PROGRAMMING EXERCISES

- 1. Implement the following pseudocode in Sage. procedure Taylor4 inputs $a \in \mathbb{R}$ f outputs the truncated Taylor series for f(x) around x = ado let result = f(a)add $f'(a) \cdot (x - a)$ to result add $f''(a) \cdot (x - a)^2/2$ to result add $f''(a) \cdot (x - a)^3/6$ to result add $f^{(4)}(a) \cdot (x - a)^4/24$ to result return result
- 2. Use your program to estimate the following numbers. Compare it to the "true" value by using Sage's round(). Indicate which results are within 1% of the correct answer.
 - (a) $\sin 3$ *Hint:* Use $f(x) = \sin x$ and $a = \pi$, then substitute 3 into the result of *Taylor4*
 - (b) √3 *Hint:* Use f (x) = √x and a = 4, then substitute 3 into the result of *Taylor4*(c) ln 2
- 3. Plot the result of *Taylor4* in part(a) with a dashed blue. Combine it with a plot of sin *x* with a black line, width 2.
- 4. You may have noticed some errors in the pseudocode's *formatting*: that is, it doesn't obey the format I described in class & in the textbook. Retype the pseudocode in your Sage worksheet, correcting any errors.
- 5. As usual, make sure your name is on the worksheet (in a *cell at the top* but *not in the title*); use sectioning, etc.