
MAT 305: Lab #8

April 15, 2016

Background
Definition. If a set S and an operation ⊗ satisfy the closure, associative, identity, and inverse
properties, then we call S a group under ⊗. These properties are defined in the following way:

• closure: x ⊗ y ∈ S for all x, y ∈ S;

• associative: x ⊗ (y ⊗ z) = (x ⊗ y)⊗ z for all x, y, z ∈ S;

• identity: we can find ι ∈ S such that x ⊗ ι= x and ι⊗ x = x for any x ∈ S;

• inverse: for any x ∈ S, we can find y ∈ S such that x ⊗ y = y ⊗ x = ι.

Example. The integers Z form a group under addition, because

• adding any two integers gives you an integer (x + y ∈Z for all x, y ∈Z);

• addition of integers is associative;

• there is an additive identity (x + 0= x and 0+ x = x for all x ∈Z); and

• every integer x has an additive inverse that is also an integer (x +(−x) = (−x)+ x = 0).

Example. The integers Z do not form a group under multiplication, for two reasons:

• 0 has no multiplicative inverse 0−1; and

• the other integers a have multiplicative inverses 1/a, but most are not integers. A group only
satisfies the inverse property if it contains the inverses of each element.

In this lab you will use pseudocode to write code to test whether a finite set is a group under
multiplication. You will then test it on three sets, two of which succeed, and one of which does
not. A complication in this project is that the function has to depend on the operation, so you
can’t just write a function for one operation, only.

Pseudocode

Closure
We must check every pair x, y ∈ S. We can test whether this is true for “every” element of a finite
set using definite loops.

algorithm is_closed
inputs

S, a finite set
outputs
true if S is closed under multiplication; false otherwise

do
for s ∈ S

for t ∈ S
if s t 6∈ S

print “fails closure for”, s , t
return false

return true

Associative
We must check every triplet x, y, z ∈ S, requiring definite loops. The pseudocode is an exercise.

Identity
We can test whether “we can find” an identity using a special variable called a flag with Boolean
value (sometimes called a signal). We adjust the flag’s value depending on whether a candidate
continues to satisfy a known property. When the loop ends, the flag indicates whether we’re done
(i.e., whether we’ve found an identity). The quantifiers’ structure (“we can find. . . for any. . . ”)
requires the pseudocode to presume an identity exists until proved otherwise.

algorithm find_identity
inputs

S, a finite set
outputs

an identity, if it can find it; otherwise, ;
do

for s ∈ S
let maybe_identity = true
for t ∈ S

if s t 6= t or t s 6= t
let maybe_identity = false

if maybe_identity = true
return s

print “no identity”
return ;

Inverse
We are looking for an inverse for each element. Here, again, we use a flag a flag, as the logic
requires us to find an inverse. Unlike the previous pseudocode, we presume an inverse does not
exist until proved otherwise; this is because the order of the quantifiers is switched (“for any. . .
we can find. . . ” instead of “we can find. . . for any. . . ”). This pseudocode also requires that we
identify the set’s identity in the input.

algorithm has_inverses
inputs

S, a finite set
ι, an identity of S under multiplication

outputs
true if every element of S has a multiplicative inverse; false otherwise

do
for s ∈ S

let found_inverse = false
for t ∈ S

if s t = ι and t s = ι
let found_inverse = true

if found_inverse = false
print “no inverse for”, s
return false

return true

Putting them together
This pseudocode tests whether a set is a group under an operation by invoking all four algorithms
defined above.

algorithm is_a_group
inputs

S, a finite set
outputs
true if S is a group under multiplication; false otherwise

do
if is_closed(S) and is_associative(S)

let ι = find_identity(S)
if ι 6= ; and has_inverses(S, ι)

return true
return false

Your tasks
Use LATEX in your Sage worksheets wherever appropriate. Two of the sets in 3–5 are groups;
one is not.

1. Study the pseducode for closure, and write pseudocode for an algorithm named is_associative
that tests whether a set S is associative under multiplication. You essentially modify the pseu-
docode for is_closed with a third loop, and change the condition for the if appropriately.

2. Write Sage code for each of the five algorithms defined above in pseudocode. You will test
them on the following sets.

3. Define a ring R to be Z101, the finite ring of 101 elements. (You will want to revisit Lab #2 if
you forgot how to do this.) Let S = {1,2, . . . , 100}(R; that is, S should include every element
of R except 0. Be sure to define S using elements of R, and not plain integers. (Again, you will
want to revisit Lab #2 if you forgot how to do this.) Test your Sage code on S; is S a group
under multiplication? If not, which property fails?

4. Redefine the ring R to be Z102, the finite ring of 102 elements. Let S = {1,2, . . . , 101}(R; that
is, S should include every element of R except 0. Be sure to define S using elements of R, and
not plain integers. Test your Sage code on S; is S a group under multiplication? If not, which
property fails?

5. Define the matrices

I2 =
�

1 0
0 1

�

i=
�

i 0
0 −i

�

j=
�

0 1
−1 0

�

k=
�

0 i
i 0

�

and the set
Q = {I2,−I2, i,−i, j,−j,k,−k} .

Test your Sage code on Q; is Q a group under multiplication? If not, which property fails?

Remark. This set is sometimes called the set of quaternions.

6. Using the matrices of problem #4, define the set

S = {I2,−I2, j,−j} .

(a) You’ve probably noticed that S ⊆Q. Is S also a group? If so, we call S a subgroup of Q.
If not, which property fails?

(b) The set S actually consists of matrices of the form A from Lab #6, Problem #1. Indicate
in a text cell the correct value of a for each matrix.

