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Preface

These notes serve as course notes for an undergraduate course in number the-

ory. Most if not all universities worldwide offer introductory courses in number

theory for math majors and in many cases as an elective course.

The notes contain a useful introduction to important topics that need to be ad-

dressed in a course in number theory. Proofs of basic theorems are presented in

an interesting and comprehensive way that can be read and understood even by

non-majors with the exception in the last three chapters where a background in

analysis, measure theory and abstract algebra is required. The exercises are care-

fully chosen to broaden the understanding of the concepts. Moreover, these notes

shed light on analytic number theory, a subject that is rarely seen or approached

by undergraduate students. One of the unique characteristics of these notes is the

careful choice of topics and its importance in the theory of numbers. The freedom

is given in the last two chapters because of the advanced nature of the topics that

are presented.

Thanks to professor Pavel Guerzhoy from University of Hawaii for his contri-

bution in chapter 6 on continued fraction and to Professor Ramez Maalouf from

Notre Dame University, Lebanon for his contribution to chapter 8.
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Chapter 1

Introduction

Integers are the building blocks of the theory of numbers. This chapter contains

somewhat very simple and obvious observations starting with properties of inte-

gers and yet the proofs behind those observations are not as simple. In this chapter

we introduce basic operations on integers and some algebraic definitions that will

be necessary to understand basic concepts in this book. We then introduce the

Well ordering principle which states basically that every set of positive integers

has a smallest element. Proof by induction is also presented as an efficient method

for proving several theorems throughout the book. We proceed to define the con-

cept of divisibility and the division algorithm. We then introduce the elementary

but fundamental concept of a greatest common divisor (gcd) of two integers, and

the Euclidean algorithm for finding the gcd of two integers. We end this chap-

ter with Lame’s Lemma on an estimate of the number of steps in the Euclidean

algorithm needed to find the gcd of two integers.
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8 CHAPTER 1. INTRODUCTION

1.1 Algebraic Operations With Integers

The set Z of all integers, which this book is all about, consists of all positive and

negative integers as well as 0. Thus Z is the set given by

Z = {...,−4,−3,−2,−1, 0, 1, 2, 3, 4, ...}. (1.1)

While the set of all positive integers, denoted by N, is defined by

N = {1, 2, 3, 4, ...}. (1.2)

On Z, there are two basic binary operations, namely addition (denoted by +)

and multiplication (denoted by ·), that satisfy some basic properties from which

every other property for Z emerges.

1. The Commutativity property for addition and multiplication

a+ b = b+ a

a · b = b · a

2. Associativity property for addition and multiplication

(a+ b) + c = a+ (b+ c)

(a · b) · c = a · (b · c)

3. The distributivity property of multiplication over addition

a · (b+ c) = a · b+ a · c.
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In the set Z there are ”identity elements” for the two operations + and ·, and these

are the elements 0 and 1 respectively, that satisfy the basic properties

a+ 0 = 0 + a = a

a · 1 = 1 · a = a

for every a ∈ Z.

The set Z allows additive inverses for its elements, in the sense that for every

a ∈ Z there exists another integer in Z, denoted by −a, such that

a+ (−a) = 0. (1.3)

While for multiplication, only the integer 1 has a multiplicative inverse in the

sense that 1 is the only integer a such that there exists another integer, denoted by

a−1 or by 1/a, (namely 1 itself in this case) such that

a · a−1 = 1. (1.4)

From the operations of addition and multiplication one can define two other

operations on Z, namely subtraction (denoted by −) and division (denoted by

/). Subtraction is a binary operation on Z, i.e. defined for any two integers in Z,

while division is not a binary operation and thus is defined only for some specific

couple of integers in Z. Subtraction and division are defined as follows:

1. a− b is defined by a+ (−b), i.e. a− b = a+ (−b) for every a, b ∈ Z

2. a/b is defined by the integer c if and only if a = b · c.

Some of the sets we study in Number Theory contain all these properties. Let

R be a set, with two operations called addition and multiplication. We say that R

is a ring if

• addition satisfies
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– closure: for any a, b ∈ R, we also have a+ b ∈ R;

– associativity: for any a, b, c ∈ R, we have (a+ b) + c = a+ (b+ c);

– commutativity: for any a, b ∈ R, we have a+ b = b+ a;

– identity: there exists a “zero element” 0 in R, which for any a ∈ R

satisfies 0 + a = a;

– inverses: for any a ∈ R, we can find b ∈ R such that a + b = 0 (we

usually write −a for this inverse);

while

• multiplication satisfies

– closure: for any a, b ∈ R, we also have a× b ∈ R;

– associativity: for any a, b, c ∈ R, we have (a× b)× c = a× (b× c);

– commutativity: for any a, b ∈ R, we have a× b = b× a;

– identity: there exists a “one element” 1 in R, which for any a ∈ R

satisfies 1× a = a;

– distributivity over addition: for any a, b, c ∈ R, we have a× (b+ c) =

a× b+ a× c.

Notice that we do not require multiplicative inverses in a ring: if the nonzero

elements of a ring do have multiplicative inverses, then we call it a field.

Remark 1. To be accurate, we are really talking about a commutative ring; in

general, a ring’s multiplication need not be commutative — think, for example, of

matrices. However, we only consider commutative rings in here.

Exercises

1. Which of the following are rings under ordinary addition and multiplication,

and which are also fields?

N, Z, Q, R, C,
{
a+ b

√
2 : a, b ∈ Z

}
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1.2 The Well Ordering Principle and Mathematical

Induction

In this section, we present three basic tools that will often be used in proving prop-

erties of the integers. We start with a very important property of integers called

the well ordering principle. We then state what is known as the pigeonhole prin-

ciple, and then we proceed to present an important method called mathematical

induction.

1.2.1 The Well Ordering Principle

The Well Ordering Principle: A least element exist in any non empty set of pos-

itive integers.

This principle can be taken as an axiom on integers and it will be the key to

proving many theorems. As a result, we see that any set of positive integers is

well ordered while the set of all integers is not well ordered.

1.2.2 The Pigeonhole Principle

The Pigeonhole Principle: If s objects are placed in k boxes for s > k, then at

least one box contains more than one object.

Proof. Suppose that none of the boxes contains more than one object. Then there

are at most k objects. This leads to a contradiction with the fact that there are s

objects for s > k.
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1.2.3 The Principle of Mathematical Induction

We now present a valuable tool for proving results about integers. This tool is the

principle of mathematical induction .

Theorem 1. The First Principle of Mathematical Induction: If a set of positive

integers has the property that, if it contains the integer k, then it also contains

k + 1, and if this set contains 1 then it must be the set of all positive integers.

More generally, a property concerning the positive integers that is true for n = 1,

and that is true for the integer n+ 1 whenever it is true for the integer n, must be

true for all positive integers.

We use the well ordering principle to prove the first principle of mathematical

induction

Proof. Let S be the set of positive integers containing the integer 1, and the integer

k + 1 whenever it contains k. Assume also that S is not the set of all positive

integers. As a result, there are some integers that are not contained in S and thus

those integers must have a least element α by the well ordering principle. Notice

that α 6= 1 since 1 ∈ S. But α − 1 ∈ S and thus using the property of S, α ∈ S.

Thus S must contain all positive integers.

We now present some examples in which we use the principle of induction.

Example 1. Use mathematical induction to show that ∀n ∈ N

n∑
j=1

j =
n(n+ 1)

2
. (1.5)

First note that
1∑
j=1

j = 1 =
1 · 2

2
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and thus the the statement is true for n = 1. For the remaining inductive step,

suppose that the formula holds for n, that is
∑n

j=1 j = n(n+1)
2

. We show that

n+1∑
j=1

j =
(n+ 1)(n+ 2)

2
.

to complete the proof by induction. Indeed

n+1∑
j=1

j =
n∑
j=1

j + (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

(n+ 1)(n+ 2)

2
,

and the result follows.

Example 2. Use mathematical induction to prove that n! ≤ nn for all positive

integers n.

Note that 1! = 1 ≤ 11 = 1. We now present the inductive step. Suppose that

n! ≤ nn

for some n, we prove that (n+ 1)! ≤ (n+ 1)n+1. Note that

(n+ 1)! = (n+ 1)n! ≤ (n+ 1).nn < (n+ 1)(n+ 1)n = (n+ 1)n+1.

This completes the proof.

Theorem 2. The Second Principle of Mathematical Induction: A set of positive

integers that has the property that for every integer k, if it contains all the integers

1 through k then it contains k + 1 and if it contains 1 then it must be the set of all

positive integers. More generally, a property concerning the positive integers that

is true for n = 1, and that is true for all integers up to n + 1 whenever it is true

for all integers up to n, must be true for all positive integers.
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The second principle of induction is also known as the principle of strong
induction. Also, the first principle of induction is known as the principle of
weak induction.

To prove the second principle of induction, we use the first principle of induc-

tion.

Proof. Let T be a set of integers containing 1 and such that for every positive

integer k, if it contains 1, 2, ..., k, then it contains k + 1. Let S be the set of all

positive integers k such that all the positive integers less than or equal to k are in

T . Then 1 is in S, and we also see that k + 1 is in S. Thus S must be the set of

all positive integers. Thus T must be the set of all positive integers since S is a

subset of T .

Exercises

1. Prove using mathematical induction that n < 3n for all positive integers n.

2. Show that
∑n

j=1 j
2 = n(n+1)(2n+1)

6
.

3. Use mathematical induction to prove that
∑n

j=1(−1)j−1j2 = (−1)n−1n(n+

1)/2.

4. Use mathematical induction to prove that
∑n

j=1 j
3 = [n(n+1)/2]2 for every

positive integer n.

5. Use mathematical induction to prove that
∑n

j=1(2j − 1) = n2

6. Use mathematical induction to prove that 2n < n! for n ≥ 4.

7. Use mathematical induction to prove that n2 < n! for n ≥ 4.

1.3 Divisibility and the Division Algorithm

We now discuss the concept of divisibility and its properties.
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1.3.1 Integer Divisibility

Definition 1. If a and b are integers such that a 6= 0, then we say ”a divides b” if

there exists an integer k such that b = ka.

If a divides b, we also say ”a is a factor of b” or ”b is a multiple of a” and we

write a | b. If a doesn’t divide b, we write a - b. For example 2 | 4 and 7 | 63,

while 5 - 26.

Example 3. a) Note that any even integer has the form 2k for some integer k,

while any odd integer has the form 2k + 1 for some integer k. Thus 2|n if n is

even, while 2 - n if n is odd.

b) ∀a ∈ Z one has that a | 0.

c) If b ∈ Z is such that |b| < a, and b 6= 0, then a - b.

Theorem 3. If a, b and c are integers such that a | b and b | c, then a | c.

Proof. Since a | b and b | c, then there exist integers k1 and k2 such that b = k1a

and c = k2b. As a result, we have c = k1k2a and hence a | c.

Example 4. Since 6 | 18 and 18 | 36, then 6 | 36.

The following theorem states that if an integer divides two other integers then

it divides any linear combination of these integers.

Theorem 4. If a, b, c,m and n are integers, and if c | a and c | b, then c |
(ma+ nb).

Proof. Since c | a and c | b, then by definition there exists k1 and k2 such that

a = k1c and b = k2c. Thus

ma+ nb = mk1c+ nk2c = c(mk1 + nk2),

and hence c | (ma+ nb).
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Theorem 4 can be generalized to any finite linear combination as follows. If

a | b1, a | b2, ..., a | bn

then

a |
n∑
j=1

kjbj (1.6)

for any set of integers k1, · · · , kn ∈ Z. It would be a nice exercise to prove the

generalization by induction.

1.3.2 The Division Algorithm

The following theorem states somewhat an elementary but very useful result.

Theorem 5. The Division Algorithm If a and b are integers such that b > 0, then

there exist unique integers q and r such that a = bq + r where 0 ≤ r < b.

Proof. Consider the set A = {a − bk ≥ 0 | k ∈ Z}. Note that A is nonempty

since for k < a/b, a − bk > 0. By the well ordering principle, A has a least

element r = a− bq for some q. Notice that r ≥ 0 by construction. Now if r ≥ b

then (since b > 0)

r > r − b = a− bq − b = a− b(q + 1) =≥ 0.

This leads to a contradiction since r is assumed to be the least positive integer of

the form r = a− bq. As a result we have 0 ≤ r < b.

We will show that q and r are unique. Suppose that a = bq1 + r1 and a =

bq2 + r2 with 0 ≤ r1 < b and 0 ≤ r2 < b. Then we have

b(q1 − q2) + (r1 − r2) = 0.

As a result we have

b(q1 − q2) = r2 − r1.
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Thus we get that

b | (r2 − r1).

And since −max(r1, r2) ≤ |r2 − r1| ≤ max(r1, r2), and b > max(r1, r2), then

r2 − r1 must be 0, i.e. r2 = r1. And since bq1 + r1 = bq2 + r2, we also get that

q1 = q2. This proves uniqueness.

Example 5. If a = 71 and b = 6, then 71 = 6 · 11 + 5. Here q = 11 and r = 5.

Exercises

1. Show that 5 | 25, 19 | 38 and 2 | 98.

2. Use the division algorithm to find the quotient and the remainder when 76

is divided by 13.

3. Use the division algorithm to find the quotient and the remainder when -100

is divided by 13.

4. Show that if a, b, c and d are integers with a and c nonzero, such that a | b
and c | d, then ac | bd.

5. Show that if a and b are positive integers and a | b, then a ≤ b.

6. Prove that the sum of two even integers is even, the sum of two odd integers

is even and the sum of an even integer and an odd integer is odd.

7. Show that the product of two even integers is even, the product of two odd

integers is odd and the product of an even integer and an odd integer is even.

8. Show that if m is an integer then 3 divides m3 −m.

9. Show that the square of every odd integer is of the form 8m+ 1.

10. Show that the square of any integer is of the form 3m or 3m + 1 but not of

the form 3m+ 2.
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11. Show that if ac | bc, then a | b.

12. Show that if a | b and b | a then a = ±b.

1.4 Representations of Integers in Different Bases

In this section, we show how any positive integer can be written in terms of any

positive base integer expansion in a unique way. Normally we use decimal nota-

tion to represent integers, we will show how to convert an integer from decimal

notation into any other positive base integer notation and vise versa. Using the

decimal notation in daily life is simply better because we have ten fingers which

facilitates all the mathematical operations.

Notation An integer a written in base b expansion is denoted by (a)b.

Theorem 6. Let b be a positive integer with b > 1. Then any positive integer m

can be written uniquely as

m = alb
l + al−1b

l−1 + ...+ a1b+ a0,

where l is a positive integer, 0 ≤ aj < b for j = 0, 1, ..., l and al 6= 0.

Proof. We start by dividing m by b and we get

m = bq0 + a0, 0 ≤ a0 < b.

If q0 6= 0 then we continue to divide q0 by b and we get

q0 = bq1 + a1, 0 ≤ a1 < b.
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We continue this process and hence we get

q1 = bq2 + a2, 0 ≤ a2 < b,

.

.

.

ql−2 = bql−1 + al−1, 0 ≤ al−1 < b,

ql−1 = b · 0 + al, 0 ≤ al < b.

Note that the sequence q0, q1, ... is a decreasing sequence of positive integers with

a last term ql that must be 0.

Now substituting the equation q0 = bq1 + a1 in m = bq0 + a0, we get

m = b(bq1 + a1) + a0 = b2q1 + a1b+ a0,

Successively substituting the equations in m, we get

m = b3q2 + a2b
2 + a1b+ a0,

.

.

.

= blql−1 + al−1b
l−1 + ...+ a1b+ a0,

= alb
l + al−1b

l−1 + ...+ a1b+ a0.

What remains to prove is that the representation is unique. Suppose now that

m = alb
l + al−1b

l−1 + ...+ a1b+ a0 = clb
l + cl−1b

l−1 + ...+ c1b+ c0

where if the number of terms is different in one expansion, we add zero coeffi-

cients to make the number of terms agree. Subtracting the two expansions, we

get

(al − cl)bl + (al−1 − cl−1)bl−1 + ...+ (a1 − c1)b+ (a0 − c0) = 0.
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If the two expansions are different, then there exists 0 ≤ j ≤ l such that cj 6= aj .

As a result, we get

bj((al − cl)bl−j + ...+ (aj+1 − cj+1)b+ (aj − cj)) = 0

and since b 6= 0, we get

(al − cl)bl−j + ...+ (aj+1 − cj+1)b+ (aj − cj) = 0.

We now get

aj − cj = (al − cl)bl−j + ...+ (aj+1 − cj+1)b,

and as a result, b | (aj − cj). Since 0 ≤ aj < b and 0 ≤ cj < b, we get that

aj = cj . This is a contradiction and hence the expansion is unique.

Note that base 2 representation of integers is called binary representation. Bi-

nary representation plays a crucial role in computers. Arithmetic operations can

be carried out on integers with any positive integer base but it will not be addressed

in this book. We now present examples of how to convert from decimal integer

representation to any other base representation and vise versa.

Example 6. To find the expansion of 214 base 3:

we do the following

214 = 3 · 71 + 1

71 = 3 · 23 + 2

23 = 3 · 7 + 2

7 = 3 · 2 + 1

2 = 3 · 0 + 2

As a result, to obtain a base 3 expansion of 214, we take the remainders of divi-

sions and we get that (214)10 = (21221)3.



1.5. THE GREATEST COMMON DIVISOR 21

Example 7. To find the base 10 expansion, i.e. the decimal expansion, of (364)7:

We do the following: 4 · 70 + 6 · 71 + 3 · 72 = 4 + 42 + 147 = 193.

In some cases where base b > 10 expansion is needed, we add some characters

to represent numbers greater than 9. It is known to use the alphabetic letters to

denote integers greater than 9 in base b expansion for b > 10. For example

(46BC29)13 where A = 10, B = 11, C = 12.

To convert from one base to the other, the simplest way is to go through base

10 and then convert to the other base. There are methods that simplify conversion

from one base to the other but it will not be addressed in this book.

Exercises

1. Convert (7482)10 to base 6 notation.

2. Convert (98156)10 to base 8 notation.

3. Convert (101011101)2 to decimal notation.

4. Convert (AB6C7D)16 to decimal notation.

5. Convert (9A0B)16 to binary notation.

1.5 The Greatest Common Divisor

In this section we define the greatest common divisor (gcd) of two integers and

discuss its properties. We also prove that the greatest common divisor of two

integers is a linear combination of these integers.

Two integers a and b, not both 0, can have only finitely many divisors, and thus

can have only finitely many common divisors. In this section, we are interested

in the greatest common divisor of a and b. Note that the divisors of a and that of

| a | are the same.
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Definition 2. The greatest common divisor of two integers a and b is the greatest

integer that divides both a and b.

We denote the greatest common divisor of two integers a and b by (a, b). We

also define (0, 0) = 0.

Example 8. Note that the greatest common divisor of 24 and 18 is 6. In other

words (24, 18) = 6.

There are couples of integers (e.g. 3 and 4, etc...) whose greatest common

divisor is 1 so we call such integers relatively prime integers.

Definition 3. Two integers a and b are relatively prime if (a, b) = 1.

Example 9. The greatest common divisor of 9 and 16 is 1, thus they are relatively

prime.

Note that every integer has positive and negative divisors. If a is a positive

divisor of m, then −a is also a divisor of m. Therefore by our definition of the

greatest common divisor, we can see that (a, b) = (| a |, | b |).

We now present a theorem about the greatest common divisor of two integers.

The theorem states that if we divide two integers by their greatest common divisor,

then the outcome is a couple of integers that are relatively prime.

Theorem 7. If (a, b) = d then (a/d, b/d) = 1.

Proof. We will show that a/d and b/d have no common positive divisors other

than 1. Assume that k is a positive common divisor such that k | a/d and k | b/d.

As a result, there are two positive integers m and n such that

a/d = km and b/d = kn

Thus we get that

a = kmd and b = knd.

Hence kd is a common divisor of both a and b. Also, kd ≥ d. However, d is the

greatest common divisor of a and b. As a result, we get that k = 1.
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The next theorem shows that the greatest common divisor of two integers does

not change when we add a multiple of one of the two integers to the other.

Theorem 8. Let a, b and c be integers. Then (a, b) = (a+ cb, b).

Proof. We will show that every divisor of a and b is also a divisor of a + cb and

b and vise versa. Hence they have exactly the same divisors. So we get that the

greatest common divisor of a and b will also be the greatest common divisor of

a + cb and b. Let k be a common divisor of a and b. By Theorem 4, k | (a + cb)

and hence k is a divisor of a+cb. Now assume that l is a common divisor of a+cb

and b. Also by Theorem 4 we have ,

l | ((a+ cb)− cb) = a.

As a result, l is a common divisor of a and b and the result follows.

Example 10. Notice that (4, 14) = (4, 14− 3 · 4) = (4, 2) = 2.

We now present a theorem which proves that the greatest common divisor of

two integers can be written as a linear combination of the two integers.

Theorem 9. The greatest common divisor of two integers a and b, not both 0 is

the least positive integer such that ma+ nb = d for some integers m and n.

Proof. Assume without loss of generality that a and b are positive integers. Con-

sider the set of all positive integer linear combinations of a and b. This set is non

empty since a = 1 · a+ 0 · b and b = 0 · a+ 1 · b are both in this set. Thus this set

has a least element d by the well-ordering principle. Thus d = ma+ nb for some

integers m and n. We have to prove that d divides both a and b and that it is the

greatest divisor of a and b.

By the division algorithm, we have

a = dq + r, 0 ≤ r < d.
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Thus we have

r = a− dq = a− q(ma+ nb) = (1− qm)a− qnb.

We then have that r is a linear combination of a and b. Since 0 ≤ r < d and d

is the least positive integer which is a linear combination of a and b, then r = 0

and a = dq. Hence d | a. Similarly d | b. Now notice that if there is a divisor

c that divides both a and b. Then c divides any linear combination of a and b by

Theorem 4. Hence c | d. This proves that any common divisor of a and b divides

d. Hence c ≤ d, and d is the greatest divisor.

As a result, we conclude that if (a, b) = 1 then there exist integers m and n

such that ma+ nb = 1.

Definition 4. Let a1, a2, ..., an be integers, not all 0. The greatest common divisor

of these integers is the largest integer that divides all of the integers in the set. The

greatest common divisor of a1, a2, ..., an is denoted by (a1, a2, ..., an).

Definition 5. The integers a1, a2, ..., an are said to be mutually relatively prime if

(a1, a2, ..., an) = 1.

Example 11. The integers 3, 6, 7 are mutually relatively prime since (3, 6, 7) = 1

although (3, 6) = 3.

Definition 6. The integers a1, a2, ..., an are called pairwise prime if for each i 6= j,

we have (ai, aj) = 1.

Example 12. The integers 3, 14, 25 are pairwise relatively prime. Notice also that

these integers are mutually relatively prime.

Notice that if a1, a2, ..., an are pairwise relatively prime then they are mutually

relatively prime.
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Exercises

1. Find the greatest common divisor of 15 and 35.

2. Find the greatest common divisor of 100 and 104.

3. Find the greatest common divisor of -30 and 95.

4. Let m be a positive integer. Find the greatest common divisor of m and

m+ 1.

5. Let m be a positive integer, find the greatest common divisor of m and

m+ 2.

6. Show that if m and n are integers such that (m,n) = 1, then (m+n,m-n)=1

or 2.

7. Show that if m is a positive integer, then 3m + 2 and 5m + 3 are relatively

prime.

8. Show that if a and b are relatively prime integers, then (a+2b, 2a+b) = 1or

3.

9. Show that if a1, a2, ..., an are integers that are not all 0 and c is a positive

integer, then (ca1, ca2, ..., can) = c(a1, a2, ...an).

1.6 The Euclidean Algorithm

In this section we describe a systematic method that determines the greatest com-

mon divisor of two integers. This method is called the Euclidean algorithm.
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Lemma 1. If a and b are two integers and a = bq + r where also q and r are

integers, then (a, b) = (r, b).

Proof. Note that by theorem 8, we have (bq + r, b) = (b, r).

The above lemma will lead to a more general version of it. We now present the

Euclidean algorithm in its general form. It states that the greatest common divisor

of two integers is the last non zero remainder of the successive division.

Theorem 10. Let a = r0 and b = r1 be two positive integers where a ≥ b. If we

apply the division algorithm successively to obtain that

rj = rj+1qj+1 + rj+2 where 0 ≤ rj+2 < rj+1

for all j = 0, 1, ..., n− 2 and

rn+1 = 0.

Then (a, b) = rn.

Proof. By applying the division algorithm, we see that

r0 = r1q1 + r2 0 ≤ r2 < r1,

r1 = r2q2 + r3 0 ≤ r3 < r2,

.

.

.

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,

rn−1 = rnqn.

Notice that, we will have a remainder of 0 eventually since all the remainders

are integers and every remainder in the next step is less than the remainder in the

previous one. By Lemma 1, we see that

(a, b) = (b, r2) = (r2, r3) = ... = (rn, 0) = rn.
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Example 13. We will find the greatest common divisor of 4147 and 10672. Note

that

10672 = 4147 · 2 + 2378,

4147 = 2378 · 1 + 1769,

2378 = 1769 · 1 + 609,

1769 = 609 · 2 + 551,

609 = 551 · 1 + 58,

551 = 58 · 9 + 29,

58 = 29 · 2,

Hence (4147, 10672) = 29.

We now use the steps in the Euclidean algorithm to write the greatest common

divisor of two integers as a linear combination of the two integers. The following

example will actually determine the variables m and n described in Theorem 9.

The following algorithm can be described by a general form but for the sake of

simplicity of expressions we will present an example that shows the steps for

obtaining the greatest common divisor of two integers as a linear combination of

the two integers.
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Example 14. Express 29 as a linear combination of 4147 and 10672.

29 = 551− 9 · 58,

= 551− 9(609− 551 · 1),

= 10.551− 9.609,

= 10 · (1769− 609 · 2)− 9 · 609,

= 10 · 1769− 29 · 609,

= 10 · 1769− 29(2378− 1769 · 1),

= 39 · 1769− 29 · 2378,

= 39(4147− 2378 · 1)− 29 · 2378,

= 39 · 4147− 68 · 2378,

= 39 · 4147− 68(10672− 4147 · 2),

= 175 · 4147− 68 · 10672,

As a result, we see that 29 = 175 · 4147− 68 · 10672.

This property is called Bezout’s Identity:

For any two integers a and b, we can always find integers m and n

such that gcd(a, b) = am+ bn.

We can always find this expression by reversing the results of the Euclidean algo-

rithm.

Exercises

1. Use the Euclidean algorithm to find the greatest common divisor of 412 and

32 and express it in terms of the two integers.

2. Use the Euclidean algorithm to find the greatest common divisor of 780 and

150 and express it in terms of the two integers.

3. Find the greatest common divisor of 70, 98, 108.
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4. Let a and b be two positive even integers. Prove that (a, b) = 2(a/2, b/2).

5. Show that if a and b are positive integers where a is even and b is odd, then

(a, b) = (a/2, b).

1.7 Lame’s Theorem and Binet’s Formula

In this section, we give an estimate to the number of steps needed to find the

greatest common divisor of two integers using the Euclidean algorithm. To do this,

we have to introduce the Fibonacci numbers for the sake of proving a lemma that

gives an estimate on the growth of Fibonacci numbers in the Fibonacci sequence.

The lemma that we prove will be used in the proof of Lame’s theorem. We then

turn to illustrate an unexpected property of the Fibonacci sequence, called Binet’s

Formula.

1.7.1 Lame’s Theorem

Definition 7. The Fibonacci sequence is defined recursively by f1 = 1, f2 = 1,

and

fn = fn−1 + fn−2 for n ≥ 3.

The terms in the sequence are called Fibonacci numbers.

In the following lemma, we give a lower bound on the growth of Fibonacci

numbers. We will show that Fibonacci numbers grow faster than a geometric

series with common ratio α = (1 +
√

5)/2.

Lemma 2. For n ≥ 3, we have fn > αn−2 where α = (1 +
√

5)/2.

Proof. We use the second principle of mathematical induction to prove our result.

It is easy to see that this is true for n = 3 and n = 4. Assume that αk−2 < fk
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for all integers k where k ≤ n. Now since α is a solution of the polynomial

x2 − x− 1 = 0, we have α2 = α + 1. Hence

αn−1 = α2.αn−3 = (α + 1).αn−3 = αn−2 + αn−3.

By the inductive hypothesis, we have

αn−2 < fn, αn−3 < fn−1.

After adding the two inequalities, we get

αn−1 < fn + fn−1 = fn+1.

We now present Lame’s theorem.

Theorem 11. using the Euclidean algorithm to find the greatest common divisor

of two positive integers has number of divisions less than or equal five times the

number of decimal digits in the minimum of the two integers.

Proof. Let a and b be two positive integers where a > b. Applying the Euclidean

algorithm to find the greatest common divisor of two integers with a = r0 and

b = r1, we get

r0 = r1q1 + r2 0 ≤ r2 < r1,

r1 = r2q2 + r3 0 ≤ r3 < r2,

.

.

.

rn−2 = rn−1qn−1 + rn 0 ≤ rn < rn−1,

rn−1 = rnqn.
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Notice that each of the quotients q1, q2, ..., qn−1 are all greater than 1 and qn ≥ 2

and this is because rn < rn−1. Thus we have

rn ≥ 1 = f2,

rn−1 ≥ 2rn ≥ 2f2 = f3,

rn−2 ≥ rn−1 + rn ≥ f3 + f2 = f4,

rn−3 ≥ rn−2 + rn−1 ≥ f4 + f3 = f5,

.

.

.

r2 ≥ r3 + r4 ≥ fn−1 + fn−2 = fn,

b = r1 ≥ r2 + r3 ≥ fn + fn−1 = fn+1.

Thus notice that b ≥ fn+1. By Lemma 2, we have fn+1 > αn−1 for n > 2. As a

result, we have b > αn−1. Now notice since

log10 α >
1

5
,

we see that

log10 b > (n− 1)/5.

Thus we have

n− 1 < 5 log10 b.

Now let b has k decimal digits. As a result, we have b < 10k and thus log10 b < k.

Hence we conclude that n − 1 < 5k. Since k is an integer, we conclude that

n ≤ 5k.

1.7.2 Binet’s Formula

The Fibonacci sequence is an example of a linear recurrence relation, where

one number of a sequence depends on a linear combination of earlier numbers in
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the sequence. An elegant technique gives us a concise formula for such relations,

and we illusrate this using the Fibonacci sequence.

In general, fn = fn−1 +fn−2, and of course fn−1 = fn−1, giving us the matrix

equation (
fn

fn−1

)
=

(
1 1

1 0

)(
fn−1

fn−2

)
.

Let’s give this 2× 2 matrix a special name,

F =

(
1 1

1 0

)
.

As usual, matrices carry more information than you might expect at first glance,

and the characteristic polynomial of this one has very interesting roots:

0 = det

(
1− λ 1

1 −λ

)
= −λ(1− λ)− 1

= λ2 − λ− 1

⇓

λ =
−(−1)±

√
(−1)2 − 4 · 1 · (−1)

2 · 1
=

1±
√

5

2
.

These results have several wonderful aspects. For instance, (1 +
√

5)/2

• is well-known as “the Golden Ratio”, and

• appeared in Lemma 2 above, in connection with Lame’s theorem.

There is more! The whole point of any eigenvalue λ of F is that, for any eigen-

vector e,

Fe = λe =⇒ F (e2 e1)T = (λe2 λe1)T .

The eigenvectors are a basis for the eigenspace, so any solution to Fx = λx has

the form x = c1e1 + c1e2, where c1 and c2 are arbitrary constants, while e1 and e2

are the eigenvectors corresponding to (1 +
√

5)/2 and (1−
√

5)/2, respectively.
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So, what are these eigenvectors? We know that Fe = λe for corresponding λ

and e; setting ei = 1 and solving gives us

e1 =

(
1

−1−
√

5
2

)
and e2 =

(
1

−1+
√

5
2

)
.

In addition, we can compute fn simply by applying F to the matrix (f1 f0)T:(
fn

fn−1

)
= F

(
fn−1

fn−2

)
= F

[
F

(
fn−2

fn−3

)]
= · · · = F n−2

(
f2

f1

)
. (1.7)

From linear algebra, we know that we can rewrite F as QΛQ−1, where

Q =

(
1 1

−1−
√

5
2

−1+
√

5
2

)
and Λ =

(
1+
√

5
2

0

0 1−
√

5
2

)
.

(Notice that the columns of Q are the eigenvectors that correspond to the diagonal

elements of Λ, the eigenvalues.) By substitution,

F n = (QΛQ−1)n = (QΛQ−1)(QΛQ−1) · · · (QΛQ−1)︸ ︷︷ ︸
n times

= QΛnQ−1.

Combine this with the relationship in (1.7), and we have the relationship

fn =

(
1 1

−1−
√

5
2

−1+
√

5
2

)(
1+
√

5
2

0

0 1−
√

5
2

)n−2(
1+
√

5
2
√

5
1√
5

−1−
√

5
2
√

5
− 1√

5

)
f2

where fn = (fn fn−1)T and f2 = (f2 f1)T = (1 1)T. The first row of the simplified

product yields a “closed” form relationship between fn, f1, and f2,

fn =
1√
5

(
1 +
√

5

2

)n−1

− 1√
5

(
1−
√

5

2

)n−1

+
1√
5

(
1 +
√

5

2

)n−2

− 1√
5

(
1−
√

5

2

)n−2

.

With a gentle algebraic massage, this equation simplifies to an elegant form.
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Theorem 12 (Binet’s Formula). The nth Fibonacci number has the form

fn =
1√
5

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n]
.

This same technique works with any linear recurrence!

Exercises

1. If fi is the ith Fibonacci number, show that f1 + f2 + . . .+ fn = 2fn+2− 1.

2. What happens when you add the squares of consecutive Fibonacci numbers?

That is, find a pattern to the sequence 12 + 12, 12 + 22, 22 + 32, 32 + 52, . . . .

Prove the property you find by induction. (One way to solve this requires

proving two claims simultaneously, by induction.)

3. Find an upper bound for the number of steps in the Euclidean algorithm that

is used to find the greatest common divisor of 38472 and 957748838.

4. Find an upper bound for the number of steps in the Euclidean algorithm that

is used to find the greatest common divisor of 15 and 75. Verify your result

by using the Euclidean algorithm to find the greatest common divisor of the

two integers.

5. Using a computational aid, test Binet’s formula for some large values of n.

6. Complete the proof of Binet’s formula by filling in the “bit of algebra”.

Hint: Notice the change in exponents!

7. The Lucas sequence is defined by L1 = 2, L2 = 1, and Ln = Ln−1 +Ln−2.

(a) Use the formula to find L3, L4, L5 and L6.

(b) Show that Ln = fn−1 + fn+1 and Ln = fn + 2fn−1.

(c) Use the same technique that we used in Binet’s formula to find a

closed-form expression for Ln.



Chapter 2

Prime Numbers

Prime numbers, the building blocks of integers, have been studied extensively

over the centuries. Being able to present an integer uniquely as product of primes

is the main reason behind the whole theory of numbers and behind the interesting

results in this theory. Many interesting theorems, applications and conjectures

have been formulated based on the properties of prime numbers.

In this chapter, we present methods to determine whether a number is prime

or composite using an ancient Greek method invented by Eratosthenes. We also

show that there are infinitely many prime numbers. We then proceed to show that

every integer can be written uniquely as a product of primes.

We introduce as well the concept of diophantine equations where integer so-

lutions from given equations are determined using the greatest common divisor.

We then mention the Prime Number theorem without giving a proof of course in

addition to other conjectures and major results related to prime numbers.

2.1 The Sieve of Eratosthenes

Definition 8. A prime is an integer greater than 1 that is only divisible by 1 and

itself.

35
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Example 15. The integers 2, 3, 5, 7, 11 are prime integers.

Note that any integer greater than 1 that is not prime is said to be a composite

number.

We now present the sieve of Eratosthenes. The Sieve of Eratosthenes is an

ancient method of finding prime numbers up to a specified integer. This method

was invented by the ancient Greek mathematician Eratosthenes. There are several

other methods used to determine whether a number is prime or composite. We

first present a lemma that will be needed in the proof of several theorems.

Lemma 3. Every integer greater than one has a prime divisor.

Proof. We present the proof of this Lemma by contradiction. Suppose that there

is an integer greater than one that has no prime divisors. Since the set of integers

with elements greater than one with no prime divisors is nonempty, then by the

well ordering principle there is a least positive integer n greater than one that has

no prime divisors. Thus n is composite since n divides n. Hence

n = ab with 1 < a < n and 1 < b < n.

Notice that a < n and as a result since n is minimal, a must have a prime divisor

which will also be a divisor of n.

Theorem 13. If n is a composite integer, then n has a prime factor not exceeding
√
n.

Proof. Since n is composite, then n = ab, where a and b are integers with 1 <

a ≤ b < n. Suppose now that a >
√
n, then

√
n < a ≤ b

and as a result

ab >
√
n
√
n = n.
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Therefore a ≤
√
n. Also, by Lemma 3, a must have a prime divisor a1 which is

also a prime divisor of n and thus this divisor is less than a1 ≤ a ≤
√
n.

We now present the algorithm of the Sieve of Eratosthenes that is used to de-

termine prime numbers up to a given integer.

The Algorithm of the Sieve of Eratosthenes

1. Write a list of numbers from 2 to the largest number n you want to test.

Note that every composite integer less than n must have a prime factor less

than
√
n. Hence you need to strike off the multiples of the primes that are

less than
√
n

2. Strike off all multiples of 2 greater than 2 from the list . The first remaining

number in the list is a prime number.

3. Strike off all multiples of this number from the list.

4. Repeat the above steps until no more multiples are found of the prime inte-

gers that are less than
√
n

Exercises

1. Use the Sieve of Eratosthenes to find all primes less than 100.

2. Use the Sieve of Eratosthenes to find all primes less than 200.

3. Show that no integer of the form a3 + 1 is a prime except for 2 = 13 + 1.

4. Show that if 2n − 1 is prime, then n is prime.

Hint: Use the identity (akl− 1) = (ak − 1)(ak(l−1) + ak(l−2) + ...+ ak + 1).
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2.2 Alternate definition of prime number

The definition of a prime number given above uses a divisibility criterion, some-

times called irreducibility. We can also define a prime number using a division

criterion, sometimes called “Euclid’s criterion.”

Definition 9. Let p be a positive integer, greater than 1. We say that p is prime if,

whenever p divides the product of two integers a and b, it also divides at least one

of a or b.

Definition 9 might not appeal to you: why would someone want to define

primality this way? To see why this definition is useful, consider the following

examples.

Example 16. For instance, 6 divides the product 2 · 3, but 6 divides neither 2 nor

3. Hence, 6 is not prime.

That example might not inspire you so much, so try this one on for size. We

know that 5 is prime. Suppose 5 divides the product of 2 and an integer m; since

5 is prime and it does not divide 2, it must divide m.

Definition 9 also has advantages when we apply the notion of a prime number

to other sets; we will look at that later. For now, though, we have to ask ourselves:

are Definitions 8 and 9 equivalent? After all, they say different things, so there

is a possibility that they classify different numbers as prime. That would cause

problems!

In fact, the two definitions are equivalent. To see this, let p, a, and b be positive

integers.

Assume first that p is irreducible; that is, whenever it factors as ab, either p = a

or p = b. We need to show that this implies Euclid’s criterion. By way of con-

tradiction, suppose there exist integers a and b such that p divides ab, but divides

neither a nor b. Choose positive a and b such that this product is minimized. By

Exercise 5, p ≤ ab. We consider two cases.
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• If p = ab, then ab is a factorization of p. We assumed p is irreducible, so

p = a or p = b. Either way, p divides one of a or b, a contradiction!

• Apparently p < ab instead. Use the Division Algorithm to compute quo-

tients qa and qb, and remainders ra and rb, such that a = pqa + ra and

b = pqb + rb. Since p ≤ ab and the remainders are less than or equal to

p, we know that ra < a or rb < b. By substitution and a little arithmetic,

ab = pQ+rarb where Q = pqaqb+qarb+qbra. Recall that p divides ab; the

equation above implies that it also divides rarb. However, rarb < ab, and by

hypothesis, ab is the smallest positive product divisible by p whose factors

are not divisible by p. Thus, p divides ones of ra or rb. Both are smaller

than p, so Exercise 5 implies that one of ra or rb is 0. This contradicts the

hypothesis that p divides neither a nor b.

In both cases, we encountered a contradiction. The assumption that p divides

neither a nor b is inconsistent with the other facts, so p must divide one of them.

We have shown that the irreducibility criterion implies Euclid’s criterion; it

remains to show the converse. Assume that p satisfies Euclid’s criterion; that is,

whenever it divides a product of two integers, it divides one of the integers. Let

a and b be two integers, and assume p = ab. We can rewrite the equation as

p · 1 = ab, which tells us that p divides ab, with the quotient 1. Euclid’s criterion

kicks in here: since p divides the product ab, it must divide one of the two factors

a or b; without loss of generality, we may suppose p divides a. Exercise 12 tells

us p = a.

2.3 The infinitude of Primes

We now show that there are infinitely many primes. There are several ways to

prove this result. An alternative proof to the one presented here is given as an

exercise. The proof we will provide was presented by Euclid in his book the
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Elements.

Theorem 14. There are infinitely many primes.

Proof. We present the proof by contradiction. Suppose there are finitely many

primes p1, p2, ..., pn, where n is a positive integer. Consider the integer Q such

that

Q = p1p2...pn + 1.

By Lemma 3, Q has at least a prime divisor, say q. If we prove that q is not one

of the primes listed then we obtain a contradiction. Suppose now that q = pi for

1 ≤ i ≤ n. Thus q divides p1p2...pn and as a result q divides Q − p1p2...pn.

Therefore q divides 1. But this is impossible since there is no prime that divides 1

and as a result q is not one of the primes listed.

The following theorem discusses the large gaps between primes. It simply

states that there are arbitrary large gaps in the series of primes and that the primes

are spaced irregularly.

Theorem 15. Given any positive integer n, there exists n consecutive composite

integers.

Proof. Consider the sequence of integers

(n+ 1)! + 2, (n+ 1)! + 3, ..., (n+ 1)! + n, (n+ 1)! + n+ 1

Notice that every integer in the above sequence is composite because k divides

(n+ 1)! + k if 2 ≤ k ≤ n+ 1 by 4.

Exercises

1. Show that the integer Qn = n! + 1, where n is a positive integer, has a

prime divisor greater than n. Conclude that there are infinitely many primes.

Notice that this exercise is another proof of the infinitude of primes.
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2. Find the smallest five consecutive composite integers.

3. Find one million consecutive composite integers.

4. Show that there are no prime triplets other than 3,5,7.

2.4 The Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic is one of the most important results in

this chapter. It simply says that every positive integer can be written uniquely as a

product of primes. The unique factorization is needed to establish much of what

comes later. There are systems where unique factorization fails to hold. Many of

these examples come from algebraic number theory. We can actually list an easy

example where unique factorization fails.

Consider the class C of positive even integers. Note that C is closed under

multiplication, which means that the product of any two elements in C is again in

C. Suppose now that the only number we know are the members of C. Then we

have 12 = 2.6 is composite where as 14 is prime since it is not the product of two

numbers in C. Now notice that 60 = 2.30 = 6.10 and thus the factorization is not

unique.

We now give examples of the unique factorization of integers.

Example 17. 99 = 3 · 3 · 11 = 32 · 11, 32 = 2 · 2 · 2 · 2 · 2 = 25

2.4.1 The Fundamental Theorem of Arithmetic

To prove the fundamental theorem of arithmetic, we need to prove some lemmas

about divisibility.

Lemma 4. If a,b,c are positive integers such that (a, b) = 1 and a | bc, then a | c.
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Proof. Since (a, b) = 1, then there exists integers x, y such that ax + by = 1. As

a result, cax + cby = c. Notice that since a | bc, then by Theorem 4, a divides

cax+ cby and hence a divides c.

We can generalize the above lemma as such: If (a,ni) = 1 for every i =

1, 2, · · · , n and a | n1n2 · · ·nk+1, then a | nk+1. We next prove a case of this

generalization and use this to prove the fundamental theorem of arithmetic.

Lemma 5. If p divides n1n2n3...nk, where p is a prime and ni > 0 for all 1 ≤
i ≤ k, then there is an integer j with 1 ≤ j ≤ k such that p | nj .

Proof. We present the proof of this result by induction. For k = 1, the result

is trivial. Assume now that the result is true for k. Consider n1n2...nk+1 that is

divisible by p. Notice that either

(p, n1n2...nk) = 1 or (p, n1n2...nk) = p.

Now if (p, n1n2...nk) = 1 then by Lemma 4, p | nk+1. Now if p | n1n2...nk, then

by the induction hypothesis, there exists an integer i such that p | ni.

We now state the fundamental theorem of arithmetic and present the proof

using Lemma 5.

Theorem 16. The Fundamental Theorem of Arithmetic Every positive integer

different from 1 can be written uniquely as a product of primes.

Proof. If n is a prime integer, then n itself stands as a product of primes with a

single factor. If n is composite, we use proof by contradiction. Suppose now that

there is some positive integer that cannot be written as the product of primes. Let

n be the smallest such integer. Let n = ab, with 1 < a < n and 1 < b < n.

As a result a and b are products of primes since both integers are less than n. As

a result, n = ab is a product of primes, contradicting that it is not. This shows

that every integer can be written as product of primes. We now prove that the
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representation of a positive integer as a product of primes is unique. Suppose now

that there is an integer n with two different factorizations say

n = p1p2...ps = q1q2...qr

where p1, p2, ...ps, q1, q2, ...qr are primes,

p1 ≤ p2 ≤ p3 ≤ ... ≤ psand q1 ≤ q2 ≤ q3 ≤ ... ≤ qr.

Cancel out all common primes from the factorizations above to get

pj1pj2 ...pju = qi1qi2 ...qiv

Thus all the primes on the left side are different from the primes on the right side.

Since any pjl (l = 1, · · · , n) divides pj1pj2 ...pju , then pjl must divide qi1qi2 ...qiv ,

and hence by Lemma 5, pj1 must divide qjk for some 1 ≤ k ≤ v which is impos-

sible. Hence the representation is unique.

Remark 2. The unique representation of a positive integer n as a product of

primes can be written in several ways. We will present the most common rep-

resentations. For example, n = p1p2p3...pk where pi for 1 ≤ i ≤ k are not

necessarily distinct. Another example would be

n = pa11 p
a2
2 p

a3
3 ...p

aj
j (2.1)

where all the pi are distinct for 1 ≤ i ≤ j. One can also write a formal product

n =
∏

all primes pi

pαii , (2.2)

where all but finitely many of the α′is are 0.

Example 18. The prime factorization of 120 is given by 120 = 2·2·2·3·5 = 23·3·5.

Notice that 120 is written in the two ways described in 2.
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We know describe in general how prime factorization can be used to determine

the greatest common divisor of two integers. Let

a = pa11 p
a2
2 ...p

an
n and b = pb11 p

b2
2 ...p

bn
n ,

where we exclude in these expansions any prime p with power 0 in both a and b

(and thus some of the powers above may be 0 in one expansion but not the other).

Of course, if one prime pi appears in a but not in b, then ai 6= 0 while bi = 0, and

vise versa. Then the greatest common divisor is given by

(a, b) = p
min(a1,b2)
1 p

min(a2,b2)
2 ...pmin(an,bn)

n

where min(n,m) is the minimum of m and n.

The following lemma is a consequence of the Fundamental Theorem of Arith-

metic.

Lemma 6. Let a and b be relatively prime positive integers. Then if d divides ab,

there exists d1 and d2 such that d = d1d2 where d1 is a divisor of a and d2 is a

divisor of b. Conversely, if d1 and d2 are positive divisors of a and b, respectively,

then d = d1d2 is a positive divisor of ab.

Proof. Let d1 = (a, d) and d2 = (b, d). Since (a, b) = 1 and writing a and b in

terms of their prime decomposition, it is clear that d = d1d2 and (d1, d2) = 1.

Note that every prime power in the factorization of d must appear in either d1 or

d2. Also the prime powers in the factorization of d that are prime powers dividing

a must appear in d1 and that prime powers in the factorization of d that are prime

powers dividing b must appear in d2.

Now conversely, let d1 and d2 be positive divisors of a and b, respectively.

Then

d = d1d2

is a divisor of ab.
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2.4.2 More on the Infinitude of Primes

There are also other theorems that discuss the infinitude of primes in a given arith-

metic progression. The most famous theorem about primes in arithmetic progres-

sion is Dirichlet’s theorem

Theorem 17. Dirichlet’s Theorem Given an arithmetic progression of terms an+

b , for n = 1, 2, ... ,the series contains an infinite number of primes if a and b are

relatively prime,

This result had been conjectured by Gauss but was first proved by Dirichlet.

Dirichlet proved this theorem using complex analysis, but the proof is so chal-

lenging. As a result, we will present a special case of this theorem and prove that

there are infinitely many primes in a given arithmetic progression. Before stating

the theorem about the special case of Dirichlet’s theorem, we prove a lemma that

will be used in the proof of the mentioned theorem.

Lemma 7. If a and b are integers both of the form 4n + 1, then their product ab

is of the form 4n+ 1

Proof. Let a = 4n1 + 1 and b = 4n2 + 1, then

ab = 16n1n2 + 4n1 + 4n2 + 1 = 4(4n1n2 + n1 + n2) + 1 = 4n3 + 1,

where n3 = 4n1n2 + n1 + n2.

Theorem 18. There are infinitely many primes of the form 4n + 3, where n is a

positive integer.

Proof. Suppose that there are finitely many primes of the form 4n + 3, say p0 =

3, p1, p2, ..., pn. Let

N = 4p1p2...pn + 3.

Notice that any odd prime is of the form 4n + 1 or 4n + 3. Then there is at least

one prime in the prime factorization of N of the form 4n + 3, as otherwise, by
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Lemma 7, N will be in the form 4n + 1. We wish to prove that this prime in the

factorization of N is none of p0 = 3, p1, p2, ..., pn. Notice that if

3 | N,

then 3 | (N − 3) and hence

3 | 4p1p2...pn

which is impossible since pi 6= 3 for every i. Hence 3 doesn’t divide N . Also, the

other primes p1, p2, ..., pn don’t divide N because if pi | N , then

pi | (N − 4p1p2...pn) = 3.

Hence none of the primes p0, p1, p2, ..., pn divides N. Thus there are infinitely

many primes of the form 4n+ 3.

Exercises

1. Find the prime factorization of 32, of 800 and of 289.

2. Find the prime factorization of 221122 and of 9!.

3. Show that all the powers of in the prime factorization of an integer a are

even if and only if a is a perfect square.

4. Show that there are infinitely many primes of the form 6n+ 5.

2.5 Least Common Multiple

We can use prime factorization to find the smallest common multiple of two pos-

itive integers.

Definition 10. The least common multiple (l.c.m.) of two positive integers is the

smallest positive integer that is a multiple of both.
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We denote the least common multiple of two positive integers a an b by 〈a, b〉.

Example 19. 〈2, 8〉 = 8, 〈5, 8〉 = 40

We can figure out 〈a, b〉 once we have the prime factorization of a and b. To

do that, let

a = pa11 p
a2
2 ...p

an
m and b = pb11 p

b2
2 ...p

bn
m ,

where (as above) we exclude any prime with 0 power in both a and b. Then

〈a, b〉 = p
max(a1,b1)
1 p

max(a2,b2)
2 ...p

max(an,bn)
m , where max(a, b) is the maximum of

the two integers a and b. We now prove a theorem that relates the least common

multiple of two positive integers to their greatest common divisor. In some books,

this theorem is adopted as the definition of the least common multiple. To prove

the theorem we present a lemma

Lemma 8. If a and b are two real numbers, then

min(a, b) + max(a, b) = a+ b

Proof. Assume without loss of generality that a ≥ b. Then

max(a, b) = a and min(a, b) = b,

and the result follows.

Theorem 19. Let a and b be two positive integers. Then

1. 〈a, b〉 ≥ 0;

2. 〈a, b〉 = ab/(a, b);

3. If a | m and b | m, then 〈a, b〉 | m

Proof. The proof of part 1 follows from the definition.

As for part 2, let

a = pa11 p
a2
2 ...p

an
m and b = pb11 p

b2
2 ...p

bn
m .
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Notice that since

(a, b) = p
min(a1,b2)
1 p

min(a2,b2)
2 ...pmin(an,bn)

n

and

〈a, b〉 = p
max(a1,b1)
1 p

max(a2,b2)
2 ...pmax(an,bn)

m ,

then

〈a, b〉(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 ...pmax(an,bn)

m p
min(a1,b2)
1 p

min(a2,b2)
2 ...pmin(an,bn)

n

= p
max(a1,b1)+min(a1,b1)
1 p

max(a2,b2)+min(a2,b2)
2 ...pmax(an,bn)+min(an,bn)

m

= pa1+b1
1 pa2+b2

2 ...p(an+bn)
n

= pa11 p
a2
2 ...p

an
m p

b1
1 p

b2
2 ...p

bn
m = ab

Note also that we used Lemma 8 in the above equations. For part 3, it would be a

nice exercise to show that ab/(a, b) | m (Exercise 6). Thus 〈a, b〉 | m.

Exercises

1. Find the least common multiple of 14 and 15.

2. Find the least common multiple of 240 and 610.

3. Find the least common multiple and the greatest common divisor of 25567211

and 23587213.

4. Show that every common multiple of two positive integers a and b is divis-

ible by the least common multiple of a and b.

5. Show that if a and b are positive integers then the greatest common divisor

of a and b divides their least common multiple. When are the least common

multiple and the greatest common divisor equal to each other.

6. Show that ab/(a, b) | m where m =< a, b >.
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2.6 Linear Diophantine Equations

In this section, we discuss equations in two variables called diophantine equations.

These kinds of equations require integer solutions. The goal of this section is to

present the set of points that determine the solution to this kind of equations. Geo-

metrically speaking, the diophantine equation represent the equation of a straight

line. We need to find the points whose coordinates are integers and through which

the straight line passes.

Definition 11. A linear equation of the form ax + by = c where a, b and c are

integers is known as a linear diophantine equation.

Note that a solution to the linear diophantine equation (x0, y0) requires x0

and y0 to be integers. The following theorem describes the case in which the

diophantine equation has a solution and what are the solutions of such equations.

Theorem 20. The equation ax + by = c has integer solutions if and only if d | c
where d = (a, b). If the equation has one solution x = x0, y = y0, then there are

infinitely many solutions and the solutions are given by

x = x0 + (b/d)t y = y0 − (a/d)t

where t is an arbitrary integer.

Proof. Suppose that the equation ax + by = c has integer solution x and y. Thus

since d | a and d | b, then

d | (ax+ by) = c.

Now we have to prove that if d | c, then the equation has integral solution. Assume

that d | c. By theorem 9, there exist integers m and n such that

d = am+ bn.

And also there exists integer k such that

c = dk
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Now since c = ax+ by, we have

c = dk = (ma+ nb)k = a(km) + b(nk).

Hence a solution for the equation ax+ by = c is

x0 = km and y0 = kn.

What is left to prove is that we have infinitely many solutions. Let

x = x0 + (b/d)t and y = y0 − (a/d)t.

We have to prove now that x and y are solutions for all integers t. Notice that

ax+ by = a(x0 + (b/d)t) + b(y0 − (a/d)t) = ax0 + by0 = c.

We now show that every solution for the equation ax+ by = c is of the form

x = x0 + (b/d)tand y = y0 − (a/d)t.

Notice that since ax0 + by0 = c, we have

a(x− x0) + b(y − y0) = 0.

Hence

a(x− x0) = b(y − y0).

Dividing both sides by d, we get

a/d(x− x0) = b/d(y − y0).

Notice that (a/d, b/d) = 1 and thus we get by Lemma 4 that a/d | y − y0. As a

result, there exists an integer t such that y = y0− (a/d)t. Now substituting y− y0

in the equation

a(x− x0) = b(y − y0).

We get

x = x0 + (b/d)t.
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Example 20. The equation 3x+6y = 7 has no integer solution because (3, 6) = 3

does not divide 7.

Example 21. There are infinitely many integer solutions for the equation 4x +

6y = 8 because (4, 6) = 2 | 8. We use the Euclidean algorithm to determine m

and n where 4m+ 6n = 2. It turns out that 4(−1) + 6(1) = 2. And also 8 = 2.4.

Thus x0 = 4.(−1) = −4 and y0 = 4.1 = 4 is a particular solution. The solutions

are given by

x = −4 + 3t y = 4− 2t

for all integers t.

Exercises

1. Either find all solutions or prove that there are no solutions for the diophan-

tine equation 21x+ 7y = 147.

2. Either find all solutions or prove that there are no solutions for the diophan-

tine equation 2x+ 13y = 31.

3. Either find all solutions or prove that there are no solutions for the diophan-

tine equation 2x+ 14y = 17.

4. A grocer orders apples and bananas at a total cost of $8.4. If the apples cost

25 cents each and the bananas 5 cents each, how many of each type of fruit

did he order.

2.7 The function [x] , the symbols ”O”, ”o” and ”∼”

We start this section by introducing an important number theoretic function. We

proceed in defining some convenient symbols that will be used in connection with

the growth and behavior of some functions that will be defined in later chapters.



52 CHAPTER 2. PRIME NUMBERS

2.7.1 The Function [x]

Definition 12. The function [x] represents the largest integer not exceeding x. In

other words, for real x, [x] is the unique integer such that

x− 1 < [x] ≤ x < [x] + 1.

We also define ((x)) to be the fractional part of x. In other words ((x)) =

x− [x].

We now list some properties of [x] that will be used in later or in more advanced

courses in number theory.

1. [x+ n] = [x] + n, if n is an integer.

2. [x] + [y] ≤ [x+ y].

3. [x] + [−x] is 0 if x is an integer and -1 otherwise.

4. The number of integers m for which x < m ≤ y is [y]− [x].

5. The number of multiples of m which do not exceed x is [x/m].

Using the definition of [x], it will be easy to see that the above properties are

direct consequences of the definition.

We now define some symbols that will be used to estimate the growth of number

theoretic functions. These symbols will be not be really appreciated in the context

of this book but these are often used in many analytic proofs.

2.7.2 The ”O” and ”o” Symbols

Let f(x) be a positive function and let g(x) be any function. Then O(f(x)) (pro-

nounced ”big-oh” of f(x))denotes the collection of functions g(x) that exhibit a

growth that is limited to that of f(x) in some respect. The traditional notation for

stating that g(x) belongs to this collection is:

g(x) = O(f(x)).
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This means that for sufficiently large x,

| g(x) |
|f(x)|

< M, (2.3)

where M is some positive number.

Example 22. sin(x) = O(x), and also sin(x) = O(1).

Now, the relation g(x) = o(f(x)), pronounced ”small-oh” of f(x), is used to

indicate that f(x) grows much faster than g(x). It formally says that

lim
x→∞

g(x)

f(x)
= 0. (2.4)

More generally, g(x) = o(f(x)) at a point b if

lim
x→b

g(x)

f(x)
= 0. (2.5)

Example 23. sin(x) = o(x) at∞, and xk = o(ex) also at∞ for every constant

k.

The notation that f(x) is asymptotically equal to g(x) is denoted by ∼. For-

mally speaking, we say that f(x) ∼ g(x) if

lim
x→∞

f(x)

g(x)
= 1. (2.6)

Example 24. [x] ∼ x.

The purpose of introducing these symbols is to make complicated mathemat-

ical expressions simpler. Some expressions can be represented as the principal

part that you need plus a remainder term. The remainder term can be expressed

using the above notations. So when you need to combine several expressions, the

remainder parts involving these symbols can be easily combined. We will state

now some properties of the above symbols without proof. These properties are

easy to prove using the definitions of the symbols.
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1. O(O(f(x))) = O(f(x)),

2. o(o(f(x))) = o(f(x)).

3. O(f(x))±O(f(x)) = O(f(x)),

4. o(f(x)± o(f(x)) = o(f(x)),

5. O(f(x))±O(g(x)) = O(max(f(x), g(x))),

There are some other properties that we did not mention here, properties that are

rarely used in number theoretic proofs.

Exercises

1. Prove the five properties of the [x]

2. Prove the five properties of the O and o notations in Example 24.

2.8 Theorems and Conjectures involving prime num-

bers

We have proved that there are infinitely many primes. We have also proved that

there are arbitrary large gaps between primes. The question that arises naturally

here is the following: Can we estimate how many primes are there less than a given

number? The theorem that answers this question is the prime number theorem. We

denote by π(x) the number of primes less than a given positive number x. Many

mathematicians worked on this theorem and conjectured many estimates before

Chebyshev finally stated that the estimate is x/logx. The prime number theorem

was finally proved in 1896 when Hadamard and Poussin produced independent

proofs. Before stating the prime number theorem, we state and prove a lemma

involving primes that will be used in the coming chapters.
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Lemma 9. Let p be a prime and letm ∈ Z+. Then the highest power of p dividing

m! is
∞∑
i=1

[
m

pi

]

Proof. Among all the integers from 1 till m, there are exactly
[
m
p

]
integers that

are divisible by p. These are p, 2p, ...,
[
m
p

]
p. Similarly we see that there are

[
m
pi

]
integers that are divisible by pi. As a result, the highest power of p dividing m! is

∑
i≥1

i

{[
m

pi

]
−
[
m

pi+1

]}
=
∑
i≥1

[
m

pi

]

Theorem 21. The Prime Number Theorem Let x > 0 then

π(x) ∼ x/logx

So this theorem says that you do not need to find all the primes less than x to

find out their number, it will be enough to evaluate x/logx for large x to find an

estimate for the number of primes. Notice that I mentioned that x has to be large

enough to be able to use this estimate.

Several other theorems were proved concerning prime numbers. many great

mathematicians approached problems that are related to primes. There are still

many open problems of which we will mention some.

Conjecture 1. Twin Prime Conjecture There are infinitely many pairs primes p

and p+ 2.

Conjecture 2. Goldbach’s Conjecture Every even positive integer greater than 2

can be written as the sum of two primes.
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Conjecture 3. The n2 + 1 Conjecture There are infinitely many primes of the

form n2 + 1, where n is a positive integer.

Conjecture 4. Polignac Conjecture For every even number 2n are there infinitely

many pairs of consecutive primes which differ by 2n.

Conjecture 5. Opperman Conjecture Is there always a prime between n2 and

(n+ 1)2?



Chapter 3

Classical questions

This chapter visits some of the classical questions of number theory, which are a

vital part of mathematical culture.

3.1 Geometric numbers

When you were a child, you probably played with pebbles or marbles, and you

probably arranged them on the ground in certain shapes. For instance, you might

have arranged them as triangles, and depending on the number of pebbles you

had, you might have ended up with any of the following figures:

Did you ever pause to count how many pebbles were in each pile?

1, 3, 6, 10, 15, . . .

57
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These numbers are called triangular, for a reason you’ll probably never guess.1

As you can see, the ith triangular number is built from the one before it in a reli-

able pattern: t1 = 1, and if we know ti, then the (i+ 1)th number is ti + (i+ 1).

This is another example of a recursive sequence. Sure, you saw them earlier

with the Fibonacci numbers, but this one’s a little easier to deal with: the recursion

only requires knowledge of one previous number. Still, it would be nice to com-

pute the ith triangular number without having to know the one before it, which

would require us to determine the one before it, and so forth and so on, until we

finally descended back down to t1. Doing that all the time is boring. Wouldn’t life

be nicer if we had a concise little formula for it?

Indeed, it would! Let’s try to find one. One way to look at this is by redrawing

the picture. After all, a triangle is usually half a square:

. . . well, maybe not quite half a square. Our triangle seems to cover the entire

diagonal. Well, a triangle is also half a rectangle. . .

That works out very nicely! The nth rectangle has area n(n + 1), so it makes

sense that the ith triangle has area n(n+1)/2. This is a perfectly reasonable explana-

tion, but if you prefer, we can resort to induction: It is clear that t1 = 1. Assume

that tn = n(n+1)/2; we obtain tn+1 by adding n+ 1 to tn. Simplifying the sum, we

1Hope that gave you a chuckle.
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see that

tn+1 = tn + (n+ 1) = n(n+1)/2 + 2n+2/2 = (n2+n)+(2n+2)/2

= n2+3n+2/2 = (n+2)(n+1)/2 = (n+1)[(n+1)+1]/2.

Exercises

1. The nth pentagonal number is the number of pebbles you get when ar-

ranged in a pentagon with n pebbles on a side; the first few are 1, 6, 16, 31,

. . . . (See the diagrams below.) Conjecture a concise formula, and prove that

it is correct.

Hint: To find a conjecture for the formula, look for triangular numbers.

2. The nth hexagonal number is the number of pebbles you get when arranged

in a hexagon with n pebbles on a side. Find the first few hexagonal numbers,

conjecture a concise formula, and prove that it is correct.

3.2 Irrational numbers

The Pythagoreans of old believed that every measurement could be represented as

the ratio of two integers. So, for instance, a right triangle whose legs have length 1

should have a hypotenuse whose length is the ratio of two integers. Which ones?

Applying the Pythagorean theorem of right triangles, we determine that the

length h of the hypotenuse is
√

2. Let’s assume that we can, in fact, write h as

a ratio of two integers — and let’s also assume that the integers are in reduced
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form. That is, h = a/b, where gcd(a, b) = 1. It is perfectly sensible restriction

to suppose that a and b are relatively prime, since we can reduce any fraction to

lowest terms.

Naturally, we’d like to find two such integers, so let’s try to identify some

properties of a and b. It seems natural to square both sides of the equation, so that

h2 = a2/b2. Recall that h is the square root of 2, so h2 = 2, so we can rewrite the

equation again as 2 = a2/b2. Multiply both sides of the equation by b2 to see that

a2 = 2b2.

Now, do you remember Euclid’s criterion for a prime number? It said that

if a prime number divides a product, then it must divide one of the factors. The

equation a2 = 2b2 has a prime number, 2, that divides a2; Euclid’s criterion tells

us that 2 divides a! We have discovered that a is even!

Let’s see if we can find something similar about b. Since a is even, we can

write a = 2c, where c is another integer. The equation a2 = 2b2 now becomes

(2c)2 = 2b2, or, 4c2 = 2b2. Divide both sides by 2 to see that 2c2 = b2. Euclid’s

criterion tells us again that 2 divides b! We have discovered that b is also even!

Isn’t this great news? We started off looking for a representation of the square

root of two as a ratio of integers. We ended up finding that it has to be the ratio of

two even integers. This is incredible!

. . . uhm, wait. What was it we knew about a and b? We had assumed that they

had no common factor. . . so how can they both be even?

Indeed, we have met a contradiction! We assumed two things: first, that we

could represent the square root of two as the ratio of two integers; second, that

these integers have no common factor. We found instead that the integers had to

have a common factor. There is nothing unreasonable in the second assumption,

as any fraction can reduce to lowest terms. The first assumption must be false: we

cannot represent
√

2 as the ratio of two integers.

Remark 3. Remember how we said the Pythagoreans believed that every mea-

surement could be represented as the ratio of two integers. According to lore, it
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was a Pythagorean who discovered this fact. Once he told his companions, they

sent him on a one-way cruise to the bottom of the Mediterranean ocean. The

Pythagoreans have a well-deserved reputation for mathematical excellence, but

even they were only human.

Exercises

1. Show that if p is prime, then we cannot write
√
p as the ratio of two integers.

2. Show that if n = pm, where p is prime and does not divide m, then we

cannot write
√
n as the ratio of two integers.

3.3 Gaussian integers

A Gaussian integer has the form a + bi, where a and b are integers, and i is the

square root of−1. For instance, 2+3i and−i are Gaussian integers. We write Z[i]

for the set of Gaussian integers; it enjoys certain properties which are interesting

and sometimes surprising.

3.3.1 Ring properties of Z[i]

The first interesting property of the Gaussian integers is that they satisfy the prop-

erties of a ring. We show some of these properties now, and leave the rest for the

exercises.

Addition satisfies the properties of:

• closure, because

(a+ bi) + (c+ di) = a+ (bi+ c) + di = a+ (c+ bi) + di

= (a+ c) + (bi+ di) = (a+ c) + (b+ d)i,

and closure of integer addition implies that this number is a Gaussian inte-

ger;
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• associativity, because

(a+ bi) + [(c+ di) + (e+ fi)] = (a+ bi) + [(c+ e) + (d+ f)i]

= [a+ (c+ e)] + [b+ (d+ f)]i

= [(a+ c) + e] + [(b+ d) + f ]i

= [(a+ c) + (b+ d)i] + (e+ fi)

= [(a+ bi) + (c+ di)] + (e+ fi)

— note how we relied on the associative property of integer addition for

this;

• commutativity, as you will show in the assessment;

• identity, as 0 + 0i satisfies

(a+ bi) + (0 + 0i) = (a+ 0) + (b+ 0)i = a+ bi and

(0 + 0i) + (a+ bi) = (0 + a) + (0 + b)i = a+ bi;

and

• inverses, as you will show in the assessment.

Multiplication satisfies the properties of:

• closure, as you will show in the assessment;
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• associativity, because

(a+ bi)[(c+ di)(e+ fi)] = (a+ bi)[(ce− df) + (cf + de)i]

= [a(ce− df)− b(cf + de)]

+ [a(cf + de) + b(ce− df)]i

= [a(ce)− b(de)− a(df)− b(cf)]

+ [a(cf)− b(df) + a(de) + b(ce)]i

= [(ac)e− (bd)e− (ad)f − (bc)f ]

+ [(ac)f − (bd)f + (ad)e+ (bc)e]i

= [(ac− bd)e− (ad+ bc)f ]

+ [(ac− bd)f + (ad+ bc)e]i

= [(ac− bd) + (ad+ bc)i](e+ fi)

= [(a+ bi)(c+ di)](e+ fi)

— note how we relied on the associative property of integer multiplication

for this;

• commutativity, as you will show in the assessment;

• identity, as you will show in the assessment; and

• distributivity over addition, as you will show in the assessment.

Exercises

1. Complete the explanation that the Gaussian integers satisfy the properties

of a ring.

3.3.2 Division

We can think of Gaussian integers as vectors on the plane: a + bi corresponds to

the vector (a, b).
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Example 25. We illustrate the vector corresponding to 2 + 3i:

5 10

5

10

15

Call the square of the Euclidean length of this vector the norm of the Gaussian

integer, written as, N(a + bi) = a2 + b2. Typically, one does not multiply two

vectors to each other, but here it makes sense to multiply them in a way that

imitates the product of the corresponding Gaussian integers:

• If we multiply a + bi by a positive integer c, we scale the corresponding

vector to one whose length is c ·N(a+ bi).

• If we multiply a+bi by a negative integer c, we both scale the corresponding

vector and reverse its orientation.

• If we multiply a + bi by i, we get −b + ai, which rotates the vector 90◦

clockwise and preserves its length.

Putting these together, we obtain the following result.

Lemma 10. The vector corresponding to the product of a + bi and c + di is

obtained by adding:

• a vector obtained by scaling a + bi by |c|, reversing the orientation if c is

negative, and
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• a vector obtained by rotating a + bi by 90◦ counterclockwise, scaling the

result by |d|, and reversing the orientation if d is negative.

Example 26. We illustrate the products of 2 + 3i with 5, i, and 5− 2i below. See

if you can pick out which of the colored vectors corresponds to which number or

product of numbers.

5 10 15

5

10

15

If we can multiply Gaussian integers, then there’s a good bet that we can divide

them, too — but how should we go about doing it? In particular, we’d like to do

so in a way that gives us the smallest remainder possible — where, by “smallest”

remainder, we refer of course to a Gaussian integer’s norm.

This approach implies that we can divide two Gaussian integers: let a+bi, c+

di ∈ Z[i], and put

S = {N((a+ bi)− (m+ ni)(c+ di)) : m,n ∈ Z}.

Notice that S ⊆ N. By the well ordering property, it has a smallest element, s,

which corresponds to some m+ ni ∈ Z[i]. Choose these particular m and n, and

we have s < N(c + di), for otherwise we lie outside a circle of radius N(c + di)

around a+ bi. We elaborate on this below.
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Let’s start with two Gaussian integers that lie on the same line, but aren’t

multiples of each other: 4 + 2i and 10 + 5i. It should be pretty clear that we can

obtain the smallest possible remainder using either 2 or 3, since

• (10 + 5i)− 2× (4 + 2i) = 2 + i, which has norm 5, and

• (10 + 5i)− 3× (4 + 2i) = −2− i, which also has norm 5.

5 10 15

5

10

2(4 +2i)

3(4 +2i)
10 +5i

You should notice right away that there can be more than one remainder: in this

example, we have±(2+i). So that’s one difference from ordinary integer division.

On the other hand, the norm seems to be unique, at 5.

So what if the two integers aren’t on the same line? Inasmuch as products of

Gaussian integers consist of adding one scaling to the rotation of another scaling,

it seems best to adopt the following approach for two Gaussian integers α and β:

• Find the integer c such that the distance between cα and β is minimal.

• Find the integer d such that the distance between diα and β is minimal.

• Use γ = c+ di for the quotient, and β − γα for the remainder.

Example 27. We illustrate the technique by dividing 10+8i by 2+i. We minimize

N((10 + 8i)− c(2 + i)) when c = 6, and minimize N((10 + 8i)− di(2 + i)) when

d = 1. Adding them produces 11 + 8i.
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5 10 15

5

10

10 +8i

6(2 +i)

i(2 +i)

If you look carefully, you will see that there is more than one way to obtain a

remainder that like within the circle: for instance, both γ = 5 + i and γ = 6 + 2i

serve this purpose. However, they do not minimize N((10 + 8i)− γ(2 + i)), and

we will use this fact to prove the general case.

Theorem 22. If γ is chosen as described above, then N(β − γα) < N(α).

Sketch of proof. Our proof relies highly on geometry, so it may help to draw some

pictures while reading this. In particular, we frequently use the norm of a Gaussian

integer as the radius of a circle around another one.

Suppose, to the contrary, that it is not; then the endpoint of γα lies on or

outside a circle of radiusN(α) with the endpoint of β at the center. For simplicity,

we assume that α has positive real and imaginary parts; we can modify the easily

otherwise, as indicated below. Without loss of generality, suppose γα is closer to

the origin than β. Extend γ by adding to it one of γ̌ = γ + α or γ̂ = γ + iα. If

the distance to β remains unchanged in either direction, then these three points lie

on a circle with β at the center. By hypothesis, the circle has radius greater than

N(α), so that γ + (1 + i)α lies within it, contradicting the choice of both c and

d. Otherwise, supposed that both γ̌ and γ̂ lie further from β than γ; in this case, β

must lie within a circle of radius N(α) from γ, contradicting the hypothesis that

it does not. Thus, either γ̌ or γ̂ lies closer to β than γ, which again contradicts the
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choice of c or d. We conclude that γ

Remark 4. Usually, textbooks present Gaussian division a different way: multiply

a fraction by the conjugate of the denominator, then pick “good” integers that are

close to the resulting complex number. For instance, our example above would

become
10 + 8i

2 + i
· 2− i

2− i
=

28 + 6i

5
=

28

5
+ i

6

5
.

This suggests that, if we let γ = 6 + i, we get the answer we need — and that

was, in fact, the answer we found geometrically! See if you can visualize how this

approach relates to the method given above.

Exercises

1. Divide 30 + 23i by

(a) 4,

(b) 2i, and

(c) 4 + 2i.

Use both the geometric approach, and the method of simplifying a complex

fraction, then rounding. Notice that you don’t always get the same answer.

3.3.3 Primality

The only integers which have integral multiplicative inverses are ±1. Well, which

Gaussian integers have multiplicative inverses? Suppose a + bi has an inverse

c + di. You will show in the exercises that, in this case, b = −d/c2+d2. Because c

and d are integers, the sum of their squares must be 1 (it is the only way we can

get c2 + d2 to divide d) so c = ±1 and d = 0 or c = 0 and d = ±1. In short, the

only Gaussian integers with multiplicative inverses are ±1 and ±i.
Another question to ask is, what makes a Gaussian integer “prime”? Accord-

ing to the irreducibility criterion, an integer p is prime if p is divisible only by 1
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and itself. As an integer, 2 is prime because the only numbers that divide it are 1

and itself.

What about the Gaussian integers? Rather surprisingly, many prime integers

are not prime Gaussian integers! For example, 5 = (1 + 2i)(1 − 2i), 13 =

(2 + 3i)(2− 3i), 17 = (1 + 4i)(1− 4i), and so forth.

Does this happen to all prime integers? We pass over 2 for the moment, but

suppose there exist integers a and b such that 7 = (a + bi)(a − bi). That would

mean 7 = a2 + b2. The fact that a and b are integers means that their squares

have to be positive integers, which means that they have to be smaller than 7.

That limits our options, and it’s easy to verify that no integer squares add up to 7:

1 + 1 = 2, 1 + 4 = 5, 4 + 4 = 8. So, 7 remains prime even as a Gaussian integer.

We see that the question of whether a number is prime depends very much on

the ring!

Exercises

1. Show that 2 is not a Gaussian prime.

2. Show that if an integer p factors as (a + bi)(c + di), then the factors are

conjugate.

3. Show that 3 is a Gaussian prime.

4. Show that 1 + i is a Gaussian prime.

5. Show that if a+ bi and c+ di are multiplicative inverses, then b = −d/c2+d2.

6. Experiment with some small prime integers to formulate a criterion which

identifies the ones that are prime Gaussian integers, and the ones that are

not prime Gaussian integers. Do not try to prove your connjecture. (Yet.)
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3.4 Algebraic and transcendental numbers

We call a number algebraic when it can be expressed as the root of a polynomial

with integer coefficients. For example,

• 4 is algebraic, because it is a root of the polynomial x− 4; and

•
√

2 is algebraic, because it is a root of the polynomial x2 − 2.

We call a number transcendental if it is not algebraic. It is not immediately

obvious that any numbers are transcendental.

This section considers some properties of algebraic numbers, as well as the

existence of transcendental numbers.

3.4.1 The algebraic numbers form a ring

Let A be the set of algebraic numbers. Is this a ring? To see that it is, let α and β

be algebraic numbers. Since they are roots of polynomials, supposed they are the

roots of the polynomials f and g. There are infinitely many polynomials like this,

so choose f and g to be of minimal degree.

We first show closure of addition and multiplication. Let E be the smallest

ring that contains both Q and α, and let F be the smallest ring that contains E and

β. Notice that E is a vector space of finite dimension over Q, because its elements

all have the form
∑n

i=0 aiα
i. In fact, E is itself a ring and a field, because the

scalars come from E itself, and α has an inverse:

Theorem 23. α has a multiplicative inverse in E.

Proof. Let a0, a1, . . ., an be the coefficients of f , with ai the coefficient of xi.

Since α is a root of f , we know that

a0α
0 + a1α

1 + . . .+ anα
n = 0.
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Rewrite this equation as

α
(
a1 + a2α

1 + . . .+ anα
n−1
)

= −a0.

Since 0 is not a root of f , we can divide both sides by −a0, obtaining

α

(
−a1

a0

− a2

a0

α1 − . . .− an
a0

αn−1

)
= 1.

So, we have found a multiplicative inverse, after all — but is it in E? The quotients

−ai/a0 are all rational numbers, and E is the smallest ring that contains both Q and

α, implying that, indeed,

−a1

a0

− a2

a0

α1 − . . .− an

a0

αn−1 ∈ E.

A similar argument shows that F is both a vector space of finite dimension

over E, and a field. Notice that this makes F a vector space of finite dimension

over Q, just as E is.

Since F is a field that contains both α and β, it must also contain both α + β

and αβ. But F is finite dimensional over Q, say of dimension n, which means that

we can find rational numbers c0, c1, . . . , cn and d0, d1, . . . , dn such that

c0 + c1(α + β)1 + ...+ cn(α + β)n = 0

and

d0 + d1(αβ)1 + ...+ dn(αβ)n = 0.

These equations remain true even if we multiply both sides by the greatest com-

mon denominators of the ci and the di, so we may assume that these coefficients

are actually integers! (If the first choice was wrong, just reassign them to the

coefficients obtained by clearing the denominators from the equations above.)
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So, let

f̂ = c0 + c1x+ · · ·+ cnx
n, and

ĝ = d0 + d1x+ · · ·+ dnx
n.

Per the discussion above, f̂ and ĝ are polynomials with integer coefficients. Since

α+ β is a root of f̂ and αβ is a root of ĝ, we see that α+ β and αβ are algebraic.

Our choice of α and β was arbitrary in A, so the algebraic numbers are closed

under addition and multiplication.

We have shown that A is closed under addition and multiplication. The re-

maining properties of a ring are immediate, as A is a subset of the set C of complex

numbers, which is itself a ring.

3.4.2 Liouville’s number

It would be nice if all numbers were algebraic, but they are not. In fact, some

fairly important numbers, such as e and π, are not algebraic. Showing that these

numbers are transcendental lies beyond the scope of these notes. Instead, we look

at Liouville’s number,

λ =
∞∑
i=1

1

10i!
.

If you’ve taken Calculus, then you’ll agree that this sum converges. The first

“few” digits of its decimal representation are

0.110001000000000000000001 . . . .

As the digits proceed on to the right, the number of 0’s between two 1’s grows

huge, thanks to the factorial. Since the decimal expansion neither terminates nor

repeats, λmust be irrational. What’s more, this particular pattern of non-repetition

is critical to transcendence. The require two steps, neither of which is obvious.
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The first step is to show Liouville’s inequality, which states that an irrational

algebraic number is not “especially close” to any rational number. What does that

mean? Suppose that α is algebraic and irrational, while a/b is rational. Choose a

minimal polynomial f of degree n that has α as a root; since f is minimal, it does

not factor. We will show that only finitely many rational numbers a/b are closer to

α than 1/bn+1.

The second step is to show that λ does not satisfy Liouville’s inequality. Were

λ algebraic, only finitely many rational numbers a/b would be closer to α than
1/bn+1, regardless of the choice of a/b. Remember that λ has all those increasing

lengths of 0’s: that will give us an infinite sequence of rational numbers that are

closer to λ than 1/10n+1, regardless of the choice of n.

Proof of Liouville’s Inequality. Let α be an arbitrary algebraic number, and f a

polynomial of minimal degree, whose root is α. Suppose a/b is closer to α than
1/bn+1. Without loss of generality, we may assume that b is positive; after all, if

it isn’t, we can switch the signs of a and b and have the same equation. Then

f(a/b) can be written as a fraction whose denominator is the integer bn and whose

numerator is an integer. Hence, |f(a/b)| ≥ 1/bn.

The Factor Theorem tells us that f factors as g · (x − α), where g is some

polynomial (not necessarily with integer coefficients). Hence |f(a/b)| = |a/b−α| ·
|g(a/b)|. By substitution, 1/bn ≤ |a/b − α| · |g(a/b)|. If a/b is as close to α as we

claim, then a/b is within 1/bn of α, and 1/bn is smaller than 1, so 1/bn is within 1 of

α, so |a/b| ≤ |α|+ 1. Substitute this into g, and by using the triangle inequality on

the terms of g we find that

|g(a/b)| ≤ some expression in terms of α, but not in terms of a or b.

Call this expression c. By substitution, we have

1/bn ≤ |a/b− α| · |g(a/b)| ≤ 1/bn+1 · c.
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Multiply both sides of the opposite ends of the inequality to find that

b ≤ c.

Since b is positive, there are only finitely many b that we can choose to be smaller

than c. For each of these, only finitely many a satisfy 1/bn+1 ≤ |a/b − α|. Hence,

there are only finitely many rational numbers a/b closer to α than 1/bn+1.

Proof that λ is transcendental. Let n be any positive integer, and let

an
bn

=
1

10
+

1

102
+ · · ·+ 1

10n
.

We can write a/b in lowest terms as 1+10+···+10n−1/10n. Consider that λ − an/bn =

1/10n+1 + 1/10n+2+...; we have

|λ− an
bn
| < 2/10n+1

<

1

bn+1
.

We have found an infinite sequence of integers a/b that are closer to λ than 1/bn+1.

As this violates Liouville’s inequality, and λ is irrational, it cannot be algebraic:

λ must be transcendental.

Exercises

1. Find a polynomial f whose roots include
√

2. Try to give f as low a degree

as possible.

2. (a) Let E be the smallest ring that contains both Q and
√

2. What is the

dimension of E as a vector space over Q?

(b) Let F be the smallest ring that contains both E and 4
√

3. What is the

dimension of F as a vector space over E, and as a vector space over

Q?

3. Suppose that the polynomials f and g in the discussion of Section 3.4.1

have degree k and m. What are the dimensions of E and F, as vector spaces

over Q?
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4. Find the value of c that satisfies the proof of Liouville’s Inequality for
√

2.
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Chapter 4

Congruences

A congruence is nothing more than a statement about divisibility. The theory of

congruences was introduced by Carl Friedreich Gauss. Gauss contributed to the

basic ideas of congruences and proved several theorems related to this theory. We

start by introducing congruences and their properties. We proceed to prove theo-

rems about the residue system in connection with the Euler φ-function. We then

present solutions to linear congruences which will serve as an introduction to the

Chinese remainder theorem. We present finally important congruence theorems

derived by Wilson, Fermat and Euler.

4.1 Introduction to congruences

As we mentioned in the introduction, the theory of congruences was developed by

Gauss at the beginning of the nineteenth century.

Definition 13. Let m be a positive integer. We say that a is congruent to b modulo

m if m | (a− b) where a and b are integers, i.e. if a = b+ km where k ∈ Z.

If a is congruent to b modulo m, we write a ≡ b(mod m).

77
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Example 28. 19 ≡ 5(mod 7). Similarly 2k + 1 ≡ 1(mod 2) which means every

odd number is congruent to 1 modulo 2.

There are many common properties between equations and congruences. Some

properties are listed in the following theorem.

Theorem 24. Let a, b, c and d denote integers. Letm be a positive integers. Then:

1. If a ≡ b(mod m), then b ≡ a(mod m).

2. If a ≡ b(mod m) and b ≡ c(mod m), then a ≡ c(mod m).

3. If a ≡ b(mod m), then a+ c ≡ b+ c(mod m).

4. If a ≡ b(mod m), then a− c ≡ b− c(mod m).

5. If a ≡ b(mod m), then ac ≡ bc(mod m).

6. If a ≡ b(mod m), then ac ≡ bc(mod mc), for c > 0.

7. If a ≡ b(mod m) and c ≡ d(mod m) then a+ c ≡ (b+ d)(mod m).

8. If a ≡ b(mod m) and c ≡ d(mod m) then a− c ≡ (b− d)(mod m).

9. If a ≡ b(mod m) and c ≡ d(mod m) then ac ≡ bd(mod m).

Proof. 1. If a ≡ b(mod m), then m | (a − b). Thus there exists integer k

such that a − b = mk, this implies b − a = m(−k) and thus m | (b − a).

Consequently b ≡ a(mod m).

2. Since a ≡ b(mod m), then m | (a − b). Also, b ≡ c(mod m), then m |
(b− c). As a result, there exit two integers k and l such that a = b+mk and

b = c+ml, which imply that a = c+m(k + l) giving that a = c(mod m).
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3. Since a ≡ b(mod m), then m | (a− b). So if we add and subtract c we get

m | ((a+ c)− (b+ c))

and as a result

a+ c ≡ b+ c(mod m).

4. Since a ≡ b(mod m), then m | (a− b) so we can subtract and add c and we

get

m | ((a− c)− (b− c))

and as a result

a− c ≡ b− c(mod m).

5. If a ≡ b(mod m), then m | (a − b). Thus there exists integer k such that

a− b = mk and as a result ac− bc = m(kc). Thus

m | (ac− bc)

and hence

ac ≡ bc(mod m).

6. If a ≡ b(mod m), then m | (a − b). Thus there exists integer k such that

a− b = mk and as a result

ac− bc = mc(k).

Thus

mc | (ac− bc)

and hence

ac ≡ bc(mod mc).
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7. Since a ≡ b(mod m), then m | (a − b). Also, c ≡ d(mod m), then

m | (c−d). As a result, there exits two integers k and l such that a−b = mk

and c− d = ml. Note that

(a− b) + (c− d) = (a+ c)− (b+ d) = m(k + l).

As a result,

m | ((a+ c)− (b+ d)),

hence

a+ c ≡ b+ d(mod m).

8. If a = b+mk and c = d+ml where k and l are integers, then

(a− b)− (c− d) = (a− c)− (b− d) = m(k − l).

As a result,

m | ((a− c)− (b− d)),

hence

a− c ≡ b− d(mod m).

9. There exit two integers k and l such that a − b = mk and c − d = ml and

thus ca− cb = m(ck) and bc− bd = m(bl). Note that

(ca− cb) + (bc− bd) = ac− bd = m(kc− lb).

As a result,

m | (ac− bd),

hence

ac ≡ bd(mod m).
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Example 29.

1. Since 14 ≡ 8(mod 6), we conclude 8 ≡ 14(mod 6).

2. Since 22 ≡ 10(mod 6), we conclude that 10 ≡ 4(mod 6). Notice that, in

turn, 22 ≡ 4(mod 6).

3. Since 50 ≡ 20(mod 15), we conclude 50+5 = 55 ≡ 20+5 = 25(mod 15).

4. Since 50 ≡ 20(mod 15), we conclude 50−5 = 45 ≡ 20−5 = 15(mod 15).

5. Since 19 ≡ 16(mod3), we conclude 2(19) = 38 ≡ 2(16) = 32(mod 3).

6. Since 19 ≡ 16(mod3), we conclude 2(19) = 38 ≡ 2(16) = 32(mod 2(3) =

6).

7. Since 19 ≡ 3(mod 8) and 17 ≡ 9(mod 8), we conclude 19 + 17 = 36 ≡
3 + 9 = 12(mod 8).

8. Since 19 ≡ 3(mod 8) and 17 ≡ 9(mod 8), then 19 − 17 = 2 ≡ 3 − 9 =

−6(mod 8).

9. Since 19 ≡ 3(mod 8) and 17 ≡ 9(mod 8), we conclude 19(17) = 323 ≡
3(9) = 27(mod 8).

We now present a theorem that will show one difference between equations

and congruences: we cannot cancel across congruence in all cases. For instance,

8 × 6 ≡ 8(mod 20) and 16 × 8 ≡ 8(mod 20), so the transitive property implies

that 2 × 3 ≡ 4 × 3(mod 6). However, it is obviously a bad idea to cancel 8 from

both sides of this congruence, as 6 is not congruent to 16 modulo 10.

In general, this means that we cannot solve congruences in quite the same

way as we solve equations: the congruence 2x ≡ 0(mod m) does not force x ≡
0(mod m)! Nevertheless, there are some cases where this is possible, and we can

also find some similar properties that do hold. In other words, dividing both sides

of the congruence by the same integer doesn’t preserve the congruence.
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Theorem 25.

1. If a, b, c and m are integers such that m > 0, d = (m, c) and ac ≡
bc(mod m), then a ≡ b(mod m/d).

2. If (m, c) = 1 then a = b(mod m) if ac ≡ bc(mod m).

Proof. Part 2 follows immediately from Part 1. For Part 1, if ac ≡ bc(mod m),

then

m | (ac− bc) = c(a− b).

Hence there exists k such that c(a − b) = mk. Dividing both sides by d, we get

(c/d)(a − b) = k(m/d). Since (m/d, c/d) = 1, it follows that m/d | (a − b).

Hence a ≡ b(mod m/d).

Example 30. 38 ≡ 10(mod 7). Since (2, 7) = 1 then 19 ≡ 5(mod 7).

The following theorem combines several congruences of two numbers with

different moduli.

Theorem 26. If

a ≡ b(mod m1), a ≡ b(mod m2), ..., a ≡ b(mod mt)

where a, b,m1,m2, ...,mt are integers and m1,m2, ...,mt are positive, then

a ≡ b(mod 〈m1,m2, ...mt〉)

Proof. Since a ≡ b(mod mi) for all 1 ≤ i ≤ t. Thus mi | (a− b). As a result,

〈m1,m2, ...,mt〉 | (a− b)

(prove this as an exercise). Thus

a ≡ b(mod 〈m1,m2, ...mt〉).
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Exercises

1. Determine whether 3 and 99 are congruent modulo 7 or not.

2. Show that if x is an odd integer, then x2 ≡ 1(mod 8)

3. Show that if a, b,m and n are integers such that m and n are positive, n | m
and a ≡ b(mod m), then a ≡ b(mod n).

4. Show that if ai ≡ bi(modm) for i = 1, 2, ..., n, wherem is a positive integer

and ai, bi are integers for j = 1, 2, ..., n, then
∑n

i=1 ai ≡
∑n

i=1 bi(mod m)

5. For which n does the expression 1 + 2 + ...+ (n− 1) ≡ 0(mod n) holds.

6. Show that a number is divisible by three if and only if the sum of its digits

is divisible by 3.

Hint: Write 3 base 10, and use Theorem 24.

7. Show that a number is divisible by nine if and only if the sum of its digits is

divisible by 9.

8. Show that a number is divisible by four if and only if its last two digits (tens

and ones place) make a number that is divisible by four.

9. Show that a number is divisible by eight if and only if its last three digits

make a number that is divisible by eight.

10. Show that a number is divisible by eleven if and only if the alternating sum

of its digits is divisible by 11. For instance, the alternating sum of 112 = 121

is 1−2+1 = 0, and the alternating sum of 46×11 = 506 is 5−0+6 = 11.

11. Using techniques similar to those of the previous exercises, formulate and

prove rules of divisibility for 6 and 7.
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4.2 Residue Systems and Euler’s φ-Function

4.2.1 Residue Systems

Suppose m is a positive integer. Given two integers a and b, we see that by the

division algorithm that a = bm + r where 0 ≤ r < m. We call r the least non-

negative residue of a modulo m. As a result, we see that any integer is congruent

to one of the integers 0, 1, 2, ...,m− 1 modulo m.

Definition 14. A complete residue system modulo m is a set of integers such that

every integer is congruent modulo m to exactly one integer of the set.

The easiest complete residue system modulom is the set of integers 0, 1, 2, ...,m−
1. Every integer is congruent to one of these integers modulom. This is important

enough that mathematicians call it the set of canonical residues modulo m.

Example 31. The set of integers {0, 1, 2, 3, 4} form a complete residue system

modulo 5. Another complete residue system modulo 5 could be 6, 7, 8, 9, 10.

Definition 15. A reduced residue system modulo m is a set of integers ri such that

(ri,m) = 1 for all i and ri 6= rj(mod m) if i 6= j.

Notice that, a reduced residue system modulo m can be obtained by deleting

all the elements of the complete residue system set that are not relatively prime to

m.

Example 32. The set of integers {1, 5} is a reduced residue system modulo 6.

The following lemma will help determine a complete residue system modulo

any positive integer m.

Lemma 11. A set of m incongruent integers modulo m forms a complete residue

system modulo m.
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Proof. We will prove this lemma by contradiction. Suppose that the set of m

integers does not form a complete residue system modulo m. Then we can find at

least one integer a that is not congruent to any element in this set. Hence non of

the elements of this set is actually congruent to the remainder when a is divided

by m. Thus dividing by m yields to at most m − 1 remainders. Therefore by the

pigeonhole principle, at least two integers in the set that have the same remainder

modulo m. This is a contradiction since the set of integers is formed ofm integers

that are incongruent modulo m.

Theorem 27. If a1, a2, ..., am is a complete residue system modulo m, and if k is

a positive integer with (k,m) = 1, then

ka1 + b, ka2 + b, ..., kam + b

is another complete residue system modulo m for any integer b.

Proof. Let us prove first that no two elements of the set {ka1+b, ka2+b, ..., kam+

b} are congruent modulo m. Suppose there exists i and j such that

kai + b ≡ kaj + b(mod m).

Thus we get that

kai ≡ kaj(mod m).

Now since (k,m) = 1, we get

ai ≡ aj(mod m)

But for i 6= j, ai is inequivalent to aj modulo m. Thus i = j. Now notice that

there are m inequivalent integers modulo m and thus by Lemma 10, the set form

a complete residue system modulo m.
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4.2.2 Euler’s φ-Function

We now present a function that counts the number of positive integers less than a

given integer that are relatively prime to that given integer. This function is called

Euler φ-function. We will discuss the properties of Euler φ-function in details in

chapter 5. It will be sufficient for our purposes in this chapter to the notation.

Definition 16. The Euler φ-function of a positive integer n, denoted by φ(n)

counts the number of positive integers less than n that are relatively prime to

n.

Example 33. Since 1 and 3 are the only two integers that are relatively prime to

4 and less than 4, then φ(4) = 2. Also, 1,2,...,6 are the integers that are relatively

prime to 7 that are less than 7, thus φ(7) = 6.

Now we can say that the number of elements in a reduced residue system

modulo n is φ(n).

Theorem 28. If a1, a2, ..., aφ(n) is a reduced residue system modulo n and (k, n) =

1, then ka1, ka2, ..., kaφ(n) is a reduced residue system modulo n.

Proof. The proof proceeds exactly in the same way as that of Theorem 24.

Exercises

1. Give a reduced residue system modulo 12.

2. Give a complete residue system modulo 13 consisting only of odd integers.

3. Find φ(8) and φ(101).

4. Show that any reduced residue system satisfies the properties of a ring.
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4.3 Linear Congruences

Because congruences are analogous to equations, it is natural to ask about solu-

tions of linear equations. In this section, we will be discussing linear congruences

of one variable and their solutions. We start by defining linear congruences.

Definition 17. A congruence of the form ax ≡ b(mod m) where x is an unknown

integer is called a linear congruence in one variable.

It is important to know that if x0 is a solution for a linear congruence, then

all integers xi such that xi ≡ x0(mod m) are solutions of the linear congruence.

Notice also that ax ≡ b(mod m) is equivalent to a linear Diophantine equation

i.e. there exists y such that ax − my = b. We now prove theorems about the

solutions of linear congruences.

Theorem 29. Let a, b and m be integers such that m > 0 and let c = (a,m). If c

does not divide b, then the congruence ax ≡ b(mod m) has no solutions. If c | b,
then

ax ≡ b(mod m)

has exactly c incongruent solutions modulo m.

Proof. As we mentioned earlier, ax ≡ b(mod m) is equivalent to ax −my = b.

By Theorem 19 on Diophantine equations, we know that if c does not divide b,

then the equation, ax − my = b has no solutions. Notice also that if c | b, then

there are infinitely many solutions whose variable x is given by

x = x0 + (m/c)t

Thus the above values of x are solutions of the congruence ax ≡ b(modm). Now

we have to determine the number of incongruent solutions that we have. Suppose

that two solutions are congruent, i.e.

x0 + (m/c)t1 ≡ x0 + (m/c)t2(mod m).
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Thus we get

(m/c)t1 ≡ (m/c)t2(mod m).

Now notice that (m,m/c) = m/c and thus

t1 ≡ t2(mod c).

Thus we get a set of incongruent solutions given by x = x0 + (m/c)t, where t is

taken modulo c.

Remark 5. Notice that if c = (a,m) = 1, then there is a unique solution modulo

m for the equation ax ≡ b(mod m).

Example 34. Let us find all the solutions of the congruence 3x ≡ 12(mod 6).

Notice that (3, 6) = 3 and 3 | 12. Thus there are three incongruent solutions

modulo 6. We use the Euclidean algorithm to find the solution of the equation

3x − 6y = 12 as described in chapter 2. As a result, we get x0 = 6. Thus the

three incongruent solutions are given by x1 = 6(mod 6), x1 = 6 + 2 = 2(mod 6)

and x2 = 6 + 4 = 4(mod 6).

As we mentioned earlier in Remark 2, the congruence ax ≡ b(mod m) has a

unique solution if (a,m) = 1. This will allow us to talk about modular inverses.

Definition 18. A solution for the congruence ax ≡ 1(mod m) for (a,m) = 1 is

called the modular inverse of a modulo m. We denote such a solution by ā.

Example 35. The modular inverse of 7 modulo 48 is 7. Notice that a solution for

7x ≡ 1(mod 48) is x ≡ 7(mod 48).

Exercises

1. Find all solutions of 3x ≡ 6(mod 9).

2. Find all solutions of 3x ≡ 2(mod 7).
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3. Find an inverse modulo 13 of 2 and of 11.

4. Show that if ā is the inverse of a modulo m and b̄ is the inverse of b modulo

m, then āb̄ is the inverse of ab modulo m.

4.4 The Chinese Remainder Theorem

In this section, we discuss the solution of a system of congruences having different

moduli. An example of this kind of systems is the following; find a number that

leaves a remainder of 1 when divided by 2, a remainder of 2 when divided by

three and a remainder of 3 when divided by 5. This kind of question can be

translated into the language of congruences. As a result, in this chapter, we present

a systematic way of solving this system of congruences.

4.4.1 Direct solution

Theorem 30. The system of congruences

x ≡ b1(mod n1),

x ≡ b2(mod n2),

...

x ≡ bt(mod nt),

has a unique solution modulo N = n1n2...nt if n1, n2, ..., nt are pairwise rela-

tively prime positive integers.

Proof. Let Nk = N/nk. Since (ni, nj) = 1 for all i 6= j, then (Nk, nk) = 1.

Hence by Theorem 26 , we can find an inverse yk of Nk modulo nk such that

Nkyk ≡ 1(mod nk). Consider now

x =
t∑
i=1

biNiyi
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Since

Nj ≡ 0(mod nk) for all j 6= k,

thus we see that

x ≡ bkNkyk(mod nk).

Also notice that Nkyk ≡ 1(mod nk). Hence x is a solution to the system of t

congruences. We have to show now that any two solutions are congruent modulo

N . Suppose now that you have two solutions x0, x1 to the system of congruences.

Then

x0 ≡ x1(mod nk)

for all 1 ≤ k ≤ t. Thus by Theorem 23, we see that

x0 ≡ x1(mod N).

Thus the solution of the system is unique modulo N .

We now present an example that will show how the Chinese remainder theo-

rem is used to determine the solution of a given system of congruences.

Example 36. Solve the system

x ≡ 1(mod 2)

x ≡ 2(mod 3)

x ≡ 3(mod 5).

We have N = 2.3.5 = 30. Also

N1 = 30/2 = 15, N2 = 30/3 = 10and N3 = 30/5 = 6.

So we have to solve now 15y1 ≡ 1(mod 2). Thus

y1 ≡ 1(mod 2).
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In the same way, we find that

y2 ≡ 1(mod 3)and y3 ≡ 1(mod 5).

As a result, we get

x ≡ 1.15.1 + 2.10.1 + 3.6.1 ≡ 53 ≡ 23(mod 30).

Exercises

1. Find an integer that leaves a remainder of 2 when divided by either 3 or 5,

but that is divisible by 4.

2. Find all integers that leave a remainder of 4 when divided by 11 and leaves

a remainder of 3 when divided by 17.

3. Find all integers that leave a remainder of 1 when divided by 2, a remainder

of 2 when divided by 3 and a remainder of 3 when divided by 5.

4.4.2 Incremental solution

An alternate approach, which works with a more general class of systems of con-

gruence, is to solve incrementally. We have observed already that a linear con-

gruence corresponds to a linear Diophantine equation; thus, it is possible to take

a system of linear congruences, solve one, use its solution to solve a second, use

the resulting solution to solve a third, etc. In these cases, you can often find a

“unique” solution to the system even when the moduli are not pairwise prime.

For instance, suppose that x ≡ (mod 6), x ≡ 2(mod 10), and x ≡ 7(mod 15).

Here, no pair of moduli is relatively prime, but we can still find a unique solution

by rewriting the congruences as linear Diophantine equations.

Start by looking at the first congruence. Its solutions have the form x = 6q+4,

where q is an integer. Substitute this into the second congruence, and we have

6q + 4 ≡ 2(mod 10). This tells us that 6q + 4 = 10r + 2, where r is an integer.
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Solving this in the usual fashion for linear Diophantine equations, we find that all

solutions of the equation have the form q = −2 + 5a and r = −1 + 3a, where a

is an integer. By substitution, x = 6(−2 + 5a) + 4 = 30a− 8.

Substitute this into the third congruence, and we have 30a − 8 ≡ 15s + 7.

Solving this again in the usual fashion for linear Diophantine equations, we find

that all solutions of the equation have the form a = 1 + b, s = 1 + 2b, where b is

an integer. By substitution, x = 30(1 + b)− 8 = 30b− 8. We can now verify that

x ≡ 4 (mod 6), since 30b− 8 = (30b− 12) + 4 = 6(5b− 2) + 4;

x ≡ 2 (mod 10), since 30b− 8 = (30b− 10) + 2 = 10(3b− 1) + 2; and

x ≡ 7 (mod 15), since 30b− 8 = (30b− 15) + 7 = 15(2b− 1) + 7.

We found a solution to the system!

But in what sense is this solution “unique”? After all, there are infinitely many

solutions for x! Each new solution comes by adding or subtracting a multiple of 30

to a known solution, and 30 = lcm(6, 10, 15). Thus, the solution is unique modulo

the least common multiple! Notice how this generalizes the Chinese Remainder

Theorem: in that case, lcm(n1, n2, . . . , nt) = N precisely because the ni are

pairwise relatively prime.

Exercises

1. Solve the system of linear congruences x ≡ 4(mod 14), x ≡ 7(mod 15),

x ≡ 4(mod 21).

2. Show that there is no solution to the system of linear congruences x ≡
0(mod 6), x ≡ 7(mod 15), x ≡ 2(mod 10).

3. Show that if a solution of a system of linear congruences modulo n1, n2,

. . . , nt exists, then the solution is unique modulo lcm(n1, n2, . . . , nt).
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4.5 Field properties of residues modulo a prime, and

a primality test

Recall that “primality” is a fancy word for “the property of being prime”, and a

“primality test” is a criterion that determines whether an integer is prime. Cur-

rently, we have two theoretical criteria for primality of an integer:

• the irreducibility criterion (Definition 8); and

• Euclid’s criterion (Definition 9).

These are not especially useful for testing whether an integer is prime. To start

with, Euclid’s criterion isn’t even finite, as we’d have to test every product of

integers. At least the irreducibility criterion requires us to check only finitely

many factors (2, 3, 4, . . . ,
√
p) but even this gets tedious and wasteful as the

numbers grow beyond toy size. This section gives a third criterion for primality,

also finite, that takes a different approach.

4.5.1 When is a system of residues a field?

A set F is a field if addition and multiplication work the same in F as they do for

rational numbers:

• Addition satisfies the properties of:

– closure, associativity, and commutativity;

– there is an identity z such that z+x = x = x+ z for every x ∈ F; and

– every x ∈ F has an inverse y ∈ F such that x+ y = z = y + x.

• Multiplication satisfies the properties of:

– closure, associativity, and commutativity;
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– there is an identity ι ∈ F such that ιx = x = xι for every x ∈ F;

– every x ∈ F has an inverse y ∈ F such that xy = ι = yx; and

– distribution over addition.

Guess what? If p is prime, then the set Fp = {0, 1, ..., p− 1} is a field, where

addition and multiplication are performed modulo p. How so?

• Closure: Let x, y ∈ Fp. If we perform addition and multiplication modulo

p, then the sum and product can both be rewritten as elements of Fp by

computing the remainder from division by p.

• Associative: Let x, y, z ∈ Fp. Let w be the element of Fp satisfy w ≡
(x + y) + z (mod p). By definition of congruence, we can find an integer

q such that (x + y) + z = pq + w. Integer addition is associative, so

x+ (y+ z) = pq+w, also. By definition, w ≡ x+ (y+ z) (modp). Hence

x+ (y+ z) ≡ w ≡ (x+ y) + z: addition is associative modulo p. A similar

argument shows that multiplication is associative modulo p.

• Identity: Let x ∈ Fp. Notice that 0, 1 ∈ Fp; they satisfy the properties

x+ 0 = x = 0 + x and 1 · x = x = x · 1 as integers, so substitution implies

that they are congruent modulo p.

• Additive inverse: Let x be in Fp. We claim that p− x is an additive inverse

of x. Indeed, (p−x)+x = p = x+(p−x) as integers, and p ≡ 0 (mod p),

so an additive inverse exists. In addition, p − x ∈ Fp, so the inverse exists

in Fp.

• Multiplicative inverse: See Theorem 31.

• Distributive: Let x, y, z ∈ Fp. Notice that x(y + z) = xy + xz as integers,

so substitution implies that they are congruent modulo p.
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All the properties of a field are fairly clear, except multiplicative inverses. We turn

our attention to that now.

Theorem 31 (Fermat’s Little Theorem). If p is prime, then xp−1 ≡ 1 for any

x ∈ Fp. In other words, xp−2 is the multiplicative inverse of x.

Example 37. In F7, we see that

• 2 · 25 ≡ 2 · 32 ≡ 2 · 4 ≡ 8 ≡ 1 (mod 7);

• 3 · 35 ≡ 3 · 243 ≡ 729 ≡ 1 (mod 7);

• . . .

• 6 · 65 ≡ 6 · 7776 ≡ 46656 ≡ 1 (mod 7).

Alas, we cannot test it for all possible prime numbers, because (as we saw

earlier) there are infinitely many primes. To show that this is true for all primes,

we adopt a different approach.

Proof. Let x ∈ Fp, and consider the product

x× 2x× 3x× . . .× ((p− 1)x) = (p− 1)!xp−1. (4.1)

On the other hand, Theorem 27 tells us that {x, 2x, . . . , (p − 1)x} is a complete

system of residues, so its elements are congruent to {1, 2, . . . , p − 1}. By substi-

tution, then,

x× 2x× 3x× . . .× ((p− 1)x) ≡ 1× 2× 3× . . .× (p− 1) = (p− 1)!. (4.2)

Combining equations (4.1) and (4.2) via the transitive property, we see that

(p− 1)!xp−1 ≡ (p− 1)! (modp).
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The nonzero elements of Fp are all relatively prime to p. Thus, their product is

also relatively prime to p. By Theorem 25, we can cancel (p− 1)! from both sides

of this last equation to obtain the desired result:

xp−1 ≡ 1 (mod p).

4.5.2 Fermat’s Last Theorem as a primality test

If you think about it, you can see that Fermat’s Little Theorem gives us a primality

test. Recall that if a statement is true, then its contrapositive is also true. Fermat’s

Little Theorem states that if p is prime, then ap−1 ≡ 1 (mod p). The contrapositive

of this statement is that if ap−1 6≡ 1 (mod p), then p is not prime!

Example 38. We use a = 2 and p = 77 to show that 77 is not prime:

276 ≡ 26 × (27)10 ≡ 26 × 5110 ≡ 26 × 605

≡ 26 × 60× 582 ≡ 64× 60× 53 ≡ 9 (mod 77).

We did not end up with 1, so 77 is not prime.

Notice how we used properties of exponents to simplify the computation con-

siderably.

Unfortunately, the converse of the statement is not true: we can have am−1 ≡
1 (mod m), even when m is not prime and a 6= 1. For example, if m = 341,

then am−1 ≡ 1 for 98 elements in {2, 3, ..., 341}, even though 341 factors as the

product of 11 and 31.

Exercises

1. Use Fermat’s Little Theorem to show that 12 and 1001 are not prime. As a

hint, when computing ap−1, try to group products so that you minimize the

number of multiplications necessary.
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4.6 Theorems of Fermat, Euler, and Wilson

In this section we present three applications of congruences. The first theorem

is Wilson’s theorem which states that (p − 1)! + 1 is divisible by p, for p prime.

Next, we present Fermat’s theorem, also known as Fermat’s little theorem which

states that ap and a have the same remainders when divided by p where p - a.

Finally we present Euler’s theorem which is a generalization of Fermat’s theorem

and it states that for any positive integer m that is relatively prime to an integer a,

aφ(m) ≡ 1(mod m) where φ is Euler’s φ-function. We start by proving a theorem

about the inverse of integers modulo primes.

Theorem 32. Let p be a prime. A positive integer m is its own inverse modulo p

if and only if p divides m+ 1 or p divides m− 1.

Proof. Suppose that m is its own inverse. Thus

m.m ≡ 1(mod p).

Hence p | m2 − 1. As a result,

p | (m− 1)or p | (m+ 1).

We get that m ≡ 1(mod p) or m ≡ −1(mod p).

Conversely, suppose that

m ≡ 1(mod p)or m ≡ −1(mod p).

Thus

m2 ≡ 1(mod p).

Theorem 33. Wilson’s Theorem If p is a prime number, then p divides (p−1)!+1.
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Proof. When p = 2, the congruence holds. Now let p > 2. Using Theorem

26, we see that for each 1 ≤ m ≤ p, there is an inverse 1 ≤ m̄ ≤ p such that

mm̄ ≡ 1(mod p). Thus by Theorem 28, we see that the only two integers that

have their own inverses are 1 and p− 1. Hence after coupling the integers from 2

to p− 2 each with its inverse, we get

2.3.....(p− 2) ≡ 1(mod p).

Thus we get

1.2.3.....(p− 2)(p− 1) ≡ (p− 1)(mod p)

As a result, we have (p− 1)! ≡ −1(mod p).

Note also that the converse of Wilson’s theorem also holds. The converse tells

us whether an integer is prime or not.

Theorem 34. If m is a positive integer with m ≥ 2 such that

(m− 1)! + 1 ≡ 0 (mod m)

then m is prime.

Proof. Suppose that m has a proper divisor c1 and that

(m− 1)! + 1 ≡ 0(mod m).

That is m = c1c2 where 1 < c1 < m and 1 < c2 < m. Thus c1 is a divisor of

(m− 1)!. Also, since

m | ((m− 1)! + 1),

we get

c1 | ((m− 1)! + 1).

As a result, by Theorem 4, we get that

c1 | ((m− 1)! + 1− (m− 1)!),

which gives that c1 | 1. This is a contradiction and hence m is prime.
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We now present Fermat’s Theorem or what is also known as Fermat’s Little

Theorem. It states that the remainder of ap−1 when divided by a prime p that

doesn’t divide a is 1. We then state Euler’s theorem which states that the remain-

der of aφ(m) when divided by a positive integer m that is relatively prime to a is

1. We prove Euler’s Theorem only because Fermat’s Theorem is nothing but a

special case of Euler’s Theorem. This is due to the fact that for a prime number p,

φ(p) = p− 1.

Theorem 35. Euler’s Theorem If m is a positive integer and a is an integer such

that (a,m) = 1, then

aφ(m) ≡ 1(mod m)

Example 39. Note that 34 = 81 ≡ 1(mod 5). Also, 2φ(9) = 26 = 64 ≡ 1(mod 9).

We now present the proof of Euler’s theorem.

Proof. Let k1, k2, ..., kφ(m) be a reduced residue system modulo m. By Theorem

25, the set

{ak1, ak2, ..., akφ(m)}

also forms a reduced residue system modulo m. Thus

ak1ak2...akφ(m) = aφ(m)k1k2...kφ(m) ≡ k1k2...kφ(m)(mod m).

Now since (ki,m) = 1 for all 1 ≤ i ≤ φ(m), we have (k1k2...kφ(m),m) = 1.

Hence by Theorem 22 we can cancel the product of k’s on both sides and we get

aφ(m) ≡ 1(mod m).

An immediate consequence of Euler’s Theorem is:

Corollary 1. Fermat’s Theorem If p is a prime and a is a positive integer with

p - a, then

ap−1 ≡ 1(mod p).
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We now present a couple of theorems that are direct consequences of Fermat’s

theorem. The first states Fermat’s theorem in a different way. It says that the

remainder of ap when divided by p is the same as the remainder of a when divided

by p. The other theorem determines the inverse of an integer a modulo p where

p - a.

Theorem 36. If p is a prime number and a is a positive integer, then ap ≡
a(mod p).

Proof. If p - a, by Fermat’s theorem we know that

ap−1 ≡ 1(mod p).

Thus, we get

ap ≡ a(mod p).

Now if p | a, we have

ap ≡ a ≡ 0(mod p).

Theorem 37. If p is a prime number and a is an integer such that p - a, then ap−2

is the inverse of a modulo p.

Proof. If p - a, then Fermat’s theorem says that

ap−1 ≡ 1(mod p).

Hence

ap−2a ≡ 1(mod p).

As a result, ap−2 is the inverse of a modulo p.

Exercises

1. Show that 10!+1 is divisible by 11.
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2. What is the remainder when 5!25! is divided by 31?

3. What is the remainder when 5100 is divided by 7?

4. Show that if p is an odd prime, then 2(p− 3)! ≡ −1(mod p).

5. Find a reduced residue system modulo 2m, where m is a positive integer.

6. Show that if a1, a2, ..., aφ(m) is a reduced residue system modulo m, where

m is a positive integer with m 6= 2, then a1 + a2 + ...+ aφ(m) ≡ 0(mod m).

7. Show that if a is an integer such that a is not divisible by 3 or such that a is

divisible by 9, then a7 ≡ a(mod 63).
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Chapter 5

Multiplicative Number Theoretic
Functions

In this chapter, we study functions, called multiplicative functions, that are defined

on integers. These functions have the property that their value at the product of

two relatively prime integers is equal to the product of the value of the functions at

these integers. We start by proving several theorems about multiplicative functions

that we will use later. We then study special functions and prove that the Euler

φ-function that was seen before is actually multiplicative. We also define the sum

of divisors and the number of divisors functions.

Later define the Mobius function which investigate integers in terms of their

prime decomposition. The summatory function of a given function takes the sum

of the values of f at the divisors of a given integer n. We then determine the

Mobius inversion of this function which writes the values of f in terms of the

values of its summatory function. We end this chapter by presenting integers with

interesting properties and prove some of their properties.

103
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5.1 Definitions and Properties

Definition 19. An arithmetic function is a function whose domain of definition is

the set N of positive integers.

Definition 20. An arithmetic function f is called multiplicative if f(ab) = f(a)f(b)

for all a, b ∈ N such that (a, b) = 1.

Definition 21. An arithmetic function f is called completely multiplicative if

f(ab) = f(a)f(b) (5.1)

for all positive integers a, b.

Example 40. The function f(a) = 1 where k is a completely multiplicative func-

tion since

f(ab) = 1 = f(a)f(b).

Notice also that a completely multiplicative function is a multiplicative function

but not otherwise.

We now prove a theorem about multiplicative functions. We will be interested

in studying the properties of multiplicative functions rather than the completely

multiplicative ones.

Theorem 38. Given a multiplicative function f . Let n =
∏s

k=1 p
ak
k be the prime

factorization of n. Then

f(n) =
s∏

k=1

f(pakk ).

Proof. We prove this theorem by induction on the number of primes in the factor-

ization of n. Suppose that n = pa11 . Thus the result follow easily. Suppose now

that for

n =
s∏

k=1

pakk ,
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we have

f(n) =
s∏

k=1

f(pakk ).

So we have to prove that if

n =
s+1∏
k=1

pakk ,

then

f(n) =
s+1∏
k=1

f(pakk ).

Notice that for

n =
s+1∏
k=1

pakk ,

we have (
∏s

k=1 p
ak
k , p

as+1

s+1 ) = 1. Thus we have

f(n) = f

(
s+1∏
k=1

pakk

)
= f

(
s∏

k=1

pakk

)
f
(
p
as+1

s+1

)
which by the inductive step gives

f

(
s+1∏
k=1

pakk

)
= f(n) =

s+1∏
k=1

f(pakk ).

From the above theorem, we can see that to evaluate a multiplicative function

at an integer, it will be enough to know the value of the function at the primes that

are in the prime factorization of the number.

We now define summatory functions which represents the sum of the values

of a given function at the divisors of a given number.

Definition 22. Let f be an arithmetic function. Define

F (n) =
∑
d|n

f(d)

Then F is called the summatory function of f .
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This function determines the sum of the values of the arithmetic function at

the divisors of a given integer.

Example 41. If f(n) is an arithmetic function, then

F (18) =
∑
d|18

f(d) = f(1) + f(2) + f(3) + f(6) + f(9) + f(18).

Theorem 39. If f is a multiplicative function, then the summatory function of f

denoted by F (n) =
∑

d|n f(d) is also multiplicative.

Proof. We have to prove that F (mn) = F (m)F (n) whenever (m,n) = 1. We

have

F (mn) =
∑
d|mn

f(d).

Notice that by Lemma 6, each divisor of mn can be written uniquely as a product

of relatively prime divisors d1 of m and d2 of n, moreover the product of any two

divisors of m and n is a divisor of mn. Thus we get

F (mn) =
∑

d1|m,d2|n

f(d1d2)

Notice that since f is multiplicative, we have

F (mn) =
∑

d1|m,d2|n

f(d1d2)

=
∑

d1|m,d2|n

f(d1)f(d2)

=
∑
d1|m

f(d1)
∑
d2|n

f(d2) = F (m)F (n)

Exercises

1. Determine whether the arithmetic functions f(n) = n! and g(n) = n/2 are

completely multiplicative or not.
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2. Define the arithmetic function g(n) by the following. g(n)=1 if n = 1 and 0

for n > 1. Prove that g(n) is multiplicative.

5.2 Multiplicative Number Theoretic Functions

We now present several multiplicative number theoretic functions which will play

a crucial role in many number theoretic results. We start by discussing the Euler

phi-function which was defined in an earlier chapter. We then define the sum-of-

divisors function and the number-of-divisors function along with their properties.

5.2.1 The Euler φ-Function

As defined earlier, the Euler φ-function counts the number of integers smaller

than and relatively prime to a given integer. We first calculate the value of the

phi-function at primes and prime powers.

Theorem 40. If p is prime, then φ(p) = p− 1. Conversely, if p is an integer such

that φ(p) = p− 1, then p is prime.

Proof. The first part is obvious since every positive integer less than p is relatively

prime to p. Conversely, suppose that p is not prime. Then p = 1 or p is a composite

number. If p = 1, then φ(p) 6= p− 1. Now if p is composite, then p has a positive

divisor. Thus φ(p) 6= p− 1. We have a contradiction and thus p is prime.

We now find the value of φ at prime powers.

Theorem 41. Let p be a prime andm a positive integer, then φ(pm) = pm−pm−1.

Proof. Note that all integers that are relatively prime to pm and that are less than

pm are those that are not multiple of p. Those integers are p, 2p, 3p, ..., pm−1p.

There are pm−1 of those integers that are not relatively prime to pm and that are

less than pm. Thus

φ(pm) = pm − pm−1.
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Example 42. φ(73) = 73− 72 = 343− 49 = 294. Also φ(210) = 210− 29 = 512.

We now prove that φ is a multiplicative function.

Theorem 42. Letm and n be two relatively prime positive integers. Then φ(mn) =

φ(m)φ(n).

Proof. Denote φ(m) by s and let k1, k2, ..., ks be a reduced residue system modulo

m. Similarly, denote φ(n) by t and let k′1, k
′
2, ..., k

′
t be a reduced residue system

modulo n. Notice that if x belongs to a reduced residue system modulo mn, then

(x,m) = (x, n) = 1.

Thus

x ≡ ki(mod m)and x ≡ k′j(mod n)

for some i, j. Conversely, if

x ≡ ki(mod m)and x ≡ k′j(mod n)

some i, j then (x,mn) = 1 and thus x belongs to a reduced residue system modulo

mn. Thus a reduced residue system modulo mn can be obtained by by determin-

ing all x that are congruent to ki and k′j modulo m and n respectively. By the

Chinese remainder theorem, the system of equations

x ≡ ki(mod m)and x ≡ k′j(mod n)

has a unique solution. Thus different i and j will yield different answers. Thus

φ(mn) = st.

We now derive a formula for φ(n).

Theorem 43. Let n = pa11 p
a2
2 ...p

as
s be the prime factorization of n. Then

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
...

(
1− 1

ps

)
.
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Proof. By Theorem 37, we can see that for all 1 ≤ i ≤ k

φ(paii ) = paii − p
ai−1
i = paii

(
1− 1

pi

)
.

Thus by Theorem 38,

φ(n) = φ(pa11 p
a2
2 ...p

as
s )

= φ(pa11 )φ(pa22 )...φ(pass )

= pa11

(
1− 1

p1

)
pa22

(
1− 1

p2

)
...pass

(
1− 1

ps

)
= pa11 p

a2
2 ...p

ak
k

(
1− 1

p1

)(
1− 1

p2

)
...

(
1− 1

ps

)
= n

(
1− 1

p1

)(
1− 1

p2

)
...

(
1− 1

ps

)
.

Example 43. Note that

φ(200) = φ(2352) = 200

(
1− 1

2

)(
1− 1

5

)
= 80.

Theorem 44. Let n be a positive integer greater than 2. Then φ(n) is even.

Proof. Let n = pa11 p
a2
2 ...p

ak
k . Since φ is multiplicative, then

φ(n) =
k∏
j=1

φ(p
aj
j ).

Thus by Theorem 39, we have

φ(p
aj
j ) = p

aj−1−1
j (pj − 1).

We see then φ(p
aj
j )is even if pj is an odd prime. Notice also that if pj = 2, then it

follows that φ(p
aj
j ) is even. Hence φ(n) is even.
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Theorem 45. Let n be a positive integer. Then∑
d|n

φ(d) = n.

Proof. Split the integers from 1 to n into classes. Put an integer m in the class Cd
if the greatest common divisor of m and n is d. Thus the number of integers in the

Cd class is the number of positive integers not exceeding n/d that are relatively

prime to n/d. Thus we have φ(n/d) integers in Cd. Thus we see that

n =
∑
d|n

φ(n/d).

As d runs over all divisors of n, so does n/d. Hence

n =
∑
d|n

φ(n/d) =
∑
d|n

φ(d).

5.2.2 The Sum-of-Divisors Function

The sum of divisors function, denoted by σ(n), is the sum of all positive divisors

of n.

Example 44. σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28.

Note that we can express σ(n) as σ(n) =
∑

d|n d.

We now prove that σ(n) is a multiplicative function.

Theorem 46. The sum of divisors function σ(n) is multiplicative.

Proof. We have proved in Theorem 35 that the summatory function is multiplica-

tive once f is multiplicative. Thus let f(n) = n and notice that f(n) is multiplica-

tive. As a result, σ(n) is multiplicative.
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Once we found out that σ(n) is multiplicative, it remains to evaluate σ(n) at

powers of primes and hence we can derive a formula for its values at any positive

integer.

Theorem 47. Let p be a prime and let n = pa11 p
a2
2 ...p

at
t be a positive integer. Then

σ(pa) =
pa+1 − 1

p− 1
,

and as a result,

σ(n) =
t∏

j=1

p
aj+1
j − 1

pj − 1

Proof. Notice that the divisors of pa are 1, p, p2, ..., pa. Thus

σ(pa) = 1 + p+ p2 + ...+ pa =
pa+1 − 1

p− 1
.

where the above sum is the sum of the terms of a geometric progression.

Now since σ(n) is multiplicative, we have

σ(n) = σ(pa1)σ(pa2)...σ(pat)

=
pa1+1

1 − 1

p1 − 1
.
pa2+1

2 − 1

p2 − 1
...
pat+1
t − 1

pt − 1

=
t∏

j=1

p
aj+1
j − 1

pj − 1

Example 45. σ(200) = σ(2352) = 24−1
2−1

53−1
5−1

= 15.31 = 465.

5.2.3 The Number-of-Divisors Function

The number of divisors function, denoted by τ(n), is the sum of all positive divi-

sors of n.

Example 46. τ(8) = 4.
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We can also express τ(n) as τ(n) =
∑

d|n 1.

We can also prove that τ(n) is a multiplicative function.

Theorem 48. The number of divisors function τ(n) is multiplicative.

Proof. By Theorem 36, with f(n) = 1, τ(n) is multiplicative.

We also find a formula that evaluates τ(n) for any integer n.

Theorem 49. Let p be a prime and let n = pa11 p
a2
2 ...p

at
t be a positive integer. Then

τ(pa) = a+ 1,

and as a result,

τ(n) =
t∏

j=1

(aj + 1).

Proof. The divisors of pa as mentioned before are 1, p, p2, ..., pa. Thus

τ(pa) = a+ 1

Now since τ(n) is multiplicative, we have

τ(n) = τ(pa1)τ(pa2)...τ(pat)

= (a1 + 1)(a2 + 1)...(at + 1)

=
t∏

j=1

(aj + 1).

Example 47. τ(200) = τ(2352) = (3 + 1)(2 + 1) = 12.

Exercises

1. Find φ(256) and φ(2.3.5.7.11).

2. Show that φ(5186) = φ(5187).
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3. Find all positive integers n such that φ(n) = 6.

4. Show that if n is a positive integer, then φ(2n) = φ(n) if n is odd.

5. Show that if n is a positive integer, then φ(2n) = 2φ(n) if n is even.

6. Show that if n is an odd integer, then φ(4n) = 2φ(n).

7. Find the sum of positive integer divisors and the number of positive integer

divisors of 35

8. Find the sum of positive integer divisors and the number of positive integer

divisors of 2534537313.

9. Which positive integers have an odd number of positive divisors.

10. Which positive integers have exactly two positive divisors.

5.3 The Mobius Function and the Mobius Inversion

Formula

We start by defining the Mobius function which investigates integers in terms

of their prime decomposition. We then determine the Mobius inversion formula

which determines the values of the a function f at a given integer in terms of its

summatory function.

Definition 23. µ(n) =


1 if n = 1;

(−1)t if n = p1p2...pt where the pi are distinct primes;

0 otherwise.

Note that if n is divisible by a power of a prime higher than one then µ(n) = 0.

In connection with the above definition, we have the following
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Definition 24. An integer n is said to be square-free, if no square divides it, i.e.
if there does not exist an integer k such that k2 | n.

It is immediate (prove as exercise) that the prime-number factorization of a

square-free integer contains only distinct primes.

Example 48. Notice that µ(1) = 1, µ(2) = −1, µ(3) = −1 and µ(4) = 0.

We now prove that µ(n) is a multiplicative function.

Theorem 50. The Mobius function µ(n) is multiplicative.

Proof. Let m and n be two relatively prime integers. We have to prove that

µ(mn) = µ(m)µ(n).

If m = n = 1, then the equality holds. Also, without loss of generality, if m = 1,

then the equality is also obvious. Now suppose that m or n is divisible by a power

of prime higher than 1, then

µ(mn) = 0 = µ(m)µ(n).

What remains to prove that if m and n are square-free integers say m = p1p2...ps

where p1, p2, ..., ps are distinct primes and n = q1q2...qt where q1, q2, ..., qt. Since

(m,n) = 1, then there are no common primes in the prime decomposition be-

tween m and n. Thus

µ(m) = (−1)s, µ(n) = (−1)tand µ(mn) = (−1)s+t.

In the following theorem, we prove that the summatory function of the Mobius

function takes only the values 0 or 1.
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Theorem 51. Let F (n) =
∑

d|n µ(d), then F (n) satisfies

F (n) =

{
1 if n = 1;

0 if n > 1.

Proof. For n = 1, we have F (1) = µ(1) = 1. Let us now find µ(pk) for any

integer k > 0. Notice that

F (pk) = µ(1) + µ(p) + ...+ µ(pk) = 1 + (−1) + 0 + ...+ 0 = 0

Thus by Theorem 36, for any integer n = pa11 p
a2
2 ...p

at
t > 1 we have,

F (n) = F (pa11 )F (pa22 )...F (patt ) = 0

We now define the Mobius inversion formula. The Mobius inversion formula

expresses the values of f in terms of its summatory function of f .

Theorem 52. Suppose that f is an arithmetic function and suppose that F is its

summatory function, then for all positive integers n we have

f(n) =
∑
d|n

µ(d)F (n/d).

Proof. We have ∑
d|n

µ(d)F (n/d) =
∑
d|n

µ(d)
∑
e|(n/d)

f(e)

=
∑
d|n

∑
e|(n/d)

µ(d)f(e)

=
∑
e|n

∑
d|(n/e)

µ(d)f(e)

=
∑
e|n

f(e)
∑
d|(n/d)

µ(d)
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Notice that
∑

d|(n/e) µ(d) = 0 unless n/e = 1 and thus e = n. Consequently we

get ∑
e|n

f(e)
∑
d|(n/d)

µ(d) = f(n).1 = f(n).

Example 49. A good example of a Mobius inversion formula would be the in-

version of σ(n) and τ(n). These two functions are the summatory functions of

f(n) = n and f(n) = 1 respectively. Thus we get

n =
∑
d|n

µ(n/d)σ(d)

and

1 =
∑
d|n

µ(n/d)τ(d).

Exercises

1. Find µ(12), µ(10!) and µ(105).

2. Find the value of µ(n) for each integer n with 100 ≤ n ≤ 110.

3. Use the Mobius inversion formula and the identity n =
∑

d|n φ(n/d) to

show that φ(pt) = pt − pt−1 where p is a prime and t is a positive integer.

5.4 Perfect, Mersenne, and Fermat Numbers

Integers with certain properties were studied extensively over the centuries. We

present some examples of such integers and prove theorems related to these inte-

gers and their properties.

We start by defining perfect numbers.

Definition 25. A positive integer n is called a perfect number if σ(n) = 2n.
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In other words, a perfect number is a positive integer which is the sum of its

proper divisors.

Example 50. The first perfect number is 6, since σ(6) = 12. You can also view

this as 6 = 1 + 2 + 3. The second perfect number is 28, since σ(28) = 56 or

28 = 1 + 2 + 4 + 7 + 14.

The following theorem tells us which even positive integers are perfect.

Theorem 53. The positive integer n is an even perfect number if and only if

n = 2l−1(2l − 1),

where l is an integer such that l ≥ 2 and 2l − 1 is prime.

Proof. We show first that if n = 2l−1(2l − 1) where l is an integer such that

l ≥ 2 and 2l − 1 is prime then n is perfect. Notice that 2l − 1 is odd and thus

(2l−1, 2l − 1) = 1. Also, notice that σ is a multiplicative function and thus

σ(n) = σ(2l−1)σ(2l − 1).

Notice that σ(2l−1) = 2l−1 and since 2l−1 is prime we get σ(2l−1) = 2l. Thus

σ(n) = 2n.

We now prove the converse. Suppose that n is a perfect number. Let n = 2rs,

where r and s are positive integers and s is odd. Since (2r, s) = 1, we get

σ(n) = σ(2r)σ(s) = (2r+1 − 1)σ(s).

Since n is perfect, we get

(2r+1 − 1)σ(s) = 2r+1s.

Notice now that (2r+1 − 1, 2r+1) = 1 and thus 2r+1 | σ(s). Therefore there exists

an integer q such that σ(s) = 2r+1q. As a result, we have

(2r+1 − 1)2r+1q = 2r+1s
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and thus we get

(2r+1 − 1)q = s

So we get that q | s. We add q to both sides of the above equation and we get

s+ q = (2r+1 − 1)q + q = 2r+1q = σ(s).

We have to show now that q = 1. Notice that if q 6= 1, then s will have three

divisors and thus σ(s) ≥ 1 + s + q. Hence q = 1 and as a result s = 2r+1 − 1.

Also notice that σ(s) = s + 1. This shows that s is prime since the only divisors

of s are 1 and s. As a result,

n = 2r(2r+1 − 1),

where (2r+1 − 1) is prime.

In theorem 50, we see that to determine even perfect numbers, we need to

find primes of the form 2` − 1. It is still unknown whether there are odd perfect

numbers or not.

Theorem 54. If 2`−1 is prime where ` is a positive integer, then ` must be prime.

Proof. Suppose that ` is composite, that is ` = rswhere 1 < r < ` and 1 < s < `.

Thus after factoring, we get that

2` − 1 = (2r − 1)(2r(s−1) + 2r(s−2) + ...+ 2r + 1)

Notice that the two factors above are both greater than 1. Thus 2`−1 is not prime.

This is a contradiction.

The above theorem motivates the definition of interesting numbers called Mersenne

numbers.

Definition 26. Let ` be a positive integer. An integer of the form M` = 2` − 1 is

called the `th Mersenne number; if ` is prime then M` = 2` − 1 is called the `th

Mersenne prime.
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Example 51. M3 = 23 − 1 = 7 is the third Mersenne prime.

We prove a theorem that help decide whether Mersenne numbers are prime.

Theorem 55. Divisors of Mp = 2p − 1 for prime p is of the form 2mp+ 1, where

m is a positive integer.

Proof. Let p1 be a prime dividing Mp = 2p − 1. By Fermat’s theorem, we know

that p1 | (2p1−1 − 1). Also, it is easy to see that

(2p − 1, 2p1−1 − 1) = 2(p,p1−1) − 1.

Since p1 is a common divisor of 2p−1 and 2p1−1−1 and thus not relatively prime.

Hence (p, p1 − 1) = p. Hence p | (p1 − 1) and thus there exists a positive integer

k such that p1 − 1 = kp. Since p1 is odd, then k is even and thus k = 2m. Hence

p1 = kp+ 1 = 2mp+ 1.

Because any divisor ofMp is a product of prime divisors ofMp, each prime divisor

of Mp is of the form 2mp+ 1 and the result follows.

Example 52. M23 = 223 − 1 is divisible by 47 = 46k + 1. We know this by trial

and error and thus looking at all primes of the form 46k + 1 that are less than
√
M23.

We now define Fermat numbers and prove some theorems about the properties

of these numbers.

Definition 27. Integers of the form Fn = 22n + 1 are called Fermat numbers.

Fermat conjectured that these integers are primes but it turned out that this is

not true. Notice that F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65, 537 while

F5 is composite. It turned out the F5 is divisible by 641. We now present a couple

of theorems about the properties of these numbers.
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Theorem 56. For all positive integers n, we have

F0F1F2...Fn−1 = Fn − 2

Proof. We will prove this theorem by induction. For n = 1, the above identity is

true. Suppose now that

F0F1F2...Fn−1 = Fn − 2

holds. We claim that

F0F1F2...Fn = Fn+1 − 2.

Notice that

F0F1F2...Fn = (Fn − 2)Fn = (22n − 1)(22n + 1) = 22n+1 − 1 = Fn+1 − 2.

Using Theorem 53, we prove that Fermat numbers are relatively prime.

Theorem 57. Let s 6= t be nonnegative integers. Then (Fs, Ft) = 1.

Proof. Assume without loss of generality that s < t. Thus by Theorem 52, we

have

F0F1F2...Fs...Ft−1 = Ft − 2

Assume now that there is a common divisor d of Fs and Ft. thus we see that d

divides

Ft − F0F1F2...Fs...Ft−1 = 2.

Thus d = 1 or d = 2. But since Ft is odd for all t. We have d = 1. Thus Fs and

Ft are relatively prime.

Exercises

1. Find the six smallest even perfect numbers.

2. Find the eighth perfect number.
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3. Find a factor of 21001 − 1.

4. We say n is abundant if σ(n) > 2n. Prove that if n = 2m−1(2m − 1) where

m is a positive integer such that 2m − 1 is composite, then n is abundant.

5. Show that there are infinitely many even abundant numbers.

6. Show that there are infinitely many odd abundant numbers.

7. Determine whether M11 is prime.

8. Determine whether M29 is prime.

9. Find all primes of the form 22n + 5 where n is a nonnegative integer.
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Chapter 6

Primitive Roots and Quadratic
Residues

In this chapter, we discuss the multiplicative structure of the integers modulo n.

We introduce the concept of the order of integer modulo n and then we study its

properties. We then define primitive roots modulo n and show how to determine

whether an integer is primitive modulo n or not. We later find all positive integers

having primitive roots and prove related results.

We define the concept of a quadratic residue and establish its basic properties.

We then introduce Legendre symbol and also develop its basic properties. We also

introduce the law of quadratic reciprocity. Afterwards, we generalize the notion of

Legendre symbol to the Jacobi symbol and discuss the law of reciprocity related

to Jacobi symbol.

6.1 The order of Integers and Primitive Roots

In this section, we study the order of an integer modulo n, where n is positive. We

also define primitive roots and related results. Euler’s theorem in Chapter 4 states

that if a positive integer a is relatively prime to n, then aφ(n) ≡ 1(mod n). Thus

123
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by the well ordering principle, there is a least positive integer x that satisfies this

congruence ax ≡ 1(mod n).

Definition 1. Let (a, b) = 1. The smallest positive integer x such that ax ≡
1(mod b) is called the order of a modulo b. We denote the order of a modulo b by

ordba.

Example 53. ord72 = 3 since 23 ≡ 1(mod 7) while 21 ≡ 2(mod 7) and 22 ≡
4(mod 7).

To find all integers x such that ax ≡ 1(mod b), we need the following theorem.

Theorem 58. If (a, b) = 1 with b > 0, then the positive integer x is a solution of

the congruence ax ≡ 1(mod b) if and only if ordba | x.

Proof. Having ordba | x, then we have that x = k.ordba for some positive integer

k. Thus

ax = akordba = (aordba)k ≡ 1(mod b).

Now if ax ≡ 1(mod b), we use the division algorithm to write

x = qordba+ r, 0 ≤ r < ordba.

Thus we see that

ax ≡ aqordba+r ≡ (aordba)qar ≡ ar(mod b).

Now since ax ≡ 1(mod b),we have ar ≡ 1(mod b). Since ordba, we get r = 0.

Thus x = q.ordba and hence ordba | x.

Example 54. Since ord72 = 3, then 215 ≡ 1(mod 7) while 10 is not a solution

for 2x ≡ 1(mod 7).

Theorem 59. If (a, b) = 1 with b > 0, then

ai ≡ aj(mod b)
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where i and j are nonnegative integers, if and only if

i ≡ j(mod ordba)

Proof. Suppose that

i ≡ j(mod ordba) and 0 ≤ j ≤ i.

Then we have i− j = k.ordba, where k is a positive integer. Hence

ai = aj+k.ordba = aj(aordba)k ≡ aj(mod b).

Assume now that ai ≡ aj(mod b) with i ≥ j. Thus we have

ai ≡ ajai−j ≡ aj(mod b)

Since (a, b) = 1, we have (aj, b) = 1 and thus by Theorem 22, we get

ai−j ≡ 1(mod b).

By theorem 54, we get that ordba | (i− j) and hence i ≡ j(mod b).

We introduce now primitive roots and discuss their properties. We are inter-

ested in integers whose order modulo another integer is φ(b). In one of the exer-

cises, one is asked to prove that if aand b are relatively prime then ordba | φ(b).

Definition 2. If (r,m) = 1 with m > 0 and if ordmr = φ(m) then r is called a

primitive root modulo m.

Example 55. Notice that φ(7) = 6 hence 2 is not a primitive root modulo 7. While

ord73 = 6 and thus 3 is a primitive root modulo 7.

Theorem 60. If (r,m) = 1 with m > 0 and if r is a primitive root modulo n, then

the integers {r1, r2, ...rφ(m)} form a reduced residue set modulo m.
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Proof. To prove that the set {r1, r2, ...rφ(m)} form a reduced residue set modulo

m we need to show that every two of them are relatively prime and that no two

of them are congruent modulo m. Since (r,m) = 1, it follows that (rn,m) = 1

for all positive integers n. Hence all the powers of r are relatively prime to m. To

show that no two powers in the above set are equivalent modulo m, assume that

ri ≡ rj(mod m).

By Theorem 55, we see that

i ≡ j(mod ordmφ(m)).

Notice that 1 ≤ i, j ≤ φ(m) and hence i = j.

Theorem 61. If ordma = t and if u is a positive integer, then

ordm(au) = t/(t, u).

Proof. Let

v = ordm(au), w = (t, u), t = t1wand u = u1w.

Notice that (t1, u1) = 1.

Because t1 = t/(t, u), we want to show that ordm(au) = t1. To do this, we

will show that (au)t1 ≡ 1(mod m) and that if (au)v ≡ 1(mod m), then t1 | v.

First note that

(au)t1 = (au1w)(t/w) = (at)u1 ≡ 1(mod m).

Hence by Theorem 54, we have v | t1. Now on the other hand, since

(au)v = auv ≡ 1(mod m),

we know that t | uv. Hence t1w | u1wv and hence t1 | u1v. Because (t1, u1) = 1,

we see that t1 | v. Since v | t1 and t1 | v, we conclude that v = t1 = t/w =

t/(t, u).
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Example 56. We see that ord734 = 6/(6, 4) since ord73 = 6.

Corollary 2. Let r be a primitive root modulo m, where m is a positive integer,

m > 1. Then ru is a primitive root modulo m if and only if (u, φ(m)) = 1.

Proof. By Theorem 57, we see that

ordmr
u = ordmr/(u, ordmr) = φ(m)/(u, φ(m)).

Thus ordmru = φ(m) and ru is a primitive root if and only if (u, φ(m)) = 1.

The above corollary leads to the following theorem

Theorem 62. If the positive integer m has a primitive root, then it has a total of

φ(φ(m)) incongruent primitive roots.

Proof. Let r be a primitive root modulom. By Theorem 56, we see that {r1, r2, ..., rφ(m)}
form a reduced residue system modulo n. By Corollary 1, it is known that ru is

a primitive root modulo m if and only if (u, φ(m)) = 1. Thus we have exactly

φ(φ(m)) such integers u that are relatively prime to φ(m) and hence there are

exactly φ(φ(m)) primitive roots modulo m.

Exercises

1. Determine ord1310.

2. Determine ord113.

3. Show that 5 is a primitive root of 6.

4. Show that if ā is an inverse of a modulo n, then ordna = ordnā.

5. Show that if n is a positive integer, and a and b are integers relatively prime

to n such that (ordna, ordnb) = 1, then ordn(ab) = ordna.ordnb.

6. Show that if a is an integer relatively prime to the positive integer m and

ordma = st, then ordmat = s.

7. Show that if a and n are relatively prime with n > 0, then ordna | φ(n).
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6.2 Primitive Roots for Primes

In this section, we show that every integer has a primitive root. To do this we need

to introduce polynomial congruence.

Let f(x) be a polynomial with integer coefficients. We say that an integer a is

a root of f(x) modulo m if f(a) ≡ 0(mod m).

Example 57. Notice that x ≡ 3(mod 11) is a root for f(x) = 2x2 + x + 1 since

f(3) = 22 ≡ 0(mod 11).

We now introduce Lagrange’s theorem for primes. This is modulo p, the fun-

damental theorem of algebra. This theorem will be an important tool to prove that

every prime has a primitive root.

Theorem 63. Lagrange’s Theorem Let

m(x) = bnx
n + bn−1x

n−1 + ...+ b1x+ b0

be a polynomial of degree n, n ≥ 1 with integer coefficients and with leading coef-

ficient bn not divisible by a prime p. Thenm(x) has at most n distinct incongruent

roots modulo p.

Proof. Using induction, notice that if n = 1, then we have

m(x) = b1x+ b0 and p - b1.

A root ofm(x) is a solution for b1x+b0(mod p). Since p - b1, then this congruence

has exactly one solution by Theorem 26.

Suppose that the theorem is true for polynomials of degree n − 1, and let

m(x) be a polynomial of degree n with integer coefficients and where the leading

coefficient is not divisible by p. Assume now that m(x) has n + 1 incongruent

roots modulo p, say x0, x1, ..., xn. Thus

m(xk) ≡ 0(mod p)
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for 0 ≤ k ≤ n. Thus we have

m(x)−m(x0) = bn(xn − xn0 ) + bn−1(xn−1 − xn−1
0 ) + ...+ b1(x− x0)

= bn(x− x0)(xn−1 + xn−2x0 + ...+ xxn−2
0 + xn−1

0 )

+ bn−1(x− x0)(xn−2 + xn−3x0 + ...+ xxn−3
0 + xn−2

0 ) + ...+ b1(x− c0)

= (x− x0)f(x)

where f(x) is a polynomial of degree n − 1 with leading coefficient bn. Notice

that since m(xk) ≡ m(x0)(mod p), we have

m(xk)−m(x0) = (xk − x0)f(xk) ≡ 0(mod p).

Thus f(xk) ≡ 0(mod p) for all 1 ≤ k ≤ n and thus x1, x2, ..., xn are roots of

f(x). This is a contradiction since we a have a polynomial of degree n − 1 that

has n distinct roots.

We now use Lagrange’s Theorem to prove the following result.

Theorem 64. Consider the prime p and let p− 1 = kn for some integer k. Then

xn − 1 has exactly n incongruent roots modulo p.

Proof. Since p− 1 = kn, we have

xp−1 − 1 = (xn − 1)(xn(k−1) + xn(k−2) + ...+ xn + 1)

= (xn − 1)f(x)

By Fermat’s little theorem, we know that xp−1 − 1 has p − 1 incongruent roots

modulo p. Also, roots of xp−1−1 are roots of f(x) or a root of xn−1. Notice that

by Lagrange’s Theorem, we have that f(x) has at most p − n − 1 roots modulo

p. Thus xn − 1 has at least n roots modulo p. But again by Lagrange’s Theorem,

since we have that xn − 1 has at most n roots, thus we get that xn − 1 has exactly

n incongruent roots modulo p.
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We now prove a lemma that gives us how many incongruent integers can have

a given order modulo p.

Lemma 12. Let p be a prime and letm be a positive integer such that p−1 = mk

for some integer k. Then

S(m) = |{m : 0 < m < p, m ∈ Z}| ≤ φ(m).

Proof. For each positive integer m dividing p− 1,

Notice that if S(m) = 0, then S(m) ≤ φ(m). If S(m) > 0, then there is an

integer a of ordermmodulo p. Since ordpa = m, then a, a2, ...am are incongruent

modulo p. Also each power of a is a root of xm − 1 modulo p because

(ak)m = (am)k ≡ 1(mod p)

for all positive integers k. By Theorem 60, we know that xm − 1 has exactly m

incongruent roots modulo p, so that every root is congruent to one of these powers

of a. We also know by Theorem 57 that the powers of ak with (k,m) = 1 have

order m. There are exactly φ(m) such integers with 1 ≤ k ≤ m and thus if there

is one element of order m modulo p, there must be exactly φ(m) such positive

integers less than p. Hence S(m) ≤ φ(m).

In the following theorem, we determine how many incongruent integers can

have a given order modulo p. We actually show the existence of primitive roots

for prime numbers.

Theorem 65. Every prime number has a primitive root.

Proof. Let p be a prime and let m be a positive integer such that p− 1 = mk for

some integer k. Let F (m) be the number of positive integers of order m modulo

p that are less than p. The order modulo p of an integer not divisible by p divides

p− 1, it follows that

p− 1 =
∑
m|p−1

F (m).



6.2. PRIMITIVE ROOTS FOR PRIMES 131

By Theorem 42, we see that

p− 1 =
∑
m|p−1

φ(m).

By Lemma 1, F (m) ≤ φ(m) when m | (p− 1). Together with∑
m|p−1

F (m) =
∑
m|p−1

φ(m)

we see that F (m) = φ(m) for each positive divisor m of p−1. Thus we conclude

that F (m) = φ(m). As a result, we see that there are p − 1 incongruent integers

of order p− 1 modulo p. Thus p has φ(p− 1) primitive roots.

Exercises

1. Find the incongruent roots modulo 11 of x2 + 2.

2. Find the incongruent roots modulo 11 of x4 + x2 + 1.

3. Find the incongruent roots modulo 13 of x3 + 12.

4. Find the number of primitive roots of 13 and of 47.

5. Find a complete set of incongruent primitive roots of 13.

6. Find a complete set of incongruent primitive roots of 17.

7. Find a complete set of incongruent primitive roots of 19.

8. Let r be a primitive root of p with p ≡ 1(mod 4). Show that −r is also a

primitive root.

9. Show that if p is a prime and p ≡ 1(mod 4), then there is an integer x such

that x2 ≡ −1(mod p).
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6.3 The Existence of Primitive Roots

In this section, we demonstrate which integers have primitive roots. We start by

showing that every power of an odd prime has a primitive root and to do this we

start by showing that every square of an odd prime has a primitive root.

Theorem 66. If p is an odd prime with primitive root r, then one can have either

r or r + p as a primitive root modulo p2.

Proof. Notice that since r is a primitive root modulo p, then

ordpr = φ(p) = p− 1.

Let m = ordp2r, then

rm ≡ 1(mod p2).

Thus

rm ≡ 1(mod p).

By Theorem 54, we have

p− 1 | m.

By Exercise 7 of section 6.1, we also have that

m | φ(p2).

Also, φ(p2) = p(p− 1) and thus m either divides p or p− 1. And since p− 1 | m
then we have

m = p− 1 or m = p(p− 1).

If m = p(p− 1) and ordp2r = φ(p2) then r is a primitive root modulo p2. Other-

wise, we have m = p− 1 and thus

rp−1 ≡ 1(mod p2).
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Let s = r + p. Then s is also a primitive root modulo p. Hence, ordp2s equals

either p−1 or p(p−1). We will show that ordp2s 6= p−1 so that ordp2s = p(p−1).

Note that

sp−1 = (r + p)p−1 = rp−1 + (p− 1)rp−2p+ ...+ pp−1

= rp−1 + (p− 1)p.rp−2(mod p2).

Hence

p2 | sp−1 − (1− prp−2.

Note also that if

p2 | (sp−1 − 1),

then

p2 | prp−2.

Thus we have

p | rp−2

which is impossible because p - r. Because ordp2s 6= p− 1, we can conclude that

ordp2s = p(p− 1) = φ(p2).

Thus, s = r + p is a primitive root of p2.

Example 58. Notice that 7 has 3 as a primitive root. Either ord493 = 6 or

ord493 = 42. But since 36 6≡ 1(mod 49). Hence ord493 = 42. Hence 3 is a

primitive root of 49.

We now show that any power of an odd prime has a primitive root.

Theorem 67. Let p be an odd prime. Then any power of p is a primitive root.

Moreover, if r is a primitive root modulo p2, then r is a primitive root modulo pm

for all positive integers m.
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Proof. By Theorem 62, we know that any prime p has a primitive root r which is

also a primitive root modulo p2, thus

p2 - (rp−1 − 1). (6.1)

We will prove by induction that

pm - (rp
m−2(p−1) − 1) (6.2)

for all integers m ≥ 2. Once we prove the above congruence, we show that r is

also a primitive root modulo pm. Let n = ordpmr. By Theorem 54, we know that

n | φ(pm). Also, we know that φ(pm) = pm(p− 1). Hence n | pm(p− 1). On the

other hand, because

pm | (rn − 1),

we also know that

p | (rn − 1).

Since φ(p) = p − 1, we see that by Theorem 54, we have n = l(p − 1). also

n | pm−1(p − 1), we have that n = ps(p − 1), where 0 ≤ s ≤ m − 1. If

n = ps(p− 1) with s ≤ m− 2, then

pk | rpm−2(p−1) − 1,

which is a contradiction. Hence

ordpmr = φ(pm).

We prove now (8.5) by induction. Assume that our assertion is true for all

m ≥ 2. Then

pm - (rp
m−2(p−1) − 1).

Because (r, p) = 1, we see that (r, pm−1) = 1. We also know from Euler’s

theorem that

pm−1 | (rpm−2(p−1) − 1).
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Thus there exists an integer k such that

rp
m−2(p−1) = 1 + kpm−1.

where p - k because rpm−2(p−1) 6≡ 1(mod pm). Thus we have now

rp
m−1(p−1) = (1 + kpm−1)p

≡ 1 + kpm(mod pm+1)

Because p - k, we have

pm+1 - (rp
m−1(p−1) − 1).

Example 59. Since 3 is a primitive root of 7, then 3 is a primitive root for 7k for

all positive integers k.

In the following theorem, we prove that no power of 2, other than 2 or 4, has a

primitive root and that is because when m is an odd integer, ordk2m 6= φ(2k) and

this is because 2k | (aφ(2k)/2 − 1).

Theorem 68. If m is an odd integer, and if k ≥ 3 is an integer, then

m2k−2 ≡ 1(mod 2k).

Proof. We prove the result by induction. If m is an odd integer, then m = 2n+ 1

for some integer n. Hence,

m2 = 4n2 + 4n+ 1 = 4n(n+ 1) + 1.

It follows that 8 | (m2 − 1).

Assume now that

2k | (m2k−2 − 1).
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Then there is an integer q such that

m2k−2

= 1 + q.2k.

Thus squaring both sides, we get

m2k−1

= 1 + q.2k+1 + q222k.

Thus

2k+1 | (m2k−1 − 1).

Note now that 2 and 4 have primitive roots 1 and 3 respectively.

We now list the set of integers that do not have primitive roots.

Theorem 69. If m is not pa or 2pa, then m does not have a primitive root.

Proof. Letm = ps11 p
s2
2 ...p

si
i . Ifm has a primitive root r then r andm are relatively

prime and ordmr = φ(m). We also have, we have (r, ps) = 1 where ps is of the

primes in the factorization of m. By Euler’s theorem, we have

ps | (rφ(ps) − 1).

Now let

L = [φ(ps11 ), φ(ps22 ), ..., φ(psii )].

We know that

rL ≡ 1(mod pskk )

for all 1 ≤ k ≤ m. Thus using the Chinese Remainder Theorem, we get

m | (rL − 1),

which leads to ordmr = φ(m) ≤ L. Now because

φ(m) = φ(ps11 )φ(ps22 )...φ(psnn ) ≤ [φ(ps11 ), φ(ps22 ), ..., φ(psnn )].
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Now the inequality above holds only if

φ(ps11 ), φ(ps22 ), ..., φ(psnn )

are relatively prime. Notice now that by Theorem 41,

φ(ps11 ), φ(ps22 ), ..., φ(psnn )

are not relatively prime unless m = ps or m = 2ps where p is an odd prime and t

is any positive integer.

We now show that all integers of the form m = 2ps have primitive roots.

Theorem 70. Consider a prime p 6= 2 and let s is a positive integer, then 2ps has

a primitive root. In fact, if r is an odd primitive root modulo ps, then it is also a

primitive root modulo 2ps but if r is even, r + ps is a primitive root modulo 2ps.

Proof. If r is a primitive root modulo ps, then

ps | (rφ(ps) − 1)

and no positive exponent smaller than φ(ps) has this property. Note also that

φ(2ps) = φ(ps),

so that

ps | (rφ(2ps) − 1).

If r is odd, then

2 | (rφ(2ps) − 1).

Thus by Theorem 56, we get

2ps | (rφ(2ps) − 1).

It is important to note that no smaller power of r is congruent to 1 modulo 2ps.

This power as well would also be congruent to 1 modulo ps contradicting that r is

a primitive root of ps. It follows that r is a primitive root modulo 2ps.
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While, if r is even, then r + ps is odd. Hence

2 | ((r + ps)φ(2ps) − 1).

Because ps | (r + ps − r), we see that

ps | ((r + ps)φ(2ps) − 1).

As a result, we see that 2ps | ((r+ps)φ(2ps)−1) and since for no smaller power of

r+ ps is congruent to 1 modulo 2ps, we see that r+ ps is a primitive root modulo

2ps.

As a result, by Theorem 63, Theorem 65 and Theorem 66, we see that

Theorem 71. The positive integerm has a primitive root if and only if n = 2, 4, ps

or 2ps

for prime p 6= 2 and s is a positive integer.

Exercises

1. Which of the following integers 4, 12, 28, 36, 125 have a primitive root.

2. Find a primitive root of 4, 25, 18.

3. Find all primitive roots modulo 22.

4. Show that there are the same number of primitive roots modulo 2ps as there

are modulo ps, where p is an odd prime and s is a positive integer.

5. Find all primitive roots modulo 25.

6. Show that the integer n has a primitive root if and only if the only solutions

of the congruence x2 ≡ 1(modn) are x ≡ ±1(mod n).
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6.4 Introduction to Quadratic Residues and Non-

residues

The question that we need to answer in this section is the following. If p is an odd

prime and a is an integer relatively prime to p. Is a a perfect square modulo p.

Definition 3. Let m be a positive integer. An integer a is a quadratic residue of m

if (a,m) = 1 and the congruence x2 ≡ a(mod m) is solvable. If the congruence

x2 ≡ a(mod m) has no solution, then a is a quadratic nonresidue of m.

Example 60. Notice that 12 = 62 ≡ 1(mod 7), 32 = 42 ≡ 2(mod 7) and

22 = 52 ≡ 4(mod 7). Thus 1, 2, 4 are quadratic residues modulo 7 while 3, 5, 6

are quadratic nonresidues modulo 7.

Lemma 13. Let p 6= 2 be a prime number and a is an integer such that p - a.

Then either a is quadratic nonresidue modulo p or

x2 ≡ a(mod p)

has exactly two incongruent solutions modulo p.

Proof. If x2 ≡ a(mod p) has a solution, say x = x′, then −x′ is a solution as

well. Notice that −x′ 6≡ x′(mod p) because then p | 2x′ and hence p - x0.

We now show that there are no more than two incongruent solutions. Assume

that x = x′ and x = x′′ are both solutions of x2 ≡ a(mod p). Then we have

(x′)2 − (x′′)2 = (x′ + x′′)(x′ − x′′) ≡ 0(mod p).

Hence

x′ ≡ x′′(mod p) or x′ ≡ −x′′(mod p).
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The following theorem determines the number of integers that are quadratic

residues modulo an odd prime.

Theorem 72. If p 6= 2 is a prime, then there are exactly (p − 1)/2 quadratic

residues modulo p and (p − 1)/2 quadratic nonresidues modulo p in the set of

integers 1, 2..., p− 1.

Proof. To find all the quadratic residues of p among all the integers 1, 2, ..., p− 1,

we determine the least positive residue modulo p of 12, 22, ..., (p− 1)2. Consider-

ing the p− 1 congruences and because each congruence has either no solution or

two incongruent solutions, there must be exactly (p − 1)/2 quadratic residues of

p among 1, 2, ..., p − 1. Thus the remaining are (p − 1)/2 quadratic nonresidues

of p.

Exercises

1. Find all the quadratic residues of 3.

2. Find all the quadratic residues of 13.

3. find all the quadratic residues of 18.

4. Show that if p is prime and p ≥ 7, then there are always two consecutive

quadratic residues of p. Hint: Show that at least one of 2, 5 or 10 is a

quadratic residue of p.

5. Show that if p is prime and p ≥ 7, then there are always two quadratic

residues of p that differ by 3.

6.5 Legendre Symbol

In this section, we define Legendre symbol which is a notation associated to

quadratic residues and prove related theorems.
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Definition 4. Let p 6= 2 be a prime and a be an integer such that p - a. The

Legendre symbol
(
a
p

)
is defined by

(
a

p

)
=

{
1 if a is a quadratic residue of p

−1 if a is a quadratic nonresidue of p.

Example 61. Notice that using the previous example, we see that(
1

7

)
=

(
2

7

)
=

(
4

7

)
= 1(

3

7

)
=

(
5

7

)
=

(
6

7

)
= −1

In the following theorem, we present a way to determine wether an integer is

a quadratic residue of a prime.

Theorem 73. Euler’s Criterion Let p 6= 2 be a prime and let a be a positive

integer such that p - a. Then(
a

p

)
≡ aφ(p)/2(mod p).

Proof. Assume that
(
a
p

)
= 1. Then the congruence x2 ≡ a(mod p) has a solution

say x = x′. According to Fermat’s theorem, we see that

aφ(p)/2 = ((x′)2)φ(p)/2 ≡ 1(mod p).

Now if
(
a
p

)
= −1, then x2 ≡ a(mod p) is not solvable. Thus by Theorem 26,

we have that for each integer k with (k, p) = 1 there is an integer l such that

kl ≡ a(mod p). Notice that i 6= j since x2 ≡ a(mod p) has no solutions. Thus

we can couple the integers 1, 2, ..., p− 1 into (p− 1)/2 pairs, each has product a.

Multiplying these pairs together, we find out that

(p− 1)! ≡ aφ(p)/2(mod p).
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Using Wilson’s Theorem, we get(
a

p

)
= −1 ≡ a(p−1)/2(mod p).

Example 62. Let p = 13 and a = 3. Then
(

3
13

)
= −1 ≡ 36(mod 13).

We now prove some properties of Legendre symbol.

Theorem 74. Let p 6= 2 be a prime. Let a and b be integers such that p - a, p - b
and p | (a− b) then (

a

p

)
=

(
b

p

)
.

Proof. Since p | (a − b), then x2 ≡ a(mod p) has a solution if and only if

x2 ≡ b(mod p) has a solution. Hence(
a

p

)
=

(
b

p

)

Theorem 75. Let p 6= 2 be a prime. Let a and b be integers such that p - a, p - b
then (

a

p

)(
b

p

)
=

(
ab

p

)
By Euler’s criterion, we have(

a

p

)
≡ aφ(p)/2(mod p)

and (
b

p

)
≡ bφ(p)/2(mod p).

Thus we get (
a

p

)(
b

p

)
≡ (ab)φ(p)/2 ≡

(
ab

p

)
(mod p).

We now show when is −1 a quadratic residue of a prime p .
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Corollary 3. If p 6= 2 is a, then(
−1

p

)
=

{
1 if p ≡ 1(mod 4)

−1 if p ≡ −1(mod 4).

Proof. By Euler’s criterion, we know that(
a

p

)
= (−1)φ(p)/2(mod p)

If 4 | (p− 1), then p = 4m+ 1 for some integer m and thus we get

(−1)φ(p)/2 = (−1)2m = 1.

and if 4 | (p− 3), then p = 4m+ 3 for some integer m and we also get

(−1)φ(p)/2 = (−1)2m+1 = −1.

We now determine when 2 is a quadratic residue of a prime p.

Theorem 76. For every odd prime p we have(
2

p

)
=

{
1 if p ≡ ±1(mod 8)

−1 if p ≡ ±3(mod 8).

Proof. Consider the following (p− 1)/2 congruences

p− 1 ≡ 1(−1)1 (mod p)

2 ≡ 2(−1)2 (mod p)

p− 3 ≡ 3(−1)3 (mod p)

4 ≡ 4(−1)4 (mod p)

.

.

.

r ≡ p− 1

2
(−1)(p−1)/2 (mod p),
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where r is either p − (p − 1)/2 or (p − 1)/2. Multiplying all these equations we

get,

2.4.6...(p− 1) ≡
(
p− 1

2

)
!(−1)1+2+...+(p−1)/2 (mod p).

This gives us

2(p−1)/2

(
p− 1

2

)
! ≡

(
p− 1

2

)
!(−1)(p2−1)/8(mod p).

Now notice that
(
p−1

2

)
! 6≡ 0(mod p) and thus we get

2(p−1)/2 ≡ (−1)(p2−1)/8(mod p).

Note also that by Euler’s criterion, we get

2φ(p)/2 ≡
(

2

p

)
(mod p),

and since each member is 1 or -1 the two members are equal.

We now present an important lemma that determines whether an integer is a

quadratic residue of a prime or not.

Lemma 14. Gauss’s Lemma Let p 6= 2 be a prime and a a relatively prime

integer to p. If k counts the number of least positive residues of the integers

a, 2a, ..., ((p− 1)/2)a that are greater than p/2, then(
a

p

)
= (−1)k.

Proof. Let m1,m2, ...,ms be those integers greater than p/2 in the set of the least

positive residues of the integers a, 2a, ..., ((p − 1)/2)a and let n1, n2, ..., nt be

those less than p/2. We now show that

p−m1, p−m2, ..., p−mk, p− n1, p− n2, ..., p− nt

are precisely the integers

1, 2, ..., (p− 1)/2,



6.5. LEGENDRE SYMBOL 145

in the same order.

So we shall show that no two integers of these are congruent modulo p, be-

cause there are exactly (p − 1)/2 numbers in the set, and all are positive integers

less than or equal to (p − 1)/2. Notice that mi 6≡ mj(mod p) for all i 6= j and

ni 6≡ nj(mod p) for all i 6= j. If any of these congruences fail, then we will have

that r ≡ s(mod p) assuming that ra ≡ sa(mod p). Also any of the integers p−mi

can be congruent to any of the ni’s. Because if such congruence holds, then we

have ra ≡ p− sa(mod p), so that ra ≡ −sa(mod p). Because p - a, this implies

that r ≡ −s(mod p), which is impossible. We conclude that

k∏
i=1

(p−mi)
t∏
i=1

ni ≡
(
p− 1

2

)
!(mod p),

which implies

(−1)sm1m2...(p−mk)n1n2...nt ≡
(
p− 1

2

)
!(mod p),

Simplifying, we get

m1m2...(p−mk)n1n2...nt ≡ a.2a...((p− 1)/2) = a(p−1)/2((p− 1)/2)!(mod p).

As a result, we have that

a(p−1)/2((p− 1)/2)! ≡ ((p− 1)/2)!(mod p)

Note that since (p, ((p− 1)/2)!) = 1, we get

(−1)ka(p−1)/2 ≡ 1(mod p).

Thus we get

a(p−1)/2 ≡ (−1)k(mod p).

Using Euler’s criterion, the result follows.
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Example 63. To find
(

5
13

)
using Gauss’s lemma, we calculate

6∑
i=1

[5i/13] = [5/13] + [10/13] + [15/13] + [20/13] + [25/13] + [30/13] = 5

Thus we get
(

5
13

)
= (−1)5 = −1.

Exercises

1. Find all quadratic residues of 3

2. Find all quadratic residues of 19.

3. Find the value of Legendre symbol
(
j
7

)
for j = 1, 2, 3, 4, 5, 6.

4. Evaluate the Legendre symbol
(

7
11

)
by using Euler’s criterion.

5. Let a and b be integers not divisible by p. Show that either one or all three

of the integers a, b and ab are quadratic residues of p.

6. Let p be a prime and a be a quadratic residue of p. Show that if p ≡
1(mod 4), then−a is also a quadratic residue of p, whereas if p ≡ 3(mod 4),

then −a is a quadratic nonresidue of p.

7. Show that if p is an odd prime and a is an integer not divisible by p then(
a2

p

)
= 1.

6.6 The Law of Quadratic Reciprocity

Given that p and q are odd primes. Suppose we know whether q is a quadratic

residue of p or not. The question that this section will answer is whether p will be

a quadratic residue of q or not. Before we state the law of quadratic reciprocity,

we will present a Lemma of Eisenstein which will be used in the proof of the law

of reciprocity. The following lemma will relate Legendre symbol to the counting

lattice points in the triangle.
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Lemma 15. If p 6= 2 is a prime and a is an odd integer such that p - a, then(
a

p

)
= (−1)

∑(p−1)/2
i=1 [ia/p].

Proof. Consider the least positive residues of the integers a, 2a, ..., ((p− 1)/2)a;

let m1,m2, ...,ms be integers of this set such that mi > p/2 for all i and let

n1, n2, ..., nt be those integers where ni < p/2. Using the division algorithm, we

see that

ia = p[ia/p] + r

where r is one of the mi or ni. By adding the (p− 1)/2 equations, we obtain

(p−1)/2∑
i=1

ia =

(p−1)/2∑
i=1

p[ia/p] +
s∑
i=1

mi +
t∑
i=1

ni. (6.3)

As in the proof of Gauss’s Lemma, we see that

p−m1, p−m2, ..., p−ms, p− n1, p− n2, ..., p− nt

are precisely the integers 1, 2, ..., (p− 1)/2, in the same order. Now we obtain

(p−1)/2∑
i=1

i =
s∑
i=1

(p−mi) +
t∑
i=1

ni = ps−
s∑
i=1

mi +
t∑
i=1

ni. (6.4)

We subtract (6.4) from (6.3) to get

(p−1)/2∑
i=1

ia−
(p−1)/2∑
i=1

i =

(p−1)/2∑
i=1

p[ia/p]− ps+ 2
s∑
i=1

mi.

Now since we are taking the following as exponents for −1, it suffice to look at

them modulo 2. Thus

0 ≡
(p−1)/2∑
i=1

[ia/p]− s(mod 2).
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(p−1)/2∑
i=1

[ia/p] ≡ s(mod 2)

Using Gauss’s lemma, we get(
a

p

)
= (−1)s = (−1)

∑(p−1)/2
i=1 [ia/p].

Theorem 77. The Law of Quadratic Reciprocity Let p and q be distinct odd

primes. Then (
p

q

)(
q

p

)
= (−1)

p−1
2
. q−1

2

Proof. We consider now the pairs of integers also known as lattice points (x, y)

with

1 ≤ x ≤ (p− 1)/2and 1 ≤ y ≤ (q − 1)/2.

The number of such pairs is p−1
2
. q−1

2
. We divide these pairs into two groups de-

pending on the sizes of qx and py. Note that qx 6= py for all pairs because p and

q are distinct primes.

We now count the pairs of integers (x, y) with

1 ≤ x ≤ (p− 1)/2, 1 ≤ y ≤ (q − 1)/2and qx > py.

Note that these pairs are precisely those where

1 ≤ x ≤ (p− 1)/2and 1 ≤ y ≤ qx/p.

For each fixed value of x with 1 ≤ x ≤ (p − 1)/2, there are [qx/p] integers

satisfying 1 ≤ y ≤ qx/p. Consequently, the total number of pairs with are

1 ≤ x ≤ (p− 1)/2, 1 ≤ y ≤ qx/p, and qx > py

is
(p−1)/2∑
i=1

[qi/p].
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Consider now the pair of integers (x, y) with

1 ≤ x ≤ (p− 1)/2, 1 ≤ y ≤ (q − 1)/2, and qx < py.

Similarly, we find that the total number of such pairs of integers is

(q−1)/2∑
i=1

[pi/q].

Adding the numbers of pairs in these classes, we see that

(p−1)/2∑
i=1

[qi/p] +

(q−1)/2∑
i=1

[pi/q] =
p− 1

2
.
q − 1

2
,

and hence using Lemma 14, we get that(
p

q

)(
p

q

)
= (−1)

p−1
2
. q−1

2

Exercises

1. Evaluate
(

3
53

)
.

2. Evaluate
(

31
641

)
.

3. Using the law of quadratic reciprocity, show that if p is an odd prime, then(
3

p

)
=

{
1 if p ≡ ±1(mod 12)

−1 if p ≡ ±5(mod 12).

4. Show that if p is an odd prime, then(
−3

p

)
=

{
1 if p ≡ 1(mod 6)

−1 if p ≡ −1(mod 6).

5. Find a congruence describing all primes for which 5 is a quadratic residue.
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6.7 Jacobi Symbol

In this section, we define the Jacobi symbol which is a generalization of the Leg-

endre symbol. The Legendre symbol was defined in terms of primes, while Jacobi

symbol will be generalized for any odd integers and it will be given in terms of

Legendre symbol.

Definition 28. Let n be an odd positive integer with prime factorization n =

pa11 p
a2
2 ...p

am
m and let a be an integer relatively prime to n, then

(a
n

)
=

m∏
i=1

(
a

pi

)ci
.

Example 64. Notice that from the prime factorization of 45, we get that(
2

55

)
=

(
2

5

)(
2

11

)
= (−1)(−1) = 1

We now prove some properties for Jacobi symbol that are similar to the prop-

erties of Legendre symbol.

Theorem 78. Let n be an odd positive integer and let a and b be integers such

that(a, n) = 1 and (b, n) = 1. Then

1. if n | (a− b), then (a
n

)
=

(
b

n

)
.

2. (
ab

n

)
=
(a
n

)( b
n

)
.

Proof. Proof of 1: Note that if p is in the prime factorization of n, then we have

that p | (a− b). Hence by Theorem 70, we get that(
a

p

)
=

(
b

p

)
.
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As a result, we have (a
n

)
=

m∏
i=1

(
a

pi

)ci
=

m∏
i=1

(
b

pi

)ci
Proof of 2: Note that by Theorem 71, we have

(
ab
p

)
=
(
a
p

)(
b
p

)
for any prime p

appearing in the prime factorization of n. As a result, we have(
ab

n

)
=

m∏
i=1

(
ab

pi

)ci
=

m∏
i=1

(
a

pi

)ci m∏
i=1

(
b

pi

)ci
=

(a
n

)( b
n

)
.

In the following theorem, we determine
(−1
n

)
and

(
2
n

)
.

Theorem 79. Let n be an odd positive integer. Then

1. (
−1

n

)
= (−1)(n−1)/2.

2. (
2

n

)
= (−1)(n2−1)/8.

Proof. Proof of 1: If p is in the prime factorization of n, then by Corollary 3, we

see that
(
−1
p

)
= (−1)(p−1)/2. Thus

(
−1

n

)
=

m∏
i=1

(
−1

pi

)ci

= (−1)
∑m
i=1 ci(pi−1)/2.
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Notice that since pi − 1 is even, we have

paii = (1 + (pi − 1))ci ≡ 1 + ci(pi − 1)(mod 4)

and hence we get

n =
m∏
i=1

pcii ≡ 1 +
m∑
i=1

ci(pi − 1)(mod 4).

As a result, we have

(n− 1)/2 ≡
m∑
i=1

ci(pi − 1)/2 (mod 2).

Proof of 2: If p is a prime, then by Theorem 72 we have(
2

p

)
= (−1)(p2−1)/8.

Hence (
2

n

)
= (−1)

∑m
i=1 ci(p

2
i−1)/8.

Because 8 | p2
i − 1, we see similarly that

(1 + (p2
i − 1))ci ≡ 1 + ci(p

2
i − 1)(mod 64)

and thus

n2 ≡ 1 +
m∑
i=1

ci(p
2
i − 1)(mod 64),

which implies that

(n2 − 1)/8 ≡
m∑
i=1

ci(p
2
i − 1)/8(mod 8).

We now show that the reciprocity law holds for Jacobi symbol.



6.7. JACOBI SYMBOL 153

Theorem 80. Let (a, b) = 1 be odd positive integers. Then(
b

a

)(a
b

)
= (−1)

a−1
2
. b−1

2 .

Proof. Notice that since a =
∏m

j=1 p
ci
i and b =

∏n
i=1 q

di
i we get(

b

a

)(a
b

)
=

n∏
i=1

m∏
j=1

[(
pj
qi

)(
qi
pj

)]cjdi
By the law of quadratic reciprocity, we get(

b

a

)(a
b

)
= (−1)

∑n
i=1

∑m
j=1 cj

(
pj−1

2

)
di( qi−1

2 )

As in the proof of part 1 of Theorem 75, we see that
m∑
j=1

cj

(
pj − 1

2

)
≡ a− 1

2
(mod 2)

and
n∑
i=1

di

(
qi − 1

2

)
≡ b− 1

2
(mod 2).

Thus we conclude that
m∑
j=1

cj

(
pj − 1

2

) n∑
i=1

di

(
qi − 1

2

)
≡ a− 1

2
.
b− 1

2
(mod 2).

Exercises

1. Evaluate
(

258
4520

)
.

2. Evaluate
(

1008
2307

)
.

3. For which positive integers n that are relatively prime to 15 does the Jacobi

symbol
(

15
n

)
equal 1?

4. Let n be an odd square free positive integer. Show that there is an integer a

such that (a, n) = 1 and
(
a
n

)
= −1.



154 CHAPTER 6. PRIMITIVE ROOTS AND QUADRATIC RESIDUES



Chapter 7

Introduction to Continued Fractions

In this chapter, we introduce continued fractions, prove their basic properties and

apply these properties to solve some problems. Being a very natural object, con-

tinued fractions appear in many areas of Mathematics, sometimes in an unex-

pected way. The Dutch mathematician and astronomer, Christian Huygens (1629-

1695), made the first practical application of the theory of ”anthyphaeiretic ratios”

(the old name of continued fractions) in 1687. He wrote a paper explaining how

to use convergents to find the best rational approximations for gear ratios. These

approximations enabled him to pick the gears with the best numbers of teeth. His

work was motivated by his desire to build a mechanical planetarium. Further

continued fractions attracted attention of most prominent mathematicians. Euler,

Jacobi, Cauchy, Gauss and many others worked with the subject. Continued frac-

tions find their applications in some areas of contemporary Mathematics. There

are mathematicians who continue to develop the theory of continued fractions

nowadays, The Australian mathematician A.J. van der Poorten is, probably, the

most prominent among them.

155
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7.1 Basic Notations

In general, a (simple) continued fraction is an expression of the form

a0 +
1

a1 + 1
a2 + . . .

,

where the letters a0, a1, a2, . . . denote independent variables, and may be inter-

preted as one wants (e.g. real or complex numbers, functions, etc.). This expres-

sion has precise sense if the number of terms is finite, and may have no meaning

for an infinite number of terms. In this section we only discuss the simplest clas-

sical setting.

The letters a1, a2, . . . denote positive integers. The letter a0 denotes an integer.

The following standard notation is very convenient.

Notation 1. We write

[a0; a1, a2, . . . , an] = a0 +
1

a1 + 1
a2 + . . .

+ 1
an

if the number of terms is finite, and

[a0; a1, a2, . . .] = a0 +
1

a1 + 1
a2 + . . .

for an infinite number of terms.

Still, in the case of infinite number of terms a certain amount of work must be

carried out in order to make the above formula meaningful. At the same time, for

the finite number of terms the formula makes sense.

Example 65.

[−2; 1, 3, 5] = −2 +
1

1 + 1
3+ 1

5

= −2 +
1

1 + 5
16

= −2 +
1
21
16

= −2 +
16

21
= −26

21
.
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Notation 2. For a finite continued fraction [a0; a1, a2, . . . , an] and a positive inte-

ger k ≤ n, the k-th remainder is defined as the continued fraction

rk = [ak; ak+1, ak+2, . . . , an].

Similarly, for an infinite continued fraction [a0; a1, a2, . . .] and a positive inte-

ger k, the k-th remainder is defined as the continued fraction

rk = [ak; ak+1, ak+2, . . .].

Thus, at least in the case of a finite continued fraction,

α = [a0; a1, a2, . . . , an] = a0 + 1/(a1 + 1/(a2 + . . .+ 1/an))

we have

α = a0 + 1/(a1 + 1/(a2 + . . .+ 1/(ak−1 + 1/rk))) = “[a0; a1, a2, . . . , ak−1, rk]”

(7.1)

for any positive k ≤ n. Quotation signs appear because we consider the expres-

sions of this kind only with integer entries but the quantity rk may be a non-integer.

It is not difficult to expand any rational number α into a continued fraction.

Indeed, let a0 = [α] be the greatest integer not exceeding α. Thus the difference

δ = α − a0 < 1 and, of course, δ ≥ 0. If δ = 0 then we are done. Otherwise

put r1 = 1/δ, find a1 = [r1] and non-negative δ = α1 − a1 < 1. Continue the

procedure until you obtain δ = 0.

Example 66. Consider the continued fraction expansion for 42/31. We obtain

a0 = [42/31] = 1, δ = 42/31 − 1 = 11/31. Now r1 = 1/δ = 31/11 and

a1 = [α1] = [31/11] = 2. The new δ = 31/11−2 = 9/11. Now r2 = 1/δ = 11/9

and a2 = [α2] = [11/9] = 1. It follows that δ = 11/9 − 1 = 2/9. Now

r3 = 1/δ = 9/2 and a3 = [α3] = [9/2] = 4. It follows that δ = 9/2 − 4 = 1/2.

Now r4 = 1/δ = 2 and a4 = [α4] = [2] = 2. It follows that δ = 2− 2 = 0 and we

are done.
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Thus we have calculated

42/31 = [a0; a1, a2, a3, a4] = [1; 2, 1, 4, 2].

The above example shows that the algorithm stops after finitely many steps.

This is in fact quite a general phenomenon. In order to practice with the introduced

notations let us prove a simple but important proposition.

Proposition 1. Any rational number can be represented as a finite continued frac-

tion.

Proof. By construction, all remainders are positive rationals. For a positive

integer k put rk = A/B and let ak = [rk]. Then

rk − ak =
A−Bak

B
:=

C

B
. (7.2)

with C < B because rk − ak < 1 by construction. If C = 0, then the algorithm

stops at this point and we are done. Assume now that C 6= 0. It follows from (7.1)

that

rk = ak +
1

rk+1

. (7.3)

Compare now (7.2) with (7.3) to find that

rk+1 =
B

C
.

Since C < B, the rational number rk+1 has a denominator which is smaller than

the the denominator of the previous remainder rk. It follows that after a finite

number of steps we obtain an integer (a rational with 1 in the denominator) rn =

an and the procedure stops at this point.

There appear several natural questions in the connection with Proposition 1.

Is such a continued fraction representation unique? The immediate answer is

”no”. Here are two ”different” continued fraction representations for 1/2:

1

2
= [0; 2] = [0; 1, 1].
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However, we require that an > 1, where an is the last element of a finite continued

fraction. Then the answer is ”yes”.

Hint. Make use of the formulas (7.5) below.

From now on we assume that an > 1.

Another natural question is about infinite continued fractions and (as one can

easily guess) real numbers. The proof of the corresponding result is slightly more

involved, and we do not give it here. In this brief introduction we just formulate

the result and refer to the literature ([12, Theorem 14]) for a complete proof. We,

however, provide some remarks concerning this result below. In particular, we

will explain at some point, what the convergence means.

Theorem 81. An infinite continued fraction converges and defines a real number.

There is a one-to-one correspondence between

• all (finite and infinite) continued fractions [a0; a1, a2, . . .] with an integer a0

and positive integers ak for k > 0 (and the last term an > 1 in the case of finite

continued fractions)

and

• real numbers.

Note that the algorithm we developed above can be applied to any real number

and provides the corresponding continued fraction.

Theorem 81 has certain theoretical significance. L.Kronecker (1823-1891)

said, ”God created the integers; the rest is work of man”. Several ways to represent

real numbers out of integers are well-known. Theorem 81 provides yet another

way to fulfill this task. This way is constructive and at the same time is not tied to

any particular base (say to decimal or binary decomposition).

We will discuss some examples later.

Exercises

1. Compute continued fraction representations of the following rational num-

bers.
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(a) 2/3

(b) 2/51

(c) 2/101

(d) 3/7

(e) 7/3

2. Find a pattern for the continued fraction expansion of every rational number

of the form 1/a.

3. Suppose gcd(2, a) = 1. Show that 2/a has the continued fraction expansion

[0; b, a] where b = [a/2].

4. Find a pattern for the continued fraction expansion of 3/a.

5. Show that if the continued fraction expansion of a/b is [0; a1, . . . , an], then

the continued fraction expansion of b/a is [a1; a2, . . . , an].

6. Prove that under the assumption an > 1 the continued fraction representa-

tion given in Proposition 1 is unique. In other words, the correspondence

between

• finite continued fractions [a0; a1, a2, . . . an] with an integer a0, positive

integers ak for k > 0 and an > 1

and

• rational numbers

is one-to-one.

7.2 Main Technical Tool

Truncate finite (or infinite) continued fraction α = [a0; a1, a2, . . . , an] at the k-th

place (with k < n in the finite case). The rational number sk = [a0; a1, a2, . . . , ak]
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is called the k-th convergent of α. Define the integers pk and qk by

sk =
pk
qk

(7.4)

written in the reduced form with qk > 0.

The following recursive transformation law takes place.

Theorem 82. For k ≥ 2

pk = akpk−1 + pk−2

qk = akqk−1 + qk−2.
(7.5)

Remark. It does not matter here whether we deal with finite or infinite con-

tinued fractions: the convergents are finite anyway. Proof. We use the induction

argument on k. For k = 2 the statement is true.

Now, assume (7.5) for 2 ≤ k < l. Let

α = [a0; a1, a2, . . . al] =
pl
ql

be an arbitrary continued fraction of length l + 1. We denote by pr/qr the r-th

convergent α. Consider also the continued fraction

β = [a1; a2, . . . , al]

and denote by p′r/q
′
r its r-th convergent. We have α = a0 + 1/β which translates

as
pl = a0p

′
l−1 + q′l−1

ql = p′l−1.
(7.6)

Also, by the induction assumption,

p′l−1 = alp
′
l−2 + p′l−3

q′l−1 = alq
′
l−2 + q′l−3

(7.7)

Combining (7.6) and (7.7) we obtain the formulas

pl = a0(alp
′
l−2+p′l−3)+alq

′
l−2+q′l−3 = al(a0p

′
l−2+q′l−2)+(a0p

′
l−3+q′l−3) = alpl−1+pl−2
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and

ql = alp
′
l−2 + p′l−3 = alql−1 + ql−2,

which complete the induction step. We have thus proved that

sk =
pk
qk
,

where pk and qk are defined by the recursive formulas (7.5). We still have to check

that these are the quantities defined by (7.4), namely that qk > 0 and that qk and

pk are relatively prime. The former assertion follows from (7.5) since ak > 0 for

k > 0. To prove the latter assertion, multiply the equations (7.5) by qk−1 and pk−1

respectively and subtract them. We obtain

pkqk−1 − qkpk−1 = −(pk−1qk−2 − qk−1pk−2). (7.8)

This concludes the proof of Theorem 7.5. As an immediate consequence of

(7.5) we find that

pk−1

qk−1

− pk
qk

=
(−1)k

qkqk−1

(7.9)

and
pk−2

qk−2

− pk
qk

=
(−1)kak
qkqk−2

.

Since all the numbers qk and ak are positive, the above formulas imply the follow-

ing.

Proposition 2. The subsequence of convergents pk/qk for even indices k is in-

creasing.

The subsequence of convergents pk/qk for odd indices k is decreasing.

Every convergent with an odd index is bigger than every convergent with an even

index.

Remark. Proposition 2 implies that both subsequences of convergents (those

with odd indices and those with even indices) have limits. This is a step towards
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making sense out of an infinite continued fraction: this should be common limit

of these two subsequences. It is somehow more technically involved (although

still fairly elementary!) to prove that these two limits coincide.

Theorem 83. Let α = [a0; a1, a2, . . . , an]. For k < n we have

1

qk(qk+1 + qk)
≤
∣∣∣∣α− pk

qk

∣∣∣∣ ≤ 1

qkqk+1

Proof.

Another inequality, which provides the lower bound for the distance between

the number α and k-th convergent is slightly more involved. To prove it we first

consider the following way to add fractions which students sometimes prefer.

Definition 1. The number
a+ c

b+ d

is called the mediant of the two fractions a/b and c/d. (The quantities a, b, c and

d are integers.)

Lemma 16. If
a

b
≤ c

d

then
a

b
≤ a+ c

b+ d
≤ c

d
.

Consider now the sequence of fractions

pk
qk
,
pk + pk+1

qk + qk+1

,
pk + 2pk+1

qk + 2qk+1

, . . . ,
pk + akpk+1

qk + akqk+1

=
pk+2

qk+2

, (7.10)

where the last equality follows from (7.5).

It follows that the sequence (7.10) is increasing if k is even and is decreasing

if k is odd. Thus, in particular, the fraction

pk + pk+1

qk + qk+1

(7.11)
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is between the quantities pk/qk and α. Therefore the distance between pk/qk and

the fraction (7.11) is smaller than the distance between pk/qk and α:∣∣∣∣α− pk
qk

∣∣∣∣ ≥ pk + pk+1

qk + qk+1

=
1

qk(qk + qk+1)
.

The second (right) inequality in Theorem 83 is now proved. This finishes the

proof of Theorem 83.

Exercises

1. Check the assertion of Theorem 82 for k = 2.

2. Check that for k = 2

p2q1 − q2p1 = −1.

Hint. Introduce formally p−1 = 1 and q−1 = 0, check that then formulas

7.5 are true also for k = 1.

3. Combine the previous exercises with (7.8) to obtain

qkpk−1 − pkqk−1 = (−1)k

for k ≥ 1. Derive from this that qk and pk are relatively prime.

4. Prove Proposition 2

5. Combine (7.9) with Proposition 2 to prove the inequality∣∣∣∣α− pk
qk

∣∣∣∣ ≤ 1

qkqk+1

.

6. Prove Lemma 16

7. Use (7.5) to show that the sign of the difference between two consecutive

fractions in (7.10) depends only on the parity of k.
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7.3 Very Good Approximation

Continued fractions provide a representation of numbers which is, in a sense,

generic and canonical. It does not depend on an arbitrary choice of a base. Such a

representation should be the best in a sense. In this section we quantify this naive

idea.

Definition 2. A rational number a/b is referred to as a ”good” approximation to

a number α if
c

d
6= a

b
and 0 < d ≤ b

imply

|dα− c| > |bα− a|.

Remarks. 1. Our ”good approximation” is ”the best approximation of the sec-

ond kind” in a more usual terminology.

2. Although we use this definition only for rational α, it may be used for any real

α as well. Neither the results of this section nor the proofs alter.

3. Naively, this definition means that a/b approximates α better then any other

rational number whose denominator does not exceed b. There is another, more

common, definition of ”the best approximation”. A rational number x/y is re-

ferred to as ”the best approximation of the first kind” if c/d 6= x/y and 0 < d ≤ y

imply |α − c/d| > |α − x/y|. In other words, x/y is closer to α than any ratio-

nal number whose denominator does not exceed y. In our definition we consider

a slightly different measure of approximation, which takes into the account the

denominator, namely b|α − a/b| = |bα − a| instead of taking just the distance

|α− a/b|.

Theorem 84. Any ”good” approximation is a convergent.

Proof. Let a/b be a ”good” approximation to α = [a0; a1, a2, . . . , an]. We

have to prove that a/b = pk/qk for some k.
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Thus we have a/b > p1/q1 or a/b lies between two consecutive convergents

pk−1/qk−1 and pk+1/qk+1 for some k. Assume the latter. Then∣∣∣∣ab − pk−1

qk−1

∣∣∣∣ ≥ 1

bqk−1

and ∣∣∣∣ab − pk−1

qk−1

∣∣∣∣ < ∣∣∣∣pkqk − pk−1

qk−1

∣∣∣∣ =
1

qkqk−1

.

It follows that

b > qk. (7.12)

Also ∣∣∣α− a

b

∣∣∣ ≥ ∣∣∣∣pk+1

qk+1

− a

b

∣∣∣∣ ≥ 1

bqk+1

,

which implies

|bα− a| ≥ 1

qk+1

.

At the same time Theorem 83 (it right inequality multiplied by qk) reads

|qkα− pk| ≤
1

qk+1

.

It follows that

|qkα− pk| ≤ |bα− a| ,

and the latter inequality together with (7.12) show that a/b is not a ”good” ap-

proximation of α in this case.

This finishes the proof of Theorem 84.

Exercises

1. Prove that if a/b is a ”good” approximation then a/b ≥ a0.

2. Show that if a/b > p1/q1 then a/b is not a ”good” approximation to α.
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7.4 An Application

Consider the following problem which may be of certain practical interest. As-

sume that we calculate certain quantity using a computer. Also assume that we

know in advance that the quantity in question is a rational number. The com-

puter returns a decimal which has high accuracy and is pretty close to our desired

answer. How to guess the exact answer?

To be more specific consider an example.

Example 67. Assume that the desired answer is

123456

121169

and the result of computer calculation with a modest error of 10−15 is

α =
123456

121169
+ 10−15 = 1.0188744645907791693337404781751107956655

5802226642127937013592585562313793131906

6757999158200529838490042832737746453300

7617459911363467553582186862976503891259

315501489654944746593600673439576129207

with some two hundred digits of accuracy which, of course come short to help in

guessing the period and the exact denominator of 121169.

Solution. Since 123456/121169 is a good (just in a naive sense) approximation

to α, it should be among its convergents. This is not an exact statement, but it

offers a hope! We have

α = [1; 52, 1, 53, 2, 4, 1, 2, 1, 68110, 4, 1, 2, 106, 22, 3, 1, 1, 10, 2, 1, 3, 1, 3, 4, 2, 11].

We are not going to check all convergents, because we notice the irregularity:

one element, 68110 is far more than the others. In order to explain this we use the
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left inequality from Theorem 83 together with the formula (7.5). Indeed, we have

an approximation of α which is unexpectedly good: |α − pk/qk| is very small (it

is around 10−15) and with a modest qk too. We have

qk(qk+1 + qk) = qk(ak+1qk + qk−1) = q2
k(ak+1 + qk−1/qk)

and ∣∣∣∣α− pk
qk

∣∣∣∣ ≥ 1

q2
k(ak+1 + qk−1/qk)

.

It follows that 1/q2
k(ak+1 + qk−1/qk) is small (smaller than 10−15) and therefore,

ak+1 should be big. This is exactly what we see. Of course, our guess is correct:

123456

121169
= [1, 52, 1, 53, 2, 4, 1, 2, 1].

In this way we conclude that in general an unexpectedly big element allows

to cut the continued fraction (right before this element) and to guess the exact

rational quantity. There is probably no need (although this is, of course, possible)

to quantify this procedure. I prefer to use it just for guessing the correct quantities

on the spot from the first glance.

7.5 A Formula of Gauss, a Theorem of Kuzmin and

Lévi and a Problem of Arnold

In this connection Gauss asked about a probability ck for a number k to appear as

an element of a continued fraction. Such a probability is defined in a natural way:

as a limit when N →∞ of the number of occurrences of k among the first N ele-

ments of the continued fraction enpension. Moreover, Gauss provided an answer,

but never published the proof. Two different proofs were found independently by

R.O.Kuzmin (1928) and P. Lévy (1929) (see [12] for a detailed exposition of the

R.O.Kuzmin’s proof).
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Theorem 85. For almost every real α the probability for a number k to appear as

an element in the continued fraction expansion of α is

ck =
1

ln 2
ln

(
1 +

1

k(k + 2)

)
. (7.13)

Remarks. 1. The words ”for almost every α” mean that the measure of the set

of exceptions is zero.

2. Even the existence of pk (defined as a limit) is highly non-trivial.

Theorem 85 may (and probably should) be considered as a result from ergodic

theory rather than number theory. This constructs a bridge between these two ar-

eas of Mathematics and explains the recent attention to continued fractions of the

mathematicians who study dynamical systems. In particular, V.I.Arnold formu-

lated the following open problem. Consider the set of pairs of integers (a, b) such

that the corresponding points on the plane are contained in a quarter of a circle of

radii N :

a2 + b2 ≤ N2.

Expand the numbers p/q into continued fractions and compute the frequencies

sk for the appearance of k in these fractions. Do these frequencies have limits

as N → ∞? If so, do these limits have anything to do with the probabilities,

given by (7.13)? These questions demand nothing but experimental computer

investigation, and such an experiment may be undertaken by a student. Of course,

it would be extremely challenging to find a phenomena experimentally in this way

and to prove it after that theoretically.

Of course, one can consider more general kinds of continued fractions. In

particular, one may ease the assumption that the elements are positive integers

and consider, allowing arbitrary reals as the elements (the question of conver-

gence may usually be solved). The following identities were discovered inde-

pendently by three prominent mathematicians. The English mathematician R.J.

Rogers found and proved these identities in 1894, Ramanujan found the iden-

tities (without proof) and formulated them in his letter to Hardy from India in
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1913. Independently, being separated from England by the war, I. J. Schur found

the identities and published two different proofs in 1917. We refer an interested

reader to [2, 1] for a detailed discussion and just state the amazing identities here.

[0; e−2π, e−4π, e−6π, e−8π, . . .] =

√5 +
√

5

2
−
√

5 + 1

2

 e2π/5

[1; e−π, e−2π, e−3π, e−4π, . . .] =

√5−
√

5

2
−
√

5− 1

2

 eπ/5

Exercises

1. Prove that ck really define a probability distribution, namely that

∞∑
k=1

ck = 1.



Chapter 8

Introduction to Analytic Number
Theory

The distribution of prime numbers has been the object of intense study by many

modern mathematicians. Gauss and Legendre conjectured the prime number the-

orem which states that the number of primes less than a positive number x is

asymptotic to x/logx as x approaches infinity. This conjecture was later proved

by Hadamard and Poisson. Their proof and many other proofs lead to the what is

known as Analytic Number theory.

In this chapter we demonstrate elementary theorems on primes and prove el-

ementary properties and results that will lead to the proof of the prime number

theorem.

8.1 Introduction

It is well known that the harmonic series
∑∞

n=1
1
n

diverges. We therefore deter-

mine some asymptotic formulas that determines the growth of the
∑

n≤x
1
n

. We

start by introducing Euler’s summation formula that will help us determine the

asymptotic formula.

171
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We might ask the following question. What if the sum is taken over all the

primes. In this section, we show that the sum over the primes diverges as well.

We also show that an interesting product will also diverge. From the following

theorem, we can actually deduce that there are infinitely many primes.

Euler’s Summation Formula If f has a continuous derivative on an interval

[a, b] where a > 0, then

∑
a<n≤b

f(n) =

∫ b

a

f(t)dt+

∫ b

a

({t})f ′(t)dt+ f(b)({b})− f(a)({a}).

where {t} denotes the fractional part of t.

For the proof of Euler’s summation formula see [3, Chapter 3].

Proposition 3. If x ≥ 1, we have that:∑
n≤x

1

n
= log x+ γ +O

(
1

x

)
Proof. We use Euler’s summation formula by taking f(t) = 1/t. We then get∑

n≤x

1

n
=

∫ x

1

1

t
dt−

∫ x

1

{t}
t2
dt+ 1 +O

(
1

x

)
= log x+ 1−

∫ ∞
1

{t}
t2
dt+

∫ ∞
x

{t}
t2
dt+O

(
1

x

)
Notice now that {t} ≤ t and hence the two improper integrals exist since they are

dominated by integrals that converge. We therefore have

0 ≤
∫ ∞
x

{t}
t2
dt ≤ 1

x
,

we also let

γ = 1−
∫ ∞

1

{t}
t2
dt
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and we get the asymptotic formula. Notice that γ is called Euler’s constant. Notice

also that similar steps can be followed to find an asymptotic formulas for other

sums involving powers of n.

We now proceed to show that if we sum over the primes instead, we still get a

divergent series.

Theorem 86. Both
∑

p
1
p

and
∏

p(1−
1
p
) diverge.

Proof. Let x ≥ 2 and put

P (x) =
∏
p≤x

(
1− 1

p

)−1

, S(x) =
∑
p≤x

1

p

Let 0 < u < 1 and m ∈ Z, we have

1

1− u
>

1− um+1

1− u
= 1 + u+ ...+ um.

Now taking u = 1
p
, we get

1

1− 1
p

> 1 +
1

p
+ ...+

(
1

p

)m
As a result, we have that

P (x) >
∏
p≤x

(
1 +

1

p
+ ...+

1

pm

)
Choose m > 0 ∈ Z such that 2m−1 ≤ x ≤ 2m. Observe also that∏

p≤x

(
1 +

1

p
+ ...+

1

pm

)
= 1 +

∑
pi≤x

1

pm1
1 pm2

2 ...

where 1 ≤ mi ≤ m . As a result, we get every 1
n
, n ∈ Z+ where each prime factor

of n is less than or equal to x(Exercise). Thus we have

∏
p≤x

(
1 +

1

p
+ ...+

1

pm

)
>

2m−1∑
n=1

1

n
>

[x/2]∑
n=1

1

n



174 CHAPTER 8. INTRODUCTION TO ANALYTIC NUMBER THEORY

Taking the limit as x approaches infinity, we conclude that P (x) diverges.

We proceed now to prove that S(x) diverges. Notice that if u > 0, then

log(1/u− 1) < u+
1

2
(u2 + u3 + ...).

Thus we have

log(1/u− 1) < u+
u2

2
(1/1− u), 0 < u < 1.

We now let u = 1/p for each p ≤ x, then

log

(
1

1− 1/p

)
− 1

p
<

1

2p(p− 1)

Thus

logP (x) =
∑
p≤x

log(1/1− p).

Thus we have

logP (x)− S(x) <
1

2

∑
p≤x

1

p(p− 1)
<

1

2

∞∑
n=1

1

n(n− 1)

This implies that

S(x) > logP (x)− 1

2

And thus S(x) diverges as x approaches infinity.

Theorem 87 (Abel’s Summation Formula). For any arithmetic function f(n), we

let

A(x) =
∑
n≤x

f(n)

where A(x) = 0 for x < 1. Assume also that g has a continuous derivative on the

interval [y, x], where 0 < y < x. Then we have∑
y<n≤x

f(n)g(n) = A(x)g(x)− A(y)g(y)−
∫ x

y

A(t)g′(t)dt.
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The proof of this theorem can be found in [3, Chapter 4].

Exercises

1. Show that one gets every 1
n
, n ∈ Z+ where each prime factor of n is less

than or equal to x in the proof of Theorem 1.

2. Write down the proof of Abel’s summation formula in details.

8.2 Chebyshev’s Functions

We introduce some number theoretic functions which play important role in the

distribution of primes. We also prove analytic results related to those functions.

We start by defining the Van-Mangolt function

Definition 5. Ω(n) = logp if n = pm and vanishes otherwise.

We define also the following functions, the last two functions are called Cheby-

shev’s functions.

1. π(x) =
∑

p≤x 1.

2. θ(x) =
∑

p≤x logp

3. ψ(x) =
∑

n≤x Ω(n)

Notice that

ψ(x) =
∑
n≤x

Ω(n) =
∞∑

m=1, pm≤x

∑
p

Ω(pm) =
∞∑
m=1

∑
p≤x1/m

logp.

Example 68. 1. π(10) = 4.

2. θ(10) = log2 + log3 + log5 + log7.

3. ψ(10) = log2 + log2 + log2 + log3 + log3 + log5 + log7
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Remark 6. It is easy to see that

ψ(x) = θ(x) + θ(x1/2) + θ(x1/3) + ...θ(x1/m)

where m ≤ log2x. This remark is left as an exercise.

Notice that the above sum will be a finite sum since for some m, we have that

x1/m < 2 and thus θ(x1/m) = 0.

We use Abel’s summation formula now to express the two functions π(x) and

θ(x) in terms of integrals.

Theorem 88. For x ≥ 2, we have

θ(x) = π(x) log x−
∫ x

2

π(t)

t
dt

and

π(x) =
θ(x)

log x
+

∫ x

2

θ(t)

t log2 t
dt.

Proof. We define the characteristic function χ(n) to be 1 if n is prime and 0 oth-

erwise. As a result, we can see from the definition of π(x) and θ(x) that they can

be represented in terms of the characteristic function χ(n). This representation

will enable use to apply Abel’s summation formula where f(n) = χ(n) for θ(x)

and where f(n) = χ(n) log n for π(x). So we have,

π(x) =
∑

1≤n/leqx

χ(n) and θ(x) =
∑

1≤n≤x

χ(n) log n

Now let g(x) = log x in Theorem 84 with y = 1 and we get the desired result for

the integral representation of θ(x). Similarly we let g(x) = 1/ log x with y = 3/2

and we obtain the desired result for π(x) since θ(t) = 0 for t < 2.

We now prove a theorem that relates the two Chebyshev’s functions θ(x) and

ψ(x). The following theorem states that if the limit of one of the two functions

θ(x)/x or ψ(x)/x exists then the limit of the other exists as well and the two limits

are equal.
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Theorem 89. For x > 0, we have

0 ≤ ψ(x)

x
− θ(x)

x
≤ (log x)2

2
√
x log 2

.

Proof. From Remark 4, it is easy to see that

0 ≤ ψ(x)− θ(x) = θ(x1/2) + θ(x1/3) + ...θ(x1/m)

where m ≤ log2x. Moreover, we have that θ(x) ≤ x log x. The result will follow

after proving the inequality in Exercise 2.

Exercises

1. Show that

ψ(x) = θ(x) + θ(x1/2) + θ(x1/3) + ...θ(x1/m)

where m ≤ log2x.

2. Show that 0 ≤ ψ(x) − θ(x) ≤ (log2(x))
√
x log

√
x and thus the result of

Theorem 86 follows.

3. Show that the following two relations are equivalent

π(x) =
x

log x
+O

(
x

log2 x

)
θ(x) = x+O

(
x

log x

)

8.3 Getting Closer to the Proof of the Prime Num-

ber Theorem

We know prove a theorem that is related to the defined functions above. Keep in

mind that the prime number theorem is given as follows:

lim
x→∞

π(x)logx

x
= 1.

We now state equivalent forms of the prime number theorem.
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Theorem 90. The following relations are equivalent

lim
x→∞

π(x) log x

x
= 1 (8.1)

lim
x→∞

θ(x)

x
= 1 (8.2)

lim
x→∞

ψ(x)

x
= 1. (8.3)

Proof. We have proved in Theorem 86 that (8.2) and (8.3) are equivalent, so if we

show that (8.1) and (8.2) are equivalent, the proof will follow. Notice that using

the integral representations of the functions in Theorem 85, we obtain

θ(x)

x
=
π(x) log x

x
− 1

x

∫ x

2

π(t)

t
dt

and
π(x) log x

x
=
θ(x)

x
+

log x

x

∫ x

2

θ(t)

t log2 t
dt.

Now to prove that (8.1) implies (8.2), we need to prove that

lim
x→∞

1

x

∫ x

2

π(t)

t
dt = 0.

Notice also that (8.1) implies that π(t)
t

= O
(

1
log t

)
for t ≥ 2 and thus we have

1

x

∫ x

2

π(t)

t
dt = O

(
1

x

∫ x

2

dt

log t

)
Now once you show that (Exercise 1)∫ x

2

dt

log t
≤
√
x

log 2
+
x−
√
x

log
√
x
,

then (8.1) implies (8.2) will follow. We still need to show that (8.2) implies (8.1)

and thus we have to show that

lim
x→∞

log x

x

∫ x

2

θ(t)dt

t log2 t
= 0.
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Notice that θ(x) = O(x) and hence

log x

x

∫ x

2

θ(t)dt

t log2 t
= O

(
log x

x

∫ x

2

dt

log2 t

)
.

Now once again we show that (Exercise 2)∫ x

2

dt

log2 t
≤
√
x

log2 2
+
x−
√
x

log2√x

then (8.2) implies (8.1) will follow.

Theorem 91. Define

l1 = lim inf
x→∞

π(x)

x/logx
, L1 = lim sup

x→∞

π(x)

x/logx
,

l2 = lim inf
x→∞

θ(x)

x
, L2 = lim sup

x→∞

θ(x)

x
,

and

l3 = lim inf
x→∞

ψ(x)

x
, L3 = lim sup

x→∞

ψ(x)

x
,

then l1 = l2 = l3 and L1 = L2 = L3.

Proof. Notice that

ψ(x) = θ(x) + θ(x1/2) + θ(x1/3) + ...θ(x1/m) ≥ θ(x)

where m ≤ log2x

Also,

ψ(x) =
∑
p≤x

[
log x

log p

]
log p ≤

∑
p≤x

log x

log p
log p = log xπ(x).

Thus we have

θ(x) ≤ ψ(x) ≤ π(x) log x
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As a result, we have
θ(x)

x
≤ ψ(x)

x
≤ π(x)

x/ log x

and we get that L2 ≤ L3 ≤ L1. We still need to prove that L1 ≤ L2.

Let α be a real number where 0 < α < 1, we have

θ(x) =
∑
p≤x

log p ≥
∑

xα≤p≤x

log p

>
∑

xα≤p≤x

α log x (log p > α log x)

= αlogx{π(x)− π(xα)}

However, π(xα) ≤ xα. Hence

θ(x) > α log x{π(x)− xα}

As a result,
θ(x)

x
>

απ(x)

x/ log x
− αxα−1 log x

Since limx→∞ α log x/x1−α = 0, then

L2 ≥ α lim sup
x→∞

π(x)

x/ log x

As a result, we get that

L2 ≥ αL1

As α→ 1, we get L2 ≥ L1.

Proving that l1 = l2 = l3 is left as an exercise.

We now present an inequality due to Chebyshev about π(x).

Theorem 92. There exist constants a < A such that

a
x

log x
< π(x) < A

x

log x

for sufficiently large x.
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Proof. Put

l = lim inf
x→∞

π(x)

x/ log x
, L = lim sup

x→∞

π(x)

x/ log x
,

It will be sufficient to prove that L ≤ 4 log 2 and l ≥ log 2. Thus by Theorem 2,

we have to prove that

lim sup
x→∞

θ(x)

x
≤ 4 log 2 (8.4)

and

lim inf
x→∞

ψ(x)

x
≥ log 2 (8.5)

To prove (8.4), notice that

N = C(2n, n) =
(n+ 1)(n+ 2)...(n+ n)

n!
< 22n < (2n+ 1)N

Suppose now that p is a prime such that n < p < 2n and hence p | N . As a result,

we have N ≥
∏

n<p<2n p. We get

N ≥ θ(2n)− θ(n).

Since N < 22n, we get that θ(2n) − θ(n) < 2n log 2. Put n = 1, 2, 22, ..., 2m−1

where m is a positive integer. We get that

θ(2m) < 2m−1 log 2.

Let x > 1 and choose m such that 2m−1 ≤ x ≤ 2m, we get that

θ(x) ≤ θ(2m) ≤ 2m+1 log 2 ≤ 4x log 2

and we get (8.4) for all x.

We now prove (8.5). Notice that by Lemma 9, we have that the highest power

of a prime p dividing N = (2n)!
(n!)2

is given by

sp =

µp∑
i=11

{[
2n

pi

]
− 2

[
n

pi

]}
.
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where µp =
[

log 2n
log p

]
. Thus we have N =

∏
p≤2n p

sp . If x is a positive integer then

[2x]− 2[x] < 2,

It means that [2x]− 2[x] is 0 or 1. Thus sp ≤ µp and we get

N ≤
∏
p≤e2n

pµp .

Notice as well that

ψ(2n) =
∑
p≤2n

[
log 2n

log p

]
log p =

∑
p≤2n

µp log p.

Hence we get

logN ≤ ψ(2n).

Using the fact that 22n < (2n+ 1)N , we can see that

ψ(2n) > 2n log 2− log(2n+ 1).

Let x > 2 and put n =
[
x
2

]
≥ 1. Thus x

2
− 1 < n < x

2
and we get 2n ≤ x. So we

get

ψ(x) ≥ ψ(2n) > 2n log 2− log(2n+ 1)

> (x− 2) log 2− log(x+ 1).

As a result, we get

lim inf
x→∞

ψ(x)

x
≥ log 2.

Exercises

1. Show that l1 = l2 = l3 in Theorem 88.

2. Show that ∫ x

2

dt

log t
≤
√
x

log 2
+
x−
√
x

log
√
x
,
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3. Show that ∫ x

2

dt

log2 t
≤
√
x

log2 2
+
x−
√
x

log2√x

4. Show that

N = C(2n, n) =
(n+ 1)(n+ 2)...(n+ n)

n!
< 22n < (2n+ 1)N

5. Show that 22n

2
√
n
< N = C(2n, n) < 22n√

2n
.

Hint: For one side of the inequality, write

N

2n
=

(2n)!

22n(n!)2
=

1.3.5....(2n− 1)

2.4.6....(2n)
.
2.4.6.....(2n)

2.4.6...(2n)
,

then show that

1 > (2n+ 1).
N2

24n
> 2n.

N2

24n
.

The other side of the inequality will follow with similar arithmetic tech-

niques as the first inequality.
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Chapter 9

Other Topics in Number Theory

This chapter discusses various topics that are of profound interest in number the-

ory. Section 1 on cryptography is on an application of number theory in the field

of message decoding, while the other sections on elliptic curves and the Riemann

zeta function are deeply connected with number theory. The section on Fermat’s

last theorem is related, through Wile’s proof of Fermat’s conjecture on the non-

existence of integer solutions to xn + yn = zn for n > 2, to the field of elliptic

curves (and thus to section 2).

9.1 Cryptography

In this section we discuss some elementary aspects of cryptography, which con-

cerns the coding and decoding of messages.

9.1.1 Public key cryptography

In cryptography, a (word) message is transformed into a sequence a of integers,

by replacing each letter in the message by a specific and known set of integers

that represent this letter, and thus forming a large integer a by concatenation.

185
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Some transformation is then applied to a using an encryption key, in the hopes

that it will be difficult to reverse the transformation without already knowing the

contents of the message. The message is then broadcast to the recipient, who uses

a decryption key to reverse the transformation.

Difficulties arise in sharing the keys. To solve this, public key cryptography
exploits difficult mathematical problems, where it is easy to perform a computa-

tion, but not so easy to reverse it. The general scheme is this:

• Person A wants to receive secret messages. Person A chooses an encryption

function, f , and two keys: an encryption key, e, and a decryption key, d. The

two keys are used to generate a third item, which we shall call m.

• Person A broadcasts f , e, and m. Anyone can overhear this information.

• Person B decides to send person A a secret message, computes b = f(a, e,m),

and broadcasts b message to Person A. Anyone can overhear this message.

• Person A applies a function g to b using d, and obtains a = g(b, d,m). (It is

possible that g = f .)

The security of this approach is based on the fact that even though f , g, e, and

m are publicly known, and the method of computing m from e and d is well-

established, it is practically impossible to reverse-engineer d from all this infor-

mation. This gives a level of security so high that not even the sender can decrypt

the message: only the recipient!

Let’s look at an example that relates to Number Theory.

9.1.2 The RSA algorithm

The RSA algorithm is based on the fact that it is easy to multiply two prime

numbers, but surprisingly difficult to factor them. (We talk about this a little more

below.)
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In RSA, the message a is transformed (i.e. coded) into another integer b by

using a congruence of the form b = ak(mod m) for some chosen k and m, as de-

scribed below, with k publicly known. b is then sent to the recipient who decodes

it into a again by using a congruence of the form a = bk̄(mod m), where k̄ is

related to k and is itself only known to the recipient, and then simply transforms

the integers in a back to letters and reveals the message again. In this procedure,

if a third party intercepts the integers b, k, and m the chance of transforming this

into a, even if the integers that represent the letters of the alphabet are exactly

known, is almost impossible to do (i.e. has a fantastically small probability of

being achieved) if k̄ is not known, that practically the transformed message will

not be revealed except to the intended recipient.

The basic results on congruences to allow for the above procedure are in the

following two lemmata, where φ in the statements is Euler’s φ-function.

Lemma 17. Let a and m be two integers, with m positive and (a,m) = 1. If k

and k̄ are positive integers with kk̄ ≡ 1(mod φ(m)), then akk̄ ≡ a(mod m).

Proof. kk̄ = 1(mod φ(m)) thus kk̄ = qφ(m) + 1 (q ≥ 0). Hence akk̄ =

aqφ(m)+1 = aqφ(m)a. But by Euler’s Theorem, if (a,m) = 1 then aφ(m) ≡
1(mod m). This gives that

(aφ(m))qa ≡ 1 · a(mod m) ≡ a(mod m), (9.1)

and hence that akk̄ ≡ a(mod m), and the result follows.

We also need the following.

Lemma 18. Letm be a positive integer, and let r1, r2, · · · , rn be a reduced residue

system modulo m (i.e. with n = φ(m) and (ri,m) = 1 for i = 1, · · · , n). If k is

an integer such that (k, φ(m)) = 1, then rk1 , r
k
2 , · · · , rkn forms a reduced residue

system modulo m.
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Before giving the proof, one has to note that the above lemma is in fact an

if-and-only-if statement, i.e. (k, φ(m)) = 1 if and only if rk1 , r
k
2 , · · · , rkn forms a

reduced residue system modulo m. However we only need the if part, as in the

lemma.

Proof. Assume first that (k, φ(m)) = 1. We show that rk1 , r
k
2 , · · · , rkn is a reduced

residue system modulo m. Assume otherwise, i.e. assume that ∃i, j such that

rki = rkj (modm), in which case rki and rkj would belong to the same class and thus

rk1 , r
k
2 , · · · , rkn would not form a reduced residue system. Then, since (k, φ(m)) =

1, ∃k̄ with kk̄ = 1(mod φ(m)), and so

rkk̄i = ri(mod m) and rkk̄j = rj(mod m) (9.2)

by the previous lemma. But if rki = rkj (mod m) then (rki )
k̄ = (rkj )

k̄(mod m), and

since rkk̄i = ri(modm) and rkk̄j = rj(modm), then ri = rj(modm) giving that ri
and rj belong to the same class modulom, contradicting that r1, r2, · · · , rn form a

reduced residue system. Thus ri 6= rj implies that rki 6= rkj if (k, φ(m)) = 1.

Now to do cryptography, one proceeds as follows. Let S be a sentence given

in terms of letters and spaces between the words that is intended to be transformed

to a destination with the possibility of being intercepted and revealed by a third

party.

1. Choose a couple p1 and p2 of very large prime numbers, each (for exam-

ple) of the order of a hundred digit integer, and these should be strictly kept

known only to the recipient. Then form the product m = p1p2, which is

itself a very large number to the point that the chances of an eavesdropper’s

discovering the prime number factorization p1p2 of m is incredibly small,

even if they know this integerm. Now one has, by standard results concern-

ing the φ-function, that φ(p1) = p1 − 1 and φ(p2) = p2 − 1, and that, since

p1 and p2 are relatively prime, φ(m) = φ(p1)φ(p2) = (p1 − 1)(p2 − 1).

Thus φ(m) is a very large number, of the order of m itself, and hence m
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has a reduced residue system that contains a very large number of integers

of the order of m itself. Hence almost every integer smaller than m, with a

probability of the order 1− 1/10100 (almost 1), is in a reduced residue system

r1, r2, · · · , rφ(m) of m. Thus almost every positive integer smaller than m is

relatively prime to m, with probability of the order 1− 1/10100.

2. Choose an integer k satisfying gcd(m, k) = 1, and broadcast m and k.

3. The sender transforms S into a (large) integer a by replacing each letter and

each space between words by a certain representative integer (e.g. three

or four digit integers for each letter). a is formed by concatenating the

representative integers that are produced.

4. Now given that almost every positive integer smaller than m is relatively

prime with m, the integer a itself is almost certainly relatively prime with

m, and hence is in a reduced residue system for m. Hence, by Lemma 17

above, if k is a (large) integer such that (k, φ(m)) = 1, then ak belongs to

a reduced residue system for m, and there exists a unique positive b smaller

than m with b = ak(mod m).

5. The sender sends b to the original broadcaster, where the original prime

numbers, and hence φ(m), are known. With this information, which was

never broadcast, the destination can determine a k̄ such that kk̄ = 1(mod φ(m)),

and then finds the unique c such that c = bk̄(mod m). Now since, almost

certainly, (a,m) = 1, then almost certainly c = a since c = bk̄(mod m) =

(ak)k̄(mod m) = akk̄(mod m) ≡ a(mod m) by Lemma 17. Now the desti-

nation translates a back to letters and spaces to reveal the sentence S.

6. Note that if any third party intercepts b, they almost certainly cannot reveal

the integer a since the chance of them knowing φ(m) = p1p2 is almost zero,

even if they know m and k. In this case they practically won’t be able to

determine a k̄ with kk̄ = 1(mod φ(m)), to retrieve a and transform it to S.
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Exercises

1. You will want the assistance of a computer for this. Pick two large primes,

and compute the modulus, an encryption key, and a decryption key. Use

these to confirm your understanding of the RSA algorithm: practice by in-

venting a message, encrypting it, then trying to decrypt it again. Be sure you

use a computer that knows how to take large exponents modulo a number

quickly, or you could be waiting a long time. . .

9.1.3 Is RSA safe?

You might wonder if RSA is really safe. After all, the method is well-known, and

is based on the fact that k̄ is the multiplicative inverse of k modulo φ(m). But

this is easy if you know φ(m); the fact that gcd(φ(m), k) = 1 means you can just

apply the Euclidean algorithm to find two integers k̄, ` such that

kk̄ + `φ(m) = 1.

.Even worse, m is the product of two primes p and q, so φ(m) = (p− 1)(q − 1).

Thus, breaking RSA is as simple as factoring m into primes — and you already

know that there are only two primes!

Example 69. To drive home how simple this can be, consider that 6 = 2 × 3,

14 = 2× 7, and so forth are fairly easy to factor. Then again, they’re pretty small

numbers. . .

This appearance of vulnerability really is superficial: once prime numbers

grow sufficiently large, no one knows how to factor them quickly. For a while,

RSA Laboratories even offered large cash prizes to people who can factor such

values of m. As of this writing, the smallest such number in the RSA Factoring
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Challenge is 220 digits long:

22601385262034057849416540486101975135080389157197

76718321197768109445641817966676608593121306582577

25063156288667697044807000181114971186300211248792

81994874820660701310665866460833279828035603792053

91980139946496955261.

Although they no longer offer the prize, you might want to give it a go if you have

a lot of free time coming up.

However, one can’t just pick any two large primes. We can illustrate this with

10403: an obvious approach to factor it (and usually a very bad one) is to start

at the floor of
√

10403 and work one’s way down; since
√

10403 ≈ 102, the first

number to try is 101. Oops!

There is a large body of scientific work dedicated to finding good primes for

the RSA algorithm, which is a good thing, because commerce on the internet

(such as that One-click purchase at Amazon!) is based on its security. Recently,

scientists working in the strange world of quantum computing have developed al-

gorithms that factor primes very, very quickly — but quantum computers work

only with very, very small numbers. It is not yet clear whether quantum com-

putation will advance to the point where this will become practical for cracking

formerly secure communications.

Exercises

1. Ask a mathematically literate friend to choose two “large” primes, but not

to tell you what they are. Instead, your friend should tell you what their

product is. See if you can determine the two prime numbers. (Here, “large”

means two to three digits long — not RSA grade!)
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9.2 Elliptic Curves

Elliptic curves in the xy-plane are the set of points (x, y) ∈ R × R that are the

zeros of special types of third order polynomials f(x, y), with real coefficients,

in the two variables x and y. These curves turn out to be of fundamental interest

in analytic number theory. More generally, one can define similar curves over

arbitrary algebraic fields as follows. Let f(x, y) be a polynomial of any degree

in two variables x and y, with coefficients in an algebraic field F . We define the

algebraic curve Cf (F) over the field F by

Cf (F) = {(x, y) ∈ F × F : f(x, y) = 0 ∈ F}. (9.3)

Of course one can also similarly define the algebraic curve Cf (Q) over a field Q,

where Q is either a subfield of the field F where the coefficients of f exist, or is

an extension field of F . Thus if f ∈ F [x, y], and if Q is either an extension or a

subfield of F , then one can define Cf (Q) = {(x, y) ∈ Q×Q : f(x, y) = 0}. Our

main interest in this section will be in third order polynomials (cubic curves)

f(x, y) = ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j, (9.4)

with coefficients inR, with the associated curves Cf (Q) over the field of rational

numbers Q ⊂ R. Thus, basically, we will be interested in points (x, y) ∈ R2

that have rational coordinates x and y, and called rational points, that satisfy

f(x, y) = 0. Of course one can first imagine the curve f(x, y) = 0 in R2, i.e.

the curve Cf (R) over R, and then choosing the points on this curve that have ra-

tional coordinates. This can simply be expressed by writing that Cf (Q) ⊂ Cf (R).

It has to be mentioned that ”rational curves” Cf (Q) are related to diophantine

equations. This is in the sense that rational solutions to equations f(x, y) = 0

produce integer solutions to equations f ′(x, y) = 0, where the polynomial f ′ is

very closely related to the polynomial f , if not the same one in many cases. For

example every point in Cf (Q), where f(x, y) = xn + yn, i.e. every rational solu-
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tion to f(x, y) = xn + yn = 0, produces an integer solution to xn + yn = 0. Thus

algebraic curves Cf (Q) can be of genuine interest in this sense.

In a possible procedure to construct the curve Cf (Q) for a polynomial f(x, y) ∈
R[x, y] with real coefficients, one considers the possibility that, given one ratio-

nal point (x, y) ∈ Cf (Q) ⊂ Cf (R), a straight line with a rational slope m might

intersect the curve Cf (R) in a point (x′, y′) that is also in Cf (Q). This possibility

comes from the simple fact that if (x, y), (x′, y′) ∈ Cf (Q), then the slope of the

straight line that joins (x, y) and (x′, y′) is a rational number. This technique, of

determining one point in Cf (Q) from another by using straight lines as mentioned,

works very well in some cases of polynomials, especially those of second degree,

and works reasonably well for third order polynomials.

Two aspects of this technique of using straight lines to determine points in

Cf (Q), and which will be needed for defining elliptic curves, are the following.

The first is illustrated by the following example.

Consider the polynomial f(x, y) = y2 − x2 + y = (y − x + 1)(y + x).

The curve Cf (R) contains the two straight lines y = x − 1 and y = −x. The

point (2, 1) ∈ Cf (Q), and if one tries to find the intersection of the particular line

y = x − 1 that passes through (2, 1) with Cf (R), one finds that this includes the

whole line y = x − 1 itself, and not just one or two other points (for example).

This result is due to the fact that f is a reducible polynomial, i.e. that can be

factored in the form f = f ′f ′′ with f and f ′′ not just real numbers.

In this direction one has the following general theorem concerning the number

of intersection points between a straight line L and an algebraic curve Cf (R):

Theorem 93. If f ∈ R[x, y] is a polynomial of degree d, and the line L, which

is defined by the zeros of g(x, y) = y − mx − b ∈ R[x, y], are such that L ∩
Cf (R) contains more than d points (counting the multiplicities of intersections)

then in fact L = Cg(R) ⊂ Cf (R), and f can be written in the form f(x, y) =

g(x, y)p(x, y), where p(x, y) is some polynomial of degree d− 1.

In connection with the above theorem, and in defining an elliptic curve Cf (R),
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where f is a polynomial of degree three, we shall require that this curve be such

that any straight line that passes through two points (x1, y1), (x2, y2) ∈ Cf (R),

where the two points could be the same point if the curve at one of them is differ-

entiable with the tangent at that point to the curve having same slope as that of the

line, will also pass through a unique third point (x3, y3). By the above theorem,

if a line intersects the curve Cf (R) associated with the third order polynomial f

in more than three points, then the line itself is a subset of Cf (R). This will be

excluded for the kind of third degree polynomials f whose associated algebraic

curves shall be called elliptic curves.

One other thing to be excluded, to have third order curves characterized as

elliptic curves, is the existence of singular points on the curve, where a singular

point is one where the curve does not admit a unique tangent.

It has to be mentioned that in the previous discussion, the points on the curve

Cf (R) may lie at infinity. To deal with this situation we assume that the curve is

in fact a curve in the real projective plane P2(R). We now can define an elliptic
curve Cf (R) as being such that f(x, y) is an irreducible third order polynomial

with Cf (R) having no singular points in P2(R).

The main idea behind the above definition for elliptic curves is to have a curve

whereby any two points A and B on the curve can determine a unique third point,

to be denoted by AB, using a straight line joining A and B. The possibilities

are as follows: If the line joining A and B is not tangent to the curve Cf (R) at

any point, then the line intersects the curve in exactly three different points two of

which are A and B while the third is AB. If the line joining A and B is tangent

to the curve at some point p then either this line intersects Cf (R) in exactly two

points, p and some other point p′, or intersects the curve in only one point p. If the

line intersects Cf (R) in two points p and p′, then either p = A = B in which case

AB = p′, or A 6= B in which case (irrespective of whether p = A and p′ = B or

vice-versa) one would have p = AB. While if the line intersects Cf (R) in only

one point p then p = A = B = AB.
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The above discussion establishes a binary operation on elliptic curves that pro-

duces, for any two points A and B a uniquely defined third point AB. This binary

operation in turn produces, as will be described next, another binary operation,

denoted by +, that defines a group structure on Cf (R) that is associated with the

straight-line construction discussed so far.

A group structure on an elliptic curve Cf (R) is defined as follows: Consider

an arbitrary point, denoted by 0, on Cf (R). We define, for any two points A and

B on Cf (R), the point A+B by

A+B = 0(AB), (9.5)

meaning that we first determine the point AB as above, then we determine the

point 0(AB) corresponding to 0 and AB. Irrespective of the choice of the point 0,

one has the following theorem on a group structure determined by + on Cf (R).

Theorem 94. Let Cf (R) be an elliptic curve, and let 0 be any point on Cf (R).

Then the above binary operation + defines an Abelian group structure on Cf (R),

with 0 being the identity element and −A = A(00) for every point A.

The proof is very lengthy and can be found in [18]. We first note that if 0 and

0′ are two different points on an elliptic curve with associated binary operations

+ and +′, then one can easily show that for any two points A and B

A+′ B = A+B − 0′. (9.6)

This shows that the various group structures that can be defined on an elliptic curve

by considering all possible points 0 and associated operations +, are essentially

the same, up to a ”translation”.

Lemma 19. Consider the group structure on an elliptic curve Cf (R), correspond-

ing to an operation + with identity element 0. If the cubic polynomial f has

rational coefficients, then the subset Cf (Q) ⊂ Cf (R) of rational solutions to

f(x, y) = 0 forms a subgroup of Cf (R) if and only if 0 is itself a rational point

(i.e. a rational solution).
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Proof. If Cf (Q) is a subgroup of Cf (R), then it must contain the identity 0, and

thus 0 would be a rational point. Conversely, assume that 0 is a rational point.

First, since f has rational coefficients, then for any two rational points A and B

in Cf (Q) one must have that AB is also rational, and thus (since 0 is assumed

rational) that 0(AB) is rational, making A + B = 0(AB) rational. Thus Cf (Q)

would be closed under +. Moreover, since for every A ∈ Cf (Q) one has that

−A = A(00), then −A is also rational, which makes Cf (Q) closed under inver-

sion. Hence Cf (Q) is a subgroup.

Thus by lemma 18, the set of all rational points on an elliptic curve form

a subgroup of the group determined by the curve and a point 0, if and only if

the identity element 0 is itself a rational point. In other words, one finds that if

the elliptic curve Cf (R) contains one rational point p, then there exists a group

structure on Cf (R), with 0 = p and the corresponding binary operation +, such

that the set Cf (Q) of all rational points on Cf (R) is a group.

One thing to note about rational solutions to general polynomial functions

f(x, y), is that they correspond to integer solution to a corresponding homoge-

neous polynomial h(X, Y, Z) in three variables, and vice-verse, where homoge-

neous practically means that this function is a linear sum of terms each of which

has the same power when adding the powers of the variables involved in this term.

For example XY 2 − 2X3 +XY Z + Z3 is homogeneous.

In fact a rational solution x = a/b and y = c/d for f(x, y) = 0, where

a, b, c, d are integers, can first be written as x = ad/bd and y = cb/bd, and thus

one can always have this solution in the form x = X/Z and y = Y/Z, where

X = ad, Y = cb and Z = bd. If x = X/Z and y = Y/Z are replaced in

f(x, y) = 0, one obtains a new version h(X, Y, Z) = 0 of this equation written

in terms of the new variables X, Y, Z. One can immediately see that this new

polynomial function h(X, Y, Z) is homogeneous in X, Y, Z. The homogeneous

function h(X, Y, Z) in X, Y, Z is the form that f(x, y) takes in projective space,

where in this case the transformations x = X/Z and y = Y/Z define the projec-
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tive transformation that take f(x, y) to h(X, Y, Z).

If we now go back to cubic equation f(x, y) = 0, one can transform this

function into its cubic homogeneous form h(X, Y, Z) = 0, where

h(X, Y, Z) = aX3 + bX2Y + cXY 2 + dY 3 + eX2Z

+ fXY Z + gY 2Z + hXZ2 + iY Z2 + jZ3, (9.7)

by using the projective transformation x = X/Z and y = Y/Z. Then, by impos-

ing some conditions, such as requiring that the point (1, 0, 0) (in projective space)

satisfy this equation, and that the line tangent to the curve at the point (1, 0, 0) be

the Z-axis that intersects the curve in the point (0, 1, 0), and that the X-axis is

the line tangent to the curve at (0, 1, 0), then one can immediately show that the

homogeneous cubic equation above becomes of the form

h(X, Y, Z) = cXY 2 + eX2Z + fXY Z + hXZ2 + iY Z2 + jZ3. (9.8)

Which, by using the projective transformation again, and using new coefficients,

gives that points on the curve Cf (R) are precisely those on the curve Ch(R), where

h(x, y) = axy2 + bx2 + cxy + dx+ ey + f. (9.9)

And with further simple change of variables (consisting of polynomial functions

in x and y with rational coefficients) one obtains that the points on the curve Cf (R)

are precisely those on Cg(R) where

g(x, y) = y2 − 4x3 + g2x− g3, (9.10)

i.e. that Cf (R) = Cg(R). The equation g(x, y) = 0, where g is given in (8.10),

is said to be the Weierstrass normal form of the equation f(x, y) = 0. Thus, in

particular, any elliptic curve defined by a cubic f , is birationally equivalent to an

elliptic curve defined by a polynomial g(x, y) as above. Birational equivalence

between curves is defined here as being a rational transformation, together with

its inverse transformation, that takes the points on one curve to another, and vice-

versa.
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9.3 The Riemann Zeta Function

The Riemann zeta function ζ(z) is an analytic function that is a very important

function in analytic number theory. It is (initially) defined in some domain in the

complex plane by the special type of Dirichlet series given by

ζ(z) =
∞∑
n=1

1

nz
, (9.11)

where Re(z) > 1. It can be readily verified that the given series converges locally

uniformly, and thus that ζ(z) is indeed analytic in the domain in the complex

plane C defined by Re(z) > 1, and that this function does not have a zero in this

domain.

We first prove the following result which is called the Euler Product Formula.

Theorem 95. ζ(z), as defined by the series above, can be written in the form

ζ(z) =
∞∏
n=1

1(
1− 1

pzn

) , (9.12)

where {pn} is the sequence of all prime numbers.

Proof. knowing that if |x| < 1 then

1

1− x
=
∞∑
k=0

xk, (9.13)

one finds that each term 1
1− 1

pzn

in ζ(z) is given by

1

1− 1
pzn

=
∞∑
k=0

1

pkzn
, (9.14)
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since every |1/pzn| < 1 if Re(z) > 1. This gives that for any integer N

N∏
n=1

1(
1− 1

pzn

) =
N∏
n=1

(
1 +

1

pzn
+

1

p2z
n

+ · · ·
)

=
∑ 1

pk1zn1 · · · p
kjz
ni

(9.15)

=
∑ 1

nz

where i ranges over 1, · · · , N , and j ranges from 0 to∞, and thus the integers n

in the third line above range over all integers whose prime number factorization

consist of a product of powers of the primes p1 = 2, · · · , pN . Also note that each

such integer n appears only once in the sum above.

Now since the series in the definition of ζ(z) converges absolutely and the

order of the terms in the sum does not matter for the limit, and since, eventu-

ally, every integer n appears on the right hand side of 8.15 as N −→ ∞, then

limN→∞
[∑

1
nz

]
N

= ζ(z). Moreover, limN→∞
∏N

n=1
1(

1− 1
pzn

) exists, and the re-

sult follows.

The Riemann zeta function ζ(z) as defined through the special Dirichlet series

above, can be continued analytically to an analytic function through out the com-

plex plane C except to the point z = 1, where the continued function has a pole

of order 1. Thus the continuation of ζ(z) produces a meromorphic function in C
with a simple pole at 1. The following theorem gives this result.

Theorem 96. ζ(z), as defined above, can be continued meromorphically in C,

and can be written in the form ζ(z) = 1
z−1

+ f(z), where f(z) is entire.

Given this continuation of ζ(z), and also given the functional equation that is

satisfied by this continued function, and which is

ζ(z) = 2zπz−1 sin
(πz

2

)
Γ(1− z)ζ(1− z), (9.16)
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(see a proof in [3]), where Γ is the complex gamma function, one can deduce that

the continued ζ(z) has zeros at the points z = −2,−4,−6, · · · on the negative

real axis. This follows as such: The complex gamma function Γ(z) has poles at

the points z = −1,−2,−3, · · · on the negative real line, and thus Γ(1 − z) must

have poles at z = 2, 3, · · · on the positive real axis. And since ζ(z) is analytic at

these points, then it must be that either sin
(
πz
2

)
or ζ(1 − z) must have zeros at

the points z = 2, 3, · · · to cancel out the poles of Γ(1 − z), and thus make ζ(z)

analytic at these points. And since sin
(
πz
2

)
has zeros at z = 2, 4, · · · , but not at

z = 3, 5, · · · , then it must be that ζ(1 − z) has zeros at z = 3, 5, · · · . This gives

that ζ(z) has zeros at z = −2,−4,−6 · · · .
It also follows from the above functional equation, and from the above men-

tioned fact that ζ(z) has no zeros in the domain where Re(z) > 1, that these zeros

at z = −2,−4,−6 · · · of ζ(z) are the only zeros that have real parts either less

that 0, or greater than 1. It was conjectured by Riemann, The Riemann Hypothe-

sis, that every other zero of ζ(z) in the remaining strip 0 ≤ Re(z) ≤ 1, all exist on

the vertical line Re(z) = 1/2. This hypothesis was checked for zeros in this strip

with very large modulus, but remains without a general proof. It is thought that

the consequence of the Riemann hypothesis on number theory, provided it turns

out to be true, is immense.
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