CHAPTER 1 HOMEWORK

MAT 421: NUMBER THEORY

Directions: Each group is responsible for all of the problems listed. No problem should be attempted before we cover the material indicated with it. I only need one submission from each group. I will give time in class for groups to meet and work; however, you should plan to meet outside class as well.

1.	GROUPS

Group 1	Group 2	Group 3
Ryan Anderson	Aaron Ayers	Sr. Maria Acosta
Melissa Dyess	Nevada Brown	Lorelei Jones
Kristie West	Joel Huber	Stephanie Williams
Shannon West		

2. EXERCISES

Ab ovo (§1.3: Mathematical Induction). Most of these problems, if not all, require induction. Since MAT 340 is a prerequisite to this course, I assume you know what induction is. Don't let this frighten you too much: I will do a few examples the first few days.

• p. 27 #2, 18, 30

§1.1: Numbers and Sequences.

- After the well-ordering property of Z: p. 12 #2, 6 Hint on #2: You have to show the set is nonempty; then it takes care of itself.
- After the definition of sequences: p. 13 #24
- After countable and uncountable: p. 14 #26, 28 Hint on #28: Call the two sets S and T. First define a function from \mathbb{Z} onto $S \cup T$; then from \mathbb{Z}^+ onto $S \cup T$ via \mathbb{Z} .
- After the definition of real numbers: p. 12 #4
- After the proof that $\sqrt{2} + \sqrt{3}$ is algebraic: Let $a, b \in \mathbb{Z}^+$. Show the following are algebraic: $\sqrt{a}, \sqrt{a} \cdot \sqrt{b}, \frac{\sqrt{a}}{\sqrt{b}}, \sqrt{a} \pm \sqrt{b}$.
- *After the definition of* [*x*]: p. 14 #12, 38
- After the proof of the Dirichlet Approximation Theorem: p. 13 #30(a,c)

§1.2: Sums and Products.

- After the definition of sum and product notation: p. 20 #2
- After geometric sums: p. 20 #4
- After telescoping sums: p. 22 #22
- After the proof that $\sum_{k=1}^{n} = \frac{n(n+1)}{2}$: p. 21 #10, 11 For #11: Just read the problem & the proof in the back of the book.
- After factorials: p. 22 #20

§1.4: The Fibonacci Numbers.

- After the definition of the Fibonacci numbers: p. 33 #2(a,b)
- After we have done some examples of identities: p. 33 #4, 10, 14 Hint on #14: Read #35 first. You may use the result of #34 without proving it. For extra credit, prove it!

§1.5: Divisibility.

- After Theorem 1.8: p. 40 #4(a,b), 14, 16
- After Theorem 1.9: p. 41 #36
- After Theorem 1.10: p. 40 #26
- After discussion of even, odd numbers: p. 40 #38
- After definition of relatively prime numbers: p. 40 #12