Lab \#5

MAT 305
Spring 2016

Directions: The usual counsels apply.

A system of equations

1. Suppose your university ID is abcdef. For instance, if your ID is 123456 , then $a=1, b=2$, $\ldots, f=6$. Use that to define the following system of equations:

$$
\left\{\begin{array}{l}
a x+b y=c \\
d x+e y=f
\end{array}\right.
$$

2. Plot each equation on the $x-y$ plane. In all likelihood, the two lines will not be parallel, but will intersect at exactly one point. Adjust the x and y axes so that this intersection is visible. If the lines are parallel or coincident, modify one of a, b, \ldots, f so that the lines intersect at exactly one point.
3. Use Sage to find the exact solution to the system of equations. This should be a point $\left(x_{0}, y_{0}\right)$. Create a new plot with both lines and a big, fat point where they intersect. (Not too fat, but fat enough to see.) Make sure the point lies on top of the lines.

An invariant

4. Define variables for a, b, \ldots, f. Use that to define the following system of equations without any numbers at all:

$$
\left\{\begin{array}{l}
a x+b y=c \\
d x+e y=f
\end{array}\right.
$$

5. Solve the system above for x and y.
6. You may have noticed that the solution has a common denominator. (If you didn't notice it, this would be a good time to notice.) What is sort-of-amazing, but not-really-that-amazing about that denominator?
Hint: Think about some basic matrix operations on the matrix that corresponds to the left sides of the original equations. It's something you should have computed in high school algebra, and definitely would have computed in linear algebra.
7. Suppose that a and b have known, concrete values. Use your answer to \#6 to explain why the existence of a solution dependes entirely on d and e - and has nothing to do with c and $f!!!$
Hint: I'm asking about the existence of a solution, not the value of the solution once it exists. The value most certainly depends on c and f, but the existence depends only on d and e. So the question asks you to use the previous answer to explain this question of existence, not value.
8. Let a and b have the same values they had in \#1. Let $g(x)$ be the denominator of the solution found in \#6. Substitute these values of a and b into $g(x)$. You should get a linear function in two variables, d and e. Change d to x and e to y.
9. Plot the line determined (no pun intended) by this function, which has y-intercept 0 . Also plot the original equation $a x+b y=c$. How are these two lines related? (It may not be clear unless you use the plot option aspect_ratio=1 to make it clear.)
10. Would this relationship between the two lines hold regardless of the values of a and b ? That is, if the only thing you changed were a and b in both the line and the function $g(x)$, would the line $a x+b y=c$ still have the same relationship to the corresponding value of $g(x)$?

A point at infinity

11. We return to your original system of equations. Define lists D and E so that the values in D move in 10 steps from d almost to a and the values in E move in 10 steps from e almost to b. (The difference between the final values and a or b should be miniscule.) For instance, if your original system is

$$
\left\{\begin{array}{l}
1 x+2 y=3 \\
4 x+5 y=6
\end{array}\right.
$$

then you could have something like $D=(4,3,2,2.5,2.1,2.01,2.001,2.0001,2.00001,2.000001)$ and $E=(5,4,3,2.5,2.1,2.01,2.001,2.0001,2.00001,2.000001)$.
12. Loop through the lists D and E to create a plot for each system

$$
\left\{\begin{array}{rl}
a x+b y & =c \\
d_{i} x+e_{i} y & =f
\end{array} .\right.
$$

(Here, d_{i} and e_{i} refer to the i th elements of D and E, respectively.) Combine the plots into a sequential animation. Animate it.
13. Describe the eventual relationship between the lines, especially if you let $d_{i} \rightarrow a$ and $e_{i} \rightarrow b$.
14. The field of projective geometry introduces a new point so that all lines, even parallel lines, intersect at least once. Use the animation to explain why it is appropriate to call this point a "point at infinity."
Hint: You may want to adjust the minimum and maximum x - and y-values of your animation to see this more clearly.

