MAT 305: Mathematical Computing

John Perry
What is Sage?

MAT 305: Mathematical Computing Introduction to Sage

John Perry
University of Southern Mississippi

Spring 2019

MAT 305:
Mathematical Computing

Outline

John Perry
What is Sage?
(1) What is Sage?
"Computer algebra" Why Sage?
Sage and Python
(2) Getting started with Sage
(3) Using computer memory
(4) Summary

MAT 305: Mathematical Computing

John Perry
What is Sage? "Computer algebra" Why Sage?
Sage and Python
Getting started with Sage

Using computer memory
(1) What is Sage?
"Computer algebra" Why Sage?
Sage and Python
(2) Getting started with Sage
(3) Using computer memory
(4) Summary

Outline

Sunt

MAT 305:
Mathematical
Computing

Outline

John Perry
What is Sage? "Computer algebra" Why Sage?
Sage and Python
Getting started with Sage
(2) Getting started with Sage
(3) Using computer memory
(4) Summary

Sage?

John Perry
What is Sage?
"Computer algebra" Why Sage? Sage and Python

- Software for Algebra and Geometry Exploration
- Computer Algebra System "started" by William Stein

MAT 305: Mathematical Computing

John Perry

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation"

Symbolic computing

goal exact computation

MAT 305: Mathematical Computing

John Perry

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation" tools floating-point numbers, vectors, matrices

Symbolic computing

goal exact computation
tools exact numbers, sets, abstract structures

Mathematical Computing

John Perry

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation"
tools floating-point numbers, vectors, matrices challenge overflow

- division by a small number

Symbolic computing

goal exact computation
tools exact numbers, sets, abstract structures challenge complexity

- adding many fractions

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation"
tools floating-point numbers, vectors, matrices challenge overflow

- division by a small number
analogy telling you an "accurate" lie

Symbolic computing

goal exact computation
tools exact numbers, sets, abstract structures challenge complexity

- adding many fractions
analogy telling you the truth... once we figure it out...

MAT 305: Mathematical Computing

Pros \& cons: symbolic

John Perry

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}=\frac{247}{210}
$$

- summands: two digits each, but
- sum: 6 digits
- imagine this done thousands or millions of times
"Expression swell"

Mathematical Computing

Pros \& cons: symbolic

John Perry

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}=\frac{247}{210}
$$

- summands: two digits each, but
- sum: 6 digits
- imagine this done thousands or millions of times
"Expression swell"
sage: $1+10^{\wedge}(-5)-1$
$1 / 100000$

Mathematical Computing

John Perry
What is Sage? "Computer algebra" Why Sage?
Sage and Python

$$
0.5000+0.3333+0.2000+0.1429 \approx 1.176
$$

- start and end with four digits, but
- small loss in precision

MAT 305: Mathematical Computing

Pros \& cons: numeric

$$
0.5000+0.3333+0.2000+0.1429 \approx 1.176
$$

- start and end with four digits, but
- small loss in precision

$$
\begin{aligned}
& \text { sage: } 1.0+10.0^{\wedge}(-5.0)-1.0 \\
& 0.0000100000000000655 \\
& \text { sage: } 1.0+10.0^{\wedge}(-15.0)-1.0 \\
& 1.11022302462516 \mathrm{e}-15 \\
& \text { sage: } 1.0+10.0^{\wedge}(-20.0)-1.0 \\
& 0.000000000000000
\end{aligned}
$$

MAT 305:
Mathematical Computing

John Perry

More cons: numeric

$$
\left(\begin{array}{rr}
\frac{1001}{2001} & -\frac{1000}{2001} \\
-\frac{1000}{2001} & \frac{1001}{20011}
\end{array}\right)\binom{1}{-1}=\binom{1}{-1}
$$

but

$$
\left(\begin{array}{rr}
\frac{1001}{2001} & -\frac{1000}{2001} \\
-\frac{1000}{2001} & \frac{1001}{2001}
\end{array}\right)\binom{1.1}{-0.9}=\binom{201.1}{199.1}
$$

- small change in input, but
- large change in output
- consider the effect of roundoff error... Mathematical Computing

John Perry
but

$$
\left(\begin{array}{rr}
\frac{1001}{2001} & -\frac{1000}{2001} \\
-\frac{1000}{2001} & \frac{1001}{2001}
\end{array}\right)\binom{1.1}{-0.9}=\binom{201.1}{199.1}
$$

- small change in input, but
- large change in output
- consider the effect of roundoff error...
"It makes me nervous to fly an airplane since I know they are designed using floating-point arithmetic."

MAT 305: Mathematical Computing

John Perry
What is Sage?
"Computer algebra"
Why Sage?
Sage and Python
Getting started with Sage
Using computer memory
(1) What is Sage?
"Computer algebra"
Why Sage?
Sage and Python
(2) Getting started with Sage
(3) Using computer memory
(4) Summary

MAT 305: Mathematical Computing

Practical reasons

John Perry
What is Sage?

- Free
- Cutting edge
- Access to other CAS’s
- Calculus: Maxima, SymPy, ...
- Linear Algebra: M4RI, Linbox, PARI, ...
- Commutative Algebra: Singular, Macaulay, ...
- Group theory: GAP, ...
- etc.

MAT 305: Mathematical Computing

John Perry
What is Sage?
"Computer algebra"
Why Sage?
Sage and Python
Getting started with Sage

Using
computer
memory
Summary

Philosophical reasons

"Free" software

MAT 305: Mathematical Computing

John Perry

What is Sage?
"Computer algebra" Why Sage? Sage and Pyython

Getting started with Sage

Philosophical reasons

"Free" software

- "Free as in beer":
- no cost to download
- no cost to copy
- no cost to upgrade

MAT 305: Mathematical Computing

Philosophical reasons

"Free" software

- "Free as in beer":
- no cost to download
- no cost to copy
- no cost to upgrade
- "Free as in speech":
- no secret algorithms
- can study implementation
- can correct, improve, contribute

Mathematical Computing

John Perry

Analogy: "Free" Mathematics

Theorem (Euclid)
There are infinitely many primes.
Proof.

- Consider finite list of primes, $q_{1}, q_{2}, \ldots, q_{n}$.
- Let $p=q_{1} q_{2} \cdots q_{n}+1$.
- Fact: since $p \neq 1$, divisible by at least one prime
- p not divisible by any q_{i} (remainder 1 , not 0).
- p must be divisible by an unlisted prime
- \therefore no finite list, lists all primes.

Mathematical Computing

John Perry

Theorem (Fermat) If $n>2$, the equation $a^{n}+b^{n}=c^{n}$ has no solution with integers $a, b, c \geq 1$.

Proof.
"I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." ${ }^{\dagger}$
${ }^{\dagger}$ Real quote. (to be fair: in private notes, not letter, article)

MAT 305: Mathematical Computing

John Perry

Analogy: "Proprietary" mathematics

Theorem (Mersenne)
The number

$$
2^{n}-1
$$

is prime for $n=2,3,5,7,13,17,19,31,67,127,257$.
Proof.

MAT 305: Mathematical Computing

John Perry

Analogy: "Proprietary" mathematics

Theorem (Mersenne)
The number

$$
2^{n}-1
$$

is prime for $n=2,3,5,7,13,17,19,31,67,127,257$.
Proof.
Trade Secret. ${ }^{\dagger}$

MAT 305: Mathematical Computing

John Perry

Analogy: "Proprietary" mathematics

Theorem (Mersenne)
The number

$$
2^{n}-1
$$

is prime for $n=2,3,5,7,13,17,19,31,67,127,257$.
Proof.
"In fact, the "theorem" is false.

Mathematical Computing

But I prefer M—!

John Perry

- Fine, buy your own copy
- good reasons exist
- student discount available
- I will tell you the equivalent commands
- Be warned:
- future versions not free
- bug fixes not free
- after you graduate, pay full price
- not always backwards compatible (neither is Sage, but Sage is free)

MAT 305: Mathematical Computing

John Perry
What is Sage?
"Computer algebra"
Why Sage?
Sage and Python
Getting started with Sage
Using
(1) What is Sage?
"Computer algebra" Why Sage? Sage and Python
(2) Getting started with Sage
(3) Using computer memory
(4) Summary

- Major computer language
- easy to use
- elegantly designed
- unlike *Cough* the Coding Convention they presCribe in CSC 101/L
- Modern
- facilities for object-oriented, functional programming
- Wide distribution, usage
- many employers use it (doing well in this class makes you more attractive!)
- I checked 4 websites that listed top in-demand languages \& salaries
- Flexible
- many good packages enhance it
- Can compile for efficiency using Cython

MAT 305: Mathematical Computing

Kinds of computer languages

- Interpreted
- BASIC, Python, Perl
- computer reads source, repeats following:
- translate symbols until full command formed
- execute command
- no translation saved

Mathematical Computing

Kinds of computer languages

- Interpreted
- BASIC, Python, Perl
- computer reads source, repeats following:
- translate symbols until full command formed
- execute command
- no translation saved
- Compiled
- C/C++, FORTRAN, Go
- reads source, translates and saves machine code
- translation works on same architecture (OS, CPU, ...)

Mathematical Computing

Kinds of computer languages

- Interpreted
- BASIC, Python, Perl
- computer reads source, repeats following:
- translate symbols until full command formed
- execute command
- no translation saved
- Compiled
- C/C++, FORTRAN, Go
- reads source, translates and saves machine code
- translation works on same architecture (OS, CPU, ...)
- Mixed ("bytecode")
- C\#(.NET), Java
- reads source, translate into bytecode, saves
- translation works in "virtual machine" (JVM, .Net, ...)

Sage and Python

- "Sage" built on/with Python
- interface between Sage and user
- Not all components of Sage in Python:
- Maxima: LISP
- Singular: C/C++
- "kernel" "compiled" for efficiency's sake

Python \neq Sage

MAT 305: Mathematical
Computing
John Perry

What is Sage?
"Computer algebra"
Why Sage?
Sage and Python
Getting started with Sage

Using
computer
memory
Summary

Outline

(1) What is Sage?
"Computer algebra" Why Sage? Sage and Python
(2) Getting started with Sage
(3) Using computer memory
(4) Summary

- Best: links on the website
- Alternate: SageMathCloud
- Linux users: ${ }^{1}$ sudo dnf install sagemath
- People with delusions of grandeur: Download, install to your computer
- can tinker with/break the source code
- Windows? need LiveCD or VirtualBox player: www.virtualbox.org/wiki/Downloads
- ask nicely, \& I might give you a DVD with Sage for Windows, Mac, Linux

[^0]
First steps in Sage

- Log in to Bagheera (use links on class web page, have I mentioned that yet?)
- Start a new worksheet
- rename it "First Sage Assignment"
- If you like (not always recommended)
- Click "Typeset"

MAT 305:
Mathematical Computing

John Perry

Working with variables

What is Sage?

$$
\text { sage: } \quad a=7
$$

Until you change it, a represents 7

Mathematical Computing

John Perry

Symbols of symbolic computation

Indeterminate: symbol with no specific value ("unknown")

- special kind of variable
- x pre-defined
- if value assigned, no longer indeterminate
- Need more? use var()
- $\operatorname{var}(' y$ ') defines y
- $\operatorname{var}(' \mathrm{a} \mathrm{b} \mathrm{c}$ d') defines a, b, c, d
- Use undefined variable?

$$
\text { sage: } x+y+z
$$

NameError: name ' z ' is not defined

MAT 305: Mathematical Computing

Arithmetic

John Perry
What is Sage?
"Computer algebra"
Why Sage?
Sage and Python
Getting started with Sage

operation	sage equivalent
add x, y	$\mathrm{x}+\mathrm{y}$
subtract y from x	$\mathrm{x}-\mathrm{y}$
multiply x, y	$\mathrm{x} * \mathrm{y}$
divide x by y	x / y
raise x to the y th power	$\mathrm{x} * * \mathrm{y}$ or $\mathrm{x}{ }^{\wedge} \mathrm{y}$

MAT 305: Mathematical Computing

Arithmetic

operation	sage equivalent
add x, y	$\mathrm{x}+\mathrm{y}$
subtract y from x	$\mathrm{x}-\mathrm{y}$
multiply x, y	$\mathrm{x} * \mathrm{y}$
divide x by y	x / y
raise x to the y th power	$\mathrm{x} * * \mathrm{y}$ or $\mathrm{x}{ }^{\wedge} \mathrm{y}$

- Do not omit muliplication symbol
- $2 * \mathrm{x} \longrightarrow 2 x$
- $2 \mathrm{x} \longrightarrow$ SyntaxError: invalid syntax
- possible, but dangerous, to get around this using implicit_multiplication(True)
- Do not neglect parentheses
- $e * *(2 * x) \neq e * * 2 * x$
- Prefer ** to - for various sordid reasons (scripting)

Example

John Perry
What is Sage?

- Sage simplifies (of course)

$$
\text { sage: } 5+3
$$

8

$$
\begin{aligned}
& \text { sage: }(\mathrm{x}+3 * \mathrm{x} * * 2)-(2 * \mathrm{x}-\mathrm{x} * * 2) \\
& 4 * \mathrm{x}^{\wedge} 2-\mathrm{x}
\end{aligned}
$$

MAT 305: Mathematical Computing

John Perry

Transcendental constants, functions

number	sage symbol
e	e
π	pi

operation	sage equivalent
e^{x}	$e * * x$
$\ln x$	$\ln (x)$
$\sin x, \cos x$, etc.	$\sin (x), \cos (x)$, etc.

MAT 305: Mathematical Computing

John Perry

Transcendental constants, functions

number	sage symbol
e	e
π	pi

operation	sage equivalent
e^{x}	$e * * x$
$\ln x$	$\ln (x)$
$\sin x, \cos x$, etc.	$\sin (x), \cos (x)$, etc.

- $\log (x)=\ln x \neq \log _{10} x$

MAT 305: Mathematical Computing

Some useful operations

John Perry

operation	sage equivalent
factor expr	factor $($ expr $)$
simplify expr	simplify $($ expr $)$
expand expr	expand (expr)
round expr to n decimal places	round (expr, n)

MAT 305: Mathematical Computing

Examples

John Perry

- Some expressions simplify automatically; many need hints

$$
\begin{aligned}
& \text { sage: }(x * * 2-1) /(x-1) \\
& (x \sim 2-1) /(x-1) \\
& \text { sage: }(f \operatorname{factor}(x * * 2-1)) /(x-1) \\
& x+1
\end{aligned}
$$

(good reason this isn't automatic: what?)

- Expand $(x-1)\left(x^{3}+x^{2}+x+1\right)$

$$
\begin{aligned}
& \text { sage: expand }((x-1) *(x * * 3+x * * 2+x+1)) \\
& x^{\wedge} 4-1
\end{aligned}
$$

- Round e to 5 decimal places

$$
\text { sage: round }(e, 5)
$$

2.71828 Mathematical Computing

- These notes: www.math.usm.edu/perry/old_classes/mat305ssyy/ (ssyy? semester and year: $\mathrm{sp} 13, \mathrm{sp} 14, \mathrm{sm} 14, \ldots$)
- Textbook: www.math.usm.edu/dont_panic
- In-Sage help: command, question mark, <Enter> sage: round? [output omitted]
- Email: john.perry@usm.edu

MAT 305: Mathematical
Computing
John Perry

What is Sage?
"Computer algebra"
Why Sage?
Sage and Python
Getting started with Sage

Using computer memory

Summary

Outline
(1) What is Sage?
"Computer algebra" Why Sage? Sage and Python
(2) Getting started with Sage
(3) Using computer memory
(4) Summary

MAT 305: Mathematical Computing

Expressions

John Perry

- Use computer memory by defining expressions with the assignment symbol =

$$
\text { sage: } f=x * * 2-1
$$

Sage does not answer when you define an expression

- Expressions remembered until you terminate Sage

$$
\begin{aligned}
& \text { sage: } f \\
& x^{\wedge} 2-1
\end{aligned}
$$

- Can remember "structures" as well as expressions

$$
\begin{aligned}
& \text { sage: } \mathrm{R}=\mathrm{GF}(7) \text { \# I'll tell you what } \\
& \text { this is later }
\end{aligned}
$$

Mathematical Computing

Names for expressions ("identifiers") can

- contain letters (A-Z), digits (0-9), or the underscore (_) but
- must begin with a letter or the underscore and
- may not contain other character (space, tab, !@\#\$\%^, etc.)

Using expressions

John Perry

- Manipulate just like the object it represents

$$
\begin{aligned}
& \text { sage: factor }(f) \\
& (x-1) *(x+1) \\
& \text { sage: } f-3 \\
& x-2-4
\end{aligned}
$$

- Avoid repeating computations: substitute!

$$
\begin{array}{ll}
\text { sage: } & f(x=3) \\
8 & \\
\text { sage: } & f(x=-1) \\
0 & \\
\text { sage: } & f(x=4) \\
15 &
\end{array}
$$

MAT 305: Mathematical Computing

John Perry

Alternate method of substitution

Sometimes you should use the dictionary method of substitution. An example would be when an identifier stands for a variable.

$$
\begin{aligned}
& \text { sage: } f=x * * 2+y * * 2 \\
& \text { sage: } f(x=3)
\end{aligned}
$$

$9+\mathrm{y}^{\wedge} 2$
sage: $f(\{x: 3\})$
This also means replace x by 3 in f
$9+\mathrm{y}^{\wedge} 2$

MAT 305: Mathematical Computing

John Perry

Alternate method of substitution

Sometimes you should use the dictionary method of substitution. An example would be when an identifier stands for a variable.

$$
\begin{aligned}
& \text { sage: } f=x * * 2+y * * 2 \\
& \text { sage: } f(x=3)
\end{aligned}
$$

$$
9+y^{\wedge} 2
$$

sage: $f(\{x: 3\})$
This also means replace x by 3 in f
$9+\mathrm{y}^{\wedge} 2$
sage: $\mathrm{z}=\mathrm{x}$
sage: $f(z=3)$
$x^{\wedge} 2+y^{\wedge} 2$

MAT 305: Mathematical Computing

John Perry

Alternate method of substitution

Sometimes you should use the dictionary method of substitution. An example would be when an identifier stands for a variable.

$$
\begin{aligned}
& \text { sage: } f=x * * 2+y * * 2 \\
& \text { sage: } f(x=3)
\end{aligned}
$$

$$
9+y^{\wedge} 2
$$

$$
\text { sage: } f(\{x: 3\})
$$

$$
\text { This also means replace } x \text { by } 3 \text { in } f
$$

$$
9+y^{\wedge} 2
$$

$$
\text { sage: } z=x
$$

$$
\text { Here we let } z \text { stand in place of } x
$$

$$
\text { sage: } f(z=3)
$$

$$
\text { We want to replace x by } 3 \text {, but... }
$$

$$
x^{\wedge} 2+y^{\wedge} 2
$$

$$
\text { sage: } f(\{z: 3\})
$$

This works where $f(z=3)$ did not

MAT 305: Mathematical Computing

John Perry

What is Sage? "Computer algebra"
Why Sage?
Sage and Python
Getting started with Sage

Define function using natural notation
sage: $f(x)=x * * 2$
sage: f(2)
4
sage: f
x |--> x^2

Expressions as functions

 Mathematical Computing
Expressions as functions

Define function using natural notation
sage: $f(x)=x * * 2$
sage: $f(2)$
4
sage: f
x |--> $x^{\wedge} 2$
Automatically defines variables!
sage: $f(w, z)=4 * W * * 2-4 * z * * 2$
sage: $f(3,2)$
20
sage: $f(1, z) / z$
$-4 *(z * * 2-1) / z$
sage: $f(3,2) / z$
20/z

MAT 305: Mathematical Computing

John Perry
Define function using natural notation

```
sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2
```

Functions really expressions
sage: factor (f)
4*(w - z)*(w + z)
sage: type(f)
<type 'sage.symbolic.expression.Expression'>

MAT 305:
Mathematical
Computing
John Perry

What is Sage?
"Computer algebra"
Why Sage?
Sage and Python
Getting started with Sage

Using
computer
memory
Summary
(1) What is Sage?
"Computer algebra" Why Sage? Sage and Python
(2) Getting started with Sage
(3) Using computer memory
(4) Summary

Summary

John Perry

- Basic, intuitive facilities for arithmetic
- Create variables to your heart's content
- Define expressions to avoid repeating computations

[^0]: ${ }^{1}$ Because Fedora is the One True Linux. People who want to apt-get stuff can go ask Debian or Ubuntu users how to do it.

