MAT 305: Lab \#7

March 30, 2016

In class we studied the Fibonacci sequence

$$
f_{1}=1, \quad f_{2}=1, \quad f_{n+2}=f_{n}+f_{n+1} .
$$

The Fibonacci numbers are one example of what mathematicians now call a Lucas sequence. (More information at the link.) We usually define Lucas sequences recursively, but you can find a "closed formula" in a manner similar to what we did in class for the Fibonacci sequence.

Let a, b, c, and d be the first two numbers of your student ID. The sequence

$$
\ell_{1}=a, \quad \ell_{2}=b, \quad \ell_{n+2}=c \ell_{n}+d \ell_{n+1}
$$

is a Lucas sequence that we'll call the "[insert your last name here] sequence."

1. In a Sage text cell, state the definition of the [insert your last name here] sequence. Use ETEX!
2. In the same cell, list the first five numbers of the [insert your name here] sequence.
3. Define a matrix L and a vector \mathbf{v} which generate the sequence. For instance, if the first four digits of your ID are 1, 2, 8, and 9 then

$$
L=\left(\begin{array}{ll}
8 & 9 \\
1 & 0
\end{array}\right) \quad \text { and } \quad \mathbf{v}=\binom{1}{2}
$$

Compute $L \mathbf{v}, L^{2} \mathbf{v}, L^{3} \mathbf{v}, L^{4} \mathbf{v}$, and $L^{5} \mathbf{v}$ in Sage, and compare the results to \#2. If they differ, either in \#2 or \#3 is wrong. Or I have a typo. Ask me, and/or fix it before continuing.
4. Compute L 's "eigendata." Extract the eigenvectors and eigenvalues and have Sage convert them to radical form. (Numbers should no longer end in question marks.)
5. Construct matrices Q and Λ such that $L=Q \Lambda Q^{-1}$. Use Sage to verify that $L=Q \Lambda Q^{-1}$.
6. Construct the matrix $M=\left(Q \Lambda Q^{-1}\right)^{n}$. Hint: The lecture notes discuss this; it requires some knowledge of linear algebra.
7. Use the product of M and \mathbf{v} to find the closed form of the [insert your name here] sequence. Hint: Again, the notes should come in handy here if you need help.
8. Use the closed form to compute the first five numbers of the [insert your name here] sequence, and compare your results to what you found in \#2 and \#3. If they differ, you have a problem or I have a typo; ask me and/or fix it!

