John Perry

What is Sage

Getting started with Sage

Using computer memory

"Algebra'

Summary

MAT 305: Mathematical Computing Introduction to Sage

John Perry

University of Southern Mississippi

Spring 2016

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

"Algebra"

Summary

1 What is Sage?

2 Getting started with Sage

3 Using computer memory

4 "Algebra"

Outline

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

"Algebra'

Summary

1 What is Sage?

② Getting started with Sage

3 Using computer memory

4 "Algebra"

5 Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

John Perry

What is Sage?

- Software for Algebra and Geometry Exploration
- Computer Algebra System "started" by William Stein

- Access to other CASs
 - Calculus: Maxima, SymPy, ...
 - Linear Algebra: M4RI, Linbox, PARI, ...
 - Commutative Algebra: SINGULAR, Macaulay, ...
 - Group theory: GAP, ...
 - etc.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Sage?

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

"Free" software

Why Sage?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Why Sage?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

"Algebra"

Summary

"Free" software

- "Free as in beer":
 - no cost to download
 - no cost to copy
 - no cost to upgrade

Why Sage?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

"Algebra"

Summary

"Free" software

- "Free as in beer":
 - no cost to download
 - no cost to copy
 - no cost to upgrade
- "Free as in speech":
 - no secret algorithms
 - can study implementation
 - can correct, improve, contribute

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

Analogy: "Free" Mathematics

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Theorem There are infinitely many primes.

Proof.

- Consider finite list of primes, q_1, q_2, \ldots, q_n .
- Let $p = q_1 q_2 \cdots q_n + 1$.
- Fact: since $p \neq 1$, divisible by at least one prime
- By Division Theorem, p not divisible by any q_i (remainder 1, not 0).
- p divisible by unlisted prime q_{n+1} !
- .: no finite list, lists all primes.

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra'

Summary

Analogy: "Secret" mathematics

Theorem There are infinitely many primes.

Proof.

"I have discovered a truly marvelous proof of this, which this margin is too narrow to contain."[†]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

[†]Real quote, different theorem.

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

Analogy: "Proprietary" mathematics

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Theorem *There are infinitely many primes.*

Proof. Trade Secret.

John Perry

What is Sage?

- Getting started with Sage
- Using computer memory
- "Algebra"
- Summary

But I prefer M—!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

- Fine, buy your own copy
 - good reasons exist
 - student discount available
 - I will tell you the equivalent commands
- Be warned:
 - future versions not free
 - bug fixes not free
 - after you graduate, pay full price
 - not always backwards compatible (neither is Sage, but Sage is free)

Python

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry What is Sage?

MAT 305: Mathematical

Computing

- Getting started with Sage
- Using computer memory
- "Algebra"
- Summary

- "Sage" built on/with Python
 - interface between Sage and user

- Not all components of Sage in Python:
 - Maxima: LISP
 - SINGULAR: C/C++

John Perry

What is Sage?

Getting started with Sage

- Using computer memory
- "Algebra"
- Summary

Advantages of Python

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

- Modern
 - facilities for object-oriented, functional programming
- Wide distribution, usage
 - many employers use it (doing well in this class makes you more attractive!)

• Flexible

- many good packages enhance it
- Can compile for efficiency using Cython

Python \neq Sage

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

John Perry What is Sage?

MAT 305: Mathematical

Computing

- Getting started with Sage
- Using computer memory
- "Algebra"
- Summary

- Some Python commands don't work in worksheet mode
 input()
- Sage commands do not work in plain Python

Outline

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

"Algebra"

Summary

1 What is Sage?

2 Getting started with Sage

3 Using computer memory

(4) "Algebra"

5 Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

How to get Sage

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

- Using computer memory
- "Algebra"
- Summary

- Best: SageMathCloud
- Download, install to your computer
 - can tinker with/break the source code
 - Windows? need LiveCD or VirtualBox player: www.virtualbox.org/wiki/Downloads
 - ask nicely, & I might give you a DVD with Sage for Windows, Mac, Linux

John Perry

What is Sage?

Getting started with Sage

- Using computer memory
- "Algebra"
- Summary

First steps in Sage

- Log in to SageMathCloud
- Start a new project
 - name it "First Sage Assignment"
 - select type "SageMath Worksheet"
 - visit "Settings", click "Project usage and quotas"
 - click "Network access" and "Member hosting", then "Submit changes"
 - Now return to "First Sage Assignment" (near top)
- If you like (not always recommended)
 - Click "Modes", then "Typeset output"

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

Some symbols of symbolic computation

- Variable's value is *indeterminate*
 - stands for arbitrary value
 - different from traditional languages, numeric packages
- only *x* pre-defined
 - undefined symbols give errors
- Need more? use var()
 - var('y') defines y
 - var('a b c d') defines *a*, *b*, *c*, *d*
- Use undefined variable?

```
sage: x+y+z
...
NameError: name 'z' is not defined
```

Arithmetic

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

operation	sage equivalent		
add <i>x</i> , <i>y</i>	x + y		
subtract <i>y</i> from <i>x</i>	x - y		
multiply <i>x</i> , <i>y</i>	x * y		
divide <i>x</i> by <i>y</i>	x / y		
raise <i>x</i> to the <i>y</i> th power	x ** y or x ^ y		

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

"Algebra'

Summary

Arithmetic

operation	sage equivalent			
add <i>x</i> , <i>y</i>	x + y			
subtract <i>y</i> from <i>x</i>	x - y			
multiply <i>x</i> , <i>y</i>	x * y			
divide <i>x</i> by <i>y</i>	x / y			
raise <i>x</i> to the <i>y</i> th power	x ** y or x ^ y			

- Do not omit muliplication symbol
 - $2*x \longrightarrow 2x$
 - $2x \longrightarrow SyntaxError$: invalid syntax
 - possible, but dangerous, to get around this using implicit_multiplication(True)
- Do not neglect parentheses
 - $e^{**(2*x)} \neq e^{**2*x}$
- Prefer ** to ^ for various sordid reasons (scripting)

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

"Algebra"

Summary

Example

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

"Algebra"

Summary

• Sage simplifies (of course)

```
sage: 5 + 3
8
sage: (x + 3*x**2) - (2*x - x**2)
4*x^2 - x
```

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra'

Summary

Transcendental numbers, functions

number	sage symbol	
е	е	
π	pi	

operation	sage equivalent	
e^x	е**х	
$\ln x$	ln(x)	
$\sin x$, $\cos x$, etc.	sin(x), cos(x), etc.	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

Transcendental numbers, functions

number	sage symbol
е	е
π	pi

operation	sage equivalent
e^x	е**х
$\ln x$	ln(x)
$\sin x$, $\cos x$, etc.	sin(x), cos(x), etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

•
$$\log(x) = \ln x \neq \log_{10} x$$

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra'

Summary

Some useful operations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

operation	sage equivalent		
factor <i>expr</i>	<pre>factor(expr)</pre>		
simplify expr	<pre>simplify(expr)</pre>		
expand <i>expr</i>	expand(<i>expr</i>)		
round <i>expr</i> to <i>n</i> decimal places	round(expr, n)		

Examples

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

"Algebra'

Summary

• Some expressions simplify automatically; many need hints

sage: (x**2 - 1) / (x - 1)(x^2 - 1)/(x - 1) sage: (factor(x**2 - 1)) / (x - 1) x + 1

(good reason this isn't automatic: what?)

• Expand
$$(x-1)(x^3+x^2+x+1)$$

sage: expand((x-1)*(x**3+x**2+x+1))
x^4 - 1

• Round e to 5 decimal places

```
sage: round(e,5)
2.71828
```

Getting help

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Online Sage documentation (tutorial, manual, etc.) at http://www.sagemath.org/doc/
 - These notes: www.math.usm.edu/perry/mat305ssyy/ (ssyy? semester and year: sp13, sp14, sm14, ...)
 - In-Sage help: command, question mark, <Enter>

sage: round?
[output omitted]

• Email: john.perry@usm.edu

MAT 305: Mathematical Computing

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

1 What is Sage?

2 Getting started with Sage

3 Using computer memory

4 "Algebra"

5 Summary

Outline

▲□▶▲圖▶▲≣▶▲≣▶ = 三 のへ⊙

Expressions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry What is Sage?

MAT 305: Mathematical

Computing

Getting started with Sage

Using computer memory

"Algebra"

Summary

• Use a computer's memory by defining *expressions* with the *assignment symbol* =

sage: f = x * * 2 - 1

Sage does not answer when you define an expression

- Expressions are remembered until you terminate Sage
 sage: f
 x² 1
- You can remember a "structure" as well as an expression

sage: R = GF(7) # I'll tell you what this is later

Valid names

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

Getting started with Sage

Using computer memory

"Algebra"

Summary

Names for expressions ("identifiers") can

- contain letters (A–Z), digits (0–9), or the underscore (_) but
- must begin with a letter or the underscore and
- may not contain other character (space, tab, !@#\$%[^], etc.)

John Perry

What is Sage

Getting started with Sage

Using computer memory

"Algebra'

Summary

Using expressions

• Manipulate expression in the same way as the mathematical object it represents

```
sage: factor(f)
(x - 1)*(x + 1)
sage: f - 3
x^2 - 4
```

• Avoid repeating computations: substitute!

```
sage: f(x=3)
8
sage: f(x=-1)
0
sage: f(x=4)
15
```

John Perry

What is Sage? Getting starte

Using computer memory

"Algebra"

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage: f = x**2 + y**2
sage: f(x=3)
9 + y^2
sage: f({x:3})
9 + y^2

This also means replace x by 3 in f

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

John Perry

Using computer memory

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

v**2

sage:	f = x * * 2 +
sage:	f(x=3)
9 + y^	2
sage:	f({x:3})
9 + y^	2
sage:	z = x
sage:	f(z=3)
x^2 +	

This also means replace x by 3 in f

Here we let *z* stand in place of xWe want to replace x by 3, but...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

Alternate method of substitution

Sometimes you should use the **dictionary** method of substitution. An example would be when an identifier stands for a variable.

sage:	f = x * * 2	+	y**2
sage:	f(x=3)		
9 + y^	2		
sage:	f({x:3})		
9 + y^	2		
sage:	z = x		
sage:	f(z=3)		
x^2 +	y^2		
sage:	f({z:3})		
9 + y^	2		

This also means replace x by 3 in f

Here we let z stand in place of xWe want to replace x by 3, but...

This works where f(z=3) did not

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

Expressions as functions

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Define function using natural notation

sage:	f(x)	=	x**2
sage:	f(2)		
4			
sage:	f		
x >	x^2		

John Perry

What is Sage?

Getting started with Sage

Using computer memory

Summary

Expressions as functions

Define function using natural notation

sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2

Automatically defines variables! sage: f(w,z) = 4*w**2-4*z**2 sage: f(3,2) 20 sage: f(1,z)/z -4*(z**2 - 1)/z sage: f(3,2)/z 20/z

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

Define function using natural notation

sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2

Functions really expressions

```
sage: factor(f)
4*(w - z)*(w + z)
sage: type(f)
<type 'sage.symbolic.expression.Expression'>
```

Expressions as functions

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

1 What is Sage?

2 Getting started with Sage

3 Using computer memory

4 "Algebra"

5 Summary

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

Structure

▲□▶▲□▶▲□▶▲□▶ □ のQ@

What is Sage?

MAT 305: Mathematical

Computing John Perry

- Getting started with Sage
- Using computer memory
- "Algebra"
- Summary

- Mathematical operations take place in well-defined structures
- In this class, we primarily use rings and fields

John Perry

What is Sage

Getting started with Sage

Using computer memory

"Algebra"

Summary

"Ring"?!? "Field"?!?

Ring: ordinary arithmetic guaranteed, except division

- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ (integers)
- $\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, b \neq 0\}$
- $\mathbb{R} = \{\pm a_0 a_1 \dots a_m . a_{m+1} a_{m+1} \dots\}$
- $\mathbb{C} = \left\{ a + bi : a, b \in \mathbb{R}, i^2 = -1 \right\}$
- (integers) (rationals, "quotients") (reals, "measurements") (complex, "complete")

▲□▶▲□▶▲□▶▲□▶ □ のQ@

John Perry

What is Sage

Getting started with Sage

Using computer memory

"Algebra"

Summary

Ring: ordinary arithmetic guaranteed, except division

• $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ (integers)

"Ring"?!? "Field"?!?

- $\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, b \neq 0\}$
- $\mathbb{R} = \{\pm a_0 a_1 \dots a_m \cdot a_{m+1} a_{m+1} \dots\}$ • $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i^2 = -1\}$
- (rationals, "quotients") (reals, "measurements")
 - (complex, ``complete")

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

Field: division guaranteed, too

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- not \mathbb{Z}
- don't worry about 0

John Perry

What is Sage

Getting started with Sage

Using computer memory

"Algebra"

Summary

Ring: ordinary arithmetic guaranteed, except division

• $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ (integers)

"Ring"?!? "Field"?!?

- $\mathbb{Q} = \{a/b : a, b \in \mathbb{Z}, b \neq 0\}$
- $\mathbb{R} = \{ \pm a_0 a_1 \dots a_m \cdot a_{m+1} a_{m+1} \dots \}$ • $\mathbb{C} = \{ a + bi : a, b \in \mathbb{R}, i^2 = -1 \}$

(rationals, "quotients") (reals, "measurements")

(complex, ``complete")

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Field: division guaranteed, too

- Q, R, C
- not \mathbb{Z}
- don't worry about 0

(Intuitive descriptions, not formal definitions)

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra"

Summary

Sage notation for common rings

R

C

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Integers: ZZ

- Rationals: QQ
- Reals: RR (Sage *approximates* w/53 bits precision)
- Complex: CC (Sage *approximates* w/53 bits precision)

Advanced rings

 \mathbb{Z}_{n}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへつ

- Algebraic reals: AA (algebraic closure of Q)
- Finite fields: GF(n) Z_n
 (n power of prime; if not first power, specify string as name for generator)
- Finite rings: ZZ.quo(*n*) (*n* must be an integer)
- Symbolic: SR (can use expressions with symbols as entries)

"Algebra"

MAT 305: Mathematical

Computing John Perry

Summary

Using expressions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We sometimes work in uncommon rings

MAT 305: Mathematical

Computing John Perry

"Algebra"

sage: a, b = R(4), R(6) Recall R is \mathbb{Z}_7 sage: a + b 3 4+6=10, remainder by 7 sage: 4 + 6 10 ordinary arithmetic still holds sage: 2*a + 3*b 5 2×4+3×6=26, remainder by 7 sage: a**(-1) 2 4×2=8, remainder by 7 is 1

John Perry

What is Sage?

Getting started with Sage

Using computer memory

"Algebra

Summary

1 What is Sage?

2 Getting started with Sage

3 Using computer memory

(4) "Algebra"

Outline

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

What is Sage?

MAT 305: Mathematical

Computing John Perry

- Getting started with Sage
- Using computer memory
- "Algebra"
- Summary

- Basic, intuitive facilities for arithmetic
- Create variables to your heart's content
- Define expressions to avoid repeating computations