TEST \#2

MAT 4/521 (NUMBER THEORY)

Directions: Solve five of the following eight problems: three in Part I, two in Part II. Each is worth 10 points. If you find yourself struggling; I can "sell" you a hint if it helps earn more points in return. (One percent penalty per hint.) I have sometimes used small numbers to save time. Do not abuse this by resorting to brute force by, for instance, listing all possible solutions and eliminating the ones that do not work: That will earn no points.

Part 1. Solve three problems. These problems are primarily computational.

1. Solve each system of simultaneous congruences without using brute force. Is there more than one solution? If so, is there a modulus with only one?
(a) $x \equiv 4(\bmod 5)$ and $x \equiv 5(\bmod 7)$
(b) $x \equiv 5(\bmod 10)$ and $x \equiv 6(\bmod 14)$
2. Solve the following congruences. If no solution is possible, indicate the reason.
(a) $x^{5} \equiv 7(\bmod 9)$
(b) $x^{5} \equiv 6(\bmod 9)$
3. (a) Why must every prime number be congruent modulo 8 to $1,3,5$, or 7 ?
(b) Show that there are infinitely many primes that are congruent to 3 modulo 8 , without using Dirichlet's Theorem.
4. Consider the following card trick: (continues on back/next page)
(1) Have the audience pick one of 12 cards.
(2) Lay the cards in 3 columns, and ask the audience to indicate the column that contains their card. Let a be that number.
(3) Preserving the order of the cards, lay the cards in 4 columns and ask the audience to indicate the column that contains their card. Let b be that number.
(4) Let $c=4 a-3 b$. Add 12 to c if need be to make it positive. Count c cards; this is the audience's card.
(a) Explain how this problem is related to the Chinese Remainder Theorem.
(b) Show that the formula for c is correct.
(c) Suppose we wanted to work with 21 cards, instead. Explain why the trick should still work, as long as we change c appropriately. Indicate how the game would change: would the number of columns change in any step? what would the formula for c be? would we still add 12 , or a different number?

Part 2. Solve two problems. The solution to these problems must include a thorough explanation or a proof for your answer. It is a good idea to do an example or two (or ten) with concrete numbers, but doing that alone will net you relatively little credit.

5. Show that a number of the form $3^{i} 5^{j} 7^{k}$ cannot be perfect.
6. This problem is related to Mersenne primes.
(a) Show that $3^{n}-1$ is never prime if $n \geq 2$.
(b) Show that if n is even, then $3^{n}-1 / 2$ is not prime.
(c) Find a value of n for which $3^{n}-1 / 2$ is prime.
7. Do only one of the following. The encoding of a message (transformation from characters to numbers) is the same as the one used in homework: $0 \mapsto 0,1 \mapsto 1, \ldots, 9 \mapsto 9$, space $\mapsto 10$, $\mathrm{A} \mapsto 11, \mathrm{~B} \mapsto 12, \ldots, \mathrm{Z} \mapsto 36$.
(a) The following message was encrypted using RSA with the public key $m=39$ (modulus) and $k=5$ (exponent). Find your private key and decrypt the message below.

$$
24,25,25,18,25,25
$$

(b) The following message was encrypted using El Gamal with the public key $m=37$ (modulus) and $\alpha^{a}=7$ (multiplier). Your private key is $b=2$. Decrypt the message below.

$$
19,4,4,20,9,18,4,33
$$

8. (a) Show that if $1 \leq a<m$ and $\operatorname{gcd}(m, a)=1$ then $\operatorname{gcd}(m-a, a)=1$.
(b) Let $a_{1}, a_{2}, \ldots, a_{\phi(m)}$ be the numbers between 1 and m relatively prime to m. Consider the quantity

$$
\frac{A_{m}}{B_{m}}=\frac{1}{a_{1}}+\frac{1}{a_{2}}+\cdots+\frac{1}{a_{\phi(m)}} .
$$

Show that the unreduced $A_{m} \equiv 0(\bmod m)$. Then explain why this remains true even if we reduce A_{m} / B_{m} to lowest terms.
Hint: The answer to part (a) would be really helpful.

