John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

MAT 305: Mathematical Computing Looping with definite loops

John Perry

University of Southern Mississippi

Spring 2019

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

1 Euler's Method

- 2 Repetition means Loops
- **3** Collections
- **4** Looping in a collection
- **5** Looping on a collection
- 6 Extended example
- Ø Summary

Outline

イロト 不得 トイヨト イヨト

3

MAT 305: Mathematical Computing

John Perry

Euler's Method

- Repetition means Loops
- Collections
- Looping in a collection
- Looping on a collection
- Extended example
- Summary

1 Euler's Method

- **2** Repetition means Loops
- **3** Collections
- **4** Looping in a collection
- **5** Looping on a collection
- 6 Extended example
- **O** Summary

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

What is y in terms of x?

Extended example

Summary

Differential Equations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 $\frac{dy}{dx}$

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Differential Equations

$$\frac{dy}{dx} = y$$

What is y in terms of x?

$$y = Ce^{x}$$
:
 $\frac{dy}{dx} = \frac{d}{dx}(Ce^{x}) = C\left(\frac{d}{dx}e^{x}\right) = Ce^{x} = y$

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Cannot always solve exactly

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$$\frac{dy}{dx} = \sin y + 2\cos x$$

What is y in terms of x?

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Cannot always solve exactly

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\frac{dy}{dx} = \sin y + 2\cos x$$

What is *y* in terms of *x*? I don't know. But we need to estimate *y* at various values of *x*.

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Pick a starting point (a, b). Repeat

- Find tangent line at (*a*, *b*).
- After all, we know point & slope (dy/dx)
- Follow tangent line "a little ways" to another point.

• Make that point (*a*, *b*).

Until you're "happy."

Euler's idea

"a little ways" = 1

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Pick a starting point (a, b). Repeat

- Find tangent line at (*a*, *b*).
- After all, we know point & slope (dy/dx)
- Follow tangent line "a little ways" to another point.

• Make that point (*a*, *b*).

Until you're "happy."

Euler's idea

"a little ways" = 0.5

・ロト・西ト・ヨト・ヨー シック・

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Pick a starting point (a, b). Repeat

- Find tangent line at (*a*, *b*).
- After all, we know point & slope (dy/dx)
- Follow tangent line "a little ways" to another point.

• Make that point (*a*, *b*).

Until you're "happy."

Euler's idea

"a little ways" = 0.1

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Pick a starting point (a, b). Repeat

- Find tangent line at (*a*, *b*).
- After all, we know point & slope (dy/dx)
- Follow tangent line "a little ways" to another point.

• Make that point (a, b).

Until you're "happy."

Euler's idea

"a little ways" = 0.01

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Pick a starting point (a, b). Repeat

- Find tangent line at (*a*, *b*).
- After all, we know point & slope (dy/dx)
- Follow tangent line "a little ways" to another point.
- Make that point (*a*, *b*).

Until you're "happy."

Euler's idea

"a little ways" = 0.1, 0.01

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

A more formal pseudocode

▲□▶▲□▶▲□▶▲□▶ □ のQ@

algorithm *Eulers_method* inputs

- *df*, derivative of a function
- (x_0, y_0) , initial values of x and y
- Δx , step size
- *n*, number of steps to take

outputs approximation to $f(x_0 + n\Delta x)$ **do**

let $a = x_0, b = y_0$ repeat *n* times add $\Delta x \cdot df(a, b)$ to *b* add Δx to *a* return *b*

Implementation

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Euler's Method

MAT 305: Mathematical

Computing John Perry

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

```
sage: def eulers_method(df, x0, y0, Delta_x, n):
    # starting point
    a, b = x0, y0
    # compute tangent lines & step forward
    for i in range(n):
        b = Delta_x * df(a, b) + b
        a = Delta_x + a
    return b
```

John Perry

Euler's Method

Repetition means Loops

Looping in a collection

Looping on a collection

Extended example

Summary

Examples

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

sage: df(x,y) = sin(y) + 2*cos(x)

John Perry

Euler's Method

Repetition means Loop

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Examples

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ ● ● ● ●

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loop

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

```
sage: df(x,y) = sin(y) + 2*cos(x)
sage: eulers_method(df, 0, 0, 1, 10)
2*cos(9) + 2*cos(8) + 2*cos(7) + 2*cos(6) + ...
```

Hmm. Anyone know what's going on here?

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

```
sage: df(x,y) = sin(y) + 2*cos(x)
sage: eulers_method(df, 0, 0, 1, 10)
2*cos(9) + 2*cos(8) + 2*cos(7) + 2*cos(6) + ...
```

Hmm. Anyone know what's going on here?

```
sage: eulers_method(df, 0, 0, 1., 10)
1.46532385990369
```

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

```
sage: df(x,y) = sin(y) + 2*cos(x)
sage: eulers_method(df, 0, 0, 1, 10)
2*cos(9) + 2*cos(8) + 2*cos(7) + 2*cos(6) + ...
```

Hmm. Anyone know what's going on here?

```
sage: eulers_method(df, 0, 0, 1., 10)
1.46532385990369
sage: eulers_method(df, 0, 0, 0.1, 100)
```

```
1.63761553387026
```

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

```
sage: df(x,y) = sin(y) + 2*cos(x)
sage: eulers_method(df, 0, 0, 1, 10)
2*cos(9) + 2*cos(8) + 2*cos(7) + 2*cos(6) + ...
```

Hmm. Anyone know what's going on here?

```
sage: eulers_method(df, 0, 0, 1., 10)
1.46532385990369
```

```
sage: eulers_method(df, 0, 0, 0.1, 100)
1.63761553387026
sage: eulers_method(df, 0, 0, 0.01, 1000)
```

1.64289768319682

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Outline

イロト 不得 トイヨト イヨト

3

MAT 305: Mathematical Computing

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Euler's Method

2 Repetition means Loops

3 Collections

4 Looping in a collection

5 Looping on a collection

- 6 Extended example
- **O** Summary

Repetition?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

We often have to repeat a computation that is

- not a mere operation, and
- not convenient to do by hand.

Example

• Compute the first 100 derivatives of f(x).

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

A complication

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We may not know *how* many computations ahead of time! Examples

- Add the first *n* numbers
 - What is *n*?
- Determine whether all elements of the set *S* are prime
 - What is in S?

Solution: loops!

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

John Perry Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

• loop: a sequence of statements that is repeated

The for command

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

for *c* in *C* where

- *c* is an identifier
- *C* is an "iterable collection" (tuples, lists, sets)

Outline

イロト 不得 トイヨト イヨト

3

MAT 305: Mathematical Computing

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Euler's Method

2 Repetition means Loops

3 Collections

4 Looping in a collection

5 Looping on a collection

- 6 Extended example
- **O** Summary

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Collection: group of objects identified as single object

What is a collection?

- indexed
 - tuples (a₀, a₁, a₂, ... a_n)
 points (x₀, y₀), (x₀, y₀, z₀)
 - lists $[a_0, a_1, ..., a_n]$
 - sequences $(a_0, a_1, a_2, ...)$
- not indexed
 - sets $\{a_0, a_5, a_3, a_2, a_1\}$
 - dictionaries

Standard Python collections

- *indexable* or *ordered* ("sequence types")
 - tuples, lists
 - access "element in position *i*" using [i]
 - but! start counting from 0, not 1

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

tuple: immutable, ordered collection

- *immutable*: cannot change elements
- *indexable*: can access elements by their order
- defined using parentheses

Tuples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

Collections

Example

sage:	<pre>my_tuple = (1,5,0,5)</pre>	4-tuple
sage: 0	my_tuple[2]	access 3rd element (element 2)
8200.	$m_{\rm M}$ + $m_{\rm M}$ = 1	assign to 3rd element?

```
sage: my_tupie[2]
... Output deleted...
TypeError: 'tuple' object does not support item
assignment
```

```
sage: my_tuple
(1,5,0,5)
```

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

list: mutable, ordered collection

- *mutable*: can change elements
- *indexable*: can access elements by their order
- defined using square brackets

Lists

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

Euler's Method

Repe	tit		n	
	s]	Lo	0	s

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

list of 4 elements sage: my_list = [1,5,0,5] access 3rd element (element 2) sage: my_list[2] 0 assign to 3rd element? $my_list[2] = 1$ sage: sage: my_list[2] 1 no error! access gives new value! sage: my_list [1,5,1,5]

Example

John Perry

- Euler's Method
- Repetition means Loops
- Collections
- Looping in a collection
- Looping on a collection
- Extended example
- Summary

- A set is a mutable, unordered collection
 - *mutable*: can change elements
 - non-indexable
 - cannot access elements by their order
 - computer arranges elements for efficiency
 - defined using {*entries*}, set(*tuple or list*), or set() (for empty set)
 - redundant elements automatically deleted

Sets

MAT 305-Mathematical Example Computing John Perry Collections set of 4 elements sage: $my_set = \{1, 5, 0, 5\}$ sage: my_set[2] access 3rd element? ... Output deleted... TypeError: 'set' object is unindexable so what's in there, anyway? sage: my_set set([0, 1, 5]) not original list!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

More is available

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on : collection

Extended example

Summary

You can do a *lot* with collections, but this is a *mathematics* course, not a *computer science* course. So we will stop with these basic ideas, and fill in more tools only as needed.

Outline

イロト イ理ト イヨト イヨト

3

MAT 305: Mathematical Computing

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

1 Euler's Method

2 Repetition means Loops

3 Collections

4 Looping in a collection

5 Looping on a collection

- 6 Extended example
- **O** Summary

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

What does it do?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Comparable to set-builder notation. Mathematics:

 $\{f(c):c\in C\}$
John Perry

Euler's Methoc

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

What does it do?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Comparable to set-builder notation. Mathematics:

```
\{f(c):c\in C\}
```

Python/sage:

```
[f(c) \text{ for } c \text{ in } C]
```

```
or \{f(c) \text{ for } c \text{ in } C \}
```

```
or (f(c) for c in C )
```

- suppose C has n elements
- result is a list/set/tuple
 - ith value is value of f at ith element of C

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

What does it do?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Comparable to set-builder notation. Mathematics:

```
\{f(c):c\in C\}
```

Python/sage:

```
[f(c) \text{ for } c \text{ in } C]
```

```
or \{f(c) \text{ for } c \text{ in } C \}
```

```
or (f(c) for c in C )
```

- suppose C has n elements
- result is a list/set/tuple
 - ith value is value of f at ith element of C
- loop variable *c* can be any valid identifier

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example

Build a list of even numbers from 2 to 40. Use range (20) to help.

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Example

Build a list of even numbers from 2 to 40. Use range (20) to help.

- range(20) gives us the list [0, 1, ... 19]
- How can we map those numbers to 2, 4, ..., 40?

Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Example

Build a list of even numbers from 2 to 40. Use range (20) to help.

- range(20) gives us the list [0, 1, ... 19]
- How can we map those numbers to 2, 4, ..., 40? f(x) = 2(x+1)

Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Computing John Perry

MAT 305: Mathematical

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Example

Build a list of even numbers from 2 to 40. Use range (20) to help.

- range(20) gives us the list [0, 1, ... 19]
- How can we map those numbers to 2, 4, ..., 40? f(x) = 2(x+1)

sage: f(x) = 2*(x + 1)
sage: [f(i) for i in range(20)]
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
30, 32, 34, 36, 38, 40]

Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Example Sampling $f(x) = x^2$ with 10 points on [2,5] sage: $f(x) = x^2$ sage: delta_x = (5-2)/10 sage: [f(2 + i*delta_x) for i in range(10)] [4, 529/100, 169/25, 841/100, 256/25, 49/4, 361/25, 1681/100, 484/25, 2209/100]

John Perry

Euler's Method

Repetition means Loops

C == range(10) == [0, 1, ..., 9]

Looping in a collection

Looping on a collection

Extended example

Summary

What happened?

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

What happened?

$$C == range(10) == [0, 1, ..., 9]$$

loop 1: i
$$\leftarrow 0$$

f(2 + i*delta_x) $\rightsquigarrow 4$

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

What happened?

$$C == range(10) == [0, 1, ..., 9]$$

loop 1: i
$$\leftarrow 0$$

f(2 + i*delta_x) $\rightsquigarrow 4$

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

. . .

What happened?

$$C == range(10) == [0, 1, ..., 9]$$

loop 1: i $\leftarrow 0$ f(2 + i*delta_x) $\rightsquigarrow 4$

loop 10:
$$i \leftarrow 9$$

f(2 + i*delta_x) $\rightarrow 2209/100$

・ロト・西ト・ヨト・ヨー シック

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

More detailed example

(日)

Estimate $\int_0^1 e^{x^2} dx$ using *n* left Riemann sums.

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

More detailed example

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Estimate $\int_0^1 e^{x^2} dx$ using *n* left Riemann sums.

- Excellent candidate for definite loop
 - Riemann sum: repeated addition: loop!
 - *n* can be known to computer *but not to you*

First, prepare pseudocode!

Pseudocode?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

description of activity

- format independent of computer language
- prefer mathematics to programming
 - "*i*th element of *L*" or "*L*_{*i*}", not L[i-1]

John Perry

Building pseudocode

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Ask yourself:

- What list do I use to repeat the action(s)?
- What do I have to do in each loop?
 - How do I break the task into pieces?
 - Divide et impera! Divide and conquer!

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Pseudocode for definite loop

▲□▶▲□▶▲□▶▲□▶ □ のQ@

statement for $c \in C$

Notice:

• \in , not in (mathematics, not Python)

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

Riemann sum: review

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let Δx be width of partition Let X be left endpoints of partition Add areas of rectangles on each partition

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

Riemann sum: pseudocode

Let
$$\Delta x = \frac{b-a}{n}$$

Let $X = \{a + (i-1)\Delta x \text{ for } i \in \{1, ..., n\}\}$ x_i is left endpoint
Let $I = \sum_{i=1}^{n} f(x_i)\Delta x$

John Perry

Euler's Method

sage:

sage:

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

translation sage: $Delta_x = (b - a)/n$ Python shortcut C = range(1, n+1)sage: $X = [a + (i - 1)*Delta_x \text{ for } i \text{ in } C]$ sage: $I = sum(f(x)*Delta_x \text{ for } x \text{ in } X)$ thanks, Sage! sage: sage: Ι $e^{(9/100)} + e^{(9/25)} + e^{(81/100)} + e^{(36/25)} + e^{(36/25)}$ $e^{(9/4)} + e^{(81/25)} + e^{(441/100)} + e^{(144/25)} +$ $e^{(729/100)} + 1$ sage: round(_, 5) 1.3812606013

a, b, n = 0, 1, 10

 $f(x) = e^{(x^2)}$

translates to Sage as...

setup

setup

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

イロト 不得 トイヨト イヨト

3

MAT 305: Mathematical Computing

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example Summarv

1 Euler's Method

2 Repetition means Loops

3 Collections

4 Looping in a collection

5 Looping on a collection

6 Extended example

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example for c in C:
 statement1
 statement2

. . .

statement outside loop

- suppose C has n elements
- statement1, statement2, etc. are repeated (looped) n times
- on *i*th loop, *c* has the value of *i*th element of *C*
- if you modify *c*,
 - corresponding element of C does not change
 - on next loop, *c* takes next element of *C* anyway
- statement outside loop & subsequent not repeated

What does it do?

Less trivial example

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example Summary

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

What happened?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$C == [x^2, cos(x), e^{x*cos(x)}]$

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

What happened?

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

 $C == [x^2, cos(x), e^{x*cos(x)}]$

loop 1: f \leftarrow x² print diff(f) \rightarrow 2x

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

What happened?

▲ロ▶▲園▶▲ヨ▶▲ヨ▶ ヨ のQ@

 $C == [x^2, cos(x), e^{x*cos(x)}]$

 $\begin{array}{cccc} \text{loop 1: } f & \longleftarrow x^2 \\ & & \text{print diff(f)} & \rightsquigarrow & 2x \end{array}$

loop 2: $f \leftarrow cos(x)$ print diff(f) $\rightsquigarrow -sin(x)$

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

What happened?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $C == [x^2, cos(x), e^{x*cos(x)}]$

loop 1: $f \leftarrow x^2$ print diff(f) $\rightsquigarrow 2x$

loop 2: $f \leftarrow cos(x)$ print diff(f) $\rightsquigarrow -sin(x)$

loop 3: $f \leftarrow e^x \cos(x)$ print diff(f) $\rightarrow -e^x \sin(x) + e^x \cos(x)$

John Perry

Looping on a collection

sage:	C = [1,3,5]
sage:	for c in C:
	c = c + 1
	print c
2	
4	
6	
sage:	print C
[1, 3,	5]

Changing loop variable?

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

What happened?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

C == [1,2,3]

John Perry

Euler's Method

- Repetition means Loops
- Collections

Looping in a collection

Looping on a collection

Extended example

Summary

C == [1,2,3]

loop 1:
$$c \leftarrow 1$$

 $c = c + 1 = 1 + 1$
print $c \rightarrow 2$

What happened?

John Perry

Euler's Method

- Repetition means Loops
- Collections

Looping in a collection

Looping on a collection

Extended example Summary

C == [1,2,3]

loop 1: c
$$\leftarrow$$
 1
c = c + 1 = 1 + 1
print c \rightarrow 2

loop 2: c
$$\leftarrow$$
 2
c = c + 1 = 2 + 1
print c \rightarrow 3

What happened?

John Perry

Euler's Method

- Repetition means Loops
- Collections
- Looping in a collection

Looping on a collection

Extended example Summary

loop 1: c
$$\leftarrow$$
 1
c = c + 1 = 1 + 1
print c \rightarrow 2

loop 2:
$$c \leftarrow 2$$

 $c = c + 1 = 2 + 1$
print $c \rightarrow 3$

loop 3:
$$c \leftarrow 3$$

 $c = c + 1 = 3 + 1$
print $c \rightarrow 4$

What happened?

John Perry

Changing C?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Don't modify C unless you know what you're doing.

Changing C?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example Summary Don't modify C **unless you know what you're doing**. Usually, you don't.

sage: C = [1,2,3,4]

sage: for c in C:

C.append(c+1)

Changing C?

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example Don't modify C **unless you know what you're doing**. Usually, you don't.

... infinite loop!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

More detailed example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Use **Euler approximation** with 200 points to plot an approximate solution to a differential equation

y' = f(x, y)

starting at the point (1, 1) and ending at x = 4 (we'll define *f* later)

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example More detailed example Use Euler approximation with 200 points to plot an

approximate solution to a differential equation

$$y' = f(x, y)$$

starting at the point (1, 1) and ending at x = 4 (we'll define *f* later) Euler approximation?!?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

- given a point (x_i, y_i) on the curve,
- the next point $(x_{i+1}, y_{i+1}) \approx (x_i + \Delta x, y_i + y' \cdot \Delta x)$
John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Building pseudocode

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Ask yourself:

- What list(s) do I use to repeat the action(s)?
- What do I have to do in each loop?
 - How do I break the task into pieces?
 - Divide et impera! Divide and conquer!

Pseudocode

Computing John Perry

MAT 305-Mathematical

Looping on a collection

Let $x_0, y_0 = (1, 1)$ Let a = 1 and b = 4Let $\Delta x = b - a/n$ collection over which to iterate Let C = (1, 2, ..., n)for $i \in C$ $y_i = y_{i-1} + \Delta x \cdot f(x_{i-1}, y_{i-1})$ Euler approximation $x_i = x_{i-1} + \Delta x$ move to next x

setup . . .

. . .

loop

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Translates to sage as...

sage:	XY = [(1,1)]	XY will be list of points
sage:	a,b,n = 1,4,200	setup
sage:	$Delta_x = (b-a)/n$	
sage:	<pre>for i in range(n):</pre>	loop
	XY.append((X[i] +	Delta_x,
	Υ[i] +	Delta x * f(X[i].Y[i])))

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

sage: f(x,y) = x^2 sage: [type the above] sage: XY[-1] (4, 1751009/80000) sage: round(_,5)

21.88761

Try it!

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの()

last entry in XY

John Perry

Looping on a collection

Try it!

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

last entry in XY

3

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

What happened?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$range(n) \leftarrow [0, \ldots, 199]$

John Perry

Looping on a

collection

What happened?

$$range(n) \longleftarrow [0, \dots, 199]$$

loop 1: $i \leftarrow 0$
 $x_i = x_i + Delta_x \implies xi = 1 + .015 = 1.015$
 $y_i = y_i + Delta_x * f(x_{i-1}, y_{i-1})$
 $\implies yi = 1 + .015*1 = 1.015$

John Perry

Looping on a collection

What happened?

John Perry

Looping on a collection

What happened?

range(n)
$$\leftarrow$$
 [0, ..., 199]
loop 1: $i \leftarrow 0$
 $x_i = x_i + \text{Delta}_x \implies xi = 1 + .015 = 1.015$
 $y_i = y_i + \text{Delta}_x * f(x_{i-1}, y_{i-1})$
 $\implies yi = 1 + .015*1 = 1.015$
loop 2: $i \leftarrow 1$
 $x_i = x_i + \text{Delta}_x \implies xi = 1.015 + .015 = 1.03$
 $y_i = y_i + \text{Delta}_x * f(x_{i-1}, y_{i-1})$
 $\implies yi = 1.015 + .015*1.030225 = 1.030453375$
loop 3: $i \leftarrow 2$
 $x_i = x_i + \text{Delta}_x \implies xi = 1.03 + .015 = 1.045$
 $y_i = y_i + \text{Delta}_x * f(x_{i-1}, y_{i-1})$
 $\implies yi = 1.03... + .015*1.0609 = 1.046366875$

etc.

Outline

イロト 不得 トイヨト イヨト

3

MAT 305: Mathematical Computing

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

1 Euler's Method

- 2 Repetition means Loops
- **3** Collections
- **4** Looping in a collection
- **5** Looping on a collection
- 6 Extended example
- **O** Summary

Example problem

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry Euler's Method

MAT 305: Mathematical

Computing

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

Problem

Given *f*, *a*, *b*, and *n*, use *n* rectangles to approximate $\int_{a}^{b} f(x) dx$. Use left endpoints to approximate the height of each rectangle.

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Function definition

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 - のへで

How can we make this interactive? Let user define:

- *f*, *a*, *b* as input boxes
- *n* as slider from 2 to 10
- color of boxes

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Function definition

How can we make this interactive? Let user define:

- *f*, *a*, *b* as input boxes
- *n* as slider from 2 to 10
- color of boxes
- : function definition:

```
@interact
```

def

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Avoid complicated functions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Major subtasks \longrightarrow functions:

- left_Riemann_sum() to approximate area
- left_Riemann_rectangles() to make plots

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Approximating area

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Already solved approximation of $\int_a^b f(x) dx$ using left endpoints. *Reuse old work!*
- Prior to @interact, paste old left Riemann sum code.

```
def left_Riemann_sum(f, a, b, n, x=x):
    Delta_x = (b-a)/n
    L = range(n)
    S = 0
    for i in L:
        xi = a + i*Delta_x
        S = S + f({x:xi})*Delta_x
        return S
```

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

plotting f is easy fplot = plot(f,a,b)

Graphics

Graphics

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- plotting f is easy
 fplot = plot(f,a,b)
 - plotting rectangles: use polygon2d() command polygon2d([lower_left, upper_left, upper_right, lower_right])
 - use for loop to combine rectangles into plot

MAT 305: Mathematical Computing

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Graphics

MAT 305: Mathematical Computing

John Perry

```
Euler's Method
```

- Repetition means Loops
- Collections
- Looping in a collection
- Looping on a collection

```
Extended
example
```

```
Summary
```

```
    plotting f is easy
    fplot = plot(f,a,b)
```

- plotting rectangles: use polygon2d() command polygon2d([lower_left, upper_left, upper_right, lower_right])
- use for loop to combine rectangles into plot combo = fplot

```
L = range(n)
```

```
for i in L:
```

```
xi = a + i*Delta_x
```

```
yi = f(x)
```

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on collection

Extended example

Summary

Encapsulate as function

Also prior to @interact:

```
def left_Riemann_rectangles(f, a, b, n,
                              x=x, boxcolor='red'):
  fplot = plot(f,a,b)
  combo = fplot
  Delta x = (b-a)/n
 L = range(n)
  for i in L:
    xi = a + i*Delta x
    yi = f({x:xi})
    combo = combo + polygon2d([(xi,0),(xi,yi),
            (xi+Delta_x,yi),(xi+Delta_x,0)],
            color=boxcolor,alpha=0.75)
  return combo
```

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

Combine pieces

▲□▶▲□▶▲□▶▲□▶ □ のQ@

```
show(riemann_plot)
print approx
```

John Perry

Euler's Method

- Repetition means Loops
- Collections
- Looping in a collection
- Looping on a collection

Extended example

Summary

The final product

Outline

MAT 305: Mathematical Computing

John Perry

- Euler's Method
- Repetition means Loops
- Collections
- Looping in a collection
- Looping on a collection
- Extended example
- Summary

Euler's Method

- 2 Repetition means Loops
- **3** Collections
- **4** Looping in a collection
- **5** Looping on a collection
- 6 Extended example
- Ø Summary

Summary

MAT 305: Mathematical Computing

John Perry

Euler's Method

Repetition means Loops

Collections

Looping in a collection

Looping on a collection

Extended example

Summary

• definite loop: *n* repetitions known at outset

- collection C of n elements controls loop
 - don't modify *C*
- two forms
 - loop *in* a collection, [*expression* for $c \in C$]
 - loop on a collection,
 - for $c \in C$ statement1 statement2

statement outside loop

• watch for *infinite loops*

. . .

"infinite loop": see infinite loop

- AmigaDOS Glossary, ca. 1993