
MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

MAT 305: Mathematical Computing
Introduction to Sage

John Perry

University of Southern Mississippi

Spring 2019

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Outline

1 What is Sage?
“Computer algebra”
Why Sage?
Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Outline

1 What is Sage?
“Computer algebra”
Why Sage?
Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Outline

1 What is Sage?
“Computer algebra”
Why Sage?
Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Sage?

• Software for Algebra and Geometry Exploration

• Computer Algebra System “started” by William Stein

http://www.sagemath.org/
http://en.wikipedia.org/wiki/Computer_algebra_system
http://www.math.washington.edu/People/fac_individ.php?mathid=wstein

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

“Computer algebra system”?

Numerical computing
goal approximate computation, “accurate estimation”

tools floating-point numbers, vectors, matrices
challenge overflow

• division by a small number
analogy telling you an “accurate” lie

Symbolic computing
goal exact computation

tools exact numbers, sets, abstract structures
challenge complexity

• adding many fractions
analogy telling you the truth. . . once we figure it out. . .

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

“Computer algebra system”?

Numerical computing
goal approximate computation, “accurate estimation”

tools floating-point numbers, vectors, matrices

challenge overflow
• division by a small number

analogy telling you an “accurate” lie

Symbolic computing
goal exact computation

tools exact numbers, sets, abstract structures

challenge complexity
• adding many fractions

analogy telling you the truth. . . once we figure it out. . .

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

“Computer algebra system”?

Numerical computing
goal approximate computation, “accurate estimation”

tools floating-point numbers, vectors, matrices
challenge overflow

• division by a small number

analogy telling you an “accurate” lie

Symbolic computing
goal exact computation

tools exact numbers, sets, abstract structures
challenge complexity

• adding many fractions

analogy telling you the truth. . . once we figure it out. . .

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

“Computer algebra system”?

Numerical computing
goal approximate computation, “accurate estimation”

tools floating-point numbers, vectors, matrices
challenge overflow

• division by a small number
analogy telling you an “accurate” lie

Symbolic computing
goal exact computation

tools exact numbers, sets, abstract structures
challenge complexity

• adding many fractions
analogy telling you the truth. . . once we figure it out. . .

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Pros & cons: symbolic

1
2
+

1
3
+

1
5
+

1
7
=

247
210

• summands: two digits each, but
• sum: 6 digits
• imagine this done thousands or millions of times

“Expression swell”

s a g e : 1 + 10^(−5) − 1
1/100000

. . .not bad!

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Pros & cons: symbolic

1
2
+

1
3
+

1
5
+

1
7
=

247
210

• summands: two digits each, but
• sum: 6 digits
• imagine this done thousands or millions of times

“Expression swell”

s a g e : 1 + 10^(−5) − 1
1/100000

. . .not bad!

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Pros & cons: numeric

0.5000+ 0.3333+ 0.2000+ 0.1429≈ 1.176

• start and end with four digits, but
• small loss in precision

s a g e : 1 . 0 + 1 0 . 0 ^ (−5 . 0) − 1 . 0
0 . 0000100000000000655
s a g e : 1 . 0 + 1 0 . 0 ^ (−1 5 . 0) − 1 . 0
1 . 11022302462516 e−15
s a g e : 1 . 0 + 1 0 . 0 ^ (−2 0 . 0) − 1 . 0
0 . 000000000000000

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Pros & cons: numeric

0.5000+ 0.3333+ 0.2000+ 0.1429≈ 1.176

• start and end with four digits, but
• small loss in precision

s a g e : 1 . 0 + 1 0 . 0 ^ (−5 . 0) − 1 . 0
0 . 0000100000000000655
s a g e : 1 . 0 + 1 0 . 0 ^ (−1 5 . 0) − 1 . 0
1 . 11022302462516 e−15
s a g e : 1 . 0 + 1 0 . 0 ^ (−2 0 . 0) − 1 . 0
0 . 000000000000000

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

More cons: numeric




1001
2001 − 1000

2001

− 1000
2001

1001
2001





�

1
−1

�

=
�

1
−1

�

but




1001
2001 − 1000

2001

− 1000
2001

1001
2001





�

1.1
−0.9

�

=
�

201.1
199.1

�

• small change in input, but
• large change in output
• consider the effect of roundoff error. . .

“It makes me nervous to fly an airplane since I know they are
designed using floating-point arithmetic.”

— Alston Householder

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

More cons: numeric




1001
2001 − 1000

2001

− 1000
2001

1001
2001





�

1
−1

�

=
�

1
−1

�

but




1001
2001 − 1000

2001

− 1000
2001

1001
2001





�

1.1
−0.9

�

=
�

201.1
199.1

�

• small change in input, but
• large change in output
• consider the effect of roundoff error. . .

“It makes me nervous to fly an airplane since I know they are
designed using floating-point arithmetic.”

— Alston Householder

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Outline

1 What is Sage?
“Computer algebra”
Why Sage?
Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Practical reasons

• Free
• Cutting edge
• Access to other CAS’s

• Calculus: Maxima, SymPy, . . .
• Linear Algebra: M4RI, Linbox, PARI, . . .
• Commutative Algebra: SINGULAR, Macaulay, . . .
• Group theory: GAP, . . .
• etc.

http://maxima.sourceforge.net
http://sympy.org/en/index.html
http://m4ri.sagemath.org
http://linalg.org
http://pari.math.u-bordeaux.fr
http://www.singular.uni-kl.de/
http://www.math.columbia.edu/~bayer/Macaulay/
http://www.gap-system.org

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Philosophical reasons

“Free” software

• “Free as in beer”:
• no cost to download
• no cost to copy
• no cost to upgrade

• “Free as in speech”:

• no secret algorithms
• can study implementation
• can correct, improve, contribute

http://en.wikipedia.org/wiki/Free_software

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Philosophical reasons

“Free” software

• “Free as in beer”:
• no cost to download
• no cost to copy
• no cost to upgrade

• “Free as in speech”:

• no secret algorithms
• can study implementation
• can correct, improve, contribute

http://en.wikipedia.org/wiki/Free_software

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Philosophical reasons

“Free” software

• “Free as in beer”:
• no cost to download
• no cost to copy
• no cost to upgrade

• “Free as in speech”:

• no secret algorithms
• can study implementation
• can correct, improve, contribute

http://en.wikipedia.org/wiki/Free_software

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Analogy: “Free” Mathematics

Theorem (Euclid)
There are infinitely many primes.

Proof.

• Consider finite list of primes, q1, q2, . . . , qn.
• Let p= q1q2 · · ·qn+ 1.
• Fact: since p 6= 1, divisible by at least one prime
• p not divisible by any qi (remainder 1, not 0).
• p must be divisible by an unlisted prime
• ∴ no finite list, lists all primes.

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Analogy: “Secret” mathematics

Theorem (Fermat)
If n> 2, the equation an+ bn = cn has no solution with integers
a,b, c≥ 1.

Proof.
“I have discovered a truly marvelous proof of this, which this
margin is too narrow to contain.”†

†Real quote. (to be fair: in private notes, not letter, article)

http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
http://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Analogy: “Proprietary”
mathematics

Theorem (Mersenne)
The number

2n− 1

is prime for n= 2,3,5,7,13,17,19,31,67,127,257.

Proof.

Trade Secret.†

†In fact, the “theorem” is false.

https://en.wikipedia.org/wiki/Mersenne_prime

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Analogy: “Proprietary”
mathematics

Theorem (Mersenne)
The number

2n− 1

is prime for n= 2,3,5,7,13,17,19,31,67,127,257.

Proof.
Trade Secret.†

†In fact, the “theorem” is false.

https://en.wikipedia.org/wiki/Mersenne_prime

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Analogy: “Proprietary”
mathematics

Theorem (Mersenne)
The number

2n− 1

is prime for n= 2,3,5,7,13,17,19,31,67,127,257.

Proof.

Trade Secret.†

†In fact, the “theorem” is false.

https://en.wikipedia.org/wiki/Mersenne_prime

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

But I prefer M—!

• Fine, buy your own copy

• good reasons exist
• student discount available
• I will tell you the equivalent commands

• Be warned:

• future versions not free
• bug fixes not free
• after you graduate, pay full price
• not always backwards compatible

(neither is Sage, but Sage is free)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Outline

1 What is Sage?
“Computer algebra”
Why Sage?
Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Python
• Major computer language

• easy to use
• elegantly designed
• unlike *Cough* the Coding Convention they

presCribe in CSC 101/L
• Modern

• facilities for object-oriented, functional programming
• Wide distribution, usage

• many employers use it
(doing well in this class makes you more attractive!)

• I checked 4 websites that listed top in-demand
languages & salaries

• Flexible
• many good packages enhance it

• Can compile for efficiency using Cython

http://cython.org

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Kinds of computer languages
• Interpreted

• BASIC, Python, Perl
• computer reads source, repeats following:

• translate symbols until full command formed
• execute command

• no translation saved

• Compiled

• C/C++, FORTRAN, Go
• reads source, translates and saves machine code
• translation works on same architecture (OS, CPU, . . .)

• Mixed (“bytecode”)
• C#(.NET), Java
• reads source, translate into bytecode, saves
• translation works in “virtual machine” (JVM, .Net, . . .)

http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/FORTRAN
http://en.wikipedia.org/wiki/Go_(programming_language)
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Kinds of computer languages
• Interpreted

• BASIC, Python, Perl
• computer reads source, repeats following:

• translate symbols until full command formed
• execute command

• no translation saved

• Compiled

• C/C++, FORTRAN, Go
• reads source, translates and saves machine code
• translation works on same architecture (OS, CPU, . . .)

• Mixed (“bytecode”)
• C#(.NET), Java
• reads source, translate into bytecode, saves
• translation works in “virtual machine” (JVM, .Net, . . .)

http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/FORTRAN
http://en.wikipedia.org/wiki/Go_(programming_language)
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Kinds of computer languages
• Interpreted

• BASIC, Python, Perl
• computer reads source, repeats following:

• translate symbols until full command formed
• execute command

• no translation saved

• Compiled

• C/C++, FORTRAN, Go
• reads source, translates and saves machine code
• translation works on same architecture (OS, CPU, . . .)

• Mixed (“bytecode”)
• C#(.NET), Java
• reads source, translate into bytecode, saves
• translation works in “virtual machine” (JVM, .Net, . . .)

http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/FORTRAN
http://en.wikipedia.org/wiki/Go_(programming_language)
http://en.wikipedia.org/wiki/C_Sharp_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Sage and Python

• “Sage” built on/with Python
• interface between Sage and user

• Not all components of Sage in Python:
• Maxima: LISP
• SINGULAR: C/C++
• “kernel” “compiled” for efficiency’s sake

http://en.wikipedia.org/wiki/Lisp_(programming_language)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Python 6= Sage

• Some Python commands don’t work in worksheet mode

• input()

• Sage commands do not work in plain Python

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Outline

1 What is Sage?
“Computer algebra”
Why Sage?
Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

How to get Sage

• Best: links on the website
• Alternate: SageMathCloud
• Linux users:1 sudo dnf install sagemath

• People with delusions of grandeur: Download, install to
your computer
• can tinker with/break the source code
• Windows? need LiveCD or VirtualBox player:
www.virtualbox.org/wiki/Downloads

• ask nicely, & I might give you a DVD with Sage for
Windows, Mac, Linux

1Because Fedora is the One True Linux. People who want to apt-get stuff
can go ask Debian or Ubuntu users how to do it.

http://www.math.usm.edu/perry/mat305/
http://cloud.sagemath.com/
http://www.sagemath.org
http://www.virtualbox.org/wiki/Downloads
https://askubuntu.com

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

First steps in Sage

• Log in to Bagheera (use links on class web page, have I
mentioned that yet?)

• Start a new worksheet
• rename it “First Sage Assignment”

• If you like (not always recommended)
• Click “Typeset”

http://www.math.usm.edu/perry/mat305/index.html

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Working with variables

Variable: symbol that represents another value

Example

sage: a = 7

Until you change it, a represents 7

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Symbols of symbolic computation

Indeterminate: symbol with no specific value (“unknown”)
• special kind of variable
• x pre-defined

• if value assigned, no longer indeterminate
• Need more? use var()

• var(’y’) defines y
• var(’a b c d’) defines a, b, c, d

• Use undefined variable?

sage: x+y+z
...
NameError: name ’z’ is not defined

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Arithmetic

operation sage equivalent
add x, y x + y

subtract y from x x - y
multiply x, y x * y
divide x by y x / y

raise x to the yth power x ** y or x ^ y

• Do not omit muliplication symbol
• 2*x −→ 2x
• 2x −→ SyntaxError: invalid syntax
• possible, but dangerous, to get around this using
implicit_multiplication(True)

• Do not neglect parentheses
• e**(2*x) 6= e**2*x

• Prefer ** to ^ for various sordid reasons (scripting)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Arithmetic

operation sage equivalent
add x, y x + y

subtract y from x x - y
multiply x, y x * y
divide x by y x / y

raise x to the yth power x ** y or x ^ y

• Do not omit muliplication symbol
• 2*x −→ 2x
• 2x −→ SyntaxError: invalid syntax
• possible, but dangerous, to get around this using
implicit_multiplication(True)

• Do not neglect parentheses
• e**(2*x) 6= e**2*x

• Prefer ** to ^ for various sordid reasons (scripting)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Example

• Sage simplifies (of course)

sage: 5 + 3
8
sage: (x + 3*x**2) - (2*x - x**2)
4*x^2 - x

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Transcendental constants,
functions

number sage symbol
e e
π pi

operation sage equivalent
ex e**x

lnx ln(x)
sinx, cosx, etc. sin(x), cos(x), etc.

• log(x)= lnx 6= log10 x

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Transcendental constants,
functions

number sage symbol
e e
π pi

operation sage equivalent
ex e**x

lnx ln(x)
sinx, cosx, etc. sin(x), cos(x), etc.

• log(x)= lnx 6= log10 x

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Some useful operations

operation sage equivalent
factor expr factor(expr)

simplify expr simplify(expr)
expand expr expand(expr)

round expr to n decimal places round(expr, n)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Examples

• Some expressions simplify automatically; many need hints

sage: (x**2 - 1) / (x - 1)
(x^2 - 1)/(x - 1)
sage: (factor(x**2 - 1)) / (x - 1)
x + 1

(good reason this isn’t automatic: what?)
• Expand (x− 1)

�

x3+ x2+ x+ 1
�

sage: expand((x-1)*(x**3+x**2+x+1))
x^4 - 1

• Round e to 5 decimal places

sage: round(e,5)
2.71828

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Getting help
• Online Sage documentation (tutorial, manual, etc.) at
http://www.sagemath.org/doc/

• These notes:
www.math.usm.edu/perry/old_classes/mat305ssyy/
(ssyy? semester and year: sp13, sp14, sm14, . . .)

• Textbook: www.math.usm.edu/dont_panic

• In-Sage help: command, question mark, <Enter>

sage: round?
[output omitted]

• Email: john.perry@usm.edu

http://www.sagemath.org/doc/
http://www.math.usm.edu/dont_panic/

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Outline

1 What is Sage?
“Computer algebra”
Why Sage?
Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Expressions

• Use computer memory by defining expressions with the
assignment symbol =

sage: f = x**2 - 1

Sage does not answer when you define an expression

• Expressions remembered until you terminate Sage

sage: f
x^2 - 1

• Can remember “structures” as well as expressions

sage: R = GF(7) # I’ll tell you what
this is later

http://en.wikipedia.org/wiki/Computer_memory

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Valid names

Names for expressions (“identifiers”) can
• contain letters (A–Z), digits (0–9), or the underscore (_) but
• must begin with a letter or the underscore and
• may not contain other character (space, tab, !@#$%^, etc.)

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Using expressions

• Manipulate just like the object it represents

sage: factor(f)
(x - 1)*(x + 1)
sage: f - 3
x^2 - 4

• Avoid repeating computations: substitute!

sage: f(x=3)
8
sage: f(x=-1)
0
sage: f(x=4)
15

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Alternate method of substitution

Sometimes you should use the dictionary method of
substitution. An example would be when an identifier stands for
a variable.

sage: f = x**2 + y**2
sage: f(x=3)
9 + y^2
sage: f({x:3}) This also means replace x by 3 in f
9 + y^2

sage: z = x Here we let z stand in place of x
sage: f(z=3) We want to replace x by 3, but. . .
x^2 + y^2
sage: f({z:3}) This works where f(z=3) did not
9 + y^2

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Alternate method of substitution

Sometimes you should use the dictionary method of
substitution. An example would be when an identifier stands for
a variable.

sage: f = x**2 + y**2
sage: f(x=3)
9 + y^2
sage: f({x:3}) This also means replace x by 3 in f
9 + y^2
sage: z = x Here we let z stand in place of x
sage: f(z=3) We want to replace x by 3, but. . .
x^2 + y^2

sage: f({z:3}) This works where f(z=3) did not
9 + y^2

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Alternate method of substitution

Sometimes you should use the dictionary method of
substitution. An example would be when an identifier stands for
a variable.

sage: f = x**2 + y**2
sage: f(x=3)
9 + y^2
sage: f({x:3}) This also means replace x by 3 in f
9 + y^2
sage: z = x Here we let z stand in place of x
sage: f(z=3) We want to replace x by 3, but. . .
x^2 + y^2
sage: f({z:3}) This works where f(z=3) did not
9 + y^2

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Expressions as functions

Define function using natural notation
sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Expressions as functions

Define function using natural notation
sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2

Automatically defines variables!
sage: f(w,z) = 4*w**2-4*z**2
sage: f(3,2)
20
sage: f(1,z)/z
-4*(z**2 - 1)/z
sage: f(3,2)/z
20/z

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Expressions as functions

Define function using natural notation
sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2

Functions really expressions

sage: factor(f)
4*(w - z)*(w + z)
sage: type(f)
<type ’sage.symbolic.expression.Expression’>

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Outline

1 What is Sage?
“Computer algebra”
Why Sage?
Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

MAT 305:
Mathematical
Computing

John Perry

What is Sage?
“Computer algebra”

Why Sage?

Sage and Python

Getting started
with Sage

Using
computer
memory

Summary

Summary

• Basic, intuitive facilities for arithmetic

• Create variables to your heart’s content

• Define expressions to avoid repeating computations

	What is Sage?
	``Computer algebra''
	Why Sage?
	Sage and Python

	Getting started with Sage
	Using computer memory
	Summary

