CHAPTER 1 HOMEWORK

MAT 421: NUMBER THEORY

Directions: Each group is responsible for all of the problems listed. No problem should be attempted before we cover the material indicated with it. I only need one submission from each group. I will give time in class for groups to meet and work; however, you should plan to meet outside class as well.

1. Groups

Group 1	Group 2	Group 3	
Ryan Anderson	Aaron Ayers	Sr. Maria Acosta	
Melissa Dyess	Nevada Brown	Lorelei Jones	
Kristie West	Joel Huber	Stephanie Williams	
Shannon West			

2. EXERCISES

$A b$ ovo ($\$ 1.3$: Mathematical Induction). Most of these problems, if not all, require induction. Since MAT 340 is a prerequisite to this course, I assume you know what induction is. Don't let this frighten you too much: I will do a few examples the first few days.

- p. 27 \#2, 18, 30

§1.1: Numbers and Sequences.

- After the well-ordering property of \mathbb{Z} : p. 12 \#2, 6

Hint on \#2: You have to show the set is nonempty; then it takes care of itself.

- After the definition of sequences: p. 13 \#24
- After countable and uncountable: p. 14 \#26, 28

Hint on \#28: Call the two sets S and T. First define a function from \mathbb{Z} onto $S \cup T$; then from \mathbb{Z}^{+}onto $S \cup T$ via \mathbb{Z}.

- After the definition of real numbers: p. 12 \#4
- After the proof that $\sqrt{2}+\sqrt{3}$ is algebraic:

Let $a, b \in \mathbb{Z}^{+}$. Show the following are algebraic: $\sqrt{a}, \sqrt{a} \cdot \sqrt{b}, \frac{\sqrt{a}}{\sqrt{b}}, \sqrt{a} \pm \sqrt{b}$.

- After the definition of [x]: p. 14 \#12, 38
- After the proof of the Dirichlet Approximation Theorem: p. 13 \#30(a,c)

§1.2: Sums and Products.

- After the definition of sum and product notation: p. 20 \#2
- After geometric sums: p. 20 \#4
- After telescoping sums: p. 22 \#22
- After the proof that $\sum_{k=1}^{n}=\frac{n(n+1)}{2}$: p. $21 \# 10,11$

For \#11: Just read the problem \mathcal{E} the proof in the back of the book.

- After factorials: p. 22 \#20
§1.4: The Fibonacci Numbers.
- After the definition of the Fibonacci numbers: p. 33 \#2(a,b)
- After we have done some examples of identities: p. 33 \#4, 10, 14

Hint on \#14: Read \#35 first. You may use the result of \#34 without proving it. For extra credit, prove it!

\$1.5: Divisibility.

- After Theorem 1.8: p. 40 \#4(a,b), 14, 16
- After Theorem 1.9: p. 41 \#36
- After Theorem 1.10: p. 40 \#26
- After discussion of even, odd numbers: p. 40 \#38
- After definition of relatively prime numbers: p. 40 \#12

