CHAPTER 3 HOMEWORK, PART 1 (\mathbb{S} 1-3)

MAT 421: NUMBER THEORY

Directions: Each group is responsible for all of the problems listed. No problem should be attempted before we cover the material indicated with it. I only need one submission from each group. I will give time in class for groups to meet and work; however, you should plan to meet outside class as well.

1. Groups

Group 1	Group 2	Group 3
Melissa Dyess	Aaron Ayers	Sr. Maria Acosta
Joel Huber	Kristie West	Lorelei Jones
Shannon West	Ryan Anderson	Stephanie Williams

2. EXERCISES

§3.1: Prime Numbers.

- After the definition of prime, composite numbers: p. 76 \#2, 6, 14

Hint on \#6: Use the same approach that we used in class on \#5.

- After Theorem 3.1: p. 76 \#8, 10, 12
- After the Sieve of Eratosthenes: p. 76 \#4
- After Theorem 3.3: p. 76 \#16, 18, 20

§3.2: The Distribution of Primes.

- After Theorem 3.5: p. 90 \#2
- After Bertrand's Postulate: p. 90 \#6, 28

Hint on \#28: Use induction.

- After the Twin Prime Conjecture: p. 90 \#4
- After Goldbach's Conjecture: p. 90 \#12
- After the Legendre Conjecture: p. 90 \#8

§3.3: Greatest Common Divisors and Their Properties.

- Ab ovo: p. 99 \#2, 4, 6, 10

Hint on \#6: Use the Division Theorem for primes larger than 2.
Hint on \#10: Rewrite $(a+b)+(a-b)$ and $(a+b)-(a-b)$ two different ways, one of them using $\operatorname{gcd}(a+b, a-b)$.

- After Theorem 3.7: p. 99 \#16, 24
- After Lemma 3.2: p. 100 \#22

Hint on \#22: Use induction, Theorem 3.8, and Lemma 3.2.

- After the definition of mutually relatively prime and pairwise relatively prime: p. 99 \#18

EDUCATIONAL AID FOR $\$ 3.2$

i	1	2	3	4	5	6	7	8
$x=10^{i}$	10	100	1000	10,000	100,000	$1,000,000$	$10,000,000$	$100,000,000$
$\pi(x)$	4	25	168	1,229	9,592	78,498	664,579	$5,761,455$
$\frac{x}{\pi(x)}$	2.5	4	5.95	8.14	10.43	12.74	15.05	17.36

Table 1

Question 1. Do you see a long-term pattern to $\frac{x}{\pi(x)}$?

i	1	2	3	4	5	6	7	8	9
$x=e^{i}$	e	e^{2}	e^{3}	e^{4}	e^{5}	e^{6}	e^{7}	e^{8}	e^{9}
$\pi(x)$	1	4	8	16	34	79	183	429	1,019
$\frac{x}{\pi(x)}$	e	1.85	2.51	3.41	4.37	5.11	6.00	6.95	7.95

i	10	11	12	13	14	15
$x=e^{i}$	e^{10}	e^{11}	e^{12}	e^{13}	e^{14}	e^{15}
$\pi(x)$	2,466	6,048	14,912	37,128	93,117	234,855
$\frac{x}{\pi(x)}$	8.93	9.90	10.91	11.92	12.91	13.92

Table 2

Question 2. Do you see a long-term pattern to $\frac{x}{\pi(x)}$?

