Lab #2

MAT 305

Spring 2016

1. Create a new worksheet. Set the title to, "Lab #2". (You can change the title using the button with an "i" in a circle.) Add other information to identify you, as necessary.

Reread the Section on "Algebra" in Lecture 2, "Introduction to Sage."

- 2. Create a section labeled, "Modular arithmetic: demonstration," then:
 - (a) Define a ring R to be \mathbb{Z}_{10} , the finite ring of 10 elements. (*Hint:* The revised notes show a simpler way to do this than the in-class demonstration.)
 - (b) Define *m* to be the value of 2 in *R*, and compute 1 × *m*, 2 × *m*, 3 × *m*, ..., 10 × *m*. (*Hint:* If your answer to the last product is 20, you're doing it wrong. You have to convert 2 to a value of the ring *R*. The notes show how to do that.)
 - (c) Define *n* to be the value of 3 in *R*, and compute $1 \times n$, $2 \times n$, $3 \times n$, ..., $10 \times n$.
 - (d) Define *r* to be the value of 5 in *R*, and compute $1 \times r$, $2 \times r$, $3 \times r$, ..., $10 \times r$.
 - (e) Define *s* to be the value of 7 in *R*, and compute $1 \times s$, $2 \times s$, $3 \times s$, ..., $10 \times s$.
 - (f) Define t to be the value of 9 in R, and compute $1 \times t$, $2 \times t$, $3 \times t$, ..., $10 \times t$.
- 3. For the following, write your answer into a *text* box at the end of the worksheet. The top of the textbox should have the heading, "Modular arithmetic: analysis."
 - (a) Notice that 10 × 2 = 10 × 3 = ··· = 10 × 9 in this ring. Why does that make sense? (Your answer should address what I said in class about arithmetic in Z_n, illustrated on slide 44 with Z₇.)
 - (b) Which of m, n, r, s, t lists all the numbers from 0 to 9?
 - (c) What property do the numbers you listed in (b) share that the other numbers do not?