı)

ď max
1ďaăbďs

 

ua,blm
`

spol
`

f`a , f`b

˘˘(

ă ua,blcm
`

lm pf`aq , lm
`

f`b

˘˘

“ T. (10.6)
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By substitution,

p “ ph1f1 ` h2f2 ` ¨ ¨ ¨ ` hmfmq ´

¨

˝S´
ÿ

kPt`1 ,. . . ,`su

Qkfk

˛

‚

“

»

–

ÿ

kRt`1 ,. . . ,`su

hkfk `
ÿ

kPt`1 ,. . . ,`su

phk ´ lc phkq lm phkqq fk

fi

fl

`

���
���

���
���

���
���:0»

–

ÿ

kPt`1 ,. . . ,`su

lc phkq lm phkq fk ´ S

fi

fl

`
ÿ

kPt`1 ,. . . ,`su

Qkfk.

LetQ1, . . . ,Qm P F rx1, . . . , xns such that

Qk pxq “

#

hk, k R t`1, . . . , `su ;

hk ´ lc phkq lm phkq ` Qk, otherwise.

By substitution,

p “ Q1f1 ` ¨ ¨ ¨ `Qmfm.

If k R t`1, . . . , `su, then the choice of T as the maximal term of the representation implies that

lm pQkq lm pfkq “ lm phkq lm pfkq ă T.

Otherwise, Proposition 10¨38 and equation (10.6) imply that

lm pQkq lm pfkq ď max pplm phk ´ lc phkq lm phkqq , lm pQkqq lm pfkqq

ă lm phkq lm pfkq

“ T.

What have we done? We have rewritten the original representation of p over the ideal,

which had maximal term T, with another representation, which has maximal term smaller

than T. This was possible because all the S-polynomials reduced to zero; S-polynomials ap-

peared because T ą lm ppq, implying cancellation in the representation of p over the ideal.

We can repeat this as long as T ą lm ppq, generating a list of monomials

T1 ą T2 ą ¨ ¨ ¨ .

The well-ordering of X implies that this cannot continue indefinitely! Hence there must be a

representation

p “ H1f1 ` ¨ ¨ ¨ ` Hmfm

such that for each k “ 1, 2, . . . , m Hk “ 0 or lm pHkq lm pfkq ď lm ppq. Both sides of the

equation must simplify to the same polynomial, with the same leading variable, so at least
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one k has lm pHkq lm pfkq “ lm ppq; that is, lm pfkq | lm ppq. Since pwas arbitrary, F satisfies the

definition of a Gröbner basis.

(B) If F is not a Gröbner basis, then Buchberger’s Algorithm instructs us to continue adding

the non-zero top-reductions of S-polynomials in G until all S-polynomials reduce to zero. Can

this process continue indefinitely? No! To see why not, let r be an element we have just added

to G. It completed top-reduction, so lm pgq - lm prq for all g P G. Remember that monomials

correspond to moves in Ideal Nim, so adding r to G corresponds to a legal move of Ideal Nim:

lm prq is not in the set of points Gone from Gameplay! We know from Dickson’s Lemma that

this cannot continue indefinitely, so Buchberger’s Algorithm likewise cannot continue indef-

initely. The algorithm ends only if every S-polynomial reduces to zero, so the algorithm ends

with a Gröbner basis, as claimed.

Question 10¨51 .
Using G of Question 10.45, compute a Gröbner basis with respect to the grevlex ordering.

Question 10¨52 .
It is usually “faster” to compute a Gröbner basis in a total degree ordering than it is in the

lexicographic ordering; monomial diagrams can help explain why.

(a) On a monomial diagram, shade the region containing monomials smaller than x
2
y
3

with

respect to lex.

(b) On a monomial diagram, shade the region containing monomials smaller than x
2
y
3

with

respect to grevlex.

(c) Explain how the diagram implies top-reduction of a polynomial with leading monomial

x
2
y
3

will probably take less effort with grevlex than with lex.

Question 10¨53 .
For G to be a Gröbner basis, Definition 10¨40 requires that every polynomial in the ideal gener-

ated by G be top-reducible by some element of G. If polynomials in the basis are top-reducible

by other polynomials in the basis, we call them redundant elements of the basis.

(a) The Gröbner basis of Question 10.45 has redundant elements. Find a subset Gmin of G that

contains no redundant elements, but is still a Gröbner basis.

(b) Describe the method you used to find Gmin.

(c) Explain why redundant polynomials are not required to satisfy Definition 10¨40. That is,

if we know that G is a Gröbner basis, then we could remove redundant elements to obtain

a smaller list, Gmin, which is also a Gröbner basis of the same ideal.

Definition 10¨54. We call the basis obtained by the process you describe in Question 10.53 a

minimal Gröbner basis of the ideal.
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10¨4 Nullstellensatz

In order to apply our triangular form to the solution of zeros, we need a theorem of Hilbert.

The theorem goes by its German name, Nullstellensatz, which translates roughly as “Theorem

(satz) on the locations (stellen) of zero (null).” There are two versions, a weak Nullstellensatz,

and a “not-so-weak” Nullstellensatz. We consider only the weak version. Throughout this

section,

• F is an algebraically closed field—that is, the roots of every nonconstant polynomial over

F appear in F;

• R “ F rx1, x2, . . . , xns is a polynomial ring;

• F Ď R;

• VF Ď Fn is the set of common roots of elements of F;
2

and

• I “ 〈F〉.

For example, C is algebraically closed by the Fundamental Theorem of Algebra, but R is not,

since the roots of x
2 ` 1 P R rxs are not in R. An interesting and useful consequence of

algebraic closure is the following.

Lemma 10¨55. F is infinite.

Proof. Let n P N`, and a1, . . . , an P F. Let A “ ta1, . . . , anu Ď F be any list of elements of

F. Let f “ px´ a1q ¨ ¨ ¨ px´ anq; this is a polynomial in F rx1, . . . , xns. While it is not the zero

polynomial, it is equal to zero at every point used to build f .

Now let g “ f ` 1; it, too, is a polynomial of F rx1, . . . , xns. However, g has no common

roots with f , since

g paq “ f paq ` 1 “ 0` 1 “ 1 for all a P F.

Because F is algebraically closed, we can find a root b P FzA of g. In other words, every

finite set A of elements of F lacks at least one element b of f , showing that no finite subset

enumerates F, which must be infinite.

Hilbert’s Weak Nullstellensatz. If VF “ H, then I “ R.

Proof. We proceed by induction on n, the number of variables.

Inductive base: Let n “ 1. In this case,R “ F rxs. By Theorem 4¨53,R is a principal ideal

domain. Thus I “ 〈f 〉 for some f P R. If VF “ H, then f has no roots in F. Theorem 6¨42

tells us that every principal ideal domain is a unique factorization domain, so if f is non-

constant, it has a unique factorization into irreducible polynomials. Fact 3¨69 tells us that

any irreducible factor p of f transformsR to a field E “ R{ 〈p〉 containing both F and a root

α of p. Since F is algebraically closed, α P F itself; that is, E – F. But then α P F, which

means both p and, therefore, f have a root in F, contradicting the hypothesis that VF “ H.

Our only questionable assumption was that p is an irreducible factor of f ; we conclude that f

2
The notation VF comes from the term variety in algebraic geometry.
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has no irreducible factors, which (since we are in a unique factorization domain) means that

f is a nonzero constant; that is, f P F. By the inverse property of fields, f
´1 P F Ď F rxs, and

absorption implies that 1 “ f ¨ f ´1 P I.

Inductive hypothesis: Let k P N`, and suppose that in any polynomial ring over a closed

field with k variables, VF “ H implies I “ R.

Inductive step: Let n “ k`1. Assume VF “ H. If F contains a constant polynomial, then we

are done; thus, let f P F. Let d be the maximum degree of a term of f . Rewrite f by substituting

x1 “ y1,

x2 “ y2 ` a2y1,

...

xn “ yn ` any1,

with a1, . . . , an P F specificied below. This can be a little confusing, so let’s take an example.

Example 10¨56. Suppose f “ x1 ` x
2

2
x3. We rewrite f as

y1 ` py2 ` a2y1q
2
py3 ` a3y1q

3
“

y1 `
`

y
2

2
` 2a2y1y2 ` a

2

2
y
2

1

˘ `

y
3

3
` 3a3y1y

2

3
` 3a

2

3
y
2

1
y3 ` a

3

3
y
3

1

˘

.

Take note of the forms within the parentheses.

Proof of the Weak Nullstellensatz, continued. Observe that if i ‰ 1, then we rewrite x
d

i
as y

d

i
`

a2y1y
d´1
i
¨ ¨ ¨ ` ad

i
y
d

1
, so if both 1 ă i ă j and b` c “ d, then

x
b

i
x
c

j
“
`

y
b

i
` ¨ ¨ ¨ ` a

b

i
y
b

1

˘ `

y
c

j
` ¨ ¨ ¨ ` a

c

j
y
c

1

˘

“ a
b

i
a
c

j
y
b`c
1
` g

`

y1, yi, yj

˘

“ a
b

i
a
c

j
y
d

1
` g

`

y1, yi, yj

˘

,

where deg y1
g ă d. Thus, we can collect the terms of f as

f “ cy
d

1
` g py1, . . . , ynq

where c P F, d is the maximal degree of y1, and deg y1
g ă d. Since F is infinite, we can find

a2, . . . , an such that c ‰ 0.

Let φ : R ÝÑ F ry1, . . . , yns by

φ pf px1, . . . , xnqq “ f py1, y2 ` a2y1, . . . , yn ` any1q ;

that is, φ substitutes every element of R with the values that we obtained so that f1 would

have the special form above. This is a ring isomorphism (Question 10.59), so J “ φ pIq is an

ideal of F ry1, . . . , yns. If VJ ‰ H, then any b P VJ can be transformed into an element of VF

(see Question 10.60); hence VJ “ H as well.

Now let η : F ry1, . . . , yns ÝÑ F ry2, . . . , yns by η pgq “ g p0, y2, . . . , ynq.
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Example 10¨57. For instance, η px3
1
` x1x

2

3
` x2

2
x3 ` x4q “ x

2

2
x3 ` x4.

Proof of the Weak Nullstellensatz, continued. Again, K “ η pJq is an ideal, though the proof is dif-

ferent (Question 10.62). We claim that if VK ‰ H, then likewise VJ ‰ H. To see why, let

h P η pF ry1, . . . , ynsq, and suppose b P Fn´1 satisfies h pbq “ 0. Let g be any element of

F ry1, . . . , yns such that η pgq “ h; then

g p0, b1, . . . , bn´1q “ h pb1, . . . , bn´1q “ 0,

so that we can prepend 0 to any element of VK and obtain an element of VJ. Since VJ “ H,

this is impossible, so VK “ H.

Since VK “ H and K Ď F ry2, . . . , yns, the inductive hypothesis finally helps us see that

K “ F ry2, . . . , yns. In other words, 1 P K. Since K Ď J (see Question 10.62), 1 P J. Since

φ pf q P F if and only if f P F (Question 10.61), there exists some f P 〈F〉 such that f P F.

Question 10¨58 .
Show that the intersection of two radical ideals is also radical.

Question 10¨59 .
Show that φ in the proof of Hilbert’s Weak Nullstellensatz is a ring isomorphism.

Question 10¨60 .
Show that in the proof of Hilbert’s Weak Nullstellensatz, any b P VφpFq can be rewritten to

obtain an element of VF. Hint: Reverse the translation that defines φ.

Question 10¨61 .
Show that in the proof of Hilbert’s Weak Nullstellensatz, φ pf q P F if and only if f P F.

Question 10¨62 .
Show that if J is an ideal of F ry1, . . . , yns, then η in the proof of Hilbert’s Weak Nullstellensatz

maps J to an ideal η pJq of F ry2, . . . , yns. Hint: F ry2, . . . , yns Ĺ F ry1, . . . , yns and η pJq “ J X

F ry2, . . . , yns is an ideal of F ry2, . . . , yns.

10¨5 Elementary applications of Gröbner bases

We turn our attention to posing, and answering, questions that make Gröbner bases interest-

ing. As in Section 10¨4,

• F is an algebraically closed field—that is, all polynomials over F have their roots in F;

• R “ F rx1, x2, . . . , xns is a polynomial ring;

• F Ď R;

• VF Ď Fn is the set of common roots of elements of F;
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• I “ 〈F〉; and

• G “ pg1, g2, . . . , gmq is a Gröbner basis of I with respect to an admissible ordering.

Note that C is algebraically closed, but R is not, since the roots of x
2 ` 1 P R rxs are not in R.

A Gröbner basis of an ideal

Our first questions regards the relationship of a Gröbner basis to its ideal.

Theorem 10¨63 (The Ideal Membership Problem). Let p P R. The following are equivalent:

(A) p P I, and

(B) p top-reduces to zero with respect to G.

Proof. That (A)ñ (B): Assume that p P I. If p “ 0, then we are done. Otherwise, the definition

of a Gröbner basis implies that lm ppq is top-reducible by some element of G; let r be the result

of this top-reduction. By Fact 10¨38, lm pr1q ă lm ppq. By the definition of an ideal, r1 P I. If

r1 “ 0, then we are done; otherwise the definition of a Gröbner basis implies that lm ppq is

top-reducible by some element of G. Continuing as above, we generate a list of polynomials

p, r1, r2, . . . such that

lm ppq ą lm pr1q ą lm pr2q ą ¨ ¨ ¨ .

By the well-ordering of X, this list cannot continue indefinitely, so eventually top-reduction

must be impossible. As long as ri ‰ 0, we can continue this indefinitely, so the chain must

terminate with ri “ 0.

That (B) ñ (A): Assume that p top-reduces to zero with respect to G “ tg1, . . . , gmu. By

Lemma 10¨49, we can find q1, . . . , qm such that p “ q1g1 ` ¨ ¨ ¨ ` qmgm. A Gröbner basis is a

subset of its ideal, so g P I for each g P G. By absorption, qigi P I for i “ 1, . . . , m. By closure

of addition in subgroups, p “ q1g1 ` ¨ ¨ ¨ ` qmgm P I, as claimed.

Up to this point, we’ve considered a Gröbner basis to be a basis of an ideal in the mere

sense of divisibility of leading monomials. Is it also a basis in the sense of Definition 4¨47; that

is, can we write every element of I in terms of the Gröbner basis?

Question 10¨64 .
Why do Question 10¨49 and Theorem 10¨63 show that a Gröbner basis of I is a basis of I in the

traditional sense? That is, for every element f P I we can find q1, q2, . . . , qm P F rx1, . . . , xms
such that f “ q1g1 ` q2g2 ` ¨ ¨ ¨ ` qmgm?

A Gröbner basis and a variety

In Question 4.59 you showed that

. . . the common roots of f1, f2, . . . , fm are common roots of all polynomials in the

ideal I.
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In Question 10.64, you showed that I “ 〈G〉. So the common roots of g1, g2, . . . , gm are common

roots of all polynomials in I. Similarly, the common roots of f1, f2, . . . , fm are common roots of

g1, g2, . . . , gm. So we can analyze the roots of a polynomial system F by analyzing the roots of

any Gröbner basis G of 〈F〉. This might seem unremarkable, except that like triangular linear

systems, it is easy to analyze the roots of Gröbner bases! Our next result gives an easy test for the

existence of common roots.

Theorem 10¨65. The following both hold.

(A) VF “ VG; that is, common roots of F are common roots of G, and vice versa.

(B) F has no common roots if and only if G contains a nonzero constant polynomial.

Proof. (A) Let α P VF. By definition, fi pα1, . . . , αnq “ 0 for each i “ 1, . . . , m. By construction,

G Ď 〈F〉, so g P G implies that g “ h1f1`¨ ¨ ¨`hmfm for certain h1, . . . , hm P R. By substitution,

g pα1, . . . , αnq “

m
ÿ

i“1

hi pα1, . . . , αnq fi pα1, . . . , αnq

“

m
ÿ

i“1

hi pα1, . . . , αnq ¨ 0

“ 0.

That is, α is also a common root of G. In other words, VF Ď VG.

On the other hand, F Ď 〈F〉 “ 〈G〉 by Question 10.64, so a similar argument shows that

VF Ě VG. We conclude that VF “ VG.

(B) From (A), F has common roots if and only ifGhas common roots. IfG contains a nonzero

constant polynomial g, then no element of F is a root of g, so VG “ H, and we conflude that

VF “ H; or, F has no common roots.

For the converse, we need the Weak Nullstellensatz. If F has no common roots, then VF “

H, and by the Weak Nullstellensatz, I “ R. By Question 4.34, 1 P I. By definition of a Gröbner

basis, there is some g P G such that lm pgq | lm p1q. This is possible only if g is a constant.

Once we know common solutions exist, we want to know how many there are.

Theorem 10¨66. There are finitely many complex solutions if and only if for each i “ 1, . . . , n we

can find g P G and a P N such that lm pgq “ xa
i
.

Remark 10¨67. Theorem 10¨66 is related to the strong Nullstellensatz.

Proof. We can find g P G and α P N such that lm pgq “ x
a

i
for each i “ 1, 2, . . . , n if and only

ifR{I is finite; see Figure 10¨2. So the trick is to show a relationship between the residues of

R{I and the common roots of I. The definitionR{I is independent of any monomial ordering,

so we can assume the ordering is lexicographic without loss of generality.

Assume first that for each i “ 1, . . . , n we can find g P G and a P N such that lm pgq “ x
a

i
.

Since xn is the smallest variable, even xn´1 ą xn, so g must be a polynomial in xn alone; any

other variable in a non-leading monomial would contradict the assumption that lm pgq “ xa
n
.

The Fundamental Theorem of Algebra implies that g has a complex solution. We can back-

substitute these solutions into the remaining polynomials, using similar logic. Each back-

substitution yields only finitely many solutions. There are finitely many polynomials, so G

has finitely many complex solutions.
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Figure 10¨2: This monomial diagram shades the monomials divisible by the leading monomi-

als of a Gröbner basis of I. IfR{I is finite, then we cannot find infinitely many polynomials in

R and outside I. This includes the axes of the monomial diagram, which consist of the mono-

mials x, x
2
, x

3
, . . . and y, y

2
, y

3
, . . . . They must reduce into a finite R{I, so the Gröbner basis

must have polynomials whose leading monomials divide them: in this case, x
2

and y
3
.

Conversely, assume G has finitely many solutions; call them α
p1q
, . . . , α

p`q P Fn. Let

J “

〈
x1 ´ α

p1q

1 , . . . , xn ´ α
p1q
n

〉
č

¨ ¨ ¨
č

〈
x1 ´ α

p`q
1 , . . . , xn ´ α

p`q
n

〉
.

By Lemma 4¨46, J is an ideal. The roots of I and J are related:

Question 10¨68 .
Suppose A, B are ideals ofR.

(a) Show that VAXB “ V pAq Y V pBq; that is, the variety of an intersection of ideals is the

union of the ideals’ varieties.

(b) Explain why this shows that for I and J defined above, VI “ VJ.

Proof of Theorem 10¨66 (continued). Recall from Question 4.60 the radical of an ideal. Recall from

Question 3.14 thatR has no zero divisors, so for any f P
?
I,

f pαq “ 0 ðñ f
a
pαq “ 0 Da P N`.

The roots of an ideal and its radical are thus identical; VI “ V
?
I
.

Let K be the ideal of polynomials that vanish on VI. By definition, I Ď
?
I Ď K. We claim

that
?
I Ě K as well. Why? Let p P K be a nonzero polynomial. Consider the polynomial

ring F rx1, . . . , xn, ys where y is a new variable. Let A “ 〈f1, . . . , fm, 1´ yp〉. Does A have any

common roots? We claim that it does not; to see why not, let a “
`

a1, . . . , an, ay

˘

be a hypo-

thetical common root. By definition, f1 paq “ ¨ ¨ ¨ “ fm paq “ 0, so that a is a common root of

I, or a P VI. Elements of K vanish at a, so p paq “ 0, so by substitution into 1 ´ yp, we have

1 ´ ayp paq “ 1 ´ ay ¨ 0 “ 1. This contradicts the hypothesis that a is a common root of the

f ’s and of 1´ yp, so A has no common roots.
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By the Weak Nullstellensatz, any Gröbner basis of A has a nonconstant polynomial, call it

c. By definition of A, there exist H1, . . . , Hm`1 P F rx1, . . . , xn, ys such that

c “ H1f1 ` ¨ ¨ ¨ ` Hmfm ` Hm`1 p1´ ypq .

Let hi “ c
´1
Hi and

1 “ h1f1 ` ¨ ¨ ¨ ` hmfm ` hm`1 p1´ ypq .

Put y “ 1

p
and we have

1 “ h1f1 ` ¨ ¨ ¨ ` hmfm ` hm`1 ¨ 0

where each hi is now in terms of x1, . . . , xn and 1{p. Clear the denominators by multiplying

both sides by a suitable power a of p, and we have

p
a
“ h

1
1
f1 ` ¨ ¨ ¨ ` h

1
m
fm

where each h
1
i
P R. Since I “ 〈f1, . . . , fm〉, we see that p

a P I. Thus p P
?
I. Since p was

arbitrary in K, we have
?
I Ě K, as claimed.

We have shown
3

that K “
?
I. Since K is the ideal of polynomials that vanish on VI, VK “

VI; by substitution, V?
I
“ VI; by Question 10.68, we can substitute to V?

I
“ VJ. In fact,

V?
I
“ V?J.

Question 10¨69 .
Why can we claim that V?

I
“ V?J? Hint: If you can show that J “

?
J, it’s a matter of substi-

tution.

Proof of Theorem 10¨66 (continued). If two radical ideals have identical varieties, then the radical

ideals themselves must be identical. Hence
?
I “

?
J “ J. Define qj “

ś`
i“1

´

xj ´ a
piq

j

¯

for

j “ 1, . . . , n. By definition of J, each qj P J. Since
?
I “ J, suitable choices of a1, . . . , an P N`

give us

q1 “
ź̀

i“1

´

x1 ´ α
piq

1

¯

a1

, . . . , qn “
ź̀

i“1

`

xn ´ α
piq
n

˘an
P I.

Notice that lm pqiq “ x
ai

i
for each i. Since G is a Gröbner basis of I, the definition of a Gröbner

basis implies that for each i there exists g P G such that lm pgq | lm pqiq. In other words, for

each i there exists g P G and a P N such that lm pgq “ xa
i
.

Example 10¨70. Recall the system from Example 10¨44,

F “
`

x
2
` y

2
´ 4, xy´ 1

˘

.

In Question 10.45 you computed a Gröbner basis in the lexicographic ordering. You probably

obtained a superset of

G “
`

x` y
3
´ 4y, y

4
´ 4y

2
` 1

˘

.

G is also a Gröbner basis of 〈F〉. Since G contains no constants, we know that F has common

roots. Since x “ lm pg1q and y
4 “ lm pg2q, we know that there are finitely many common

roots.

3
This, incidentally, is the “full” Nullstellensatz: any f whose roots are the common roots of I appears in

?
I.
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We conclude by pointing in the direction of how to find the common roots of a system.

The Elimination Theorem. Suppose the ordering is lexicographic with x1 ą x2 ą ¨ ¨ ¨ ą xn. For

all i “ 1, 2, . . . , n, each of the following holds.

(A) pI “ I X F rxi, xi`1, . . . , xns is an ideal of F rxi, xi`1, . . . , xns. (If i “ n, thenpI “ I X F.)

(B) pG “ GX F rxi, xi`1, . . . , xns is a Gröbner basis of the idealpI.

Proof. For (A), let f, g P pI and h P F rxi, xi`1, . . . , xns. Now f, g P I as well, we know that

f ´ g P I, and subtraction does not add any terms with factors from x1, . . . , xi´1, so f ´ g P

F rxi, xi`1, . . . , xns as well. By definition of pI, f ´ g P pI. Similarly, h P F rx1, x2, . . . , xns as

well, so fh P I, and multiplication does not add any terms with factors from x1, . . . , xi´1, so

fh P F rxi, xi`1, . . . , xns as well. By definition ofpI, fh PpI.

For (B), let p P pI. Again, p P I, so there exists g P G such that lm pgq divides lm ppq. The

ordering is lexicographic, so g cannot have any terms with factors from x1, . . . , xi´1. Thus

g P F rxi, xi`1, . . . , xns. By definition of pG, g P pG. Thus pG satisfies the definition of a Gröbner

basis ofpI.

The idealpI is important enough to merit its own terminology.

Definition 10¨71. For i “ 1, 2, . . . , n the ideal pI “ I X F rxi, xi`1, . . . , xns is called the ith
elimination ideal of I.

The Elimination Theorem suggests that we can find the common roots of F by computing

a Gröbner basis G of F with respect to the lexicographic ordering, then:

• find common roots of GX F rxns;

• back-substitute to find common roots of GX F rxn´1, xns;

• . . .

• back-substitute to find common roots of GX F rx1, x2, . . . , xns.

This is exactly how Gaussian elimination worked: reducing a matrix to row-echelon form

gives us a polynomial in the bottom row whose solutions we can calculate easily, then back-

substitute into previous rows.

Example 10¨72. We can find the common solutions of the circle and the hyperbola in Fig-

ure 10¨1 on page 343 using the Gröbner basis computed in Example 10¨70. Since

G “
`

x` y
3
´ 4y, y

4
´ 4y

2
` 1

˘

,

we have

pG “ GX C rys “
 

y
4
´ 4y

2
` 1

(

.

It isn’t hard to find the roots of this polynomial. Let u “ y
2
; the resulting substitution gives

us the quadratic equation u
2 ´ 4u` 1 whose roots are

u “
4˘

b

p´4q
2
´ 4 ¨ 1 ¨ 1

2
“ 2˘

?
3.
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Back-substituting u into pG,

y “ ˘
?
u “ ˘

b

2˘
?
3.

We can now back-substitute y into G to find that

x “ ´y
3
` 4y

“ ¯

ˆ
b

2˘
?
3

˙

3

˘ 4

b

2˘
?
3.

Thus there are four common roots, all of them real, illustrated by the four intersections of

the circle and the hyperbola.

Question 10¨73 .
Determine whether x

6`x4`5y´2x`3xy2`xy`1 is an element of the ideal 〈x2 ` 1, xy` 1〉.

Question 10¨74 .
How many solutions does this system have?

w` x` y` z, wx` xy` yz` zw, wxy` xyz` yzw` zwx, wxyz´ 1.

If infinitely many, what is the dimension? (This system is commonly known as the Cyclic-4
system.)

Question 10¨75 .
Consider the system

F “ p xyz` xz` 3y` 3,

x
2
yz
2
` x

2
z
2
´ y´ 1

˘

.
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