MAT 305:
Mathematical
Computing
John Perry
Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations

MAT 305: Mathematical Computing

 Solving equations in SageJohn Perry
University of Southern Mississippi

Spring 2019

MAT 305:
Mathematical Computing

Outline

John Perry
Exact solutions to equations
(1) Exact solutions to equations and inequalities

Exact solutions Extracting solutions Linear inequalities Systems of linear equations
(2) Approximate solutions to equations
(3) Summary

MAT 305:
Mathematical Computing

Outline

John Perry

Exact solutions to equations and inequalities Exact solutions
(3) Summary

Exact solutions

John Perry

- Many equations can be solved without rounding
- exact solutions
- Solving by radicals: old, important problem
- Niels Abel, Evariste Galois, Joseph Lagrange, Paolo Ruffini, ...
- Special methods
- Others require approximate solutions Mathematical Computing
solve(eqs, vars) where
- eqs is an equation or a list of equations
- vars is an indeterminate or list of indeterminates to solve for
- unlisted indetermintes treated as constants
- returns a list of solutions if Sage can solve eqs exactly Mathematical Computing

John Perry

$$
=\neq==
$$

FACT OF PYTHON

- = (single)
- assignment of a value to a symbol
- $\mathrm{f}=\mathrm{x}^{\wedge} 2-4$ assigns the value $x^{2}-4$ to f
- "let $f=x^{2}-4 "$
- == (double)
- two quantities are equal
- $16==4 \sim 2$ is true
- $16==5^{\wedge} 2$ is false
- $16==x^{\wedge} 2$ is conditional; it depends on the value of x
- Confuse the two? naughty user

MAT 305: Mathematical Computing

Example

Exact solutions to equations and inequalities Exact solutions Extracting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations
Summary
sage: $16==4^{\sim} 2$
True
sage: $16==5^{\wedge} 2$
False
sage: $16==x^{\wedge} 2$
$16==x^{\wedge} 2$
(cannot simplify the expression)

MAT 305: Mathematical Computing

Univariate polynomials

MAT 305: Mathematical Computing

Unknown constants

 Mathematical ComputingJohn Perry

Copying solutions not always a

 good idea```
sage: solve([3*x^3-4*x==7],x)
[x == -1/2*(1/54*sqrt(3713) + 7/6) ^(1/3)*(I*sqrt(3)
+ 1) + 1/9*(2*I*sqrt(3) - 2)/(1/54*sqrt(3713) +
7/6) ^(1/3), x == -1/2*(1/54*sqrt(3713) +
7/6)^(1/3)*(-I*sqrt(3) + 1) + 1/9*(-2*I*sqrt(3) -
2)/(1/54*sqrt(3713) + 7/6)^(1/3), x ==
(1/54*sqrt(3713) + 7/6) -(1/3) + 4/9/(1/54*sqrt(3713)
+ 7/6)~(1/3)]
```

Mathematical Computing

## Assign, use [ ]

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations

Approximate solutions to equations Summary

To extract values from solutions, assign and use [ ]
Example
sage: sols $=$ solve $\left(\left[x^{\wedge} 4-1==0\right], x\right)$
sage: sols
[ $\mathrm{x}=\mathrm{I}, \mathrm{x}==-1, \mathrm{x}==-\mathrm{I}, \mathrm{x}==1]$
sage: sols[0]
$\mathrm{x}=\mathrm{I}$
sage: sols[1]
$x=-1$
sage: sols[3]
$\mathrm{x}={ }^{1}$

MAT 305: Mathematical Computing

## But I want only the number...!

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations

- Every equation has a right hand side
- Use .rhs () command
- "dot" command: append to object

MAT 305: Mathematical Computing

## Example

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations
Approximate solutions to equations

```
sage: eq = 4*x^2 - 3*x + 1 == 0
sage: sols = solve(eq, x)
sage: len(sols)
2 (len() gives length of a collection)
sage: x1 = sols[0]
sage: x1
x == -1/8*I*sqrt(7) + 3/8 (oops! want only solution)
sage: x1 = sols[0].rhs()
sage: x1
-1/8*I*sqrt(7) + 3/8

MAT 305: Mathematical Computing

\section*{Complex solutions?}

John Perry
Exact solutions to equations and inequalities Exact solutions
Extracting solutions
Linear inequalities
Systems of linear equations
(1).real_part(), .imag_part()
(2) Can round () if desired
sage: sols \(=\) solve \(\left(\left[x^{\wedge} 5-3==0\right], x\right)\)

MAT 305: Mathematical Computing

\section*{Complex solutions?}
(1) .real_part(), .imag_part()
(2) Can round () if desired
sage: sols \(=\) solve \(\left(\left[x^{\wedge} 5-3==0\right], x\right)\)
sage: sols
\(\left[\mathrm{x}==3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(2 / 5 * \mathrm{I} * \mathrm{pi}), \mathrm{x}==\right.\)
\(3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(4 / 5 * \mathrm{I} * \mathrm{pi}), \mathrm{x}==3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(-4 / 5 * \mathrm{I} * \mathrm{pi}), \mathrm{x}\)
\(\left.=3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(-2 / 5 * \mathrm{I} * \mathrm{pi}), \mathrm{x}=3^{\wedge}(1 / 5)\right]\) Mathematical Computing

\section*{Complex solutions?}
(1) .real_part(), imag_part()
(2) Can round() if desired
\[
\begin{aligned}
& \text { sage: sols }=\text { solve }\left(\left[x^{\wedge} 5-3==0\right], x\right) \\
& \text { sage: sols } \\
& {\left[\mathrm{x}==3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(2 / 5 * I * \mathrm{pi}), \mathrm{x}==\right.} \\
& 3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(4 / 5 * I * \mathrm{pi}), \mathrm{x}==3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(-4 / 5 * I * \mathrm{pi}), \mathrm{x} \\
& \left.==3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(-2 / 5 * I * \mathrm{pi}), \mathrm{x}==3^{\wedge}(1 / 5)\right] \\
& \text { sage: sols }[0] . \operatorname{rhs}() \cdot \text { real_part }() \\
& 1 / 4 * \operatorname{sqrt}(5) * 3^{\wedge}(1 / 5)-1 / 4 * 3^{\wedge}(1 / 5)
\end{aligned}
\] Mathematical Computing

\section*{Complex solutions?}
(1) .real_part(), imag_part()
(2) Can round() if desired
```

sage: sols = solve([x^5-3==0],x)
sage: sols
[x == 3^(1/5)*e^(2/5*I*pi), x ==
3^}(1/5)*\mp@subsup{e}{}{\wedge}(4/5*I*pi), x == 3^(1/5)*e^(-4/5*I*pi), x
== 3^(1/5)*e^(-2/5*I*pi), x == 3^(1/5)]
sage: sols[0].rhs().real_part()
1/4*sqrt(5)*3^(1/5) - 1/4*3^(1/5)
sage: sols[0].rhs().imag_part()
3^}(1/5)*\operatorname{sin}(2/5*\textrm{pi}

```

Mathematical Computing

\section*{Complex solutions?}
(1) .real_part(), imag_part()
(2) Can round () if desired
sage: sols \(=\) solve \(\left(\left[x^{\wedge} 5-3==0\right], x\right)\)
sage: sols
\(\left[\mathrm{x}==3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(2 / 5 * \mathrm{I} * \mathrm{pi}), \mathrm{x}==\right.\)
\(3^{\wedge}(1 / 5) * e^{\wedge}(4 / 5 * I * p i), \quad x==3^{\wedge}(1 / 5) * e^{\wedge}(-4 / 5 * I * p i), \quad x\)
\(\left.=3^{\wedge}(1 / 5) * \mathrm{e}^{\wedge}(-2 / 5 * \mathrm{I} * \mathrm{pi}), \mathrm{x}=3^{\wedge}(1 / 5)\right]\)
sage: sols[0].rhs().real_part()
\(1 / 4 *\) sqrt (5) *3~ (\(1 / 5\)) - 1/4*3~ (1/5)
sage: sols[0].rhs().imag_part()
\(3^{\wedge}(1 / 5) * \sin (2 / 5 * \mathrm{pi})\)
sage: \(a, b=s o l s[0] . r h s() . r e a l _p a r t()\),
sols[0].rhs().imag_part()
sage: round \((a, 5)\), round \((b, 5)\)
(0.38495, 1.18476)

MAT 305:
Mathematical Computing

\section*{Solutions should solve}

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations

Extract second solution; substitute into equation
```

sage: x2 = sols[1].rhs()
sage: x2
1/8*I*sqrt(7) + 3/8

```

MAT 305: Mathematical Computing

\section*{Solutions should solve}

John Perry
```

sage: x2 = sols[1].rhs()
sage: x2
1/8*I*sqrt(7) + 3/8
sage: eq(x=x2)
4*(1/8*I*sqrt(7) + 3/8)^2
- 3/8*I*sqrt(7) - 1/8 == 0

```
 (need to expand product) Mathematical Computing

\section*{Solutions should solve}

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations

Extract second solution; substitute into equation
```

sage: x2 = sols[1].rhs()
sage: x2
1/8*I*sqrt(7) + 3/8
sage: eq(x=x2)
4*(1/8*I*sqrt(7) + 3/8)^2
- 3/8*I*sqrt(7) - 1/8 == 0
sage: expand(eq(x=x2))
0 == 0

```

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities Exact solutions
Extracting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations

\section*{Calculus: 1 picture \(=1000\) words}

Let's diagram the critical points to \(f(x)=x^{3}-4 x+1\).

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations
sage: \(f(x)=x^{\wedge} 3-4 * x+1\) Mathematical Computing

\section*{Calculus: 1 picture \(=1000\) words}

Let's diagram the critical points to \(f(x)=x^{3}-4 x+1\). sage: \(f(x)=x^{\wedge} 3-4 * x+1\)
sage: \(\operatorname{df}(x)=\operatorname{diff}(f)\)
sage: crit_pts \(=\) solve \((\mathrm{df}(\mathrm{x}), \mathrm{x})\)
sage: crit_pts
[x == -2/3*sqrt(3), \(x==2 / 3 *\) sqrt(3)] Mathematical Computing

\section*{Calculus: 1 picture \(=1000\) words}

Let's diagram the critical points to \(f(x)=x^{3}-4 x+1\).
sage: \(f(x)=x^{\wedge} 3-4 * x+1\)
sage: \(\operatorname{df}(x)=\operatorname{diff}(f)\)
sage: crit_pts \(=\) solve \((\mathrm{df}(\mathrm{x}), \mathrm{x})\)
sage: crit_pts
[x == -2/3*sqrt(3), \(x==2 / 3 *\) sqrt (3)]
sage: crit_pts \(=\) [a.rhs() for a in crit_pts]
sage: crit_pts
[-2/3*sqrt(3), 2/3*sqrt(3)]

\section*{Calculus: 1 picture \(=1000\) words}

Let's diagram the critical points to \(f(x)=x^{3}-4 x+1\).
\[
\text { sage: } f(x)=x \wedge 3-4 * x+1
\]
\[
\text { sage: } \quad \operatorname{df}(x)=\operatorname{diff}(f)
\]
\[
\text { sage: crit_pts }=\text { solve }(d f(x), x)
\]
sage: crit_pts
\[
[\mathrm{x}==-2 / 3 * \operatorname{sqrt}(3), \mathrm{x}==2 / 3 * \operatorname{sqrt}(3)]
\]
\[
\text { sage: crit_pts }=\text { [a.rhs() for a in crit_pts] }
\]
sage: crit_pts
\[
[-2 / 3 * \operatorname{sqrt}(3), 2 / 3 * \operatorname{sqrt}(3)]
\]
\[
\text { sage: } p=\operatorname{plot}\left(f, \min \left(c r i t _p t s\right)-1,\right.
\]
\[
\max \left(c r i t _p t s\right)+1, \text { color='black', }
\]
thickness=2)
sage: \(p\) += sum(point((a, f(a)), color='red', pointsize=90) for a in crit_pts)

\section*{Calculus: 1 picture \(=1000\) words}

Let's diagram the critical points to \(f(x)=x^{3}-4 x+1\).
\[
\text { sage: } f(x)=x \wedge 3-4 * x+1
\]
\[
\text { sage: } \quad \operatorname{df}(x)=\operatorname{diff}(f)
\]
\[
\text { sage: crit_pts }=\operatorname{solve}(d f(x), x)
\]
sage: crit_pts
\[
[x==-2 / 3 * \operatorname{sqrt}(3), x==2 / 3 * \operatorname{sqrt}(3)]
\]
\[
\text { sage: crit_pts }=\text { [a.rhs() for a in crit_pts] }
\]
sage: crit_pts
\[
[-2 / 3 * \operatorname{sqrt}(3), 2 / 3 * \operatorname{sqrt}(3)]
\]
\[
\text { sage: } p=\operatorname{plot}\left(f, \min \left(c r i t _p t s\right)-1,\right.
\]
\[
\max (\text { crit_pts) + 1, color='black', }
\]
thickness=2)
sage: \(p\) += sum(point((a, f(a)), color='red', pointsize=90) for a in crit_pts)
sage: p

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations

\section*{Calculus: 1 picture \(=1000\) words}

MAT 305: Mathematical Computing

John Perry

\section*{Exact solutions} to equations and inequalities
Exact solutions Extracting solutions Linear inequalities Systems of linear equations

Approximate solutions to equations

\section*{Solving linear inequalities}

Just like solve equations, except solution is list of lists sage: \(\operatorname{solve}((x-3) *(x-1) *(x+1) *(x+3)>=0, x)\) [\([\mathrm{x}<=-3],[\mathrm{x}>=-1, \mathrm{x}<=1],[\mathrm{x}>=3]]\)

MAT 305: Mathematical Computing

John Perry

Just like solve equations, except solution is list of lists sage: \(\operatorname{solve}((x-3) *(x-1) *(x+1) *(x+3)>=0, x)\) [[x <= -3], [x >= -1, \(x<=1],[x>=3]]\) Each sublist represents interval of solutions:
- \([\mathrm{x}<=-3] \Longleftrightarrow(-\infty,-3]\)
- \([\mathrm{x}>=-1, \mathrm{x}<=1] \Longleftrightarrow[-1, \infty) \cap(-\infty, 1] \Longleftrightarrow[-1,1]\)
- \([x>=3] \Longleftrightarrow[3, \infty)\)

MAT 305:
Mathematical Computing

\section*{Systems of linear equations}

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations
- system of linear, multivariate equations
- can always be solved exactly
- zero, one, or infinitely many solutions
- solution is a list of solutions

MAT 305: Mathematical Computing

\section*{No solution}

John Perry

\section*{Exact solutions} to equations and inequalities Exact solutions
Extracting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations Summary
sage: \(\operatorname{var}\left({ }^{\prime} y^{\prime}\right)\)
(y)
sage: solve([x + y == 1,
\(x+y=0]\),
[\(\mathrm{x}, \mathrm{y}\)])
... output cut. . .
[]

\section*{One solution}

John Perry

\section*{Exact solutions} to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations
\[
\begin{array}{ll}
\text { sage: } & \operatorname{var}\left(\prime^{\prime} z^{\prime}\right) \\
\text { (z) } & \\
\text { sage: } & \text { solve }([3 * x-4 * y+z==1, \\
& 2 * x-3 * y+4 * z==2, \\
& 7 * x+10 * y-39 * z==1], \\
& [x, y, z]) \\
{[\mathrm{x}==} & (3 / 2), y==1, z==(1 / 2)]]
\end{array}
\]

MAT 305: Mathematical Computing

\section*{Infinitely many solutions}

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations
\[
\left.\begin{array}{l}
\text { sage: solve }([3 * x-4 * y+z==1, \\
\\
\quad 2 * x-3 * y+4 * z=2, \\
\\
\quad-6 * x+8 * y-2 * z==-2] \\
[x, y, z])
\end{array}\right]
\]

Mathematical Computing

John Perry

\section*{r1?!? What is r1?}
r 1 is a parameter that can take infinitely many values
\[
[[x==13 * r 1-5, y==10 * r 1-4, z==r 1]]
\]
corresponds to
\[
x=13 t-5, \quad y=10 t-4, \quad z=t .
\]

Example
\(t=0\) ?
- \(x=-5, y=-4, z=0\)
- Substitute into system:
\[
\begin{aligned}
3(-5)-4(-4)+0 & =1 \\
2(-5)-3(-4)+4(0) & =2 \\
-6(-5)+8(-4)-2(0) & =-2 .
\end{aligned}
\]

Mathematical Computing

\section*{Extract and test}

John Perry
\[
\begin{array}{ll}
\text { sage: } & \text { eq1 }=3 * x-4 * y+z==1 \\
\text { sage: } & \text { eq2 }=2 * x-3 * y+4 * z==2 \\
\text { sage: } & \text { eq3 }=-6 * x+8 * y-2 * z==-2 \\
\text { sage: } & \text { sols }=\text { solve([eq1, eq2, eq3], }[x, y, z])
\end{array}
\]

\section*{sols is a list of lists...}
```

sage: sol1 = sols[0]
sage: x1 = sol1[0].rhs()
sage: y1 = sol1[1].rhs()
sage: z1 = sol1[2].rhs()
sage: x1,y1,z1
(13*r2 - 5, 10*r2 - 4, r2)
sage: eq1(x=x1,y=y1,z=z1)
1 == 1

```

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities Exact solutions Extmeting solutions Linear inequalities Systems of linear equations

Approximate solutions to equations

Summary

Outline
(1) Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations
(2) Approximate solutions to equations
(3) Summary

Mathematical Computing

\section*{Why approximate?}
- Exact solutions often... complicated
\[
-\frac{1}{2} \cdot \sqrt[3]{\frac{\sqrt{3713}}{54}+\frac{7}{6}} \cdot(1+i \sqrt{3})+\frac{-2+2 i \sqrt{3}}{9} \cdot \sqrt[3]{\frac{\sqrt{3713}}{54}+\frac{7}{6}}
\]
- Approximate solutions easier to look at, manipulate -0.8280018073-0.8505454986i
- Approximation often much, much faster!
- except when approximation fails
- bad condition numbers
- rounding errors
- inappropriate algorithm (real solver, complex roots)

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities Exact solutions Extracting solutions Linear inequalities Systems of linear equations

Approximate solutions to equations

\section*{The find_root() command}
find_root(equation, xmin, xmax) where
- equation has a root between real numbers \(x \min\) and \(x \max\)
- reports an error if no root exists
- this is a real solver: looks for real roots
- uses Scipy package

MAT 305: Mathematical Computing

\section*{Example}

Mathematical Computing

\section*{The .roots() command}

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities

\section*{field addition, multiplication as in rational, real, complex numbers}

\section*{Ring?!?}
field addition, multiplication as in rational, real, complex numbers
ring addition, multiplication common to integers, matrices, and fields
+ as usual
\(\times\) weird sometimes
- \(a b \neq b a\)
- no \(1 / a\) even if \(a \neq 0 \quad\) integers, matrices
- \(a b=0\) but \(a, b \neq 0\)

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities
Exact solutions
Extracting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations
sage: \(p=x \wedge 3+2 * x^{\wedge} 2-4 * x-8\)
sage: p.roots()
\([(2,1),(-2,2)]\)
roots are 2 (mult. 1) and -2 (mult. 2)

MAT 305: Mathematical Computing

\section*{Exact example}

Exact solutions to equations and inequalities
Exact solutions
Extmeting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations
sage: \(p=x \wedge 3+2 * x^{\wedge} 2-4 * x-8\)
sage: p.roots()
\([(2,1),(-2,2)]\) roots are 2 (mult. 1) and -2 (mult. 2)

see if you can make Sage produce this image!

MAT 305: Mathematical Computing

\section*{Approximate example}

Exact solutions
to equations and inequalities

\section*{Exact solutions}

Extracting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations
sage: \(\quad \mathrm{p}=\mathrm{x}^{\wedge} 5+2 * x+1\)
sage: p.roots()
... output cut...
RuntimeError: no explicit roots found Mathematical Computing

\section*{Approximate example}
sage: \(p=x^{\wedge} 5+2 * x+1\)
sage: p.roots()
... output cut...
RuntimeError: no explicit roots found
sage: p.roots (ring=RR)
\([(-0.486389035934543,1)]\)
\[
\text { root approximately - } 486389 \text { w/multiplicity } 1
\] Mathematical Computing

\author{
John Perry
}

Exact solutions to equations and inequalities
Exact solutions
Extracting solutions Linear inequalties Systems of linear equations

\section*{Approximate example}
sage: \(p=x^{\wedge} 5+2 * x+1\)
sage: p.roots()
... output cut...
RuntimeError: no explicit roots found
sage: p.roots(ring=RR)
[(-0.486389035934543, 1)]
\[
\text { root approximately -. } 486389 \text { w/multiplicity } 1
\]

Fundamental Theorem of Algebra
Every polynomial of degree \(n\) has \(n\) complex roots.
Where are the other 4 roots?

MAT 305: Mathematical Computing

John Perry
Exact solutions to equations and inequalities
Exact solutions
Extracting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations

\section*{Extract and use complex roots}
sage: sols = p.roots (ring=CC)

How can we extract roots?

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities Exact solutions Extrating solutions Linear inequalities Systems of linear equations

Approximate solutions to equations

\section*{Extract and use complex roots}
sage: sols = p.roots(ring=CC)
How can we extract roots?

\section*{sols is a list of tuples (root, multiplicity): need to extract tuple, then root}
sage: \(x 0=\) sols[0]
want first root
sage: x0
(-0.486389035934543, 1)
sage: \(x 0=\) sols[0] [0]
sage: x0
-0.486389035934543
sage: \(\mathrm{x} 1 \mathrm{=}\) sols[1] [0]
want second root
sage: x1
-0.701873568855862 - \(0.879697197929823 * I\)

MAT 305: Mathematical Computing

John Perry

Exact solutions to equations and inequalities
Exact solutions
Extracting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations Summary

\section*{What is going on here?}

\section*{sols}
\begin{tabular}{|c|c|cl|}
\hline \multirow{2}{*}{0} & 0 & \(-0.486389 \ldots\) & (approximation) \\
\cline { 2 - 4 } & 1 & 1 & (multiplicity) \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|cl|}
\hline \multirow{2}{*}{1} & 0 & \(-0.701873 \ldots-0.879697 \ldots i\) & (approximation) \\
\cline { 2 - 4 } & 1 & 1 & (multiplicity) \\
\hline \hline\(\vdots\) & & \(\vdots\) &
\end{tabular} Mathematical Computing

John Perry

\section*{What is going on here?}
sols
\begin{tabular}{|c|c|cl|}
\hline \multirow{2}{*}{0} & 0 & \(-0.486389 \ldots\) & (approximation) \\
\cline { 2 - 4 } & 1 & 1 & (multiplicity) \\
\hline \hline
\end{tabular}
\begin{tabular}{|c|c|cl|}
\hline \multirow{2}{*}{1} & 0 & \(-0.701873 \ldots-0.879697 \ldots i\) & (approximation) \\
\cline { 2 - 4 } & 1 & 1 & (multiplicity) \\
\hline \hline\(\vdots\) & & \(\vdots\) & \\
\hline
\end{tabular}
- first bracket: gets solution
- each solution is a tuple
- second bracket: gets information about solution
[0] approximation
[1] multiplicity

MAT 305： Mathematical
Computing
John Perry

Exact solutions to equations and inequalities
Exact solutions
Extmeting solutions
Linear inequalities
Systems of linear equations

Approximate solutions to equations

Summary
（1）Exact solutions to equations and inequalities
Exact solutions
Extracting solutions
Linear inequalities
Systems of linear equations
（2）Approximate solutions to equations
（3）Summary

4ロ・4回〉4

\section*{Summary}
- distinguish \(=\) (assignment) and \(==\) (equality)
- Sage can find exact or approximate roots
- solve() finds exact solutions
- not all equations can be solved exactly
- systems of linear equations always exact
- extract using [] and .rhs ()
- find_root() approximates real roots on an interval
- error if no roots on interval
- .roots (ring=...) approximates roots
- RR for real roots only; CC for all complex roots
- append to polynomial or equation```

