MAT 305:
Mathematical Computing

John Perry

Loops
Indefinite loops

MAT 305: Mathematical Computing Repeating a task with loops

John Perry
University of Southern Mississippi

Spring 2016

MAT 305: Mathematical
Computing
John Perry

Loops
Indefinite loops
Summary

Outline

(1) Loops
(2) Indefinite loops
(3) Summary

MAT 305:
Mathematical
Computing
John Perry

Loops
Indefinite loops
Summary

(1) Loops

(2) Indefinite loops

(3) Summary

Loops?

John Perry

- loop: a sequence of statements that is repeated big time bug: infinite loops

MAT 305:
Mathematical Computing

John Perry

- loop: a sequence of statements that is repeated big time bug: infinite loops
"infinite loop"?
see infinite loop
- AmigaDOS manual, ca. 1993

Why loops?

- like functions: avoid retyping code
- many patterns repeated
- same behavior, different data
- don't know number of repetitions when programming

Types of loops

- definite
- number of repetitions known at beginning of loop
- indefinite
- number of repetitions not known at beginning of loop
- number of repetitions unknowable at beginning of loop

Types of loops

- definite
- number of repetitions known at beginning of loop
- indefinite
- number of repetitions not known at beginning of loop
- number of repetitions unknowable at beginning of loop

Most languages use different constructions for each

MAT 305: Mathematical
Computing
John Perry

Loops
Indefinite loops
Summary

Outline

(1) Loops
(2) Indefinite loops
(3) Summary

Mathematical Computing

The while command

while condition :
statement1
statement 2
where

- statements are executed while condition remains true
- statements will not be executed if condition is false from the get-go
- like definite loops, variables in condition can be modified
- unlike definite loops, variables in condition should be modified

MAT 305: Mathematical Computing

John Perry

Pseudocode for indefinite loop

while condition
statement1
statement2
out-of-loop statement 1

MAT 305:
Mathematical Computing

John Perry

Pseudocode for indefinite loop

while condition
statement1
statement 2
out-of-loop statement 1
Notice:

- indentation ends at end of loop
- no colon

Mathematical

Example

John Perry

$$
\begin{aligned}
& \text { sage: } f=x * * 10 \\
& \text { sage: while f }!=0 \text { : } \\
& \mathrm{f}=\operatorname{diff}(\mathrm{f}) \\
& \text { print f } \\
& 10 * x^{\wedge} 9 \\
& 90 * x^{\wedge} 8 \\
& 720 * x^{\wedge} 7 \\
& 5040 * x \text { ~ } 6 \\
& 30240 * x \sim 5 \\
& 151200 \text { *x~4 } \\
& 604800 * x^{\wedge} 3 \\
& 1814400 * x^{\wedge} 2 \\
& \text { 3628800*x } \\
& 3628800
\end{aligned}
$$

MAT 305: Mathematical Computing

John Perry

Loops
Indefinite loops
Summary

More interesting example

Use the Method of Bisection to approximate a root of $\cos x-x$ on the interval $[0,1]$, correct to the hundredths place.

MAT 305: Mathematical Computing

John Perry
Loops
Indefinite loops
Summary

More interesting example

Use the Method of Bisection to approximate a root of $\cos x-x$ on the interval $[0,1]$, correct to the hundredths place.

Hunh?!?

Mathematical Computing

Method of Bisection?

The Method of Bisection is based on:
Theorem (Intermediate Value Theorem) If

- f is a continuous function on $[a, b]$, and
- $f(a) \neq f(b)$,
then
- for any y between $f(a)$ and $f(b)$,
- $\exists c \in(a, b)$ such that $f(c)=y$.

MAT 305:
Mathematical Computing

John Perry

Loops
Indefinite loops
Summary
f continuous at $x=a$ if

- can evaluate limit at $x=a$ by computing $f(a)$, or
- can draw graph without lifting pencil

Mathematical Computing

Continuous?

f continuous at $x=a$ if

- can evaluate limit at $x=a$ by computing $f(a)$, or
- can draw graph without lifting pencil

Upshot: To find a root of a continuous function f, start with two x values a and b such that $f(a)$ and $f(b)$ have different signs, then bisect the interval.

MAT 305: Mathematical Computing

John Perry

Loops
Indefinite loops
Summary

1 Animation $=1000$ Words

(need Acrobat Reader to see animation)

Mathematical Computing

Back to the example...

Check hypotheses...

- $f(x)=\cos x-x$
- $x, \cos x$ continuous
- difference of continuous functions also continuous
$\therefore f$ continuous
- $a=0$ and $b=1$
- $f(a)=1>0$
- $f(b) \approx-0.4597<0$

Intermediate Value Theorem applies: can start Method of Bisection.

MAT 305: Mathematical Computing

John Perry

Loops
Indefinite loops

How to solve it?

Idea: Interval endpoints a and b are not close enough as long as their digits differ through the hundredths place.

Mathematical Computing

John Perry

Loops

How to solve it?

Idea: Interval endpoints a and b are not close enough as long as their digits differ through the hundredths place.

Application: While their digits differ through the hundredths place, halve the interval.

Mathematical Computing

How to solve it?

Idea: Interval endpoints a and b are not close enough as long as their digits differ through the hundredths place.

Application: While their digits differ through the hundredths place, halve the interval.
"Halve" the interval? Pick the half containing a root!

MAT 305: Mathematical Computing

John Perry

Pseudocode

MAT 305:
Mathematical Computing

John Perry

Loops
Indefinite loops
Summary

Pseudocode

algorithm method_of_bisection inputs
f, a continuous function
$a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)$ and $f(b)$ have different signs

Mathematical Computing
algorithm method_of_bisection inputs
f, a continuous function
$a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)$ and $f(b)$ have different signs outputs
$c \in[a, b]$ such that $f(c) \approx 0$ and c accurate to hundredths place
algorithm method_of_bisection
inputs
f, a continuous function
$a, b \in \mathbb{R}$ such that $a \neq b$ and $f(a)$ and $f(b)$ have different signs outputs
$c \in[a, b]$ such that $f(c) \approx 0$ and c accurate to hundredths place do
while the digits of a and b differ through the hundredths
Let $c=\frac{a+b}{2}$
if $f(a)$ and $f(c)$ have the same sign
Let $a=c$
else if $f(a)$ and $f(c)$ have opposite signs

$$
\text { Let } b=c
$$

else
Interval now $\left(\frac{a+b}{2}, b\right)$
Interval now $\left(a, \frac{a+b}{2}\right)$
we must have $f(c)=0$
return c
return a, rounded to hundredths place

MAT 305: Mathematical Computing

John Perry

Try it!

sage: def method_of_bisection(f,a, $b, x=x)$: while round $(a, 2) \quad!=$ round $(b, 2)$:

MAT 305: Mathematical Computing

John Perry
sage: def method_of_bisection(f,a,b,x=x): while round $(a, 2) \quad!=$ round $(b, 2)$:
$c=(a+b) / 2$

MAT 305: Mathematical Computing

John Perry
sage: def method_of_bisection(f,a,b,x=x): while round $(a, 2) \quad!=$ round $(b, 2)$:
$c=(a+b) / 2$
if $f(\{x: a\}) * f(\{x: c\})>0$:
$\mathrm{a}=\mathrm{c}$
elif $f(\{x: a\}) * f(\{x: c\})<0$:
$b=c$
else:
return c
return round (a,2)

Mathematical Computing

John Perry

Try it!

sage: def method_of_bisection(f,a, $b, x=x)$: while round $(a, 2) \quad!=$ round $(b, 2)$:
$c=(a+b) / 2$
if $f(\{x: a\}) * f(\{x: c\})>0:$ $\mathrm{a}=\mathrm{c}$
elif $f(\{x: a\}) * f(\{x: c\})<0:$ $b=c$ else: return c return round (a,2)
sage: method_of_bisection($\cos (x)-x, x, 0,1)$
0.74

MAT 305: Mathematical
Computing
John Perry

Loops
Indefinite loops
Summary

Outline

(1) Loops

(2) Indefinite loops

(3) Summary

Summary

Two types of loops

- definite: n repetitions known at outset
- for $c \in C$
- collection C of n elements controls loop
- don't modify C
- indefinite: number of repetitions not known at outset
- while condition
- Boolean condition controls loop

