John Perry

Loops Indefinite loops Summary

MAT 305: Mathematical Computing Repeating a task with loops

John Perry

University of Southern Mississippi

Spring 2016

John Perry

Loops Indefinite loops Summary

1 Loops

2 Indefinite loops

Outline

John Perry

Loops

Indefinite loops Summary

1 Loops

2 Indefinite loops

3 Summary

Outline

Loops?

Loops

Indefinite loops Summary

MAT 305: Mathematical Computing

John Perry

• loop: a sequence of statements that is repeated

big time bug: infinite loops

Loops?

Loops

Indefinite loops Summary

MAT 305: Mathematical

Computing John Perry

• loop: a sequence of statements that is repeated

big time bug: infinite loops

"infinite loop"? see infinite loop

- AmigaDOS manual, ca. 1993

Why loops?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Loops

Indefinite loops Summary

MAT 305: Mathematical

Computing John Perry

- like functions: avoid retyping code
 - many patterns repeated
 - same behavior, different data
- don't know number of repetitions when programming

Types of loops

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Loops

Indefinite loops Summary

MAT 305: Mathematical

Computing John Perry

- definite
 - number of repetitions known at beginning of loop
- indefinite
 - number of repetitions not known at beginning of loop
 - number of repetitions unknowable at beginning of loop

Types of loops

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Loops

Indefinite loops Summary

MAT 305: Mathematical

Computing John Perry

- definite
 - number of repetitions known at beginning of loop
- indefinite
 - number of repetitions not known at beginning of loop
 - number of repetitions unknowable at beginning of loop

Most languages use different constructions for each

John Perry

Loops Indefinite loops

1 Loops

2 Indefinite loops

3 Summary

Outline

John Perry

Loops Indefinite loops Summary

The while command

while condition : statement1 statement2 ...

where

- statements are executed while condition remains true
 - statements will *not* be executed if *condition* is false from the get-go
- like definite loops, variables in condition can be modified
- unlike definite loops, variables in *condition* **should** be modified

John Perry

Loops Indefinite loops

Pseudocode for indefinite loop

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

while condition statement1 statement2 ... out-of-loop statement 1

John Perry

Loops Indefinite loops Pseudocode for indefinite loop

▲□▶▲□▶▲□▶▲□▶ □ のQ@

while condition statement1 statement2 ... out-of-loop statement 1

Notice:

- indentation ends at end of loop
- no colon

John Perry

Loops Indefinite loops Summary

sage: f = x * * 10sage: while f != 0: f = diff(f)print f 10*x^9 90*x^8 720*x^7 5040*x^6 30240*x^5 151200*x^4 604800*x^3 1814400*x^2 3628800*x 3628800 0

Example

John Perry

Loops Indefinite loops

More interesting example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Use the Method of Bisection to approximate a root of $\cos x - x$ on the interval [0, 1], correct to the hundredths place.

John Perry

Loops Indefinite loops

More interesting example

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Use the Method of Bisection to approximate a root of $\cos x - x$ on the interval [0, 1], correct to the hundredths place.

Hunh?!?

John Perry

Loops Indefinite loops

The Method of Bisection is based on: Theorem (Intermediate Value Theorem) *If*

- f is a continuous function on [a,b], and
- $f(a) \neq f(b)$,

then

- for any y between f(a) and f(b),
- $\exists c \in (a, b)$ such that f(c) = y.

Method of Bisection?

Continuous?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

MAT 305: Mathematical Computing John Perry

Loops Indefinite loops

- f continuous at x = a if
 - can evaluate limit at x = a by computing f(a), or
 - can draw graph without lifting pencil

Continuous?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

MAT 305: Mathematical Computing John Perry

Loops Indefinite loops

- f continuous at x = a if
 - can evaluate limit at x = a by computing f(a), or
 - can draw graph without lifting pencil

Upshot: To find a root of a continuous function f, start with two x values a and b such that f(a) and f(b) have different signs, then bisect the interval.

John Perry

Loops Indefinite loops

1 Animation = 1000 Words

(need Acrobat Reader to see animation)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

John Perry

Loops Indefinite loops Summary

Back to the example...

Check hypotheses...

- $f(x) = \cos x x$
 - x, cos x continuous
 - difference of continuous functions also continuous
 - $\therefore f$ continuous
- a = 0 and b = 1

•
$$f(a) = 1 > 0$$

• $f(b) \approx -0.4597 < 0$

Intermediate Value Theorem applies: can start Method of Bisection.

John Perry

Loops Indefinite loops

How to solve it?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Idea: Interval endpoints *a* and *b* are not close enough as long as their digits differ through the hundredths place.

John Perry

Loops Indefinite loops

How to solve it?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Idea: Interval endpoints *a* and *b* are not close enough as long as their digits differ through the hundredths place.

Application: While their digits differ through the hundredths place, halve the interval.

John Perry

Loops Indefinite loops

How to solve it?

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Idea: Interval endpoints *a* and *b* are not close enough as long as their digits differ through the hundredths place.

Application: While their digits differ through the hundredths place, halve the interval.

"Halve" the interval? Pick the half containing a root!

John Perry

Loops Indefinite loops

Pseudocode

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

$algorithm\ method_of_bisection$

John Perry

Loops Indefinite loops Summary

Pseudocode

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

algorithm method_of_bisection

inputs f, a continuous function $a, b \in \mathbb{R}$ such that $a \neq b$ and f(a) and f(b) have different signs

John Perry

Loops Indefinite loops Summary

Pseudocode

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

algorithm method_of_bisection

inputs

f, a continuous function

 $a, b \in \mathbb{R}$ such that $a \neq b$ and f(a) and f(b) have different signs

outputs

 $c \in [a, b]$ such that $f(c) \approx 0$ and c accurate to hundredths place

John Perry

Loops Indefinite loops Summary

Pseudocode

inputs f, a continuous function $a, b \in \mathbb{R}$ such that $a \neq b$ and f(a) and f(b) have different signs outputs $c \in [a, b]$ such that $f(c) \approx 0$ and c accurate to hundredths place do while the digits of a and b differ through the hundredths Let $c = \frac{a+b}{2}$ if f(a) and f(c) have the same sign Interval now $\left(\frac{a+b}{2}, b\right)$ Let a = celse if f(a) and f(c) have opposite signs Interval now $\left(a, \frac{a+b}{2}\right)$ Let b = celse we must have f(c) = 0

return *c* return *a*, rounded to hundredths place

algorithm method of bisection

MAT 305: Mathematical Computing		Try it!
John Perry		<i>y</i>
Loops		
Indefinite loops	sage:	<pre>def method_of_bisection(f,a,b,x=x):</pre>
Summary		<pre>while round(a,2) != round(b,2):</pre>

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ○ ○ ○

MAT 305: Mathematical Computing John Perry Loops Indefinite loops Summary While round(a,2) != round(b,2):

while round(a,2) != rc = (a + b)/2

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Try it!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Loops Indefinite loops

MAT 305: Mathematical

Computing John Perry

```
sage: def method_of_bisection(f,a,b,x=x):
    while round(a,2) != round(b,2):
        c = (a + b)/2
        if f({x:a})*f({x:c}) > 0:
            a = c
        elif f({x:a})*f({x:c}) < 0:
        b = c
        else:
            return c
        return cund(a,2)
```

Try it!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Loops Indefinite loops Summary

MAT 305: Mathematical

Computing John Perry

```
def method_of_bisection(f,a,b,x=x):
sage:
         while round(a,2) != round(b,2):
           c = (a + b)/2
           if f({x:a})*f({x:c}) > 0:
             a = c
           elif f({x:a})*f({x:c}) < 0:
             b = c
           else:
             return c
         return round(a,2)
       method_of_bisection(cos(x)-x,x,0,1)
sage:
0.74
```

John Perry

Loops Indefinite loops Summary

1 Loops

2 Indefinite loops

Outline

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

Summary

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Two types of loops

MAT 305: Mathematical

Computing John Perry

Summary

- definite: *n* repetitions known at outset
 - for $c \in C$
 - collection C of n elements controls loop
 - don't modify *C*
- indefinite: number of repetitions not known at outset
 - while condition
 - Boolean condition controls loop