HELP WITH 9.2 AND 10.1

The following lemmata would be extremely useful for 9.2 and 10.1. There may be a way to tackle the problems without these insights, but I don't know how.

Notation (and conventions). p and q are always prime; m and n are always composite. We use $b_{1}, b_{2}, \ldots, b_{\phi(m)}$ as a complete list of numbers less than m and relatively prime to it.

Lemma 1 is related to our criterion for when we can simplify a congruence by dividing modulo m, but it's probably best to start with this, since this is crucial to most of what follows.
Lemma 1. Suppose $b_{i} b_{j} \equiv b_{i} b_{k}(\bmod m)$. Then $b_{j} \equiv b_{k}(\bmod m)$, and in fact $j=k$.
Proof. By the definition of congruence, $m \mid\left(b_{i} b_{j}-b_{i} b_{k}\right)$. Factorization allows us to rewrite this as $m \mid b_{i}\left(b_{j}-b_{k}\right)$. By Exercise 7.1 in the text, ${ }^{1} m \mid\left(b_{j}-b_{k}\right)$. By definition of congruence, $b_{j} \equiv b_{k}(\bmod m)$, which gives us the first claim.

For the second, recall our convention that $0<b_{j}, b_{k}<m$. Perforce $-m<b_{j}-b_{k}<m$. If m divides $b_{j}-b_{k}$, the only possibility is that $b_{j}-b_{k}=0$. The numbers are distinct, however, so $j=k$.
Corollary 2. Suppose $0<a, b, c<p$ and $a b \equiv a c(\bmod p)$. Then $b=c$.
Proof. $\operatorname{gcd}(a, p)=\operatorname{gcd}(b, p)=\operatorname{gcd}(c, p)=1$. Apply Lemma 1 .
Corollary 3. The list

$$
b_{i} b_{1}, b_{i} b_{2}, \ldots, b_{i} b_{\phi(m)}
$$

is the same as the list

$$
b_{1}, b_{2}, \ldots, b_{\phi(m)}
$$

although the numbers may be in a different order.
Proof. We can prove this two ways. One is by using Lemma 1. The other is by noticing that if we set $a=b_{i}$, we can apply Lemma 10.2 in the textbook.

What have we just shown?

- Lemma 1 shows not only that we can divide by b_{i}, but (importantly for our purposes) the product of $b_{i} b_{j}$ is unique to both b_{i} and b_{j} : no other b_{k} will give us $b_{i} b_{j} \equiv b_{i} b_{k}$.
- Corollary 3 shows that when we multiply any b_{i} by all the other b_{j}, we get all the b_{k}.

How does this help with these exercises? Look at the product

$$
b_{1} b_{2} \cdots b_{\phi(m)} .
$$

It is always the case that $b_{1}=1$ and $b_{\phi(m)}=m-1 \equiv-1$, so substitution allows us to focus on

$$
-b_{2} b_{3} \cdots b_{\phi(m)-1}
$$

Corollary 3 tells us that we can find some i such that $b_{2} b_{i} \equiv 1$.

[^0]- If $i \neq 2$, then we can cancel b_{2} and b_{i} from the product without changing the result.
- If $i=2$, then look instead for b_{j} such that $b_{2} b_{j} \equiv-1$. By Lemma $1, j \neq 2$. So we can cancel both b_{2} and b_{j} from the product as long as we change the sign (\pm) of the result.
Repeat this process with b_{3}, b_{4}, etc, and the product must simplify to ± 1.
We have glossed over one not-so-minor detail: is it possible that canceling b_{2} and b_{j} causes problems for another b_{k}, which needs to cancel with b_{2} ? Amazingly, the answer is no!
Lemma 4. If $b_{i}^{2} \equiv 1(\bmod m)$ and $b_{i} b_{j} \equiv-1(\bmod m)$, then $b_{j}^{2} \equiv 1(\bmod m)$. In particular, we can bave no b_{k} such that $b_{j} b_{k} \equiv 1$.
Proof. Assume that $b_{i}^{2} \equiv 1$ and $b_{i} b_{j} \equiv-1$. Square both sides of the second to see that $\left(b_{i} b_{j}\right)^{2} \equiv$ 1. By the commutative property, $b_{i}^{2} b_{j}^{2} \equiv 1$. By hypothesis, $b_{i}^{2} \equiv 1$, so substitution gives $b_{j}^{2} \equiv 1$. Lemma 1 implies that we cannot find b_{k} such that $b_{j} b_{k} \equiv 1 \equiv b_{j}^{2}$.

[^0]: ${ }^{1}$ We can prove Exercise 7.1 two ways (relying on either Bezout's Identity or the Fundamental Theorem of Arithmetic) so this is fine.

