John Perry

What is Sage?

"Computer algebr Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

MAT 305: Mathematical Computing Introduction to Sage

John Perry

University of Southern Mississippi

Spring 2019

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

What is Sage?

- "Computer algebra Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

What is Sage?
 "Computer algebra"
 Why Sage?
 Sage and Python

2 Getting started with Sage

3 Using computer memory

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

MAT 305: Mathematical

Computing

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

What is Sage?
 "Computer algebra"
 Why Sage?
 Sage and Python

② Getting started with Sage

3 Using computer memory

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Computing John Perry

MAT 305: Mathematical

What is Sage?

- "Computer algebra" Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

1 What is Sage? "Computer algebra" Why Sage? Sage and Python

- 2 Getting started with Sage
- **3** Using computer memory

John Perry

What is Sage?

- **"Computer algebra"** Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

- Software for Algebra and Geometry Exploration
- Computer Algebra System "started" by William Stein

Sage?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

What is Sage

"Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation"

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Symbolic computing goal exact computation

John Perry

What is Sage

"Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation" tools floating-point numbers, vectors, matrices

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Symbolic computing

goal exact computation tools exact numbers, sets, abstract structures

John Perry

What is Sage

"Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation" tools floating-point numbers, vectors, matrices challenge overflow

• division by a small number

Symbolic computing

goal exact computation tools exact numbers, sets, abstract structures challenge complexity

• adding many fractions

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

John Perry

What is Sage

"Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation" tools floating-point numbers, vectors, matrices challenge overflow

• division by a small number

analogy telling you an "accurate" lie

Symbolic computing

goal exact computation

tools exact numbers, sets, abstract structures

challenge complexity

• adding many fractions analogy telling you the truth... once we figure it out...

John Perry

What is Sage?

- "Computer algebra" Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

Pros & cons: symbolic

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} = \frac{247}{210}$$

- summands: two digits each, but
- sum: 6 digits
- imagine this done thousands or millions of times

"Expression swell"

John Perry

What is Sage?

- "Computer algebra" Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

Pros & cons: symbolic

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} = \frac{247}{210}$$

- summands: two digits each, but
- sum: 6 digits
- imagine this done thousands or millions of times

"Expression swell"

sage:
$$1 + 10^{(-5)} - 1$$

 $1/100000$

... not bad!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

What is Sage?

- **"Computer algebra"** Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

Pros & cons: numeric

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$0.5000 + 0.3333 + 0.2000 + 0.1429 \approx 1.176$

- start and end with four digits, but
- small loss in precision

John Perry

What is Sage?

- **"Computer algebra"** Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

Pros & cons: numeric

 $0.5000 + 0.3333 + 0.2000 + 0.1429 \approx 1.176$

- start and end with four digits, but
- small loss in precision

sage: $1.0 + 10.0^{(-5.0)} - 1.0$ 0.00001000000000655sage: $1.0 + 10.0^{(-15.0)} - 1.0$ 1.11022302462516e - 15sage: $1.0 + 10.0^{(-20.0)} - 1.0$ 0.00000000000000

John Perry

What is Sage?

"Computer algebra" Why Sage? Sage and Python

Getting started with Sage

but

Using computer memory

Summary

- $\begin{pmatrix} \frac{1001}{2001} & -\frac{1000}{2001} \\ -\frac{1000}{2001} & \frac{1001}{2001} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\begin{pmatrix} \frac{1001}{2001} & -\frac{1000}{2001} \\ -\frac{1000}{2001} & \frac{1001}{2001} \end{pmatrix} \begin{pmatrix} 1.1 \\ -0.9 \end{pmatrix} = \begin{pmatrix} 201.1 \\ 199.1 \end{pmatrix}$
- small change in input, but
- large change in output
- consider the effect of roundoff error...

More cons: numeric

イロト 不得 トイヨト イヨト

3

John Perry

What is Sage?

"Computer algebra" Why Sage? Sage and Python

Getting started with Sage

but

Using computer memory

Summary

- $\begin{pmatrix} \frac{1001}{2001} & -\frac{1000}{2001} \\ -\frac{1000}{2001} & \frac{1001}{2001} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\begin{pmatrix} \frac{1001}{2001} & -\frac{1000}{2001} \\ -\frac{1000}{2001} & \frac{1001}{2001} \end{pmatrix} \begin{pmatrix} 1.1 \\ -0.9 \end{pmatrix} = \begin{pmatrix} 201.1 \\ 199.1 \end{pmatrix}$
- small change in input, but
- large change in output
- consider the effect of roundoff error...

"It makes me nervous to fly an airplane since I know they are designed using floating-point arithmetic."

- Alston Householder

More cons: numeric

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

What is Sage?
 "Computer algebra"
 Why Sage?
 Sage and Python

2 Getting started with Sage

3 Using computer memory

Practical reasons

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage? "Computer algebra" Why Sage? Sage and Python

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

- Free
- Cutting edge
- Access to other CAS's
 - Calculus: Maxima, SymPy, ...
 - Linear Algebra: M4RI, Linbox, PARI, ...
 - Commutative Algebra: SINGULAR, Macaulay, ...
 - Group theory: GAP, ...
 - etc.

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Philosophical reasons

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

"Free" software

John Perry

What is Sage? "Computer algebra"

Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Philosophical reasons

▲□▶▲□▶▲□▶▲□▶ □ のQ@

"Free" software

- "Free as in beer":
 - no cost to download
 - no cost to copy
 - no cost to upgrade

John Perry

What is Sage? "Computer algebra" Why Sage?

Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Philosophical reasons

▲□▶▲□▶▲□▶▲□▶ □ のQ@

"Free" software

- "Free as in beer":
 - no cost to download
 - no cost to copy
 - no cost to upgrade
- "Free as in speech":
 - no secret algorithms
 - can study implementation
 - can correct, improve, contribute

John Perry

What is Sage? "Computer algebra" Why Sage?

Getting started with Sage

Using computer memory

Summary

Analogy: "Free" Mathematics

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Theorem (Euclid) *There are infinitely many primes.*

Proof.

- Consider finite list of primes, q_1, q_2, \ldots, q_n .
- Let $p = q_1 q_2 \cdots q_n + 1$.
- Fact: since $p \neq 1$, divisible by at least one prime
- p not divisible by any q_i (remainder 1, not 0).
- *p* must be divisible by an unlisted prime
- .: no finite list, lists all primes.

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Analogy: "Secret" mathematics

Theorem (Fermat)

If n > 2, the equation $a^n + b^n = c^n$ has no solution with integers $a, b, c \ge 1$.

Proof.

"I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." †

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

[†]Real quote. (to be fair: in private notes, not letter, article)

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Analogy: "Proprietary" mathematics

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Mersenne) *The number*

 $2^{n} - 1$

is prime for n = 2,3,5,7,13,17,19,31,67,127,257. Proof.

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Analogy: "Proprietary" mathematics

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Theorem (Mersenne) *The number*

 $2^{n} - 1$

is prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257.

Proof. Trade Secret.[†]

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Analogy: "Proprietary" mathematics

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Mersenne) *The number*

 $2^{n} - 1$

is prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. Proof.

[†]In fact, the "theorem" is false.

John Perry

What is Sage? "Computer algebra" Why Sage?

- Getting started with Sage
- Using computer memory
- Summary

But I prefer M—!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

- Fine, buy your own copy
 - good reasons exist
 - student discount available
 - I will tell you the equivalent commands
- Be warned:
 - future versions not free
 - bug fixes not free
 - after you graduate, pay full price
 - not always backwards compatible (neither is Sage, but Sage is free)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

What is Sage?
 "Computer algebra"
 Why Sage?
 Sage and Python

2 Getting started with Sage

3 Using computer memory

Python

• Major computer language

- easy to use
- elegantly designed
- unlike *Cough* the Coding Convention they presCribe in CSC 101/L
- Modern

MAT 305: Mathematical

Computing John Perry

Sage and Python

- facilities for object-oriented, functional programming
- Wide distribution, usage
 - many employers use it (doing well in this class makes you more attractive!)
 - I checked 4 websites that listed top in-demand languages & salaries
- Flexible
 - many good packages enhance it
- Can compile for efficiency using Cython

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Kinds of computer languages

- Interpreted
 - BASIC, Python, Perl
 - computer reads source, repeats following:
 - translate symbols until full command formed

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- execute command
- no translation saved

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Kinds of computer languages

- Interpreted
 - BASIC, Python, Perl
 - computer reads source, repeats following:
 - translate symbols until full command formed
 - execute command
 - no translation saved
- Compiled
 - C/C++, FORTRAN, Go
 - reads source, translates and saves machine code
 - translation works on same architecture (OS, CPU, ...)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Kinds of computer languages

- Interpreted
 - BASIC, Python, Perl
 - computer reads source, repeats following:
 - translate symbols until full command formed
 - execute command
 - no translation saved
- Compiled
 - C/C++, FORTRAN, Go
 - reads source, translates and saves machine code
 - translation works on same architecture (OS, CPU, ...)
- Mixed ("bytecode")
 - C#(.NET), Java
 - reads source, translate into bytecode, saves
 - translation works in "virtual machine" (JVM, .Net, ...)

Sage and Python

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

MAT 305: Mathematical

Computing

"Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

• "Sage" built on/with Python

• interface between Sage and user

- Not all *components* of Sage in Python:
 - Maxima: LISP
 - SINGULAR: C/C++
 - "kernel" "compiled" for efficiency's sake

Python \neq Sage

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What is Sage? "Computer algebra" Why Sage? Sage and Python

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

- Some Python commands don't work in worksheet mode
 input()
- Sage commands do not work in plain Python

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

What is Sage?
 "Computer algebra"
 Why Sage?
 Sage and Python

2 Getting started with Sage

3 Using computer memory

John Perry

- What is Sage? "Computer algebra" Why Sage?
- Getting started with Sage
- Using computer memory
- Summary

How to get Sage

- Best: links on the website
- Alternate: SageMathCloud
- Linux users:¹ sudo dnf install sagemath
- People with delusions of grandeur: Download, install to your computer
 - can tinker with/break the source code
 - Windows? need LiveCD or VirtualBox player: www.virtualbox.org/wiki/Downloads
 - ask nicely, & I might give you a DVD with Sage for Windows, Mac, Linux

¹Because Fedora is the One True Linux. People who want to apt-get stuff can go ask Debian or Ubuntu users how to do it.

Computing John Perry

MAT 305: Mathematical

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

- Using computer memory
- Summary

• Log in to Bagheera (use links on class web page, have I mentioned that yet?)

First steps in Sage

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Start a new worksheet
 - rename it "First Sage Assignment"
- *If you like* (not always recommended)Click "Typeset"

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Working with variables

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Variable: symbol that represents another value Example

sage: a = 7

Until you change it, a represents 7

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Symbols of symbolic computation

Indeterminate: symbol with no specific value ("unknown")special kind of variable

- x pre-defined
 - if value assigned, no longer indeterminate
- Need more? use var()
 - var('y') defines y
 - var('a b c d') defines *a*, *b*, *c*, *d*
- Use undefined variable?

```
sage: x+y+z
...
NameError: name 'z' is not defined
```

Arithmetic

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

operation	sage equivalent
add x, y	x + y
subtract <i>y</i> from <i>x</i>	x - y
multiply x, y	x * y
divide <i>x</i> by <i>y</i>	x / y
raise <i>x</i> to the <i>y</i> th power	x ** y or x ^ y

What is Sage? "Computer algebra" Why Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

Arithmetic

What is Sage?	
"Computer algebra"	
Why Sage?	
Sage and Python	

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

operation	sage equivalent
add x, y	x + y
subtract <i>y</i> from <i>x</i>	x - y
multiply x, y	x * y
divide <i>x</i> by <i>y</i>	x / y
raise <i>x</i> to the <i>y</i> th power	x ** y or x ^ y

- Do not omit muliplication symbol
 - $2*x \longrightarrow 2x$
 - $2x \longrightarrow SyntaxError$: invalid syntax
 - possible, but dangerous, to get around this using implicit_multiplication(True)
- Do not neglect parentheses
 - $e^{**(2*x)} \neq e^{**2*x}$
- Prefer ** to ^ for various sordid reasons (scripting)

Example

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの()

What is Sage? "Computer algebra" Why Sage? Sage and Python

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

```
Summary
```

```
Sage simplifies (of course)
sage: 5 + 3
sage: (x + 3*x**2) - (2*x - x**2)
4*x^2 - x
```

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Transcendental constants, functions

number	sage symbol
е	е
π	pi

operation	sage equivalent	
e^x	6**X	
$\ln x$	ln(x)	
$\sin x$, $\cos x$, etc.	sin(x), cos(x), etc.	

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Transcendental constants, functions

number	sage symbol
е	е
π	pi

operation	sage equivalent
e^x	6**X
$\ln x$	ln(x)
$\sin x$, $\cos x$, etc.	sin(x), cos(x), etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

•
$$\log(x) = \ln x \neq \log_{10} x$$

Some useful operations

operation	sage equivalent
factor <i>expr</i>	<pre>factor(expr)</pre>
simplify expr	<pre>simplify(expr)</pre>
expand <i>expr</i>	expand(<i>expr</i>)
round <i>expr</i> to <i>n</i> decimal places	round(expr, n)

MAT 305: Mathematical Computing

John Perry

What is Sage? "Computer algebra" Why Sage?

Getting started with Sage

Using computer memory

Summary

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage? "Computer algebra" Why Sage? Sage and Python

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

Summary

• Some expressions simplify automatically; many need hints

```
sage: (x**2 - 1) / (x - 1)
(x^2 - 1)/(x - 1)
sage: (factor(x**2 - 1)) / (x - 1)
x + 1
```

(good reason this isn't automatic: what?)

• Expand
$$(x-1)(x^3+x^2+x+1)$$

sage: expand((x-1)*(x**3+x**2+x+1))
x^4 - 1

• Round e to 5 decimal places

```
sage: round(e,5)
2.71828
```

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

• Online Sage documentation (tutorial, manual, etc.) at http://www.sagemath.org/doc/

Getting help

▲□▶▲□▶▲□▶▲□▶ □ ● ●

• These notes:

www.math.usm.edu/perry/old_classes/mat305ssyy/
(ssyy? semester and year: sp13, sp14, sm14, ...)

- Textbook: www.math.usm.edu/dont_panic
- In-Sage help: command, question mark, <Enter>
 sage: round?
 [output omitted]
- Email: john.perry@usm.edu

MAT 305: Mathematical Computing

John Perry

What is Sage?

"Computer algebra Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

What is Sage?
 "Computer algebra"
 Why Sage?
 Sage and Python

2 Getting started with Sage

3 Using computer memory

4 Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

• Use computer memory by defining *expressions* with the *assignment symbol* =

sage: f = x * * 2 - 1

Sage does not answer when you define an expression

- Expressions remembered until you terminate Sage
sage: f
 - x^2 1
- Can remember "structures" as well as expressions

sage: R = GF(7) # I'll tell you what
this is later

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Valid names

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry What is Sage?

MAT 305: Mathematical

Computing

"Computer algebr Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Names for expressions ("identifiers") can

- contain letters (A–Z), digits (0–9), or the underscore (_) but
- must begin with a letter or the underscore and
- may not contain other character (space, tab, !@#\$%^{*}, etc.)

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

• Manipulate just like the object it represents

Using expressions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

```
sage: factor(f)
(x - 1)*(x + 1)
sage: f - 3
x^2 - 4
```

• Avoid repeating computations: substitute!

```
sage: f(x=3)
8
sage: f(x=-1)
0
sage: f(x=4)
15
```

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

```
sage: f = x**2 + y**2
sage: f(x=3)
9 + y^2
sage: f({x:3})
9 + y^2
```

This also means replace x by 3 in f

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

v**2

sage:	f = x * * 2 +
sage:	f(x=3)
9 + y^	2
sage:	f({x:3})
9 + y^	2
sage:	z = x
sage:	f(z=3)
x^2 +	y^2

This also means replace x by 3 in f

Here we let z stand in place of xWe want to replace x by 3, but...

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage:	f = x * * 2 + y * * 2
sage:	f(x=3)
9 + y^2	2
sage:	f({x:3})
9 + y^2	2
sage:	z = x
sage:	f(z=3)
$x^2 + y$	2^2
sage:	f({z:3})
$9 + y^2$	2

This also means replace x by 3 in f

Here we let z stand in place of xWe want to replace x by 3, but...

This works where f(z=3) did not

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

John Perry

What is Sage?

"Computer algebr Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Define function using natural notation

sage:	f(x)	=	x**2
sage:	f(2)		
4			
sage:	f		
x >	x^2		

Expressions as functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Expressions as functions

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの()

Define function using natural notation

sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2

Automatically defines variables!

sage:	f(w,z) = 4*w**2-4*z**2
sage:	f(3,2)
20	
sage:	f(1,z)/z
-4*(z*	∗2 - 1)/z
sage:	f(3,2)/z
20/z	

John Perry

What is Sage? "Computer algebra" Why Sage? Sage and Python

Getting started with Sage

Using computer memory

Summary

Define function using natural notation

```
sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2
```

Functions really expressions

```
sage: factor(f)
4*(w - z)*(w + z)
sage: type(f)
<type 'sage.symbolic.expression.Expression'>
```

Expressions as functions

MAT 305: Mathematical Computing

John Perry

What is Sage?

- "Computer algebra Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

What is Sage?
 "Computer algebra"
 Why Sage?
 Sage and Python

2 Getting started with Sage

3 Using computer memory

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry What is Sage?

MAT 305: Mathematical

Computing

- "Computer algebr Why Sage? Sage and Python
- Getting started with Sage
- Using computer memory
- Summary

- Basic, intuitive facilities for arithmetic
- Create variables to your heart's content
- Define expressions to avoid repeating computations