A SOLUTION TO 5.4(C) WITHOUT PRIME FACTORIZATION

I will use a lemma which appears as Exercise 7.1 in the book. The location of that exercise in Chapter 7 may make you think you bave to prove it using prime factorization. You do not.

Lemma. If $\operatorname{gcd}(a, b)=1$ and $a \mid b c$ then $a \mid c$.
Proof of the Lemma. By Bézout's Identity, we can find $x, y \in \mathbb{Z}$ such that $a x+b y=1$. Multiply both sides by c, obtaining $a(c x)+(b c) y=c$. By hypothesis, $a \mid b c$, so we can find $q \in \mathbb{Z}$ such that $a q=b c$. By substitution, then, $a(x c)+(a q) y=c$. The left side factors as $a(x c+q y)=c$. By definition, $a \mid c$.
Exercise. Show that for any natural numbers m, n we have $m n=\operatorname{gcd}(m, n) \operatorname{lcm}(m, n)$.
Proof of the Exercise. For convenience, write $g=\operatorname{gcd}(m, n)$ and $\ell=\operatorname{lcm}(m, n)$. Choose a, b, c, d such that $m=a g, n=b g, \ell=c m$, and $\ell=d n$.

First we claim that $\operatorname{gcd}(a, b)=1$. By Bézout's Identity, there exist $x, y \in \mathbb{Z}$ such that $m x+n y=$ g. Rewrite this as $(a g) x+(b g) y=g$, and divide to obtain $a x+b y=1$. Bézout's Identity states that the $\operatorname{gcd}(a, b)$ is the smallest natural that can be written in that form, and 1 is the smallest natural, period, so $\operatorname{gcd}(a, b)=1$, as claimed.

Next we claim that $a c=b d$. Recall that $c m=\ell=d n$. By substitution

$$
\begin{equation*}
c(a g)=d(b g) \tag{1}
\end{equation*}
$$

Dividing show that $a c=b d$, as claimed.
We have $a c=b d$, but also $\operatorname{gcd}(a, b)=1$. By the Lemma above, $a \mid d$ and $b \mid c$. Choose q, r such that $d=a q$ and $c=b r$. Substitute into 1, obtaining $(b r)(a g)=(a q)(b g)$. Division gives us $r=q$.

We claim $\operatorname{gcd}(q, r)=1$. To see why, let $s=\operatorname{gcd}(q, r)$. Recall that q and r divide c and d, so s also divides c and d. Recall that $c m=\ell=d n$, or $c m=d n$; if $s \neq 1$, we could divide both sides by s, obtaining a smaller common multiple of m and n. This would contradict the definition of ℓ as the least common multiple, so it must be that $1=s=\operatorname{gcd}(q, r)$, as claimed.

We have $r=q$ and $\operatorname{gcd}(q, r)=1$. This is possible only if $r=q=1$. By substitution, $\ell=$ $c m=(b r)(a g)=a b g$.

Again by substitution, $g \ell=g(a b g)=(a g)(b g)=m n$, as claimed.

