CHAPTER 3 HOMEWORK, PART 2 (\mathbb{S} 4-7)

MAT 421: NUMBER THEORY

Directions: Each group is responsible for all of the problems listed. No problem should be attempted before we cover the material indicated with it. I only need one submission from each group. I will give time in class for groups to meet and work; however, you should plan to meet outside class as well.

1. Groups

Group 1	Group 2	Group 3
Melissa Dyess	Aaron Ayers	Sr. Maria
Shannon West	Kristie West	
Stephanie Williams	Ryan Anderson	

2. EXERCISES

§3.4: The Euclidean Algorithm.

- After the description of the algorithm: p. 111 \#2, 6, 14
- After the description of the Extended Euclidean Algorithm: p. 111 \#4

§3.5: The Fundamental Theorem of Arithmetic.

- After the statement of the Theorem: p. 120 \#2, 4(c)
- After Lemma 3.5: p. 121 \#10, 12
- After the proof of the Theorem: p. 120 \#6, 8, 24, 26
- After the definition of least common multiple: p .122 \#28(a,c)
- After the proof of a big fact: p. 122 \#30
- After the statement of Theorem 3.16: p. 122 \#28(e,f), 64
- After the proof of Theorem 3.16: p. 122 \#36, 38
- After Theorem 3.17: p. 124 \#56
- After the famous proof that $\sqrt{2}$ is irrational: Prove that $\sqrt{8}$ is irrational.

§3.6: Fermat Factorization and Fermat Numbers.

- After the description of Fermat Factorization: p. 135 \#4, 6
- After the description of Fermat numbers: p. 136 \#16 (optional)

§3.7: Linear Diophantine Equations.

- After the statement of Theorem 3.23: p. 141 \#2, 4
- After the proof of Theorem 3.24: p. 142 \#11(b,c), 15

