MAT 305: Mathematical Computing

John Perry

MAT 305: Mathematical Computing Introduction to Sage

John Perry

University of Southern Mississippi
Spring 2016

MAT 305:
Mathematical
Computing

Outline

John Perry

(1) What is Sage?

(2) Getting started with Sage
(3) Using computer memory
(4) "Algebra"
(5) Summary

MAT 305: Mathematical
Computing
John Perry

What is Sage?
Getting started with Sage

Using
computer memory
"Algebra"
Summary

(1) What is Sage?

(2) Getting started with Sage
(3) Using computer memory
(4) "Algebra"
(5) Summary

Outline

Sage?

- Software for Algebra and Geometry Exploration
- Computer Algebra System "started" by William Stein

- Access to other CASs
- Calculus: Maxima, SymPy, ...
- Linear Algebra: M4RI, Linbox, PARI, ...
- Commutative Algebra: Singular, Macaulay, ...
- Group theory: GAP, ...
- etc.

MAT 305: Mathematical
Computing
John Perry
What is Sage?
Getting started with Sage

Using
computer
memory
"Algebra"
Summary

Why Sage?

"Free" software

MAT 305: Mathematical Computing

John Perry
What is Sage?
Getting started with Sage

Using computer memory
"Algebra"

Why Sage?

"Free" software

- "Free as in beer":
- no cost to download
- no cost to copy
- no cost to upgrade

MAT 305: Mathematical Computing

John Perry
"Free" software

- "Free as in beer":
- no cost to download
- no cost to copy
- no cost to upgrade
- "Free as in speech":
- no secret algorithms
- can study implementation
- can correct, improve, contribute

Mathematical Computing

John Perry

Analogy: "Free" Mathematics

Theorem

There are infinitely many primes.
Proof.

- Consider finite list of primes, $q_{1}, q_{2}, \ldots, q_{n}$.
- Let $p=q_{1} q_{2} \cdots q_{n}+1$.
- Fact: since $p \neq 1$, divisible by at least one prime
- By Division Theorem, p not divisible by any q_{i} (remainder 1, not 0).
- p divisible by unlisted prime q_{n+1} !
- \therefore no finite list, lists all primes.

Mathematical Computing

John Perry

Analogy: "Secret" mathematics

Theorem
There are infinitely many primes.
Proof.
"I have discovered a truly marvelous proof of this, which this margin is too narrow to contain." \dagger
${ }^{\dagger}$ Real quote, different theorem.

MAT 305: Mathematical Computing

John Perry

Analogy: "Proprietary" mathematics

Theorem There are infinitely many primes.

Proof. Trade Secret.

But I prefer M—!

John Perry

- Fine, buy your own copy
- good reasons exist
- student discount available
- I will tell you the equivalent commands
- Be warned:
- future versions not free
- bug fixes not free
- after you graduate, pay full price
- not always backwards compatible (neither is Sage, but Sage is free)

Mathematical
Computing

Python

John Perry

- "Sage" built on/with Python
- interface between Sage and user
- Not all components of Sage in Python:
- Maxima: LISP
- Singular: C/C++

Advantages of Python

John Perry

- Modern
- facilities for object-oriented, functional programming
- Wide distribution, usage
- many employers use it (doing well in this class makes you more attractive!)
- Flexible
- many good packages enhance it
- Can compile for efficiency using Cython

Python \neq Sage

John Perry

- Some Python commands don't work in worksheet mode
- input()
- Sage commands do not work in plain Python

MAT 305: Mathematical
Computing
John Perry

What is Sage?
Getting started with Sage

Using
"Algebra"

Outline

(1) What is Sage?

(2) Getting started with Sage

(3) Using computer memory
(4) "Algebra"
(5) Summary

How to get Sage

John Perry

- Best: SageMathCloud
- Download, install to your computer
- can tinker with/break the source code
- Windows? need LiveCD or VirtualBox player: www.virtualbox.org/wiki/Downloads
- ask nicely, \& I might give you a DVD with Sage for Windows, Mac, Linux

MAT 305:
Mathematical Computing

First steps in Sage

- Log in to SageMathCloud
- Start a new project
- name it "First Sage Assignment"
- select type "SageMath Worksheet"
- visit "Settings", click "Project usage and quotas"
- click "Network access" and "Member hosting", then "Submit changes"
- Now return to "First Sage Assignment" (near top)
- If you like (not always recommended)
- Click "Modes", then "Typeset output"

MAT 305: Mathematical Computing

Some symbols of symbolic computation

- Variable's value is indeterminate
- stands for arbitrary value
- different from traditional languages, numeric packages
- only x pre-defined
- undefined symbols give errors
- Need more? use var()
- $\operatorname{var}(' y$ ') defines y
- $\operatorname{var}(\prime \mathrm{a} \mathrm{b} \mathrm{c}$ d') defines a, b, c, d
- Use undefined variable?

$$
\text { sage: } x+y+z
$$

NameError: name ' z ' is not defined

MAT 305: Mathematical Computing

Arithmetic

John Perry

Getting started with Sage

operation	sage equivalent
add x, y	$\mathrm{x}+\mathrm{y}$
subtract y from x	$\mathrm{x}-\mathrm{y}$
multiply x, y	$\mathrm{x} * \mathrm{y}$
divide x by y	x / y
raise x to the y th power	$\mathrm{x} * * \mathrm{y}$ or $\mathrm{x}{ }^{-} \mathrm{y}$

Arithmetic

operation	sage equivalent
add x, y	$\mathrm{x}+\mathrm{y}$
subtract y from x	$\mathrm{x}-\mathrm{y}$
multiply x, y	$\mathrm{x} * \mathrm{y}$
divide x by y	x / y
raise x to the y th power	$\mathrm{x} * * \mathrm{y}$ or $\mathrm{x}{ }^{-} \mathrm{y}$

- Do not omit muliplication symbol
- $2 * \mathrm{x} \longrightarrow 2 x$
- $2 \mathrm{x} \longrightarrow$ SyntaxError: invalid syntax
- possible, but dangerous, to get around this using implicit_multiplication(True)
- Do not neglect parentheses
- $e * *(2 * x) \neq e * * 2 * x$
- Prefer ** to - for various sordid reasons (scripting)

Example

John Perry

What is Sage?
Getting started with Sage

- Sage simplifies (of course)

```
sage: 5 + 3
8
sage: (x + 3*x**2) - (2*x - x**2)
4*x^2 - x
```

MAT 305: Mathematical Computing

John Perry

Transcendental numbers, functions

number	sage symbol
e	e
π	pi

operation	sage equivalent
e^{x}	$e * * x$
$\ln x$	$\ln (x)$
$\sin x, \cos x$, etc.	$\sin (x), \cos (x)$, etc.

MAT 305: Mathematical Computing

John Perry

Transcendental numbers, functions

number	sage symbol
e	e
π	pi

operation	sage equivalent
e^{x}	$e * * x$
$\ln x$	$\ln (x)$
$\sin x, \cos x$, etc.	$\sin (x), \cos (x)$, etc.

- $\log (\mathrm{x})=\ln x \neq \log _{10} x$

MAT 305: Mathematical Computing

Some useful operations

John Perry

operation	sage equivalent
factor expr	factor $($ expr $)$
simplify expr	simplify $($ expr $)$
expand expr	expand (expr)
round expr to n decimal places	round (expr, n)

MAT 305: Mathematical Computing

Examples

John Perry

- Some expressions simplify automatically; many need hints

$$
\begin{aligned}
& \text { sage: }(x * * 2-1) /(x-1) \\
& (x \wedge 2-1) /(x-1) \\
& \text { sage: }(f a c t o r(x * * 2-1)) /(x-1) \\
& x+1
\end{aligned}
$$

(good reason this isn't automatic: what?)

- Expand $(x-1)\left(x^{3}+x^{2}+x+1\right)$

$$
\begin{aligned}
& \text { sage: expand }((x-1) *(x * * 3+x * * 2+x+1)) \\
& x^{\wedge} 4-1
\end{aligned}
$$

- Round e to 5 decimal places

$$
\text { sage: round }(e, 5)
$$

2.71828

Getting help

- Online Sage documentation (tutorial, manual, etc.) at http://www.sagemath.org/doc/
- These notes: www.math.usm.edu/perry/mat305ssyy/ (ssyy? semester and year: sp13, sp14, sm14, ...)
- In-Sage help: command, question mark, <Enter> sage: round? [output omitted]
- Email: john.perry@usm.edu

MAT 305: Mathematical
Computing
John Perry

What is Sage?
Getting started with Sage

Using computer memory
"Algebra"
Summary

Outline

(1) What is Sage?
(2) Getting started with Sage
(3) Using computer memory
(4) "Algebra"
(5) Summary

MAT 305: Mathematical Computing

Expressions

- Use a computer's memory by defining expressions with the assignment symbol =

$$
\text { sage: } f=x * * 2-1
$$

Sage does not answer when you define an expression

- Expressions are remembered until you terminate Sage

$$
\begin{aligned}
& \text { sage: } f \\
& x \wedge 2-1
\end{aligned}
$$

- You can remember a "structure" as well as an expression

$$
\begin{aligned}
& \text { sage: } R=G F(7) \# \text { I'll tell you what } \\
& \text { this is later }
\end{aligned}
$$

MAT 305: Mathematical Computing

Names for expressions ("identifiers") can

- contain letters (A-Z), digits (0-9), or the underscore (_) but
- must begin with a letter or the underscore and
- may not contain other character (space, tab, !@\#\$\%^, etc.)

MAT 305: Mathematical Computing

- Manipulate expression in the same way as the mathematical object it represents

$$
\begin{aligned}
& \text { sage: factor }(f) \\
& (x-1) *(x+1) \\
& \text { sage: } f-3 \\
& x-2-4
\end{aligned}
$$

- Avoid repeating computations: substitute!

$$
\begin{array}{ll}
\text { sage: } & f(x=3) \\
8 & \\
\text { sage: } & f(x=-1) \\
0 & \\
\text { sage: } & f(x=4) \\
15 &
\end{array}
$$

MAT 305: Mathematical Computing

John Perry

Alternate method of substitution

Sometimes you should use the dictionary method of substitution. An example would be when an identifier stands for a variable.

$$
\begin{aligned}
& \text { sage: } f=x * * 2+y * * 2 \\
& \text { sage: } f(x=3)
\end{aligned}
$$

$$
9+y^{\wedge} 2
$$

sage: $f(\{x: 3\})$
This also means replace x by 3 in f
$9+\mathrm{y}^{\wedge} 2$

MAT 305: Mathematical Computing

John Perry

Alternate method of substitution

Sometimes you should use the dictionary method of substitution. An example would be when an identifier stands for a variable.

$$
\begin{aligned}
& \text { sage: } f=x * * 2+y * * 2 \\
& \text { sage: } f(x=3)
\end{aligned}
$$

$$
9+y^{\wedge} 2
$$

sage: $f(\{x: 3\})$
This also means replace x by 3 in f
$9+\mathrm{y}^{\wedge} 2$
sage: $\mathrm{z}=\mathrm{x}$
sage: $f(z=3)$
$x^{\wedge} 2+y^{\wedge} 2$

MAT 305: Mathematical Computing

John Perry

Alternate method of substitution

Sometimes you should use the dictionary method of substitution. An example would be when an identifier stands for a variable.

$$
\begin{aligned}
& \text { sage: } f=x * * 2+y * * 2 \\
& \text { sage: } f(x=3)
\end{aligned}
$$

$$
9+y^{\wedge} 2
$$

sage: $f(\{x: 3\})$
This also means replace x by 3 in f
$9+\mathrm{y}^{\wedge} 2$
sage: $\mathrm{z}=\mathrm{x}$
sage: $f(z=3)$
$\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2$
sage: $f(\{z: 3\})$
Here we let z stand in place of x We want to replace x by 3 , but...

This works where $f(z=3)$ did not
$9+y^{\wedge} 2$

MAT 305: Mathematical Computing

John Perry

What is Sage?
Getting started with Sage

Expressions as functions

Define function using natural notation
sage: $f(x)=x * * 2$
sage: $f(2)$
4
sage: f
x |--> $x^{\wedge} 2$ Mathematical Computing

Expressions as functions

John Perry
Define function using natural notation
sage: $f(x)=x * * 2$
sage: $f(2)$
4
sage: f
x |--> $x^{\wedge} 2$
Automatically defines variables!
sage: $f(w, z)=4 * W * * 2-4 * z * * 2$
sage: $f(3,2)$
20
sage: $f(1, z) / z$
$-4 *(z * * 2-1) / z$
sage: $f(3,2) / z$
20/z

MAT 305: Mathematical Computing

John Perry
Define function using natural notation

```
sage: f(x) = x**2
sage: f(2)
4
sage: f
x |--> x^2
```

Functions really expressions
sage: factor (f)
4*(w - z)*(w + z)
sage: type(f)
<type 'sage.symbolic.expression.Expression'>

MAT 305: Mathematical Computing

John Perry

What is Sage?
Getting started with Sage

Using
computer memory
"Algebra"
Summary

Outline

(1) What is Sage?
(2) Getting started with Sage
(3) Using computer memory
(4) "Algebra"
(5) Summary

Structure

John Perry

- Mathematical operations take place in well-defined structures
- In this class, we primarily use rings and fields

MAT 305: Mathematical Computing

John Perry

Ring: ordinary arithmetic guaranteed, except division

- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- $\mathbb{Q}=\{a / b: a, b \in \mathbb{Z}, b \neq 0\}$
- $\mathbb{R}=\left\{ \pm a_{0} a_{1} \ldots a_{m} \cdot a_{m+1} a_{m+1} \cdots\right\}$
- $\mathbb{C}=\left\{a+b i: a, b \in \mathbb{R}, i^{2}=-1\right\}$ (integers)
(rationals, "quotients") (reals, "measurements") (complex, "complete") Mathematical Computing

Ring: ordinary arithmetic guaranteed, except division

- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ (integers)
- $\mathbb{Q}=\{a / b: a, b \in \mathbb{Z}, b \neq 0\}$
- $\mathbb{R}=\left\{ \pm a_{0} a_{1} \ldots a_{m} \cdot a_{m+1} a_{m+1} \cdots\right\}$
- $\mathbb{C}=\left\{a+b i: a, b \in \mathbb{R}, i^{2}=-1\right\}$
(rationals, "quotients") (reals, "measurements") (complex, "complete")

Field: division guaranteed, too

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $n o t \mathbb{Z}$
- don't worry about 0 Mathematical Computing

Ring: ordinary arithmetic guaranteed, except division

- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$ (integers)
- $\mathbb{Q}=\{a / b: a, b \in \mathbb{Z}, b \neq 0\}$ (rationals, "quotients")
- $\mathbb{R}=\left\{ \pm a_{0} a_{1} \ldots a_{m} \cdot a_{m+1} a_{m+1} \cdots\right\}$
- $\mathbb{C}=\left\{a+b i: a, b \in \mathbb{R}, i^{2}=-1\right\}$ (reals, "measurements") (complex, "complete")

Field: division guaranteed, too

- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $n o t \mathbb{Z}$
- don't worry about 0
(Intuitive descriptions, not formal definitions)

MAT 305: Mathematical Computing

Sage notation for common rings

John Perry

- Integers: ZZ
- Rationals: QQ
- Reals: RR
(Sage approximates $\mathrm{w} / 53$ bits precision)
- Complex: CC (Sage approximates $\mathrm{w} / 53$ bits precision)

Advanced rings

John Perry

- Algebraic reals: AA (algebraic closure of \mathbb{Q})
- Finite fields: $\operatorname{GF}(n)$
(n power of prime; if not first power, specify string as name for generator)
- Finite rings: ZZ.quo(n)
(n must be an integer)
- Symbolic: SR
(can use expressions with symbols as entries)

MAT 305: Mathematical Computing

John Perry
What is Sage?
Getting started with Sage

Using
"Algebra"

Using expressions

We sometimes work in uncommon rings

MAT 305: Mathematical
Computing
John Perry

What is Sage?
Getting started with Sage

Using
computer memory
"Algebra"
Summary

Outline

(1) What is Sage?
(2) Getting started with Sage
(3) Using computer memory
(4) "Algebra"
(5) Summary

Summary

John Perry

- Basic, intuitive facilities for arithmetic
- Create variables to your heart's content
- Define expressions to avoid repeating computations

