
MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

MAT 305: Mathematical Computing
Collections

John Perry

University of Southern Mississippi

Spring 2017

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Outline

1 Collections in Python

2 Collections in functions

3 Sorting your own way

4 Ranges of data

5 Strings

6 Summary

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Collections?

Collection: group of objects identified as single object

• indexed

• tuples (a0,a1,a2, . . .an)

• points (x0,y0), (x0,y0,z0)

• lists [a0,a1, . . . ,an]

• sequences (a0,a1,a2, . . .)

• not indexed

• sets {a0,a5,a3,a2,a1}
• dictionaries

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Outline

1 Collections in Python

2 Collections in functions

3 Sorting your own way

4 Ranges of data

5 Strings

6 Summary

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Python collections

Standard Python collections

• indexable or ordered (“sequence types”)

• tuples, lists
• access “element in position i” using [i]

• but! start counting from 0, not 1

• not indexable or unordered (“set types”)

• sets, dictionaries
• only one instance of any element
• access an element, but not “element in position i”

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Tuples

tuple: immutable, ordered collection

• immutable: cannot change elements

• indexable: can access elements by their order

• defined using parentheses

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: my_tuple = (1,5,0,5) 4-tuple

sage: my_tuple[2] access 3rd element (element 2)
0

sage: my_tuple[2] = 1 assign to 3rd element?
. . .Output deleted. . .
TypeError: ’tuple’ object does not support item
assignment

sage: my_tuple
(1,5,0,5)

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Lists

list: mutable, ordered collection

• mutable: can change elements

• indexable: can access elements by their order

• defined using square brackets

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: my_list = [1,5,0,5] list of 4 elements

sage: my_list[2] access 3rd element (element 2)
0

sage: my_list[2] = 1 assign to 3rd element?

sage: my_list[2]
1 no error! access gives new value!

sage: my_list
[1,5,1,5]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Sets
A set is a mutable, unordered collection

• mutable: can change elements

• non-indexable

• cannot access elements by their order
• computer arranges elements for efficiency

• defined using {entries}, set(tuple or list), or set() (for
empty set)

• redundant elements automatically deleted

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: my_set = {1,5,0,5} set of 4 elements

sage: my_set[2] access 3rd element?
. . .Output deleted. . .
TypeError: ’set’ object is unindexable

sage: my_set so what’s in there, anyway?
set([0, 1, 5]) not original list!

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Dictionaries

A dictionary is a mutable, undordered collection

• mutable: can change elements

• non-indexable

• cannot access elements by their order
• computer arranges elements for efficiency

• defined using dict(list of tuples) or {d1:a1, d2:a2, ...}

• entry di has the “meaning” ai

• redundant elements automatically deleted

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: D = {1:3, 2:5} dictionary w/2 entries

sage: D[1]
3 entry “1” has meaning 3

sage: D[0] access element 0?
. . .Output deleted. . .
KeyError: 0

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Nice dog! Does any tricks? (1)
sets, dictionaries, tuples, and lists
• type(C)

type of C
• len(C)

number of elements in C
• x in C

is x an element of C?

tuples and lists
• C.count(x)

Number of times x appears in C
• C.index(x)

First location of x in C
• C1 + C2

join C1 to C2, returned as new tuple/list

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: len(my_set)
3

sage: 4 in my_set
False

sage: 5 in my_set
True

sage: my_tuple.count(5)
2 How many 5s?

sage: my_list.index(5)
1 in second location

sage: my_list + [1,3,5]
[1, 5, 0, 5, 1, 3, 5]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Nice dog! Does any tricks? (2)

lists these commands change the list
• L.append(x) add x at end of L
• L.extend(C) append each element of C to L
• L.insert(i, x) insert x at L[i], shifting L[i]

and subsequent elements back
• L.pop(i) delete L[i] and tell me its value
• L.remove(x) look for x in L; remove first copy found
• L.reverse()
• L.sort() sort L according to “natural” order

a good idea only for “primitive” elements

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example
sage: my_list
[1, 5, 0, 5]

sage: my_list.extend((2,4))

sage: my_list
[1, 5, 0, 5, 2, 4]

sage: my_list.insert(3,-1)

sage: my_list
[1, 5, 0, -1, 5, 2, 4]

sage: my_list.pop(3)
-1

sage: my_list.sort()

sage: my_list
[0, 1, 2, 4, 5, 5]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

A word on inserting

start:

my_list
1 5 0 5 2 4

L[0] L[1] L[2] L[3] L[4] L[5]

sage: my_list.insert(3,-1)

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

A word on inserting

start:

my_list
1 5 0 5 2 4

L[0] L[1] L[2] L[3] L[4] L[5]

sage: my_list.insert(3,-1)

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

A word on inserting

start:

my_list
1 5 0 5 2 4

L[0] L[1] L[2] L[3] L[4] L[5]

sage: my_list.insert(3,-1)

my_list
1 5 0 -1 5 2 4

L[0] L[1] L[2] L[3] L[4] L[5] L[6]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Nice dog! Does any tricks? (3)
sets as Python tools these commands change the set
• S.add(x)
• S.clear() remove all elements from S
• S.pop() removes and reports random (first?) element of S
• S.remove(x) remove x from S

sets as mathematics these commands do not change the set
• S.difference(C) difference S\C
• S.intersection(C) intersection S∩C
• S.union(C) union S∪C
• S.isdisjoint(C) True iff S and C share no elements
• S.symmetric_difference(C) symmetric difference

S\C ∪C\S

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: my_set = set((1,5,0,5))

sage: my_set.add(4)

sage: my_set
set([0, 1, 4, 5])

sage: my_set.isdisjoint((-1,-2,4))
False

sage: my_set.symmetric_difference((-1,-2,4))
set([-2, -1, 0, 1, 5])

sage: my_set.remove(2)
. . .Output removed. . .
KeyError: 2

sage: my_set.remove(1)

sage: my_set
[0, 4, 5]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Nice dog! Does any tricks? (4)

dictionaries these commands change the dictionary
• D.clear() remove all elements from D
• D.pop(d) remove entry for d from D
• D.popitem() remove random entry from D
• D.update(C) add definitions in C to D

these commands do not change the dictionary
• D.keys() list the keys (entries) of D
• D.values() list the values (definitions) of D

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Outline

1 Collections in Python

2 Collections in functions

3 Sorting your own way

4 Ranges of data

5 Strings

6 Summary

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Arguments, lists and sets

• Ordinarily, function cannot change the value of an
argument outside function

• However, if argument is a mutable collection C:

• C cannot be changed, but
• elements of C can be changed

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example: C does not change

sage: def modify_C(C):
C = [0,1,2,3]

sage: L = [-1,0,1]

sage: modify_C(L)

sage: L
[-1, 0, 1]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example: elements of C change

sage: def modify_els_of_C(C):
C[0] = 0

sage: L = [-1,0,1]

sage: modify_els_of_C(L)

sage: L
[0, 0, 1]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Why does this happen?
Hand-waving / Lawyer’s argument

• L is a list of 3 elements

• data does not change
• function concludes: L is still a list of 3 elements

• L[0], L[1], L[2] are elements of L

• these data are not “arguments” to function
• ∴ can be changed

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Why does this happen?
Analogy: defacing library books doesn’t change catalog

• L is address of a location in memory

• similar to library’s reference number for book

• Python copies L’s value

• write reference number on a scrap sheet of paper
• original reference still in catalog

• Function learns (and cannot change) L’s value, but. . .

• can deface book at that location, even though
• changing number on scrap sheet of paper (C) doesn’t

change catalog entry (L)
• ∴ function can change information at location

• Function concludes: data changed but L unchanged

• books defaced, but catalog still references them

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Why does this happen?
Analogy: defacing library books doesn’t change catalog

• L is address of a location in memory

• similar to library’s reference number for book

• Python copies L’s value

• write reference number on a scrap sheet of paper
• original reference still in catalog

• Function learns (and cannot change) L’s value, but. . .

• can deface book at that location, even though
• changing number on scrap sheet of paper (C) doesn’t

change catalog entry (L)
• ∴ function can change information at location

• Function concludes: data changed but L unchanged

• books defaced, but catalog still references them

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Why does this happen?
Analogy: defacing library books doesn’t change catalog

• L is address of a location in memory

• similar to library’s reference number for book

• Python copies L’s value

• write reference number on a scrap sheet of paper
• original reference still in catalog

• Function learns (and cannot change) L’s value, but. . .

• can deface book at that location, even though
• changing number on scrap sheet of paper (C) doesn’t

change catalog entry (L)
• ∴ function can change information at location

• Function concludes: data changed but L unchanged

• books defaced, but catalog still references them

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Why does this happen?
Analogy: defacing library books doesn’t change catalog

• L is address of a location in memory

• similar to library’s reference number for book

• Python copies L’s value

• write reference number on a scrap sheet of paper
• original reference still in catalog

• Function learns (and cannot change) L’s value, but. . .

• can deface book at that location, even though
• changing number on scrap sheet of paper (C) doesn’t

change catalog entry (L)
• ∴ function can change information at location

• Function concludes: data changed but L unchanged

• books defaced, but catalog still references them

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Why does this happen?
Precise answer: lists are pointers

outside L → 1234: -1 ← C inside
function 1235: 0 function

1236: 1

• List @ location 1234 =⇒ L −→ 1234

• ∴ C −→ 1234

• Function now has access to memory at L

• changing C won’t change L
• changing C[0] changes L[0]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Why does this happen?
Precise answer: lists are pointers

outside L → 1234: -1 ← C inside
function 1235: 0 function

1236: 1

• List @ location 1234 =⇒ L −→ 1234

• ∴ C −→ 1234

• Function now has access to memory at L

• changing C won’t change L
• changing C[0] changes L[0]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Outline

1 Collections in Python

2 Collections in functions

3 Sorting your own way

4 Ranges of data

5 Strings

6 Summary

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

A different sort of sort

Let’s redefine our list:
sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]

Default sort:
sage: L.sort()
sage: L
[-10, -3, 0, 1, 3, 5, 5, 10, 17]

But what if I want to sort a different way?

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

A different sort of sort

Let’s redefine our list:
sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
Default sort:
sage: L.sort()
sage: L
[-10, -3, 0, 1, 3, 5, 5, 10, 17]

But what if I want to sort a different way?

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Who cares?

Well ordering
An ordering of a set S is well ordered if every subset has a
smallest element.
With the usual ordering a< b:
• N is well-ordered (Well-Ordering Property)
• Z is not
{0,−1,−2,−3, . . .} has no “minimum”

. . .but a different ordering might guarantee a minimum!

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Restore 0 to its rightful place

Example
0, -1, 1, -2, 2, -3, 3, . . .
In this ordering of Z:
• 0 “smallest”
• -1 next smallest
• 1 third smallest

. . .

Order by absolute value first, then by value!

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Restore 0 to its rightful place

Example
0, -1, 1, -2, 2, -3, 3, . . .
In this ordering of Z:
• 0 “smallest”
• -1 next smallest
• 1 third smallest

. . .

Order by absolute value first, then by value!

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

“Teach” Sage this ordering!

L.sort(key=key_function) where
• key_function maps L to an ordered set
• L’s elements ordered according to this set

sage: def by_absolute_value(n):
return abs(n)

sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
sage: L.sort(key=by_absolute_value)
sage: L
[0, 1, 3, -3, 5, 5, 10, -10, 17]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

“Teach” Sage this ordering!

L.sort(key=key_function) where
• key_function maps L to an ordered set
• L’s elements ordered according to this set

sage: def by_absolute_value(n):
return abs(n)

sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
sage: L.sort(key=by_absolute_value)
sage: L
[0, 1, 3, -3, 5, 5, 10, -10, 17]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

What happened?

1 5 0 5 3 10 -3 17 -10

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

What happened?

1 5 0 5 3 10 -3 17 -10
↓ key ↓

1 1 5 5 0 0 5 5 3 3 10 10 3 -3 17 17 -10 -10

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

What happened?

1 5 0 5 3 10 -3 17 -10
↓ key ↓

1 1 5 5 0 0 5 5 3 3 10 10 3 -3 17 17 -10 -10
↓ sort ↓

0 0 1 1 3 3 3 -3 5 5 5 5 10 10 -10 -10 17 17

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

What happened?

1 5 0 5 3 10 -3 17 -10
↓ key ↓

1 1 5 5 0 0 5 5 3 3 10 10 3 -3 17 17 -10 -10
↓ sort ↓

0 0 1 1 3 3 3 -3 5 5 5 5 10 10 -10 -10 17 17
↓ unkey ↓
0 1 3 -3 5 5 10 -10 17

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

And if we want to refine the
ordering further?

sage: L
[0, 1, 3, -3, 5, 5, 10, -10, 17]
What if we want . . . ,−3,3, . . . ,−10,10, . . . instead?

Refine with tuples!

sage: def by_absolute_value_negatives_first(n):
return (abs(n), n)

sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
sage: L.sort(key=by_absolute_value_negatives_first)
sage: L
[0, 1, -3, 3, 5, 5, -10, 10, 17]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

And if we want to refine the
ordering further?

sage: L
[0, 1, 3, -3, 5, 5, 10, -10, 17]
What if we want . . . ,−3,3, . . . ,−10,10, . . . instead?

Refine with tuples!

sage: def by_absolute_value_negatives_first(n):
return (abs(n), n)

sage: L = [1, 5, 0, 5, 3, 10, -3, 17, -10]
sage: L.sort(key=by_absolute_value_negatives_first)
sage: L
[0, 1, -3, 3, 5, 5, -10, 10, 17]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Outline

1 Collections in Python

2 Collections in functions

3 Sorting your own way

4 Ranges of data

5 Strings

6 Summary

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Tricks with []
Negative indices have meaning:

L[0] L[1] L[2] L[3] L[4]

IndexError 1 5 0 5 IndexError

L[-5] L[-4] L[-3] L[-2] L[-1]

Example
sage: L = [1,5,0,5]
sage: L[-1]
5
sage: L[-4]
1
sage: L[-5]
. . .Output deleted. . .
IndexError: list index out of range

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Tricks with []
Negative indices have meaning:

L[0] L[1] L[2] L[3] L[4]

IndexError 1 5 0 5 IndexError

L[-5] L[-4] L[-3] L[-2] L[-1]

Example
sage: L = [1,5,0,5]
sage: L[-1]
5
sage: L[-4]
1
sage: L[-5]
. . . Output deleted. . .
IndexError: list index out of range

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Tricks with [:]
C[first:last+1] specifies subcollection

C[first] C[first+1] . . . C[last]

• omit first? =⇒ start at C[0]
• omit last? =⇒ end at C[-1]

Example
sage: L[2:4] L[2] to L[3]
[0, 5]
sage: L[:2] L[0] to L[1]
[1,5]
sage: L[2:] L[2] to L[-1]
[0,5]
sage: L[:] L[0] to L[-1]
[1,5,0,5]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Tricks with [:]
C[first:last+1] specifies subcollection

C[first] C[first+1] . . . C[last]

• omit first? =⇒ start at C[0]
• omit last? =⇒ end at C[-1]

Example
sage: L[2:4] L[2] to L[3]
[0, 5]
sage: L[:2] L[0] to L[1]
[1,5]
sage: L[2:] L[2] to L[-1]
[0,5]
sage: L[:] L[0] to L[-1]
[1,5,0,5]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

The range() command

range(first, last+1) generates list w/last + 1 - first elements
• first indexes the first element

• default value is 0

• last indexes the last element
• first ≥ last? empty list

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: range(5)
[0, 1, 2, 3, 4]

sage: range(1,5)
[1, 2, 3, 4]

sage: range(3,5)
[3,4]

sage: range(5,5)
[]

sage: range(6,5)
[]

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Outline

1 Collections in Python

2 Collections in functions

3 Sorting your own way

4 Ranges of data

5 Strings

6 Summary

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Strings

String: ordered collection of characters

’Hello’ ¡ H e l l o

• extract elements using []

• join elements using +

• other useful functions on pg. 96 of text

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

sage: name = ’Euler’

sage: name[2] 3rd character
’l’

sage: name[-1] last character
’r’

sage: name[0:4] first four characters in string
’Eule’

sage: name + ’ computed’ add string; notice space
’Euler computed’

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

The str() command

str(x) where

• x is any object that can be turned into a string

• Sage will turn a lot of objects into strings!

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

Numbers:

sage: name + ’ computed’ + ’ e**(i*pi) + 1 = ’
+ str(0)

’Euler computed e**(i*pi) + 1 = 0’

Equations: (after “obvious” simplifications!)

sage: name + ’ computed ’ + str(e**(i*pi) + 1 == 0)
’Euler computed 0 == 0’

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Example

Numbers:

sage: name + ’ computed’ + ’ e**(i*pi) + 1 = ’
+ str(0)

’Euler computed e**(i*pi) + 1 = 0’

Equations: (after “obvious” simplifications!)

sage: name + ’ computed ’ + str(e**(i*pi) + 1 == 0)
’Euler computed 0 == 0’

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Outline

1 Collections in Python

2 Collections in functions

3 Sorting your own way

4 Ranges of data

5 Strings

6 Summary

MAT 305:
Mathematical
Computing

John Perry

Collections in
Python

Collections in
functions

Sorting your
own way

Ranges of data

Strings

Summary

Summary

• Through Python, Sage offers several kinds of collections

• tuples, lists, sets, dictionaries

• Operations

• [] for extraction

• negatives allowed
• [:] gives subcollections

• usual mathematical operations on sets
• others supplied by Python

• Strings allow lists of characters

• str(x) produces “obvious” string representation of x

	Collections in Python
	Collections in functions
	Sorting your own way
	Ranges of data
	Strings
	Summary

