MAT 305:
Mathematical Computing

John Perry

MAT 305: Mathematical Computing

 Repeating a task on a set (or list, or tuple, or...)John Perry

University of Southern Mississippi

Spring 2016

MAT 305:
Mathematical
Computing

Outline

John Perry
(1) Repetition means Loops
(2) Looping in a collection
(3) Looping on a collection
(4) A useful trick w/loops
(5) Summary

MAT 305: Mathematical
Computing
John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Outline

(1) Repetition means Loops
(2) Looping in a collection
(3) Looping on a collection
(4) A useful trick w/loops
(5) Summary

MAT 305:
Mathematical Computing

Repetition?

Repetition means Loops

We often have to repeat a computation that is

- not a mere operation, and
- not convenient to do by hand.

Example

- Compute the first 100 derivatives of $f(x)$.

MAT 305: Mathematical Computing

John Perry

A complication

We may not know how many computations ahead of time! Examples

- Add the first n numbers
- What is n ?
- Determine whether all elements of the set S are prime
- What is in S ?

MAT 305:
Mathematical
Computing

Solution: loops!

John Perry

Repetition
means Loops

- loop: a sequence of statements that is repeated big time bug: infinite loops

MAT 305:
Mathematical Computing

Solution: loops!

John Perry

- loop: a sequence of statements that is repeated

big time bug: infinite loops

"infinite loop": see infinite loop

- AmigaDOS Glossary, ca. 1993

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

- c is an identifier
- C is an "iterable collection" (tuples, lists, sets)

MAT 305: Mathematical
Computing
John Perry

Repetition
means Loops
Looping in a collection

Looping on a collection

A useful trick w/loops

Outline

(1) Repetition means Loops

(2) Looping in a collection
(3) Looping on a collection
(4) A useful trick w/loops
(5) Summary

MAT 305: Mathematical Computing

What does it do?

John Perry
Repetition means Loops
[statement for c in C]
or \{ statement for c in C \}
or (statement for c in C)

- suppose C has n elements
- result is a list/set/tuple
- i th value is value of statement at i th element of C

MAT 305: Mathematical Computing

What does it do?

John Perry

- result is a list/set/tuple
- i th value is value of statement at i th element of C
- loop variable c can be any valid identifier
- Python programmers often use each

MAT 305: Mathematical Computing

Examples

Repetition means Loops

Example
Sampling $f(x)=x^{2}$ with 10 points on $[2,5]$
sage: $\mathrm{f}(\mathrm{x})=\mathrm{x} * * 2$
sage: delta_x $=(5-2) / 10$
sage: [f(2 + i*delta_x) for i in range(10)]
[4, 529/100, 169/25, 841/100, 256/25, 49/4, 361/25, 1681/100, 484/25, 2209/100]

MAT 305: Mathematical Computing

What happened?

John Perry
Repetition
means Loops
Looping in a collection

Looping on a collection

A useful trick w/loops

$$
C==\operatorname{range}(10)==[0,1, \ldots, 9]
$$

MAT 305: Mathematical Computing

What happened?

John Perry

Repetition

means Loops
Looping in a collection

Looping on a collection

A useful trick w/loops

$$
\begin{aligned}
& C==\text { range }(10)==[0,1, \ldots, 9] \\
& \text { loop 1: } i \longleftarrow 0 \\
& f(2+i * \text { delta_x }) \longrightarrow 4
\end{aligned}
$$

MAT 305: Mathematical Computing

What happened?

John Perry
Repetition means Loops

```
C == range(10) == [0, 1, ..., 9]
loop 1: i }\longleftarrow
    f(2 + i*delta_x) m> 4
```

loop 2: i $\longleftarrow 1$
f(2 + i*delta_x) m 529/100

MAT 305: Mathematical Computing

John Perry
Repetition means Loops

```
C == range(10) == [0, 1, ..., 9]
loop 1: i }\longleftarrow
    f(2 + i*delta_x) m> 4
```

loop 2: i $\longleftarrow 1$
f(2 + i*delta_x) m 529/100
loop 10: i $\longleftarrow 9$
f(2 + i*delta_x) \rightarrow 2209/100

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

More detailed example

Estimate $\int_{0}^{1} e^{x^{2}} d x$ using n left Riemann sums.

Mathematical Computing

John Perry

More detailed example

Estimate $\int_{0}^{1} e^{x^{2}} d x$ using n left Riemann sums.

- Excellent candidate for definite loop
- Riemann sum: repeated addition: loop!
- n can be known to computer but not to you

First, prepare pseudocode!

MAT 305: Mathematical Computing

Pseudocode?

Repetition means Loops
description of activity

- format independent of computer language
- prefer mathematics to programming
- "ith element of L " or " L_{i} ", not $\mathrm{L}[i-1]$

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

Building pseudocode

Ask yourself:

- What list do I use to repeat the action(s)?
- What do I have to do in each loop?
- How do I break the task into pieces?
- Divide et impera! Divide and conquer!

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

Pseudocode for definite loop

statement for $c \in C$

Notice:

- \in, not in (mathematics, not Python)

MAT 305:
Mathematical Computing

John Perry

Repetition means Loops

Looping in a collection

Let Δx be width of partition Let X be left endpoints of partition Add areas of rectangles on each partition

MAT 305: Mathematical Computing

Riemann sum: pseudocode

 Mathematical Computing
translates to Sage as. . .

John Perry
Repetition means Loops

Looping in a collection

MAT 305: Mathematical
Computing
John Perry

Repetition
means Loops
Looping in a collection

Looping on a collection

A useful trick w/loops

Outline

(1) Repetition means Loops
(2) Looping in a collection

(3) Looping on a collection

(4) A useful trick w/loops
(5) Summary

What does it do?

for c in C :
statement1
statement 2
...
statement outside loop

- suppose C has n elements
- statement1, statement2, etc. are repeated (looped) n times
- on i th loop, c has the value of i th element of C
- if you modify c,
- corresponding element of C does not change
- on next loop, c takes next element of C anyway
- statement outside loop \& subsequent not repeated

MAT 305: Mathematical Computing

Less trivial example

sage: for f in $[x * * 2, \cos (x), e * * x * \cos (x)]:$ print diff(f)
$2 * x$
$-\sin (x)$
$-e^{\wedge} x * \sin (x)+e^{\wedge} x * \cos (x)$

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

What happened?

$$
C==[x * * 2, \cos (x), e * * x * \cos (x)]
$$

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

What happened?

$$
C==[x * * 2, \cos (x), e * * x * \cos (x)]
$$

$$
\begin{array}{rl}
\text { loop 1: } f & \mathrm{f} \\
& \text { print } \operatorname{diff}(\mathrm{f}) \\
\mathrm{x})
\end{array}
$$

MAT 305: Mathematical Computing

What happened?

John Perry

$$
C==[x * * 2, \cos (x), e * * x * \cos (x)]
$$

$$
\begin{array}{rl}
\text { loop 1: } f & \mathrm{f} \\
& \text { print } \operatorname{diff}(\mathrm{f})
\end{array}
$$

loop 2: $\mathrm{f} \longleftarrow \cos (\mathrm{x})$

$$
\text { print } \operatorname{diff}(f) \quad m \quad-\sin (x)
$$

MAT 305: Mathematical Computing

What happened?

John Perry

$$
\text { loop 1: } f \longleftarrow x * * 2
$$

$$
C==[x * * 2, \cos (x), e * * x * \cos (x)]
$$

$$
\text { print diff(f) } \rightsquigarrow 2 x
$$

loop 2: $\mathrm{f} \longleftarrow \cos (\mathrm{x})$

$$
\text { print } \operatorname{diff}(f) \quad m \quad-\sin (x)
$$

loop 3: $\mathrm{f} \longleftarrow \mathrm{e} * * \mathrm{x} * \cos (\mathrm{x})$
print $\operatorname{diff}(f) \Longrightarrow-e^{\wedge} x * \sin (x)+e^{\wedge} x * \cos (x)$

MAT 305: Mathematical Computing

Changing each ?

John Perry
Repetition means Loops
Looping in a collection

Looping on a collection

A useful trick w/loops

$$
\begin{array}{rc}
\text { sage: } & C=[1,3,5] \\
\text { sage: } & \text { for } c \text { in } C: \\
& c=c+1 \\
& \text { print } c
\end{array}
$$

2
4
6
sage: print C
[1, 3, 5]

MAT 305: Mathematical
Computing

What happened?

John Perry
Repetition
means Loops
Looping in a collection

Looping on a collection

A useful trick w/loops

$$
C==[1,2,3]
$$

MAT 305: Mathematical Computing

What happened?

John Perry
Repetition means Loops
Looping in a
collection
Looping on a collection

A useful trick w/loops

$$
\begin{aligned}
& \mathrm{C}==[1,2,3] \\
& \text { loop 1: } \mathrm{c} \longleftarrow 1 \\
& \\
& \\
& \mathrm{c}=\mathrm{c}+1=1+1 \\
& \\
& \\
& \text { print } \mathrm{c} \rightarrow \rightarrow 2
\end{aligned}
$$

MAT 305: Mathematical Computing

What happened?

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

$$
\begin{aligned}
& C=[1,2,3] \\
& \text { loop 1: c } \longleftarrow 1 \\
& c=c+1=1+1 \\
& \text { print c } m 2 \\
& \text { loop 2: c } \longleftarrow 2 \\
& c=c+1=2+1 \\
& \text { print } c>3
\end{aligned}
$$

MAT 305:
Mathematical Computing

What happened?

John Perry

Repetition means Loops

Looping in a collection

$$
\begin{aligned}
& C==[1,2,3] \\
& \text { loop 1: } \begin{aligned}
& c \longleftarrow 1 \\
& c=c+1=1+1 \\
& \text { print } c>2
\end{aligned}
\end{aligned}
$$

loop 2: c $\longleftarrow 2$

$$
c=c+1=2+1
$$

$$
\text { print c } m 3
$$

loop 3: c $\longleftarrow 3$
$c=c+1=3+1$
print c $m 4$

MAT 305:
Mathematical
Computing
John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Changing C ?

Don't modify C unless you know what you're doing.

MAT 305: Mathematical Computing

Changing C ?

Repetition means Loops

Don't modify C unless you know what you're doing. Usually, you don't.

```
sage: C = [1,2,3,4]
sage: for c in C:
    C.append(c+1)
```

MAT 305: Mathematical Computing

Changing C ?

Repetition means Loops

Don't modify C unless you know what you're doing. Usually, you don't.

```
sage: C = [1,2,3,4]
sage: for c in C:
        C.append(c+1)
```

 ...infinite loop! Mathematical Computing
 John Perry

More detailed example

Use Euler approximation with 200 points to plot an approximate solution to a differential equation

$$
y^{\prime}=f(x, y)
$$

starting at the point $(1,1)$ and ending at $x=4$ (we'll define f later) Mathematical Computing

John Perry

More detailed example

 Use Euler approximation with 200 points to plot an approximate solution to a differential equation$$
y^{\prime}=f(x, y)
$$

starting at the point $(1,1)$ and ending at $x=4$ (we'll define f later) Euler approximation?!?

- given a point $\left(x_{i}, y_{i}\right)$ on the curve,
- the next point $\left(x_{i+1}, y_{i+1}\right) \approx\left(x_{i}+\Delta x, y_{i}+y^{\prime} \cdot \Delta x\right)$

MAT 305: Mathematical Computing

John Perry

Building pseudocode

Ask yourself:

- What list(s) do I use to repeat the action(s)?
- What do I have to do in each loop?
- How do I break the task into pieces?
- Divide et impera! Divide and conquer!

MAT 305: Mathematical Computing

Pseudocode

Let $x_{0}, y_{0}=(1,1)$
Let $a=1$ and $b=4$
Let $\Delta x=b-a / n$
Let $C=(1,2, \ldots, n)$
collection over which to iterate for $i \in C$

$$
\begin{aligned}
& y_{i}=y_{i-1}+\Delta x \cdot f\left(x_{i-1}, y_{i-1}\right) \\
& x_{i}=x_{i-1}+\Delta x
\end{aligned}
$$

MAT 305: Mathematical Computing

Translates to sage as...

```
sage: XY = [(1,1)]
sage: a,b,n = 1,4,200
sage: Delta_x = (b-a)/n
sage: for i in range(n):
    XY.append((X[i] + Delta_x,
    Y[i] + Delta_x * f(X[i],Y[i])))
```

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops
(4, 1751009/80000)
sage: round (_,5)
21.88761
sage: $f(x, y)=x * * 2$
sage: [type the above]
sage: XY[-1]

Try it!

last entry in XY

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

Try it!

sage: $f(x, y)=x * * 2$
sage: [type the above]
sage: $\mathrm{XY}[-1]$ last entry in XY
(4, 1751009/80000)
sage: round(_,5)
21.88761
sage: line(XY,thickness=2)

MAT 305: Mathematical Computing

John Perry

Repetition means Loops

Looping in a collection

Looping on a collection

A useful trick w/loops

What happened?

$$
\text { range }(n) \longleftarrow[0, \ldots, 199]
$$

MAT 305: Mathematical Computing

What happened?

John Perry

Repetition means Loops

Looping in a collection

$$
\begin{aligned}
& \text { range (n) } \longleftarrow[0, \ldots, 199] \\
& \text { loop 1: } i \longleftarrow 0 \\
& \begin{aligned}
x_{i} & =x_{i}+\text { Delta_x } \quad \underset{y}{m} \quad \mathrm{xi}=1+.015=1.015 \\
y_{i} & \left.=y_{i}+\text { Delta_x } * \underset{i-1}{ }, y_{i-1}\right) \\
& m \mathrm{yi}=1+.015 * 1=1.015
\end{aligned}
\end{aligned}
$$

Mathematical Computing

What happened?

range (n) $\longleftarrow[0, \ldots, 199]$ loop 1: $i \longleftarrow 0$

\[

\]

loop 2: $i \longleftarrow 1$

$$
\begin{aligned}
x_{i} & =x_{i}+\text { Delta_x } \leadsto \mathrm{xi}=1.015+.015=1.03 \\
y_{i} & =y_{i}+\text { Delta_x } * \mathrm{f}\left(x_{i-1}, y_{i-1}\right) \\
& \leadsto \mathrm{yi}=1.015+.015 * 1.030225=1.030453375
\end{aligned}
$$

Mathematical Computing
range (n) $\longleftarrow[0, \ldots, 199]$ loop 1: $i \longleftarrow 0$

$$
\begin{aligned}
x_{i} & =x_{i}+\text { Delta_x } \underset{i}{m} \quad \mathrm{xi}=1+.015=1.015 \\
y_{i} & =y_{i}+\operatorname{Delta_ x} * \underset{\mathrm{f}}{\mathrm{f}\left(x_{i-1}, y_{i-1}\right)} \\
& \mathrm{yi}=1+.015 * 1=1.015
\end{aligned}
$$

loop 2: $i \longleftarrow 1$

$$
\begin{aligned}
x_{i} & =x_{i}+\text { Delta_x } \leadsto \mathrm{xi}=1.015+.015=1.03 \\
y_{i} & =y_{i}+\text { Delta_x } * \mathrm{f}\left(x_{i-1}, y_{i-1}\right) \\
& \leadsto \mathrm{yi}=1.015+.015 * 1.030225=1.030453375
\end{aligned}
$$

loop 3: $i \longleftarrow 2$

$$
\begin{aligned}
& x_{i}=x_{i}+\text { Delta_x } m \mathrm{xi}=1.03+.015=1.045 \\
& y_{i}=y_{i}+\text { Delta_x } * \mathrm{f}\left(x_{i-1}, y_{i-1}\right) \\
& m \Rightarrow \mathrm{yi}=1.03 \ldots+.015 * 1.0609=1.046366875
\end{aligned}
$$

etc.

MAT 305: Mathematical
Computing
John Perry
Repetition
means Loops
Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Outline

(1) Repetition means Loops
(2) Looping in a collection
(3) Looping on a collection
(4) A useful trick w/loops
(5) Summary

Mathematical Computing

John Perry

Looping through nonexistent lists

- range (n) creates a list of n elements
- for each in range (n) creates the list before looping
- constructing a list, merely to repeat n times, is wasteful
- for each in xrange (n) has same effect
- slightly faster, uses less computer memory

MAT 305: Mathematical
Computing
John Perry

Repetition
means Loops
Looping in a collection

Looping on a collection

A useful trick w/loops

Summary

Outline

(1) Repetition means Loops
(2) Looping in a collection
(3) Looping on a collection
(4) A useful trick w/loops
(5) Summary

Summary

- definite loop: n repetitions known at outset
- collection C of n elements controls loop
- don't modify C
- two forms
- loop in a collection, [expression for $c \in C$]
- loop on a collection, for $c \in C$
statement1
statement 2
statement outside loop

