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Collections?

Collection: group of objects identified as single object

• indexed

• tuples (a0,a1,a2, . . .an)

• points (x0,y0), (x0,y0,z0)

• lists [a0,a1, . . . ,an]

• sequences (a0,a1,a2, . . .)

• not indexed

• sets {a0,a5,a3,a2,a1}
• dictionaries
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Python collections

Standard Python collections

• indexable or ordered (“sequence types”)

• tuples, lists
• access “element in position i” using [i]

• but! start counting from 0, not 1

• not indexable or unordered (“set types”)

• sets, dictionaries
• only one instance of any element
• access an element, but not “element in position i”
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Tuples

tuple: immutable, ordered collection

• immutable: cannot change elements

• indexable: can access elements by their order

• defined using parentheses
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Example

sage: my_tuple = (1,5,0,5) 4-tuple

sage: my_tuple[2] access 3rd element (element 2)
0

sage: my_tuple[2] = 1 assign to 3rd element?
. . .Output deleted. . .
TypeError: ’tuple’ object does not support item
assignment

sage: my_tuple
(1,5,0,5)
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Lists

list: mutable, ordered collection

• mutable: can change elements

• indexable: can access elements by their order

• defined using square brackets
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Example

sage: my_list = [1,5,0,5] list of 4 elements

sage: my_list[2] access 3rd element (element 2)
0

sage: my_list[2] = 1 assign to 3rd element?

sage: my_list[2]
1 no error! access gives new value!

sage: my_list
[1,5,1,5]
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Sets
A set is a mutable, unordered collection

• mutable: can change elements

• non-indexable

• cannot access elements by their order
• computer arranges elements for efficiency

• defined using {entries}, set(tuple or list), or set() (for
empty set)

• redundant elements automatically deleted



MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: my_set = {1,5,0,5} set of 4 elements

sage: my_set[2] access 3rd element?
. . .Output deleted. . .
TypeError: ’set’ object is unindexable

sage: my_set so what’s in there, anyway?
set([0, 1, 5]) not original list!
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Dictionaries

A dictionary is a mutable, undordered collection

• mutable: can change elements

• non-indexable

• cannot access elements by their order
• computer arranges elements for efficiency

• defined using dict(list of tuples) or {d1:a1, d2:a2, ...}

• entry di has the “meaning” ai

• redundant elements automatically deleted
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Example

sage: D = {1:3, 2:5} dictionary w/2 entries

sage: D[1]
3 entry “1” has meaning 3

sage: D[0] access element 0?
. . .Output deleted. . .
KeyError: 0
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Nice dog! Does any tricks? (1)
sets, dictionaries, tuples, and lists
• type(C)

type of C
• len(C)

number of elements in C
• x in C

is x an element of C?

tuples and lists
• C.count(x)

Number of times x appears in C
• C.index(x)

First location of x in C
• C1 + C2

join C1 to C2, returned as new tuple/list
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Example

sage: len(my_set)
3

sage: 4 in my_set
False

sage: 5 in my_set
True

sage: my_tuple.count(5)
2 How many 5s?

sage: my_list.index(5)
1 in second location

sage: my_list + [1,3,5]
[1, 5, 0, 5, 1, 3, 5]
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Nice dog! Does any tricks? (2)

lists these commands change the list
• L.append(x) add x at end of L
• L.extend(C) append each element of C to L
• L.insert(i, x) insert x at L[i], shifting L[i]

and subsequent elements back
• L.pop(i) delete L[i] and tell me its value
• L.remove(x) look for x in L; remove first copy found
• L.reverse()
• L.sort() sort L according to “natural” order

a good idea only for “primitive” elements
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Example
sage: my_list
[1, 5, 0, 5]

sage: my_list.extend((2,4))

sage: my_list
[1, 5, 0, 5, 2, 4]

sage: my_list.insert(3,-1)

sage: my_list
[1, 5, 0, -1, 5, 2, 4]

sage: my_list.pop(3)
-1

sage: my_list.sort()

sage: my_list
[0, 1, 2, 4, 5, 5]
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A word on inserting

start:

my_list
1 5 0 5 2 4

L[0] L[1] L[2] L[3] L[4] L[5]

sage: my_list.insert(3,-1)
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A word on inserting

start:

my_list
1 5 0 5 2 4

L[0] L[1] L[2] L[3] L[4] L[5]

sage: my_list.insert(3,-1)
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A word on inserting

start:

my_list
1 5 0 5 2 4

L[0] L[1] L[2] L[3] L[4] L[5]

sage: my_list.insert(3,-1)

my_list
1 5 0 -1 5 2 4

L[0] L[1] L[2] L[3] L[4] L[5] L[6]
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Nice dog! Does any tricks? (3)
sets as Python tools these commands change the set
• S.add(x)
• S.clear() remove all elements from S
• S.pop() removes and reports random (first?) element of S
• S.remove(x) remove x from S

sets as mathematics these commands do not change the set
• S.difference(C) difference S\C
• S.intersection(C) intersection S∩C
• S.union(C) union S∪C
• S.isdisjoint(C) True iff S and C share no elements
• S.symmetric_difference(C) symmetric difference

S\C ∪C\S
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Example

sage: my_set = set((1,5,0,5))

sage: my_set.add(4)

sage: my_set
set([0, 1, 4, 5])

sage: my_set.isdisjoint((-1,-2,4))
False

sage: my_set.symmetric_difference((-1,-2,4))
set([-2, -1, 0, 1, 5])

sage: my_set.remove(2)
. . .Output removed. . .
KeyError: 2

sage: my_set.remove(1)

sage: my_set
[0, 4, 5]
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Nice dog! Does any tricks? (4)

dictionaries these commands change the dictionary
• D.clear() remove all elements from D
• D.pop(d) remove entry for d from D
• D.popitem() remove random entry from D
• D.update(C) add definitions in C to D

these commands do not change the dictionary
• D.keys() list the keys (entries) of D
• D.values() list the values (definitions) of D
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Arguments, lists and sets

• Ordinarily, function cannot change the value of an
argument outside function

• However, if argument is a mutable collection C:

• C cannot be changed, but
• elements of C can be changed
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Example: C does not change

sage: def modify_C(C):
C = [0,1,2,3]

sage: L = [-1,0,1]

sage: modify_C(L)

sage: L
[-1, 0, 1]
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Example: elements of C change

sage: def modify_els_of_C(C):
C[0] = 0

sage: L = [-1,0,1]

sage: modify_els_of_C(L)

sage: L
[0, 0, 1]
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Why does this happen?
Hand-waving / Lawyer’s argument

• L is a list of 3 elements

• data does not change
• function concludes: L is still a list of 3 elements

• L[0], L[1], L[2] are elements of L

• these data are not “arguments” to function
• ∴ can be changed
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Why does this happen?
Analogy: defacing library books doesn’t change catalog

• L is address of a location in memory

• similar to library’s reference number for book

• Python copies L’s value

• write reference number on a scrap sheet of paper
• original reference still in catalog

• Function learns (and cannot change) L’s value, but. . .

• can deface book at that location, even though
• changing number on scrap sheet of paper (C) doesn’t

change catalog entry (L)
• ∴ function can change information at location

• Function concludes: data changed but L unchanged

• books defaced, but catalog still references them
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Why does this happen?
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• Python copies L’s value
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Why does this happen?
Precise answer: lists are pointers

outside L → 1234: -1 ← C inside
function 1235: 0 function

1236: 1

• List @ location 1234 =⇒ L −→ 1234

• ∴ C −→ 1234

• Function now has access to memory at L

• changing C won’t change L
• changing C[0] changes L[0]
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A different sort of sort

Let’s redefine our list:
sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]

Default sort:
sage: L.sort()
sage: L
[-10, -3, 0, 1, 3, 5, 5, 10, 17]

But what if I want to sort a different way?
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A different sort of sort

Let’s redefine our list:
sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
Default sort:
sage: L.sort()
sage: L
[-10, -3, 0, 1, 3, 5, 5, 10, 17]

But what if I want to sort a different way?
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Who cares?

Well ordering
An ordering of a set S is well ordered if every subset has a
smallest element.
With the usual ordering a< b:
• N is well-ordered (Well-Ordering Property)
• Z is not
{0,−1,−2,−3, . . .} has no “minimum”

. . .but a different ordering might guarantee a minimum!



MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Restore 0 to its rightful place

Example
0, -1, 1, -2, 2, -3, 3, . . .
In this ordering of Z:
• 0 “smallest”
• -1 next smallest
• 1 third smallest

. . .

Order by absolute value first, then by value!
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Restore 0 to its rightful place

Example
0, -1, 1, -2, 2, -3, 3, . . .
In this ordering of Z:
• 0 “smallest”
• -1 next smallest
• 1 third smallest

. . .

Order by absolute value first, then by value!
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“Teach” Sage this ordering!

L.sort(key=key_function) where
• key_function maps L to an ordered set
• L’s elements ordered according to this set

sage: def by_absolute_value(n):
return abs(n)

sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
sage: L.sort(key=by_absolute_value)
sage: L
[0, 1, 3, -3, 5, 5, 10, -10, 17]
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“Teach” Sage this ordering!

L.sort(key=key_function) where
• key_function maps L to an ordered set
• L’s elements ordered according to this set

sage: def by_absolute_value(n):
return abs(n)

sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
sage: L.sort(key=by_absolute_value)
sage: L
[0, 1, 3, -3, 5, 5, 10, -10, 17]
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What happened?

1 5 0 5 3 10 -3 17 -10
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What happened?

1 5 0 5 3 10 -3 17 -10
↓ key ↓

1 1 5 5 0 0 5 5 3 3 10 10 3 -3 17 17 -10 -10
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What happened?

1 5 0 5 3 10 -3 17 -10
↓ key ↓

1 1 5 5 0 0 5 5 3 3 10 10 3 -3 17 17 -10 -10
↓ sort ↓

0 0 1 1 3 3 3 -3 5 5 5 5 10 10 -10 -10 17 17
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What happened?

1 5 0 5 3 10 -3 17 -10
↓ key ↓

1 1 5 5 0 0 5 5 3 3 10 10 3 -3 17 17 -10 -10
↓ sort ↓

0 0 1 1 3 3 3 -3 5 5 5 5 10 10 -10 -10 17 17
↓ unkey ↓
0 1 3 -3 5 5 10 -10 17
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And if we want to refine the
ordering further?

sage: L
[0, 1, 3, -3, 5, 5, 10, -10, 17]
What if we want . . . ,−3,3, . . . ,−10,10, . . . instead?

Refine with tuples!

sage: def by_absolute_value_negatives_first(n):
return (abs(n), n)

sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
sage: L.sort(key=by_absolute_value_negatives_first)
sage: L
[0, 1, -3, 3, 5, 5, -10, 10, 17]
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And if we want to refine the
ordering further?

sage: L
[0, 1, 3, -3, 5, 5, 10, -10, 17]
What if we want . . . ,−3,3, . . . ,−10,10, . . . instead?

Refine with tuples!

sage: def by_absolute_value_negatives_first(n):
return (abs(n), n)

sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
sage: L.sort(key=by_absolute_value_negatives_first)
sage: L
[0, 1, -3, 3, 5, 5, -10, 10, 17]
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Tricks with []
Negative indices have meaning:

L[0] L[1] L[2] L[3] L[4]

IndexError 1 5 0 5 IndexError

L[-5] L[-4] L[-3] L[-2] L[-1]

Example
sage: L = [1,5,0,5]
sage: L[-1]
5
sage: L[-4]
1
sage: L[-5]
. . .Output deleted. . .
IndexError: list index out of range
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Tricks with [:]
C[ first:last+1 ] specifies subcollection

C[ first ] C[ first+1 ] . . . C[ last ]

• omit first? =⇒ start at C[0]
• omit last? =⇒ end at C[-1]

Example
sage: L[2:4] L[2] to L[3]
[0, 5]
sage: L[:2] L[0] to L[1]
[1,5]
sage: L[2:] L[2] to L[-1]
[0,5]
sage: L[:] L[0] to L[-1]
[1,5,0,5]
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Tricks with [:]
C[ first:last+1 ] specifies subcollection

C[ first ] C[ first+1 ] . . . C[ last ]

• omit first? =⇒ start at C[0]
• omit last? =⇒ end at C[-1]

Example
sage: L[2:4] L[2] to L[3]
[0, 5]
sage: L[:2] L[0] to L[1]
[1,5]
sage: L[2:] L[2] to L[-1]
[0,5]
sage: L[:] L[0] to L[-1]
[1,5,0,5]
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The range() command

range( first, last+1 ) generates list w/last + 1 - first elements
• first indexes the first element

• default value is 0

• last indexes the last element
• first ≥ last? empty list
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sage: range(5)
[0, 1, 2, 3, 4]

sage: range(1,5)
[1, 2, 3, 4]

sage: range(3,5)
[3,4]

sage: range(5,5)
[]

sage: range(6,5)
[]
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Strings

String: ordered collection of characters

’Hello’ ¡ H e l l o

• extract elements using []

• join elements using +

• other useful functions on pg. 96 of text
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sage: name = ’Euler’

sage: name[2] 3rd character
’l’

sage: name[-1] last character
’r’

sage: name[0:4] first four characters in string
’Eule’

sage: name + ’ computed’ add string; notice space
’Euler computed’
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The str() command

str(x) where

• x is any object that can be turned into a string

• Sage will turn a lot of objects into strings!
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Numbers:

sage: name + ’ computed’ + ’ e**(i*pi) + 1 = ’
+ str(0)

’Euler computed e**(i*pi) + 1 = 0’

Equations: (after “obvious” simplifications!)

sage: name + ’ computed ’ + str(e**(i*pi) + 1 == 0)
’Euler computed 0 == 0’
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sage: name + ’ computed’ + ’ e**(i*pi) + 1 = ’
+ str(0)

’Euler computed e**(i*pi) + 1 = 0’

Equations: (after “obvious” simplifications!)

sage: name + ’ computed ’ + str(e**(i*pi) + 1 == 0)
’Euler computed 0 == 0’



MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Outline

1 Collections in Python

2 Collections in functions

3 Sorting your own way

4 Ranges of data

5 Strings

6 Summary



MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Summary

• Through Python, Sage offers several kinds of collections

• tuples, lists, sets, dictionaries

• Operations

• [] for extraction

• negatives allowed
• [:] gives subcollections

• usual mathematical operations on sets
• others supplied by Python

• Strings allow lists of characters

• str(x) produces “obvious” string representation of x
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