MAT 305: Mathematical Computing

John Perry
Recursion?
The basiss
Pascal's triangle
Fibonacci numbers
Issues in
recursion
Caching
Closed forms (if known)

MAT 305: Mathematical Computing Recursion

John Perry

University of Southern Mississippi

Spring 2017

MAT 305:
Mathematical Computing

Outline

John Perry

Recursion?
The basiss
Passal's striangle Fibonacci numbers

Issues in recursion
(1) Recursion?

The basics
Pascal's triangle Fibonacci numbers
(2) Issues in recursion

Caching
Closed forms (if known)
Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

MAT 305: Mathematical

John Perry
Recursion?
The basics
Pascal's triangle Fibonacci numbers

Issues in
recursion
Caching
Closed forms (if known)
Don't re-curse it, loop it!

Eigenbunnies! Summary
(1) Recursion?

The basics
Pascal's triangle Fibonacci numbers
(2) Issues in recursion
(3) Eigenbunnies!
(4) Summary
(1) Recu?

Outline

-

MAT 305: Mathematical Computing

John Perry
Recursion?
The basics
Pascal's triangle Fibonacci numbers

Issues in recursion

Caching

Closed forms (if known)
Don't re-curse it, loop it!

Eigenbunnies!
(1) Recursion?

The basics
Pascal's triangle
Fibonacci numbers
(2) Issues in recursion

Caching
Closed forms (if known)
Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

Mathematical Computing

Two (similar) views:

- mathematical: a function defined using itself;
- computational: an algorithm that invokes itself.

MAT 305:
Mathematical Computing

When recursion?

John Perry

Recursion?

The basics
Pascal's triangle
Fibonacci numbers
Issues in
recursion
Caching
Closed forms (if known)

- At least one "base" case w/closed form
- ("closed" = no recursion)
- All recursive chains terminate at base case

Mathematical Computing

John Perry

Recursion?

The basics

Example: Proof by induction

Prove $P(n)$ for all $n \in \mathbb{N}$:
Inductive Base: Show $P(1)$
Inductive Hypothesis: Assume $P(i)$ for $1 \leq i \leq n$
Inductive Step: Show $P(n+1)$ using $P(i)$ for $1 \leq i \leq n$

MAT 305: Mathematical Computing

John Perry

Recursion?
The basics
Pascal's triangle Fibonacci numbers

Issues in
recursion
Caching
Closed forms (if known)

Don't re-curse it, loop it!

Eigenbunnies!
(1) Recursion?

The basics

Pascal's triangle
Fibonacci numbers
(2) Issues in recursion

Caching
Closed forms (if known)
Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

MAT 305: Mathematical Computing

John Perry

Example: Pascal's triangle

Recursion?

The basiss

Pascal's triangle

Fibonacci numbers
Issues in
recursion

Caching
 Closed forms (if

known)
Dontrecurse it, toop it

MAT 305: Mathematical Computing

John Perry

Pascal's triangle \Rightarrow binomial expansion

$$
\vdots
$$

$$
. .^{\cdot}
$$

MAT 305: Mathematical Computing

Do you notice a pattern?

John Perry

Recursion?

The basics
Pascal's triangle
Fibonacci numbers
Issues in
recursion

Caching

Closed forms (if known)
Don'trecurse it, loop it!

Eigenbunnies!
Summary

MAT 305:
Mathematical
Computing
John Perry

Recursion?

The basics

Pascal's triangle Fibonaci numbers

Issues in

recursion

Caching

Do you notice a pattern?

MAT 305: Mathematical Computing

John Perry

Recursion?

The basics

Pascal's triangle

 Fibonaci numbersIssues in recursion

Caching

$P=$ previous row, $R=$ current row

- $r_{\text {first }}, r_{\text {last }}$ both 1
- $r_{i}=p_{i-1}+p_{1}$

MAT 305: Mathematical Computing

John Perry

Recursion?
The basics
Pascal's triangle Fibonacci numbers

Pseudocode

algorithm pascals_row inputs

- $i \in \mathbb{N}$, the desired row of Pascal's triangle
outputs
- the sequence of numbers in row i of Pascal's triangle

Mathematical Computing
algorithm pascals_row inputs

- $i \in \mathbb{N}$, the desired row of Pascal's triangle
outputs
- the sequence of numbers in row i of Pascal's triangle
do

$$
\begin{aligned}
& \text { if } i=1 \\
& \quad R=[1] \\
& \text { else if } i=2 \\
& \quad R=[1,1]
\end{aligned}
$$

Pseudocode

Mathematical Computing

John Perry

Recursion?

Pseudocode

algorithm pascals_row inputs

- $i \in \mathbb{N}$, the desired row of Pascal's triangle
outputs
- the sequence of numbers in row i of Pascal's triangle do

$$
\begin{aligned}
& \text { if } i=1 \\
& \quad R=[1] \\
& \text { else if } i=2 \\
& \quad R=[1,1] \\
& \text { else } \\
& P=\text { pascals_row }(i-1) \\
& R=[1] \\
& \quad \text { for } j \in(2,3, \ldots, i-1) \\
& \quad \text { append } P_{j-1}+P_{j} \text { to } R \\
& \quad \text { append } 1 \text { to } R \\
& \text { return } R
\end{aligned}
$$

Mathematical Computing

Sage code

```
def pascals_row(i):
    if i == 1:
    R = [1]
    elif i == 2:
    R = [1, 1]
    else:
    # compute previous row first
    P = pascals_row(i - 1)
    # this row starts with 1...
    R = [1]
    # ...adds two above next in this row...
    for j in xrange(1, i - 1):
        R.append(P[j-1] + P[j])
    # ... and ends with 1
    R.append(1)
    return R
``` Mathematical
Computing

\section*{Example}

John Perry

\section*{Recursion?}

The basics
Pascal's triangle Fibonacci numbers

Issues in
recursion
```

Caching
Closed forms (if
known)
Dontrecurse it, loop
it!
sage: pascals_row(3)
[1, 2, 1]
sage: pascals_row(5)
$[1,4,6,4,1]$

MAT 305: Mathematical Computing

## What happened there?

John Perry

## Recursion?

## The basics

```
if i == 1:
\[
\mathrm{R}=[1]
\]
elif i == 2:
\[
\mathrm{R}=[1,1]
\]
else:
\[
P=\text { pascals_row }(i-1)
\]
\[
\mathrm{R}=[1]
\]
\[
\text { for } j \text { in xrange }(1, \text { i }-1) \text { : }
\]
\[
R . \operatorname{append}(P[j-1]+P[j])
\]
R.append (1)
return \(R\)
``` Mathematical Computing

\section*{What happened there?}

\author{
John Perry
}

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append(1)
return R

```
                                    pascals_row(5)
                                    pascals_row(4) Mathematical Computing

\section*{What happened there?}

John Perry

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append(1)
return R

```
pascals_row(5)
pascals_row (4)
pascals_row(3) Mathematical Computing

\section*{What happened there?}

\author{
John Perry
}

\section*{Recursion?}

\section*{The basics}
```

if i == 1:

```
if i == 1:
    R = [1]
    R = [1]
elif i == 2:
elif i == 2:
    R = [1, 1]
    R = [1, 1]
else:
else:
    P = pascals_row(i - 1)
    P = pascals_row(i - 1)
    R = [1]
    R = [1]
    for j in xrange(1, i - 1):
    for j in xrange(1, i - 1):
        R.append(P[j-1] + P[j])
        R.append(P[j-1] + P[j])
    R.append(1)
    R.append(1)
return R
```

return R

``` Mathematical Computing

\section*{What happened there?}

\author{
John Perry
}

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append(1)
return R

```
pascals_row (5)
pascals_row (4)
pascals_row(3)
pascals_row (2) Mathematical Computing

\section*{What happened there?}
\[
\begin{aligned}
& \text { if } \begin{array}{l}
i==1: \\
R=[1] \\
\text { elif } i==2: \\
R=[1,1] \\
\text { else }: \\
P=\text { pascals_row }(i-1) \\
R=[1] \\
\text { for } j \text { in xrange }(1, i-1) \text { : } \\
R . \operatorname{append}(P[j-1]+P[j]) \\
R . a p p e n d(1)
\end{array} \\
& \text { return } R
\end{aligned}
\]
pascals_row (4)
pascals_row(3)
pascals_row(2)
pascals_row(5) Mathematical Computing

\section*{What happened there?}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append (1)
return R

```
pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2) Mathematical Computing

\section*{What happened there?}

\author{
John Perry
}

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)

$$
\mathrm{R}=[1]
$$

 R = [1]
 $$
\text { for } j \text { in xrange }(1, \text { i }-1) \text { : }
$$

 for j in xrange(1, i - 1):
 $$
R . \text { append }(P[j-1]+P[j])
$$

 R.append(P[j-1] + P[j])
 R.append(1)
 return R
else:

$$
P=\text { pascals_row }(i-1)
$$

R.append (1)
return R

```
pascals_row(5)
pascals_row (4)
pascals_row(3)
pascals_row(2) Mathematical Computing

\section*{What happened there?}

John Perry

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append(1)
return R
else:

$$
\begin{aligned}
& P=\text { pascals_row }(i-1) \\
& R=[1] \\
& \text { for } j \text { in xrange }(1, i-1) \text { : } \\
& \quad R . \operatorname{append}(P[j-1]+P[j]) \\
& R . \text { append }(1)
\end{aligned}
$$

return R

```
pascals_row(5)
pascals_row(4)
pascals_row(3)
pascals_row(2) Mathematical Computing

\section*{What happened there?}

John Perry

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append (1)
return R

```
                                    pascals_row(5)
                                    pascals_row(4)
                                    pascals_row(3)
                                    pascals_row(2) Mathematical Computing

\section*{What happened there?}

\author{
John Perry
}

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append(1)
return R

```
pascals_row (5)
pascals_row (4)
pascals_row(3)
pascals_row(2) Mathematical Computing

\section*{What happened there?}
\[
\begin{aligned}
& \text { if } \begin{array}{l}
i=1: \\
R
\end{array}=[1] \\
& \text { elif } i==2: \\
& R=[1,1] \\
& \text { else }: \\
& \quad P=\text { pascals_row }(i-1) \\
& R=[1] \\
& \text { for } j \text { in xrange }(1, i-1): \\
& \quad R . a p p e n d(P[j-1]+P[j]) \\
& \quad R . a p p e n d(1)
\end{aligned} \quad \begin{aligned}
& \text { return } R
\end{aligned}
\] Mathematical Computing

\section*{What happened there?}

John Perry

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append(1)
return R

```
pascals_row(5)
pascals_row (4)
pascals_row(3)
pascals_row(2) Mathematical Computing

\section*{What happened there?}

John Perry

\section*{Recursion?}

\section*{The basics}
```

if i == 1:
R = [1]
elif i == 2:
R = [1, 1]
else:
P = pascals_row(i - 1)
R = [1]
for j in xrange(1, i - 1):
R.append(P[j-1] + P[j])
R.append(1)
return R

```
pascals_row (5)
pascals_row (4)
pascals_row(3)
pascals_row(2)

MAT 305: Mathematical Computing

John Perry
Recursion?
The basics
Pasal's striangle Fibonacci numbers

Issues in
recursion
Caching
Closed forms (if known)
Don't recurse it, loop it!

Eigenbunnies!
Summary
(1) Recursion?

The basics
Pascal's triangle
Fibonacci numbers
(2) Issues in recursion

Caching
Closed forms (if known)
Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

MAT 305: Mathematical Computing

\author{
John Perry
}

\section*{Recursion?}

The basics
Pascal's triangle Fibonacci numbers

Fibonacci (Leonardo da Pisa) describes in Liber Abaci a population of bunnies:
- first month: one pair of bunnies;

Mathematical Computing

Fibonacci (Leonardo da Pisa) describes in Liber Abaci a population of bunnies:
- first month: one pair of bunnies;
- second month: pair matures;
- third month: mature pair produces new pair;

Mathematical Computing

\section*{Example: Fibonacci's Bunnies}

Fibonacci (Leonardo da Pisa) describes in Liber Abaci a population of bunnies:
- first month: one pair of bunnies;
- second month: pair matures;
- third month: mature pair produces new pair;
- fourth month: second pair matures, first pair produces new pair;

\section*{Example: Fibonacci's Bunnies}

Fibonacci (Leonardo da Pisa) describes in Liber Abaci a population of bunnies:
- first month: one pair of bunnies;
- second month: pair matures;
- third month: mature pair produces new pair;
- fourth month: second pair matures, first pair produces new pair;
- fifth month: third pair matures, two mature pairs produce new pairs;
- ...

MAT 305: Mathematical Computing

\section*{How many pairs?}

John Perry

Recursion?
The basics
Pascal's triangle
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & & & & & & \\
\hline immature pairs & & & & & & & & \\
\hline new pairs & 1 & & & & & & & \\
\hline total pairs & 1 & & & & & & & \\
\hline
\end{tabular}

MAT 305: Mathematical Computing

\section*{How many pairs?}

John Perry

Recursion?
The basics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & & & & & & \\
\hline immature pairs & & 1 & & & & & & \\
\hline new pairs & 1 & & & & & & & \\
\hline total pairs & 1 & 1 & & & & & & \\
\hline
\end{tabular}

MAT 305: Mathematical Computing

\section*{How many pairs?}

John Perry

Recursion?
The basics
Pascal's triangle
Fibonacci numbers
Issues in
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & & & & & \\
\hline immature pairs & & 1 & & & & & & \\
\hline new pairs & 1 & & 1 & & & & & \\
\hline total pairs & 1 & 1 & 2 & & & & & \\
\hline
\end{tabular}

MAT 305: Mathematical Computing

\section*{How many pairs?}

John Perry

Recursion?
The basics
Passal's striangle
Fibonacci numbers
Issues in
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & & & & \\
\hline immature pairs & & 1 & & 1 & & & & \\
\hline new pairs & 1 & & 1 & 1 & & & & \\
\hline total pairs & 1 & 1 & 2 & 3 & & & & \\
\hline
\end{tabular}

MAT 305: Mathematical Computing

\section*{How many pairs?}

John Perry

Recursion?
The basics
Pascal's triangle
Fibonacci numbers
Issues in
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & & & \\
\hline immature pairs & & 1 & & 1 & 1 & & & \\
\hline new pairs & 1 & & 1 & 1 & 2 & & & \\
\hline total pairs & 1 & 1 & 2 & 3 & 5 & & & \\
\hline
\end{tabular}

MAT 305: Mathematical Computing

\section*{How many pairs?}

John Perry
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & 3 & & \\
\hline immature pairs & & 1 & & 1 & 1 & 2 & & \\
\hline new pairs & 1 & & 1 & 1 & 2 & 3 & & \\
\hline total pairs & \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & 8 & & \\
\hline
\end{tabular}

Recursion?
The basics

MAT 305: Mathematical Computing

\section*{How many pairs?}

John Perry

Recursion?
The basics
Pascal's triangle
Fibonacci numbers
Issues in
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & 3 & 5 & \\
\hline immature pairs & & 1 & & 1 & 1 & 2 & 3 & \\
\hline new pairs & 1 & & 1 & 1 & 2 & 3 & 5 & \\
\hline total pairs & \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{8}\) & 13 & \(\ldots\) \\
\hline
\end{tabular}

MAT 305: Mathematical Computing

\section*{Describing it}

John Perry

Recursion?
The basics
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & 3 & 5 & \\
\hline immature pairs & & 1 & & 1 & 1 & 2 & 3 & \\
\hline new pairs & 1 & & 1 & 1 & 2 & 3 & 5 & \\
\hline total pairs & \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{8}\) & \(\mathbf{1 3}\) & \(\ldots\) \\
\hline
\end{tabular}
- total \(=(\#\) mature \(+\#\) immature \()+\) \# new

MAT 305: Mathematical Computing

\section*{Describing it}

John Perry
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & 3 & 5 & \\
\hline immature pairs & & 1 & & 1 & 1 & 2 & 3 & \\
\hline new pairs & 1 & & 1 & 1 & 2 & 3 & 5 & \\
\hline total pairs & \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{8}\) & \(\mathbf{1 3}\) & \(\ldots\) \\
\hline
\end{tabular}
- total \(=(\#\) mature \(+\#\) immature \()+\#\) new
- total \(=\#\) one month ago + \# new Mathematical Computing

\section*{Describing it}

John Perry
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & 3 & 5 & \\
\hline immature pairs & & 1 & & 1 & 1 & 2 & 3 & \\
\hline new pairs & 1 & & 1 & 1 & 2 & 3 & 5 & \\
\hline total pairs & \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{8}\) & \(\mathbf{1 3}\) & \(\ldots\) \\
\hline
\end{tabular}
- total \(=(\#\) mature \(+\#\) immature \()+\) \# new
- total \(=\) \# one month ago + \# new
- total \(=\) \# one month ago + \# mature now

Mathematical Computing

\section*{Describing it}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & 3 & 5 & \\
\hline immature pairs & & 1 & & 1 & 1 & 2 & 3 & \\
\hline new pairs & 1 & & 1 & 1 & 2 & 3 & 5 & \\
\hline total pairs & \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{8}\) & \(\mathbf{1 3}\) & \(\ldots\) \\
\hline
\end{tabular}
- total \(=(\#\) mature \(+\#\) immature \()+\#\) new
- total \(=\) \# one month ago + \# new
- total \(=\) \# one month ago + \# mature now
- total \(=\) \# one month ago + \# two months ago

Mathematical Computing

\section*{Describing it}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & 3 & 5 & \\
\hline immature pairs & & 1 & & 1 & 1 & 2 & 3 & \\
\hline new pairs & 1 & & 1 & 1 & 2 & 3 & 5 & \\
\hline total pairs & \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{8}\) & \(\mathbf{1 3}\) & \(\ldots\) \\
\hline
\end{tabular}
- total \(=(\#\) mature \(+\#\) immature \()+\#\) new
- total = \# one month ago + \# new
- total \(=\) \# one month ago + \# mature now
- total \(=\) \# one month ago + \# two months ago
\[
\therefore F_{\text {now }}=F_{\text {one month ago }}+F_{\text {two months ago }} \text {, or }
\]

Mathematical Computing

\section*{Describing it}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline month & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\ldots\) \\
\hline mature pairs & & & 1 & 1 & 2 & 3 & 5 & \\
\hline immature pairs & & 1 & & 1 & 1 & 2 & 3 & \\
\hline new pairs & 1 & & 1 & 1 & 2 & 3 & 5 & \\
\hline total pairs & \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{5}\) & \(\mathbf{8}\) & \(\mathbf{1 3}\) & \(\ldots\) \\
\hline
\end{tabular}
- total \(=(\#\) mature \(+\#\) immature \()+\#\) new
- total = \# one month ago + \# new
- total \(=\) \# one month ago + \# mature now
- total \(=\) \# one month ago + \# two months ago
\[
\begin{gathered}
\therefore F_{\text {now }}=F_{\text {one month ago }}+F_{\text {two months ago }}, \text { or } \\
F_{i}=F_{i-1}+F_{i-2}
\end{gathered}
\]

MAT 305: Mathematical
\(\therefore\) Fibonacci Sequence
John Perry

Recursion?
The basics
Pasal's striangle
Fibonacci numbers
\[
F_{i}= \begin{cases}1, & i=1,2 \\ F_{i-1}+F_{i-2}, & i \geq 3 .\end{cases}
\]

MAT 305: Mathematical Computing

\section*{\(\therefore\) Fibonacci Sequence}

John Perry

Recursion?

Example
\[
\begin{aligned}
F_{5} & =F_{4}+F_{3} \\
& =\left(F_{3}+F_{2}\right)+\left(F_{2}+F_{1}\right) \\
& =\left[\left(F_{2}+F_{1}\right)+F_{2}\right]+\left(F_{2}+F_{1}\right) \\
& =3 F_{2}+2 F_{1} \\
& =5 .
\end{aligned}
\] Mathematical Computing

\section*{\(\therefore\) Fibonacci Sequence}

John Perry
\[
F_{i}= \begin{cases}1, & i=1,2 \\ F_{i-1}+F_{i-2}, & i \geq 3\end{cases}
\]

Example
\[
\begin{aligned}
F_{5} & =F_{4}+F_{3} \\
& =\left(F_{3}+F_{2}\right)+\left(F_{2}+F_{1}\right) \\
& =\left[\left(F_{2}+F_{1}\right)+F_{2}\right]+\left(F_{2}+F_{1}\right) \\
& =3 F_{2}+2 F_{1} \\
& =5 .
\end{aligned}
\]
\[
\begin{aligned}
F_{100} & =F_{99}+F_{98} \\
& =\ldots
\end{aligned}
\]
\[
=218922995834555169026 \cdot F_{2}+135301852344706746049 \cdot F_{1}
\]
\[
=354224848179261915075
\] Mathematical Computing

\section*{Pseudocode}

Recursion? The basiss

Easy to implement w/recursion:
algorithm Fibonacci
inputs
\(n \in \mathbb{N}\)
outputs
the \(n\)th Fibonacci number
do
if \(n=1\) or \(n=2\)
return 1
else
return Fibonacci \((n-2)+\) Fibonacci \((n-1)\)

MAT 305: Mathematical Computing

John Perry
Recursion?
The basiss
Pasal's striangle Fibonacci numbers

Issues in recursion
Caching
Closed forms (if known)

Mathematical Computing

John Perry

Recursion?
The basics
Pasal's striangle Fibonacci numbers
```

sage: def fibonacci(n):
if n == 1 or n == 2:
return 1
else:
return fibonacci(n-2) + fibonacci(n-1)
sage: fibonacci(5)
5
sage: fibonacci(20)
6765
sage: fibonacci(30)
832040

```

MAT 305:
Mathematical
Computing

\section*{Outline}

John Perry

\section*{Recursion?}

The basics
Pascal's triangle Fibonacci numbers

Issues in recursion

\section*{Caching}

Closed forms (if known)
Don't recurse it, loop it!

Eigenbunnies!
Summary
(1) Recursion?

The basics
Pascal's triangle
Fibonacci numbers
(2) Issues in recursion

Caching
Closed forms (if known)
Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

MAT 305: Mathematical Computing

\section*{Issues in recursion}

John Perry

Recursion?
The basics
Pascal's triangle

Issues in
recursion
Caching
Closed forms (if known)
Don't recurse it, loop it
- Infinite loops
- recursion must stop eventually
- must ensure reach base case

\section*{Issues in recursion}
- Infinite loops
- recursion must stop eventually
- must ensure reach base case
- Wasted computation
- fibonacci(20) requires fibonacci(19) and fibonacci(18)
- fibonacci(19) also requires fibonacci(18)
- \(\therefore\) fibonacci (18) computed twice!

\section*{Issues in recursion}
- Infinite loops
- recursion must stop eventually
- must ensure reach base case
- Wasted computation
- fibonacci(20) requires fibonacci(19) and fibonacci(18)
- fibonacci(19) also requires fibonacci(18)
- \(\therefore\) fibonacci (18) computed twice!
- Limit to recursion
- pascals_row(1000) Mathematical Computing

John Perry

Recursion?
The basis
Pascal's triangle
Fibonacci numbers
Issues in recursion

Modify program:
sage: def fibonacci_details(n):
print 'computing fibonacci \#', n, if \(\mathrm{n}=1\) or \(\mathrm{n}=2\) :
return 1
else:
return fibonacci_details(n-2)
+ fibonacci_details(n-1)

Mathematical Computing

\section*{Example}
```

Modify program:
sage: def fibonacci_details(n):
print 'computing fibonacci \#', n,
if n == 1 or n == 2:
return 1
else:
return fibonacci_details(n-2)
+ fibonacci_details(n-1)
sage: fibonacci_details(5)
computing fibonacci \# 5 computing fibonacci \# 3
computing fibonacci \# 1 computing fibonacci \# 2
computing fibonacci \# 4 computing fibonacci \# 2
computing fibonacci \# 3 computing fibonacci \# 1
computing fibonacci \# 2
5

```
```

Modify program:
sage: def fibonacci_details(n):
print 'computing fibonacci \#', n,
if n == 1 or n == 2:
return 1
else:
return fibonacci_details(n-2)
+ fibonacci_details(n-1)
sage: fibonacci_details(5)
computing fibonacci \# 5 computing fibonacci \# 3
computing fibonacci \# 1 computing fibonacci \# 2
computing fibonacci \# 4 computing fibonacci \# 2
computing fibonacci \# 3 computing fibonacci \# 1
computing fibonacci \# 2
5

```
\(\ldots F_{3}\) computed 2 times; \(F_{2}, 3\) times; \(F_{1}, 2\) times

MAT 305: Mathematical
Computing
John Perry

Recursion?
The basics
Passal's striangle Fibonacci numbers

Issues in recursion

\section*{Caching}

Closed forms (if
known)
Don't re-curse it, loop it!

Eigenbunnies!
Summary
(1) Recursion?

The basics
Pascal's triangle
Fibonacci numbers
(2) Issues in recursion Caching
Closed forms (if known) Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

Mathematical Computing

\section*{Workaround}

Recursion?
Can we tell Sage to "remember" pre-computed values?
- Need a list
- Compute \(F_{i}\) ? add value to list
- Apply formula only if \(F_{i}\) not in list!
- "Remember" computation after function ends: global list - (called a cache) Mathematical Computing

\section*{Workaround}

Can we tell Sage to "remember" pre-computed values?
- Need a list
- Compute \(F_{i}\) ? add value to list
- Apply formula only if \(F_{i}\) not in list!
- "Remember" computation after function ends: global list
- (called a cache)

Definition
- global variables available to all functions in system
- cache makes information quickly accessible

\section*{Pseudocode}
algorithm Fibonacci_with_table globals \(F\), a list of integers, initially \([1,1]\) inputs
\(n \in \mathbb{N}\)
outputs
the \(n\)th Fibonacci number
do
if \(n>\# F\)
Let \(a=\) Fibonacci_with_table \((n-1)\)
Let \(b=\) Fibonacci_with_table \((n-2)\)
Append \(a+b\) to \(F\)
return \(F_{n}\)

Mathematical Computing

\section*{Hand implementation}

John Perry
```

sage: F = [1, 1]
sage: def fibonacci_with_table(n):
global F
if n > len(F):
print 'computing fibonacci \#', n,
a = fibonacci_with_table(n-2)
b = fibonacci_with_table(n-1)
F.append(a + b)
return F[n-1]

```

Mathematical Computing

John Perry

Example
sage: fibonacci_with_table(5)
computing fibonacci \# 5 computing fibonacci \# 4 computing fibonacci \# 3

Mathematical Computing

John Perry
sage: @cached_function def fibonacci_cached(n): print 'computing fibonacci \#', n, if \(\mathrm{n}=1\) or \(\mathrm{n}==2\) : return 1 else:
return fibonacci_cached (n-2)
+ fibonacci_cached \((n-1)\)

Mathematical Computing

John Perry
sage: @cached_function def fibonacci_cached(n):
    print 'computing fibonacci \#', \(n\),
    if \(\mathrm{n}=1\) or \(\mathrm{n}==2\) :
        return 1
        else:
            return fibonacci_cached(n-2)
                + fibonacci_cached(n-1)

Example
```

sage: fibonacci(5)

```
computing fibonacci \# 5 computing fibonacci \# 3
computing fibonacci \# 1 computing fibonacci \# 2
computing fibonacci \# 4
5

MAT 305: Mathematical Computing

John Perry
Recursion?
The basics
Pascal's triangle Fibonacci numbers

Issues in recursion
Caching
Closed forms (if known)
Don't re-curse it, loop it!

Eigenbunnies!
(1) Recursion?

The basics
Pascal's triangle
Fibonacci numbers
(2) Issues in recursion

\section*{Caching}

Closed forms (if known)
Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

MAT 305: Mathematical Computing

John Perry

Recursion?
The basics
Passal's striangle Fibonacci numbers

Issues in recursion
Caching
Closed forms (if known)
it

\section*{However...}

Avoid recursion when possible
- can often rewrite as a loop
- can sometimes rewrite in "closed form" Mathematical Computing

\section*{However...}

John Perry

Recursion?
Avoid recursion when possible
- can often rewrite as a loop
- can sometimes rewrite in "closed form"

Example
"Closed form" for Fibonacci sequence:
\[
F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
\]

Mathematical Computing

\section*{However...}

John Perry

Recursion?
Avoid recursion when possible
- can often rewrite as a loop
- can sometimes rewrite in "closed form"

Example
"Closed form" for Fibonacci sequence:
\[
F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}
\]

Coincidence? I think not...
\[
\frac{1+\sqrt{5}}{2}=\text { golden ratio }
\]

MAT 305: Mathematical Computing

John Perry
Recursion?
The basics
Passal's striangle Fibonacci numbers

Issues in recursion

\section*{Caching}

Closed forms (if known)

Don't re-curse it, loop it!

Eigenbunnies!
(1) Recursion?

The basics
Pascal's triangle
Fibonacci numbers
(2) Issues in recursion

Caching
Closed forms (if known)
Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

Mathematical Computing

John Perry

Recursion? The basiss Pascal's triangle Fibonacci numbers

Mathematical Computing

\section*{Looped Fibonacci: How?}

We will not use the closed form, but a loop
- Recursive: down, then up, then down, then up...

- Looped: only up, directly!
- \(F_{2} \underset{+F_{1}}{\longrightarrow} F_{3} \xrightarrow[+F_{2}]{\longrightarrow} \underset{+F_{n-2}}{\longrightarrow} F_{n}\)
- remember two previous computations
- remember? \(\Longrightarrow\) variables

MAT 305: Mathematical Computing

John Perry

Recursion?
The basiss
Pascal's triangle
Fibonacci numbers
Issues in
recursion
Caching

\section*{Looped Fibonacci: Pseudocode}

\section*{algorithm Looped_Fibonacci}
inputs
\(n \in \mathbb{N}\)

\section*{outputs}
the \(n\)th Fibonacci number do
- Define the base case

Let \(F_{\text {prev }}=1, F_{\text {curr }}=1\)
- Use the formula to move forward to \(F_{n}\)
for \(i \in\{3, \ldots, n\}\)
- Compute next element, then move forward

Let \(F_{\text {next }}=F_{\text {prev }}+F_{\text {curr }}\)
Let \(F_{\text {prev }}=F_{\text {curr }}\)
Let \(F_{\text {curr }}=F_{\text {next }}\)
return \(F_{\text {curr }}\)

MAT 305: Mathematical Computing

John Perry

\section*{Looped Fibonacci: Implementation}

Recursion? The basiss
Pascal's triangle
```

sage: def looped_Fibonacci(n):
Fprev = 1
Fcurr = 1
for i in xrange(3,n+1):
Fnext = Fprev + Fcurr
Fprev = Fcurr
Fcurr = Fnext
return Fcurr

```

Mathematical Computing

John Perry

\section*{Looped Fibonacci: Implementation}

Recursion?
```

sage: def looped_Fibonacci(n):
Fprev = 1
Fcurr = 1
for i in xrange(3,n+1):
Fnext = Fprev + Fcurr
Fprev = Fcurr
Fcurr = Fnext
return Fcurr
sage: looped_Fibonacci(100)
354224848179261915075

```
        (Much faster than recursive version)

\section*{Faster, too}
sage: \%time a = looped_Fibonacci(30000) CPU time: 0.01 s , Wall time: 0.01 s sage: \%time a = Fibonacci_with_table(30000) CPU time: probably crashes, Wall time: if not, get some coffee
sage: \%time a = Fibonacci(10000)
CPU time: probably crashes, Wall time: if not, come back tomorrow

MAT 305: Mathematical Computing

John Perry

\section*{Recursive vs. Looped vs. Closed-form}
- Recursive
pros: simple to write, "naïve" approach
cons: slower, memory intensive, indefinite loop w/out loop structure

MAT 305: Mathematical Computing

\section*{Recursive vs. Looped vs. Closed-form}
- Recursive
pros: simple to write, "naïve" approach
cons: slower, memory intensive, indefinite loop w/out loop structure
- Looped (also called dynamic programming)
pros: not too slow, not too complicated, loop can be definite
cons: not as simple as recursive, sometime not obvious

Mathematical Computing

\section*{Recursive vs. Looped vs. \\ Closed-form}
- Recursive
pros: simple to write, "naïve" approach
cons: slower, memory intensive, indefinite loop w/out loop structure
- Looped (also called dynamic programming)
pros: not too slow, not too complicated, loop can be definite
cons: not as simple as recursive, sometime not obvious
- Closed-form
pros: one step (no loop)
cons: finding it often requires significant effort

MAT 305： Mathematical
Computing
John Perry

Recursion？
The basics
Pascal＇s triangle Fibonacci numbers

Issues in
recursion
Caching
Closed forms（if
known）
Don＇t re－curse it，loop it！

Eigenbunnies！
Summary
（1）Recursion？
The basics
Pascal＇s triangle
Fibonacci numbers
（2）Issues in recursion
Caching
Closed forms（if known）
Don＇t re－curse it，loop it！

\section*{（3）Eigenbunnies！}
（4）Summary

Mathematical Computing

\section*{Neat fact of eigenvectors}

\section*{Recursion?}

Mathematical
Computing
John Perry

Recursion?
The basiss
Pascal's triangle

\section*{With \(M\) as defined,}
\[
Q=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad \Lambda=\left(\begin{array}{ll}
2 & \\
& -2
\end{array}\right)
\]

Verify in Sage that \(M=Q \Lambda Q^{-1}\)

\section*{Example} Mathematical Computing

John Perry

Recursion? The basiss

With \(M\) as defined,
\[
Q=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \quad \Lambda=\left(\begin{array}{ll}
2 & \\
& -2
\end{array}\right)
\]

Verify in Sage that \(M=Q \Lambda Q^{-1}\)
sage: \(\quad Q=\operatorname{matrix}(2,2,[1,1,1,-1])\)
sage: \(L=\operatorname{matrix}(2,2,[2,0,0,-2])\)
sage: \(\mathrm{Q} * \mathrm{~L} * \mathrm{Q} * *(-1)\)
[0 2]
[2 0]
\[
\ldots \text { recall } M=\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right)
\]

MAT 305: Mathematical Computing

John Perry

\section*{Recursion?}

The basics
Pascal's triangle Fibonacci numbers

Issues in
recursion
Caching
Closed forms if (known)
Don't recurse it, loop it

Eigenbunnies!

\section*{But how is this useful?}

\section*{Consider the numbers}
\[
1,1,2,3,5,8,13, \ldots
\]

MAT 305: Mathematical Computing

\section*{But how is this useful?}

Consider the numbers
\[
1,1,2,3,5,8,13, \ldots
\]

This is the well-known Fibonacci sequence:
\[
f_{1}=1 \quad f_{2}=1 \quad f_{n}=f_{n-1}+f_{n-2}
\]

Can we get a "non-recursive" formula?

Mathematical Computing

John Perry
Recursion?
The basics
Pascal's triangle
As a matrix equation,
\[
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n-1}}{f_{n-2}}=\binom{f_{n}}{f_{n-1}}
\]

Let's try rewriting the matrix
\[
F=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
\]

\section*{Fibonacci matrix}

Mathematical Computing

John Perry

Recursion?

\section*{Fibonacci matrix}

As a matrix equation,
\[
\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\binom{f_{n-1}}{f_{n-2}}=\binom{f_{n}}{f_{n-1}}
\]

Let's try rewriting the matrix
\[
F=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
\]

Iterative multiplication generates the sequence
sage: \(F=\operatorname{matrix}(2,2,[1,1,1,0])\)
sage: \(f 12=\operatorname{vector}([1,1])\)
sage: F*f12
\([2,1]\)
sage: \(\mathrm{F}^{\wedge} 2 * f 12\)
\([3,2]\)
sage: F ~ \(3 * f 12\)
\([5,3]\) Mathematical Computing

\section*{In short,}

\author{
John Perry
}
\[
\begin{aligned}
F^{n-2} & =\left(Q \Lambda Q^{-1}\right)^{n-2} \\
& =\underbrace{\left(Q \Lambda Q^{-1}\right)\left(Q \Lambda Q^{-1}\right) \cdots\left(Q \Lambda Q^{-1}\right)}_{n-2} \\
& =\underbrace{Q \Lambda\left(Q^{-1} Q\right) \Lambda\left(Q^{-1} Q\right) \cdots\left(Q^{-1} Q\right) \Lambda Q^{-1}}_{n-2} \\
& =Q \Lambda^{n-2} Q^{-1}
\end{aligned}
\]

Since \(\Lambda\) is diagonal, it is easy to compute \(\Lambda^{n}\)

\section*{What to do?}

John Perry

Recursion?

General outline:
- Compute eigenvectors and eigenvalues sage: F.eigenvectors_right()
- Construct \(Q \Lambda^{n} Q^{-1}\) sage: \(Q=\operatorname{matrix}(2,2,[\ldots])\) sage: \(L=\operatorname{matrix}(2,2,[\ldots])\)
- Analyze the equation

\section*{One "drawback"}

John Perry

Recursion?
The basics
Pascal's triangle
- eigenvectors, eigenvalues look inexact sage: F.eigenvectors_right() [(-0.618033988749895?, [(1, -1.618033988749895?)], 1), (1.618033988749895?,
[(1, 0.618033988749895?)], 1)]

\section*{One "drawback"}
- eigenvectors, eigenvalues look inexact sage: F.eigenvectors_right() [(-0.618033988749895?, [(1, -1.618033988749895?)], 1), (1.618033988749895?,
\[
[(1,0.618033988749895 ?)], 1)]
\]
- In fact, we can determine their exact values
sage: edata = F.eigenvectors_right()
sage: lam1, lam2 = edata[0][0], edata[1][0]
sage: lam1 = lam1.radical_expression(); lam1
\(-1 / 2 *\) sqrt(5) \(+1 / 2\)
sage: lam2 = lam2.radical_expression(); lam2
\(1 / 2 *\) sqrt(5) \(+1 / 2\)

Mathematical Computing

\section*{Put it together}

\author{
John Perry
}
\[
\begin{aligned}
& {[(-1 / 2 * \operatorname{sqrt}(5)+1 / 2,[(1,-1 / 2 * \operatorname{sqrt}(5)-1 / 2)], 1) \text {, }} \\
& (1 / 2 * \operatorname{sqrt}(5)+1 / 2,[(1,1 / 2 * \operatorname{sqrt}(5)-1 / 2)], 1)] \\
& \text { sage: } Q=\text { matrix }( \\
& \text { [1, }-1 / 2 * \operatorname{sqrt}(5)-1 / 2] \text {, } \\
& \text { [1,1/2*sqrt(5) - 1/2] } \\
& \text { ) } \\
& \text { sage: } \operatorname{var}(' n \text { ') } \\
& \text { sage: } \mathrm{L}=\text { matrix }(2,2 \text {, [ } \\
& (-1 / 2 * \operatorname{sqrt}(5)+1 / 2)^{\sim}(n-2), 0 \text {, } \\
& 0,(1 / 2 * \operatorname{sqrt}(5)+1 / 2)^{\wedge}(n-2) \\
& \text { ]) } \\
& \text { sage: } \mathrm{Q} * \mathrm{~L} * \mathrm{Q} * *(-1) \\
& \text {...very unpleasant }
\end{aligned}
\]

Mathematical Computing

\section*{...or is it?}

John Perry

Let \(M=\left(Q \Lambda^{n} Q^{-1}\right)\binom{1}{1}\), and let \(f_{n}=M_{1,1}\) (the top entry).
An "algebraic massage" (.full_simplify()) gives
\[
f_{n}=\frac{\sqrt{5}}{10}\left[(3+\sqrt{5})\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}-(3-\sqrt{5})\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\right]
\]
already a "pleasant" closed form, and thus what we wanted.

Let \(M=\left(Q \Lambda^{n} Q^{-1}\right)\binom{1}{1}\), and let \(f_{n}=M_{1,1}\) (the top entry).
An "algebraic massage" (.full_simplify()) gives
\[
f_{n}=\frac{\sqrt{5}}{10}\left[(3+\sqrt{5})\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}-(3-\sqrt{5})\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\right]
\]
already a "pleasant" closed form, and thus what we wanted.
But we can do better!

MAT 305: Mathematical Computing

\author{
John Perry
}

\section*{Recursion?}

The basiss
Pascal's triangle
Fibonacci numbers
Issues in recursion

\section*{Caching}

Closed forms (if tnownt

Use Sage (in particular, expand()) to verify that
\[
3+\sqrt{5}=2\left(\frac{1+\sqrt{5}}{2}\right)^{2} \quad \text { and } \quad 3-\sqrt{5}=2\left(\frac{1-\sqrt{5}}{2}\right)^{2}
\]

\section*{More algebraic massage...} Mathematical Computing

John Perry

\section*{More algebraic massage...}

Use Sage (in particular, expand()) to verify that
\[
3+\sqrt{5}=2\left(\frac{1+\sqrt{5}}{2}\right)^{2} \quad \text { and } \quad 3-\sqrt{5}=2\left(\frac{1-\sqrt{5}}{2}\right)^{2} .
\]

We can use this fact to rewrite
\[
f_{n}=\frac{\sqrt{5}}{10}\left[(3+\sqrt{5})\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}-(3-\sqrt{5})\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\right]
\]
as...

MAT 305: Mathematical Computing

\section*{Binet's Formula}

John Perry

Recursion?
The basics
Pascal's triangle
Fibonacci numbers
Issues in
recursion
Caching
Closed forms (if (known)
\[
\begin{gathered}
f_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right] \\
\text { golden ratio }
\end{gathered}
\]
(kindly observe a moment of reverent awe)

MAT 305: Mathematical
Computing
John Perry

Recursion?
The basics
Pascal's striangle Fibonacci numbers

Issues in
recursion

\section*{Caching}

Closed forms (if
known)
Don't re-curse it, loop it!

Eigenbunnies!
Summary

\section*{Outline}
(1) Recursion?

The basics
Pascal's triangle
Fibonacci numbers
(2) Issues in recursion

Caching
Closed forms (if known)
Don't re-curse it, loop it!
(3) Eigenbunnies!
(4) Summary

\section*{Summary}

John Perry
- Recursion: function defined using other values of function
- Issues
- can waste computation
- can lead to infinite loops (bad design)
- Use when
- closed/loop form too complicated
- chains not too long
- "memory table" feasible```

