John Perry

What is Sage

Getting started with Sage

Using computer memory

Summary

MAT 305: Mathematical Computing Introduction to Sage

John Perry

University of Southern Mississippi

Spring 2017

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ۹ペペ

MAT 305: Mathematical Computing

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

1 What is Sage?

2 Getting started with Sage

3 Using computer memory

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

1 What is Sage?

② Getting started with Sage

3 Using computer memory

4 Summary

Outline

▲□▶▲圖▶▲匣▶▲匣▶ 三臣 のへ⊙

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Software for Algebra and Geometry Exploration
- Computer Algebra System "started" by William Stein

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation"

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Symbolic computing

goal exact computation

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation" tools floating-point numbers, vectors, matrices

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Symbolic computing

goal exact computation tools exact numbers, sets, abstract structures

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

"Computer algebra system"?

Numerical computing

goal approximate computation, "accurate estimation" tools floating-point numbers, vectors, matrices challenge overflow

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• division by a small number

Symbolic computing

goal exact computation tools exact numbers, sets, abstract structures challenge complexity

• adding many fractions

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Pros & cons: symbolic

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} = \frac{247}{210}$$

- summands: two digits each, but
- sum: 6 digits
- imagine this done thousands or millions of times

"Expression swell"

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Pros & cons: symbolic

$$\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} = \frac{247}{210}$$

- summands: two digits each, but
- sum: 6 digits
- imagine this done thousands or millions of times

"Expression swell"

sage:
$$1 + 10^{(-5)} - 1$$

1/100000

... not bad!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Pros & cons: numeric

▲□▶▲□▶▲□▶▲□▶ □ のQ@

$0.5000 + 0.3333 + 0.2000 + 0.1429 \approx 1.176$

- start and end with four digits, but
- small loss in precision

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Pros & cons: numeric

$0.5000 + 0.3333 + 0.2000 + 0.1429 \approx 1.176$

- start and end with four digits, but
- small loss in precision

sage: $1.0 + 10.0^{(-5.0)} - 1.0$ 0.00001000000000655sage: $1.0 + 10.0^{(-15.0)} - 1.0$ 1.11022302462516e - 15sage: $1.0 + 10.0^{(-20.0)} - 1.0$ 0.00000000000000

John Perry

What is Sage?

Getting started with Sage

but

Using computer memory

Summary

 $\begin{pmatrix} \frac{1001}{2001} & -\frac{1000}{2001} \\ -\frac{1000}{2001} & \frac{1001}{2001} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\begin{pmatrix} \frac{1001}{2001} & -\frac{1000}{2001} \\ -\frac{1000}{2001} & \frac{1001}{2001} \end{pmatrix} \begin{pmatrix} 1.1 \\ -0.9 \end{pmatrix} = \begin{pmatrix} 201.1 \\ 199.1 \end{pmatrix}$

More cons: numeric

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

- small change in input, but
- large change in output
- consider the effect of roundoff error...

John Perry

What is Sage?

Getting started with Sage

but

Using computer memory

Summary

 $\begin{pmatrix} \frac{1001}{2001} & -\frac{1000}{2001} \\ -\frac{1000}{2001} & \frac{1001}{2001} \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\begin{pmatrix} \frac{1001}{2001} & -\frac{1000}{2001} \\ -\frac{1000}{2001} & \frac{1001}{2001} \end{pmatrix} \begin{pmatrix} 1.1 \\ -0.9 \end{pmatrix} = \begin{pmatrix} 201.1 \\ 199.1 \end{pmatrix}$

More cons: numeric

- small change in input, but
- large change in output
- consider the effect of roundoff error...

"It makes me nervous to fly an airplane since I know they are designed using floating-point arithmetic."

- Alston Householder

Why Sage?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

- Free
- Cutting edge
- Access to other CAS's
 - Calculus: Maxima, SymPy, ...
 - Linear Algebra: M4RI, Linbox, PARI, ...
 - Commutative Algebra: SINGULAR, Macaulay, ...
 - Group theory: GAP, ...
 - etc.

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

"Free" software

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Why Sage?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

Summary

"Free" software

- "Free as in beer":
 - no cost to download
 - no cost to copy
 - no cost to upgrade

Why Sage?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

Summary

"Free" software

- "Free as in beer":
 - no cost to download
 - no cost to copy
 - no cost to upgrade
- "Free as in speech":
 - no secret algorithms
 - can study implementation
 - can correct, improve, contribute

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Analogy: "Free" Mathematics

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

Theorem (Euclid) *There are infinitely many primes.*

Proof.

- Consider finite list of primes, q_1, q_2, \ldots, q_n .
- Let $p = q_1 q_2 \cdots q_n + 1$.
- Fact: since $p \neq 1$, divisible by at least one prime
- By Division Theorem, p not divisible by any q_i (remainder 1, not 0).
- p divisible by unlisted prime q_{n+1} !
- .: no finite list, lists all primes.

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Analogy: "Secret" mathematics

Theorem (Fermat)

If n > 2, the equation $a^n + b^n = c^n$ has no solution with integers $a, b, c \ge 1$.

Proof.

"I have discovered a truly marvelous proof of this, which this margin is too narrow to contain."[†]

[†]Real quote. (to be fair: in private notes, not letter, article)

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Analogy: "Proprietary" mathematics

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Mersenne) *The number*

 $2^{n} - 1$

is prime for n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257. Proof.

Trade Secret.[†]

[†]In fact, the "theorem" is false.

John Perry

What is Sage?

- Getting started with Sage
- Using computer memory
- Summary

But I prefer M—!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQで

- Fine, buy your own copy
 - good reasons exist
 - student discount available
 - I will tell you the equivalent commands
- Be warned:
 - future versions not free
 - bug fixes not free
 - after you graduate, pay full price
 - not always backwards compatible (neither is Sage, but Sage is free)

Python

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

- Getting started with Sage
- Using computer memory
- Summary

- "Sage" built on/with Python
 - interface between Sage and user

- Not all components of Sage in Python:
 - Maxima: LISP
 - SINGULAR: C/C++
 - "kernel" "compiled" for efficiency's sake

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Advantages of Python

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

• Modern

- facilities for object-oriented, functional programming
- Wide distribution, usage
 - many employers use it (doing well in this class makes you more attractive!)

• Flexible

- many good packages enhance it
- Can compile for efficiency using Cython

Python \neq Sage

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

- Some Python commands don't work in worksheet modeinput()
- Sage commands do not work in plain Python

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

1 What is Sage?

2 Getting started with Sage

3 Using computer memory

4 Summary

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

How to get Sage

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

- Using computer memory
- Summary

- Best: SageMathCloud
- Download, install to your computer
 - can tinker with/break the source code
 - Windows? need LiveCD or VirtualBox player: www.virtualbox.org/wiki/Downloads
 - ask nicely, & I might give you a DVD with Sage for Windows, Mac, Linux

John Perry

What is Sage?

Getting started with Sage

- Using computer memory
- Summary

First steps in Sage

- Log in to SageMathCloud
- Start a new project
 - name it "First Sage Assignment"
 - select type "SageMath Worksheet"
 - visit "Settings", click "Project usage and quotas"
 - click "Network access" and "Member hosting", then "Submit changes"
 - Now return to "First Sage Assignment" (near top)
- If you like (not always recommended)
 - Click "Modes", then "Typeset output"

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Working with variables

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Variable: symbol that represents another value Example

sage: a = 7

Until you change it, a represents 7

John Perry

What is Sage

Getting started with Sage

Using computer memory

Summary

Symbols of symbolic computation

Indeterminate: symbol with no specific value ("unknown")special kind of variable

- x pre-defined
 - if value assigned, no longer indeterminate
- Need more? use var()
 - var('y') defines y
 - var('a b c d') defines *a*, *b*, *c*, *d*
- Use undefined variable?

```
sage: x+y+z
...
NameError: name 'z' is not defined
```

Arithmetic

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

operation	sage equivalent
add <i>x</i> , <i>y</i>	x + y
subtract <i>y</i> from <i>x</i>	x - y
multiply <i>x</i> , <i>y</i>	x * y
divide <i>x</i> by <i>y</i>	x / y
raise <i>x</i> to the <i>y</i> th power	x ** y or x ^ y

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

Arithmetic

operation	sage equivalent
add <i>x</i> , <i>y</i>	x + y
subtract <i>y</i> from <i>x</i>	x - y
multiply <i>x</i> , <i>y</i>	x * y
divide <i>x</i> by <i>y</i>	x / y
raise <i>x</i> to the <i>y</i> th power	x ** y or x ^ y

- Do not omit muliplication symbol
 - $2 * x \longrightarrow 2x$
 - $2x \longrightarrow SyntaxError$: invalid syntax
 - possible, but dangerous, to get around this using implicit_multiplication(True)
- Do not neglect parentheses
 - $e^{**(2*x)} \neq e^{**2*x}$
- Prefer ** to ^ for various sordid reasons (scripting)

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

Example

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの()

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

```
• Sage simplifies (of course)
```

```
sage: 5 + 3
8
sage: (x + 3*x**2) - (2*x - x**2)
4*x^2 - x
```

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Transcendental constants, functions

number	sage symbol
е	е
π	pi

operation	sage equivalent
e^x	е**х
$\ln x$	ln(x)
$\sin x$, $\cos x$, etc.	sin(x), cos(x), etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Transcendental constants, functions

number	sage symbol
е	е
π	pi

operation	sage equivalent
e^x	е**х
$\ln x$	ln(x)
$\sin x$, $\cos x$, etc.	sin(x), cos(x), etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

•
$$\log(x) = \ln x \neq \log_{10} x$$

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Some useful operations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

operation	sage equivalent
factor <i>expr</i>	<pre>factor(expr)</pre>
simplify expr	<pre>simplify(expr)</pre>
expand <i>expr</i>	expand(<i>expr</i>)
round <i>expr</i> to <i>n</i> decimal places	round(expr, n)

Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

Summary

• Some expressions simplify automatically; many need hints

```
sage: (x**2 - 1) / (x - 1)
(x^2 - 1)/(x - 1)
sage: (factor(x**2 - 1)) / (x - 1)
x + 1
```

(good reason this isn't automatic: what?)

• Expand
$$(x-1)(x^3+x^2+x+1)$$

sage: expand((x-1)*(x**3+x**2+x+1))
x^4 - 1

• Round e to 5 decimal places

```
sage: round(e,5)
2.71828
```

Getting help

- Online Sage documentation (tutorial, manual, etc.) at http://www.sagemath.org/doc/
 - These notes: www.math.usm.edu/perry/mat305ssyy/ (ssyy? semester and year: sp13, sp14, sm14, ...)
 - Textbook: www.math.usm.edu/dont_panic
 - In-Sage help: command, question mark, <Enter>
 sage: round?
 [output omitted]
 - Email: john.perry@usm.edu

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

1 What is Sage?

② Getting started with Sage

3 Using computer memory

4 Summary

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Expressions

• Use computer memory by defining *expressions* with the assignment symbol =

```
sage: f = x * * 2 - 1
```

Sage does not answer when you define an expression

- Expressions remembered until you terminate Sage sage: f $x^2 - 1$
- Can remember "structures" as well as expressions

sage: R = GF(7) # I'll tell you what this is later

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305-Mathematical Computing

John Perry

Using computer memory

Valid names

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

Summary

Names for expressions ("identifiers") can

- contain letters (A–Z), digits (0–9), or the underscore (_) but
- must begin with a letter or the underscore and
- may not contain other character (space, tab, !@#\$%[^], etc.)

MAT 305: Mathematical Computing John Perry

What is Sage

Getting started with Sage

Using computer memory

Summary

Using expressions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Manipulate just like the object it represents

```
sage: factor(f)
(x - 1)*(x + 1)
sage: f - 3
x^2 - 4
```

• Avoid repeating computations: substitute!

```
sage: f(x=3)
8
sage: f(x=-1)
0
sage: f(x=4)
15
```

John Perry

What is Sage

Getting started with Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage:	f = x * * 2	+	y**2	
sage:	f(x=3)			
9 + y^	2			
sage:	f({x:3})			
9 + y^2				

This also means replace x by 3 in f

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

What is Sage

Getting started with Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage:	$f = x * * 2 \cdot $	+ y**2
sage:	f(x=3)	
9 + y^	2	
sage:	f({x:3})	
9 + y^	2	
sage:	z = x	
sage:	f(z=3)	
x^2 +	y^2	

This also means replace x by 3 in f

Here we let z stand in place of xWe want to replace x by 3, but...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

John Perry

What is Sage

Getting started with Sage

Using computer memory

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage:	f = x * * 2 + y * * 2
sage:	f(x=3)
9 + y^2	2
sage:	f({x:3})
9 + y^2	2
sage:	z = x
sage:	f(z=3)
x^2 + y	2^2
sage:	f({z:3})
9 + y^2	2

This also means replace x by 3 in f

Here we let z stand in place of xWe want to replace x by 3, but...

This works where f(z=3) did not

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Define function using natural notation

sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2

Expressions as functions

(日)

Expressions as functions

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの()

John Perry

Getting started with Sage

Using computer memory

ummary

```
Define function using natural notation
```

```
sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2
```

```
Automatically defines variables!

sage: f(w,z) = 4*w**2-4*z**2

sage: f(3,2)

20

sage: f(1,z)/z

-4*(z**2 - 1)/z

sage: f(3,2)/z

20/z
```

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Define function using natural notation

Expressions as functions

sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2

Functions really expressions

```
sage: factor(f)
4*(w - z)*(w + z)
sage: type(f)
<type 'sage.symbolic.expression.Expression'>
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

1 What is Sage?

② Getting started with Sage

3 Using computer memory

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry What is Sage?

MAT 305: Mathematical

Computing

- Getting started with Sage
- Using computer memory
- Summary

- Basic, intuitive facilities for arithmetic
- Create variables to your heart's content
- Define expressions to avoid repeating computations