
MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

MAT 305: Mathematical Computing
Recursion

John Perry

University of Southern Mississippi

Spring 2017

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Recursion?

re + cursum: return, travel the path again (Latin)

Two (similar) views:

• mathematical: a function defined using itself;

• computational: an algorithm that invokes itself.

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

When recursion?

• At least one “base” case w/closed form
• (“closed” = no recursion)

• All recursive chains terminate at base case

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example: Proof by induction

Prove P (n) for all n ∈N:

Inductive Base: Show P (1)

Inductive Hypothesis: Assume P (i) for 1≤ i≤ n

Inductive Step: Show P (n+ 1) using P (i) for 1≤ i≤ n

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example: Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

...
...

. . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Pascal’s triangle⇒ binomial
expansion

(x+ 1)0 = 1
(x+ 1)1 = 1x + 1
(x+ 1)2 = 1x2 + 2x + 1
(x+ 1)3 = 1x3 + 3x2 + 3x + 1
(x+ 1)4 = 1x4 + 4x3 + 6x2 + 4x + 1

...

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Do you notice a pattern?

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Classic example of recursion.

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Do you notice a pattern?

1

1

��

1

��
1

��

2

�� ��

1

��
1

��

3

����

3

����

1

��
1 4 6 4 1

Classic example of recursion.

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Formulating it

1

��

p2

����

p3

����

· · ·

1 r2 r3 · · ·

P = previous row, R = current row
• rfirst, rlast both 1
• ri = pi−1+ p1

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Pseudocode
algorithm pascals_row
inputs

• i ∈N, the desired row of Pascal’s triangle

outputs

• the sequence of numbers in row i of Pascal’s triangle

do
if i= 1

R = [1]
else if i= 2

R = [1,1]
else

P = pascals_row(i− 1)
R = [1]
for j ∈ (2,3, . . . , i− 1)

append Pj−1+Pj to R
append 1 to R

return R

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Pseudocode
algorithm pascals_row
inputs

• i ∈N, the desired row of Pascal’s triangle

outputs

• the sequence of numbers in row i of Pascal’s triangle

do
if i= 1

R = [1]
else if i= 2

R = [1,1]

else
P = pascals_row(i− 1)
R = [1]
for j ∈ (2,3, . . . , i− 1)

append Pj−1+Pj to R
append 1 to R

return R

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Pseudocode
algorithm pascals_row
inputs

• i ∈N, the desired row of Pascal’s triangle

outputs

• the sequence of numbers in row i of Pascal’s triangle

do
if i= 1

R = [1]
else if i= 2

R = [1,1]
else

P = pascals_row(i− 1)
R = [1]
for j ∈ (2,3, . . . , i− 1)

append Pj−1+Pj to R
append 1 to R

return R

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Sage code

def pascals_row(i):
if i == 1:

R = [1]
elif i == 2:

R = [1, 1]
else:

compute previous row first
P = pascals_row(i - 1)
this row starts with 1...
R = [1]
...adds two above next in this row...
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
... and ends with 1
R.append(1)

return R

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example

sage: pascals_row(3)
[1, 2, 1]
sage: pascals_row(5)
[1, 4, 6, 4, 1]

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)

pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)

pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)

pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What happened there?

if i == 1:
R = [1]

elif i == 2:
R = [1, 1]

else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):

R.append(P[j-1] + P[j])
R.append(1)

return R

pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example: Fibonacci’s Bunnies

Fibonacci (Leonardo da Pisa) describes in Liber Abaci a
population of bunnies:

• first month: one pair of bunnies;

• second month: pair matures;
• third month: mature pair produces new pair;
• fourth month: second pair matures, first pair produces new

pair;
• fifth month: third pair matures, two mature pairs produce

new pairs;
• . . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example: Fibonacci’s Bunnies

Fibonacci (Leonardo da Pisa) describes in Liber Abaci a
population of bunnies:

• first month: one pair of bunnies;
• second month: pair matures;
• third month: mature pair produces new pair;

• fourth month: second pair matures, first pair produces new
pair;

• fifth month: third pair matures, two mature pairs produce
new pairs;

• . . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example: Fibonacci’s Bunnies

Fibonacci (Leonardo da Pisa) describes in Liber Abaci a
population of bunnies:

• first month: one pair of bunnies;
• second month: pair matures;
• third month: mature pair produces new pair;
• fourth month: second pair matures, first pair produces new

pair;

• fifth month: third pair matures, two mature pairs produce
new pairs;

• . . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example: Fibonacci’s Bunnies

Fibonacci (Leonardo da Pisa) describes in Liber Abaci a
population of bunnies:

• first month: one pair of bunnies;
• second month: pair matures;
• third month: mature pair produces new pair;
• fourth month: second pair matures, first pair produces new

pair;
• fifth month: third pair matures, two mature pairs produce

new pairs;
• . . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

How many pairs?

month 1 2 3 4 5 6 7 . . .
mature pairs

immature pairs
new pairs 1
total pairs 1

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

How many pairs?

month 1 2 3 4 5 6 7 . . .
mature pairs

immature pairs 1
new pairs 1
total pairs 1 1

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

How many pairs?

month 1 2 3 4 5 6 7 . . .
mature pairs 1

immature pairs 1
new pairs 1 1
total pairs 1 1 2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

How many pairs?

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1

immature pairs 1 1
new pairs 1 1 1
total pairs 1 1 2 3

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

How many pairs?

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2

immature pairs 1 1 1
new pairs 1 1 1 2
total pairs 1 1 2 3 5

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

How many pairs?

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2 3

immature pairs 1 1 1 2
new pairs 1 1 1 2 3
total pairs 1 1 2 3 5 8

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

How many pairs?

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2 3 5

immature pairs 1 1 1 2 3
new pairs 1 1 1 2 3 5
total pairs 1 1 2 3 5 8 13 . . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Describing it

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2 3 5

immature pairs 1 1 1 2 3
new pairs 1 1 1 2 3 5
total pairs 1 1 2 3 5 8 13 . . .

• total = (# mature + # immature) + # new

• total = # one month ago + # new
• total = # one month ago + # mature now
• total = # one month ago + # two months ago

∴ Fnow = Fone month ago+ Ftwo months ago, or
Fi = Fi−1+ Fi−2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Describing it

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2 3 5

immature pairs 1 1 1 2 3
new pairs 1 1 1 2 3 5
total pairs 1 1 2 3 5 8 13 . . .

• total = (# mature + # immature) + # new
• total = # one month ago + # new

• total = # one month ago + # mature now
• total = # one month ago + # two months ago

∴ Fnow = Fone month ago+ Ftwo months ago, or
Fi = Fi−1+ Fi−2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Describing it

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2 3 5

immature pairs 1 1 1 2 3
new pairs 1 1 1 2 3 5
total pairs 1 1 2 3 5 8 13 . . .

• total = (# mature + # immature) + # new
• total = # one month ago + # new
• total = # one month ago + # mature now

• total = # one month ago + # two months ago

∴ Fnow = Fone month ago+ Ftwo months ago, or
Fi = Fi−1+ Fi−2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Describing it

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2 3 5

immature pairs 1 1 1 2 3
new pairs 1 1 1 2 3 5
total pairs 1 1 2 3 5 8 13 . . .

• total = (# mature + # immature) + # new
• total = # one month ago + # new
• total = # one month ago + # mature now
• total = # one month ago + # two months ago

∴ Fnow = Fone month ago+ Ftwo months ago, or
Fi = Fi−1+ Fi−2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Describing it

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2 3 5

immature pairs 1 1 1 2 3
new pairs 1 1 1 2 3 5
total pairs 1 1 2 3 5 8 13 . . .

• total = (# mature + # immature) + # new
• total = # one month ago + # new
• total = # one month ago + # mature now
• total = # one month ago + # two months ago

∴ Fnow = Fone month ago+ Ftwo months ago, or

Fi = Fi−1+ Fi−2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Describing it

month 1 2 3 4 5 6 7 . . .
mature pairs 1 1 2 3 5

immature pairs 1 1 1 2 3
new pairs 1 1 1 2 3 5
total pairs 1 1 2 3 5 8 13 . . .

• total = (# mature + # immature) + # new
• total = # one month ago + # new
• total = # one month ago + # mature now
• total = # one month ago + # two months ago

∴ Fnow = Fone month ago+ Ftwo months ago, or
Fi = Fi−1+ Fi−2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

∴ Fibonacci Sequence

Fi =
¨

1, i= 1,2;
Fi−1+ Fi−2, i≥ 3.

Example
F5 = F4+ F3

= (F3+ F2)+ (F2+ F1)
= [(F2+ F1)+ F2]+ (F2+ F1)
= 3F2+ 2F1

= 5.

F100 = F99+ F98

= . . .
= 218922995834555169026 · F2+ 135301852344706746049 · F1

= 354224848179261915075

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

∴ Fibonacci Sequence

Fi =
¨

1, i= 1,2;
Fi−1+ Fi−2, i≥ 3.

Example
F5 = F4+ F3

= (F3+ F2)+ (F2+ F1)
= [(F2+ F1)+ F2]+ (F2+ F1)
= 3F2+ 2F1

= 5.

F100 = F99+ F98

= . . .
= 218922995834555169026 · F2+ 135301852344706746049 · F1

= 354224848179261915075

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

∴ Fibonacci Sequence

Fi =
¨

1, i= 1,2;
Fi−1+ Fi−2, i≥ 3.

Example
F5 = F4+ F3

= (F3+ F2)+ (F2+ F1)
= [(F2+ F1)+ F2]+ (F2+ F1)
= 3F2+ 2F1

= 5.

F100 = F99+ F98

= . . .
= 218922995834555169026 · F2+ 135301852344706746049 · F1

= 354224848179261915075

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Pseudocode

Easy to implement w/recursion:

algorithm Fibonacci
inputs

n ∈N
outputs

the nth Fibonacci number
do

if n= 1 or n= 2
return 1

else
return Fibonacci (n− 2)+ Fibonacci (n− 1)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Implementation

sage: def fibonacci(n):
if n == 1 or n == 2:

return 1
else:

return fibonacci(n-2) + fibonacci(n-1)

sage: fibonacci(5)
5

sage: fibonacci(20)
6765

sage: fibonacci(30)
832040

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Implementation

sage: def fibonacci(n):
if n == 1 or n == 2:

return 1
else:

return fibonacci(n-2) + fibonacci(n-1)

sage: fibonacci(5)
5

sage: fibonacci(20)
6765

sage: fibonacci(30)
832040

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Issues in recursion

• Infinite loops

• recursion must stop eventually
• must ensure reach base case

• Wasted computation
• fibonacci(20) requires fibonacci(19) and
fibonacci(18)

• fibonacci(19) also requires fibonacci(18)
• ∴ fibonacci(18) computed twice!

• Limit to recursion
• pascals_row(1000)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Issues in recursion

• Infinite loops

• recursion must stop eventually
• must ensure reach base case

• Wasted computation
• fibonacci(20) requires fibonacci(19) and
fibonacci(18)

• fibonacci(19) also requires fibonacci(18)
• ∴ fibonacci(18) computed twice!

• Limit to recursion
• pascals_row(1000)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Issues in recursion

• Infinite loops

• recursion must stop eventually
• must ensure reach base case

• Wasted computation
• fibonacci(20) requires fibonacci(19) and
fibonacci(18)

• fibonacci(19) also requires fibonacci(18)
• ∴ fibonacci(18) computed twice!

• Limit to recursion
• pascals_row(1000)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example
Modify program:
sage: def fibonacci_details(n):

print ’computing fibonacci #’, n,
if n == 1 or n == 2:

return 1
else:

return fibonacci_details(n-2)
+ fibonacci_details(n-1)

sage: fibonacci_details(5)
computing fibonacci # 5 computing fibonacci # 3
computing fibonacci # 1 computing fibonacci # 2
computing fibonacci # 4 computing fibonacci # 2
computing fibonacci # 3 computing fibonacci # 1
computing fibonacci # 2
5

. . .F3 computed 2 times; F2, 3 times; F1, 2 times

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example
Modify program:
sage: def fibonacci_details(n):

print ’computing fibonacci #’, n,
if n == 1 or n == 2:

return 1
else:

return fibonacci_details(n-2)
+ fibonacci_details(n-1)

sage: fibonacci_details(5)
computing fibonacci # 5 computing fibonacci # 3
computing fibonacci # 1 computing fibonacci # 2
computing fibonacci # 4 computing fibonacci # 2
computing fibonacci # 3 computing fibonacci # 1
computing fibonacci # 2
5

. . .F3 computed 2 times; F2, 3 times; F1, 2 times

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example
Modify program:
sage: def fibonacci_details(n):

print ’computing fibonacci #’, n,
if n == 1 or n == 2:

return 1
else:

return fibonacci_details(n-2)
+ fibonacci_details(n-1)

sage: fibonacci_details(5)
computing fibonacci # 5 computing fibonacci # 3
computing fibonacci # 1 computing fibonacci # 2
computing fibonacci # 4 computing fibonacci # 2
computing fibonacci # 3 computing fibonacci # 1
computing fibonacci # 2
5

. . .F3 computed 2 times; F2, 3 times; F1, 2 times

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Workaround

Can we tell Sage to “remember” pre-computed values?
• Need a list
• Compute Fi? add value to list
• Apply formula only if Fi not in list!
• “Remember” computation after function ends: global list

• (called a cache)

Definition

• global variables available to all functions in system
• cache makes information quickly accessible

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Workaround

Can we tell Sage to “remember” pre-computed values?
• Need a list
• Compute Fi? add value to list
• Apply formula only if Fi not in list!
• “Remember” computation after function ends: global list

• (called a cache)

Definition

• global variables available to all functions in system
• cache makes information quickly accessible

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Pseudocode

algorithm Fibonacci_with_table
globals F , a list of integers, initially [1,1]
inputs

n ∈N
outputs

the nth Fibonacci number
do

if n> #F
Let a= Fibonacci_with_table (n− 1)
Let b= Fibonacci_with_table (n− 2)
Append a+ b to F

return Fn

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Hand implementation

sage: F = [1,1]

sage: def fibonacci_with_table(n):
global F
if n > len(F):

print ’computing fibonacci #’, n,
a = fibonacci_with_table(n-2)
b = fibonacci_with_table(n-1)
F.append(a + b)

return F[n-1]

Example
sage: fibonacci_with_table(5)
computing fibonacci # 5 computing fibonacci # 4
computing fibonacci # 3
5

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Hand implementation

sage: F = [1,1]

sage: def fibonacci_with_table(n):
global F
if n > len(F):

print ’computing fibonacci #’, n,
a = fibonacci_with_table(n-2)
b = fibonacci_with_table(n-1)
F.append(a + b)

return F[n-1]

Example
sage: fibonacci_with_table(5)
computing fibonacci # 5 computing fibonacci # 4
computing fibonacci # 3
5

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

But. . . no need to implement!

sage: @cached_function
def fibonacci_cached(n):

print ’computing fibonacci #’, n,
if n == 1 or n == 2:

return 1
else:

return fibonacci_cached(n-2)
+ fibonacci_cached(n-1)

Example
sage: fibonacci(5)
computing fibonacci # 5 computing fibonacci # 3
computing fibonacci # 1 computing fibonacci # 2
computing fibonacci # 4
5

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

But. . . no need to implement!

sage: @cached_function
def fibonacci_cached(n):

print ’computing fibonacci #’, n,
if n == 1 or n == 2:

return 1
else:

return fibonacci_cached(n-2)
+ fibonacci_cached(n-1)

Example
sage: fibonacci(5)
computing fibonacci # 5 computing fibonacci # 3
computing fibonacci # 1 computing fibonacci # 2
computing fibonacci # 4
5

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

However. . .
Avoid recursion when possible
• can often rewrite as a loop
• can sometimes rewrite in “closed form”

Example
“Closed form” for Fibonacci sequence:

Fn =

�

1+
p

5
2

�n
−
�

1−
p

5
2

�n

p
5

.

Coincidence? I think not...

1+
p

5
2

= golden ratio

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

However. . .
Avoid recursion when possible
• can often rewrite as a loop
• can sometimes rewrite in “closed form”

Example
“Closed form” for Fibonacci sequence:

Fn =

�

1+
p

5
2

�n
−
�

1−
p

5
2

�n

p
5

.

Coincidence? I think not...

1+
p

5
2

= golden ratio

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

However. . .
Avoid recursion when possible
• can often rewrite as a loop
• can sometimes rewrite in “closed form”

Example
“Closed form” for Fibonacci sequence:

Fn =

�

1+
p

5
2

�n
−
�

1−
p

5
2

�n

p
5

.

Coincidence? I think not...

1+
p

5
2

= golden ratio

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Looped Fibonacci: How?
We will not use the closed form, but a loop

• Recursive: down, then up, then down, then up. . .

Fn
↗ ↖

Fn−1 Fn−2
↗ ↖ ↗ ↖

Fn−2 Fn−3 Fn−4
...

• Looped: only up, directly!

• F2 −→+F1

F3 −→+F2

· · · −→
+Fn−2

Fn

• remember two previous computations
• remember? =⇒ variables

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Looped Fibonacci: How?
We will not use the closed form, but a loop

• Recursive: down, then up, then down, then up. . .

Fn
↗ ↖

Fn−1 Fn−2
↗ ↖ ↗ ↖

Fn−2 Fn−3 Fn−4
...

• Looped: only up, directly!

• F2 −→+F1

F3 −→+F2

· · · −→
+Fn−2

Fn

• remember two previous computations
• remember? =⇒ variables

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Looped Fibonacci: Pseudocode

algorithm Looped_Fibonacci
inputs

n ∈N
outputs

the nth Fibonacci number
do

— Define the base case
Let Fprev = 1, Fcurr = 1
— Use the formula to move forward to Fn
for i ∈ {3, . . . ,n}

— Compute next element, then move forward
Let Fnext = Fprev+ Fcurr
Let Fprev = Fcurr
Let Fcurr = Fnext

return Fcurr

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Looped Fibonacci:
Implementation

sage: def looped_Fibonacci(n):
Fprev = 1
Fcurr = 1
for i in xrange(3,n+1):

Fnext = Fprev + Fcurr
Fprev = Fcurr
Fcurr = Fnext

return Fcurr

sage: looped_Fibonacci(100)
354224848179261915075

(Much faster than recursive version)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Looped Fibonacci:
Implementation

sage: def looped_Fibonacci(n):
Fprev = 1
Fcurr = 1
for i in xrange(3,n+1):

Fnext = Fprev + Fcurr
Fprev = Fcurr
Fcurr = Fnext

return Fcurr

sage: looped_Fibonacci(100)
354224848179261915075

(Much faster than recursive version)

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Faster, too

sage: %time a = looped_Fibonacci(30000)
CPU time: 0.01 s, Wall time: 0.01 s
sage: %time a = Fibonacci_with_table(30000)
CPU time: probably crashes, Wall time: if not, get
some coffee
sage: %time a = Fibonacci(10000)
CPU time: probably crashes, Wall time: if not,
come back tomorrow

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Recursive vs. Looped vs.
Closed-form

• Recursive
pros: simple to write, “naïve” approach
cons: slower, memory intensive, indefinite loop

w/out loop structure

• Looped (also called dynamic programming)
pros: not too slow, not too complicated, loop can

be definite
cons: not as simple as recursive, sometime not

obvious
• Closed-form

pros: one step (no loop)
cons: finding it often requires significant effort

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Recursive vs. Looped vs.
Closed-form

• Recursive
pros: simple to write, “naïve” approach
cons: slower, memory intensive, indefinite loop

w/out loop structure
• Looped (also called dynamic programming)

pros: not too slow, not too complicated, loop can
be definite

cons: not as simple as recursive, sometime not
obvious

• Closed-form

pros: one step (no loop)
cons: finding it often requires significant effort

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Recursive vs. Looped vs.
Closed-form

• Recursive
pros: simple to write, “naïve” approach
cons: slower, memory intensive, indefinite loop

w/out loop structure
• Looped (also called dynamic programming)

pros: not too slow, not too complicated, loop can
be definite

cons: not as simple as recursive, sometime not
obvious

• Closed-form

pros: one step (no loop)
cons: finding it often requires significant effort

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Neat fact of eigenvectors

Theorem (Eigendecomposition)
Let M be an n×n matrix with

• independent eigenvectors e1, . . . , en

• corresponding to eigenvalues λ1, . . . ,λn.

We can rewrite M as M =QΛQ−1 where

Q= (e1|e2| · · · |en) Λ=

λ1
λ2

. . .
λn

.

http://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example

With M as defined,

Q=
�

1 1
1 −1

�

Λ=
�

2
−2

�

Verify in Sage that M =QΛQ−1

sage: Q = matrix(2,2,[1,1,1,-1])
sage: L = matrix(2,2,[2,0,0,-2])
sage: Q*L*Q**(-1)
[0 2]
[2 0]

. . . recall M =
�

0 2
2 0

�

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Example

With M as defined,

Q=
�

1 1
1 −1

�

Λ=
�

2
−2

�

Verify in Sage that M =QΛQ−1

sage: Q = matrix(2,2,[1,1,1,-1])
sage: L = matrix(2,2,[2,0,0,-2])
sage: Q*L*Q**(-1)
[0 2]
[2 0]

. . . recall M =
�

0 2
2 0

�

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

But how is this useful?

Consider the numbers

1,1,2,3,5,8,13, . . .

This is the well-known Fibonacci sequence:

f1 = 1 f2 = 1 fn = fn−1+ fn−2

Can we get a “non-recursive” formula?

http://en.wikipedia.org/wiki/Fibonacci_number

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

But how is this useful?

Consider the numbers

1,1,2,3,5,8,13, . . .

This is the well-known Fibonacci sequence:

f1 = 1 f2 = 1 fn = fn−1+ fn−2

Can we get a “non-recursive” formula?

http://en.wikipedia.org/wiki/Fibonacci_number

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Fibonacci matrix
As a matrix equation,

�

1 1
1 0

��

fn−1
fn−2

�

=
�

fn
fn−1

�

Let’s try rewriting the matrix

F =
�

1 1
1 0

�

.

Iterative multiplication generates the sequence
sage: F = matrix(2,2,[1,1,1,0])
sage: f12 = vector([1,1])
sage: F*f12
[2, 1]
sage: F^2*f12
[3, 2]
sage: F^3*f12
[5, 3]
. . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Fibonacci matrix
As a matrix equation,

�

1 1
1 0

��

fn−1
fn−2

�

=
�

fn
fn−1

�

Let’s try rewriting the matrix

F =
�

1 1
1 0

�

.

Iterative multiplication generates the sequence
sage: F = matrix(2,2,[1,1,1,0])
sage: f12 = vector([1,1])
sage: F*f12
[2, 1]
sage: F^2*f12
[3, 2]
sage: F^3*f12
[5, 3]
. . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

In short,

Fn−2
�

f2
f1

�

=
�

fn
fn−1

�

and

Fn−2 =
�

QΛQ−1�n−2

=
�

QΛQ−1� �QΛQ−1� · · ·
�

QΛQ−1�

︸ ︷︷ ︸

n−2

=QΛ
�

Q−1Q
�

Λ
�

Q−1Q
�

· · ·
�

Q−1Q
�

ΛQ−1

︸ ︷︷ ︸

n−2

=QΛn−2Q−1

Since Λ is diagonal, it is easy to compute Λn

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

What to do?

General outline:
• Compute eigenvectors and eigenvalues
sage: F.eigenvectors_right()

• Construct QΛnQ−1

sage: Q = matrix(2,2,[...])
sage: L = matrix(2,2,[...])

• Analyze the equation

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

One “drawback”

• eigenvectors, eigenvalues look inexact
sage: F.eigenvectors_right()
[(-0.618033988749895?,

[(1, -1.618033988749895?)], 1),
(1.618033988749895?,

[(1, 0.618033988749895?)], 1)]

• In fact, we can determine their exact values
sage: edata = F.eigenvectors_right()
sage: lam1, lam2 = edata[0][0], edata[1][0]
sage: lam1 = lam1.radical_expression(); lam1
-1/2*sqrt(5) + 1/2
sage: lam2 = lam2.radical_expression(); lam2
1/2*sqrt(5) + 1/2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

One “drawback”

• eigenvectors, eigenvalues look inexact
sage: F.eigenvectors_right()
[(-0.618033988749895?,

[(1, -1.618033988749895?)], 1),
(1.618033988749895?,

[(1, 0.618033988749895?)], 1)]

• In fact, we can determine their exact values
sage: edata = F.eigenvectors_right()
sage: lam1, lam2 = edata[0][0], edata[1][0]
sage: lam1 = lam1.radical_expression(); lam1
-1/2*sqrt(5) + 1/2
sage: lam2 = lam2.radical_expression(); lam2
1/2*sqrt(5) + 1/2

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Put it together

[(-1/2*sqrt(5) + 1/2, [(1, -1/2*sqrt(5) - 1/2)], 1),
(1/2*sqrt(5) + 1/2, [(1, 1/2*sqrt(5) - 1/2)], 1)]

sage: Q = matrix(
[1, -1/2*sqrt(5) - 1/2],
[1,1/2*sqrt(5) - 1/2]

)
sage: var(’n’)
sage: L = matrix(2,2,[

(-1/2*sqrt(5) + 1/2)^(n-2), 0,
0, (1/2*sqrt(5) + 1/2)^(n-2)

])
sage: Q*L*Q**(-1)
. . . very unpleasant

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

. . . or is it?

Let M =
�

QΛnQ−1
� �1

1

�

, and let fn =M1,1 (the top entry).

An “algebraic massage” (.full_simplify()) gives

fn =
p

5
10

�

3+
p

5
�

�

1+
p

5
2

�n−2

−
�

3−
p

5
�

�

1−
p

5
2

�n−2

 ,

already a “pleasant” closed form, and thus what we wanted.

But we can do better!

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

. . . or is it?

Let M =
�

QΛnQ−1
� �1

1

�

, and let fn =M1,1 (the top entry).

An “algebraic massage” (.full_simplify()) gives

fn =
p

5
10

�

3+
p

5
�

�

1+
p

5
2

�n−2

−
�

3−
p

5
�

�

1−
p

5
2

�n−2

 ,

already a “pleasant” closed form, and thus what we wanted.

But we can do better!

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

More algebraic massage. . .

Use Sage (in particular, expand()) to verify that

3+
p

5= 2
�

1+
p

5
2

�2

and 3−
p

5= 2
�

1−
p

5
2

�2

.

We can use this fact to rewrite

fn =
p

5
10

�

3+
p

5
�

�

1+
p

5
2

�n−2

−
�

3−
p

5
�

�

1−
p

5
2

�n−2

as. . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

More algebraic massage. . .

Use Sage (in particular, expand()) to verify that

3+
p

5= 2
�

1+
p

5
2

�2

and 3−
p

5= 2
�

1−
p

5
2

�2

.

We can use this fact to rewrite

fn =
p

5
10

�

3+
p

5
�

�

1+
p

5
2

�n−2

−
�

3−
p

5
�

�

1−
p

5
2

�n−2

as. . .

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Binet’s Formula

fn =
1
p

5

�

�

1+
p

5
2

�n

−
�

1−
p

5
2

�n�

golden ratio

(kindly observe a moment of reverent awe)

http://en.wikipedia.org/wiki/Golden_ratio

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Outline

1 Recursion?
The basics
Pascal’s triangle
Fibonacci numbers

2 Issues in recursion
Caching
Closed forms (if known)
Don’t re-curse it, loop it!

3 Eigenbunnies!

4 Summary

MAT 305:
Mathematical
Computing

John Perry

Recursion?
The basics

Pascal’s triangle

Fibonacci numbers

Issues in
recursion
Caching

Closed forms (if
known)

Don’t re-curse it, loop
it!

Eigenbunnies!

Summary

Summary

• Recursion: function defined using other values of function

• Issues

• can waste computation
• can lead to infinite loops (bad design)

• Use when

• closed/loop form too complicated
• chains not too long
• “memory table” feasible

	Recursion?
	The basics
	Pascal's triangle
	Fibonacci numbers

	Issues in recursion
	Caching
	Closed forms (if known)
	Don't re-curse it, loop it!

	Eigenbunnies!
	Summary

