Lab \#2

MAT 305
Spring 2016

1. Create a new worksheet. Set the title to, "Lab \#2". (You can change the title using the button with an " i " in a circle.) Add other information to identify you, as necessary.

Reread the Section on "Algebra" in Lecture 2, "Introduction to Sage."
2. Create a section labeled, "Modular arithmetic: demonstration," then:
(a) Define a ring R to be \mathbb{Z}_{10}, the finite ring of 10 elements.
(Hint: The revised notes show a simpler way to do this than the in-class demonstration.)
(b) Define m to be the value of 2 in R, and compute $1 \times m, 2 \times m, 3 \times m, \ldots, 10 \times m$.
(Hint: If your answer to the last product is 20, you're doing it wrong. You have to convert 2 to a value of the ring R. The notes show how to do that.)
(c) Define n to be the value of 3 in R, and compute $1 \times n, 2 \times n, 3 \times n, \ldots, 10 \times n$.
(d) Define r to be the value of 5 in R, and compute $1 \times r, 2 \times r, 3 \times r, \ldots, 10 \times r$.
(e) Define s to be the value of 7 in R, and compute $1 \times s, 2 \times s, 3 \times s, \ldots, 10 \times s$.
(f) Define t to be the value of 9 in R, and compute $1 \times t, 2 \times t, 3 \times t, \ldots, 10 \times t$.
3. For the following, write your answer into a text box at the end of the worksheet. The top of the textbox should have the heading, "Modular arithmetic: analysis."
(a) Notice that $10 \times 2=10 \times 3=\cdots=10 \times 9$ in this ring. Why does that make sense? (Your answer should address what I said in class about arithmetic in \mathbb{Z}_{n}, illustrated on slide 44 with \mathbb{Z}_{7}.)
(b) Which of m, n, r, s, t lists all the numbers from 0 to 9 ?
(c) What property do the numbers you listed in (b) share that the other numbers do not?

